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Mathematical Constraints of RL-Induced Reasoning: A Re-
buttal to DeepSeek-R1

Abstract

DeepSeek-R1 claims that reinforcement learning (RL) induces emergent reasoning capabil-
ities in large language models (LLMs), suggesting a fundamental shift in AI development.
However, our theoretical and computational analysis challenges this assertion.

Our mathematical framework (Section 2) suggests that RL alone is unlikely to induce reason-
ing without a strong pretraining foundation, which remains the dominant driver of reasoning
capabilities. Due to high computational costs, poor sample efficiency, and reward sparsity,
RL struggles to develop complex reasoning from scratch. Instead, it primarily fine-tunes and
reinforces existing pretraining knowledge rather than generating novel reasoning abilities.

Furthermore, DeepSeek-R1’s observed improvements exhibit patterns consistent with well-
established pretraining scaling laws, raising questions about whether RL plays an inde-
pendent role in reasoning emergence. A detailed analysis of DeepSeek-R1’s RL algorithm
(Section 3.3) suggests that its Group Relative Policy Optimization (GRPO) approach is
designed to refine outputs within pretraining constraints rather than fundamentally alter-
ing the reasoning process. Additionally, its rule-based reward system optimizes response
formatting but does not introduce conceptual advancements in reasoning.

Given these findings, we emphasize the need for rigorous empirical testing to isolate RL’s
contributions from pretraining effects. While RL appears to function primarily as a fine-
tuning mechanism in current implementations, further research is necessary to determine
whether it can serve as a fundamental driver of emergent reasoning in LLMs.

1 Introduction

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in natural
language understanding and reasoning tasks (Vaswani et al.l 2017)). DeepSeek-R1 (Guo et all 2025} [Shao
et all [2024) asserts that reinforcement learning (RL) plays a key role in enhancing reasoning capabilities
in LLMs. If RL significantly contributes to emergent reasoning, this would represent a major shift in Al
development, potentially shifting emphasis away from large-scale pretraining toward RIL-based optimization.
However, the theoretical and empirical foundations supporting this claim require careful scrutiny.

DeepSeek-R1 employs a reinforcement learning approach based on Group Relative Policy Optimization
(GRPO) (Shao et al., 2024)), a variant of Proximal Policy Optimization (PPO) that eliminates the need for
a critic model and instead estimates the baseline using a group of outputs from the old policy. Additionally,
DeepSeek-R1 utilizes a rule-based reward system, consisting of accuracy rewards (evaluating correctness in
deterministic tasks such as math and coding problems) and format rewards (enforcing structured reasoning
through specialized tokenization). Notably, DeepSeek-R1 does not rely on neural reward models, citing
concerns about reward hacking and additional training complexities.

These methodological choices raise fundamental questions:
e Can RL, in isolation, induce emergent reasoning capabilities, or does it primarily refine pre-existing
knowledge acquired during pretraining?

e Do DeepSeek-R1’s observed performance improvements result from RL-specific enhancements, or do
they align with well-established pretraining scaling laws?
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o Is DeepSeek-R1’s RL-based optimization computationally feasible at scale? Given RL’s inherent inef-

ficiencies—such as sample inefficiency, reward sparsity, and quadratic computational overhead—how
much does RL actually contribute to the model’s reasoning ability?

To address these questions, we critically evaluate DeepSeek-R1’s claims by analyzing its RL training pipeline
and comparing it against existing mathematical frameworks for sample efficiency, reward sparsity, and com-
putational complexity.

1.1 Problem Statement

DeepSeek-R1 (Guo et al.l 2025, [Liu et al.l 2024} |Shao et al., [2024) suggests that reinforcement learning
enhances the emergence of reasoning abilities in LLMs. This claim contrasts with existing theoretical frame-
works (Kaplan et al., |2020; [Luol 2024), which suggest that pretraining is the dominant factor in high-level
reasoning development. Understanding whether RL meaningfully contributes to emergent reasoning is crit-
ical for optimizing model development strategies and resource allocation.

1.2 Why This Matters

o Implications for Al Scaling: If RL plays a fundamental role in reasoning, future AI development

may shift toward RL-intensive training pipelines. Conversely, if pretraining remains the key driver,
prioritizing RL may divert resources from more impactful research directions.

Computational Feasibility: RL fine-tuning is significantly more computationally expensive than
pretraining. Assessing its actual impact on reasoning is necessary to justify the cost-benefit tradeoffs
in large-scale Al training.

Scientific Validity: Ensuring that observed reasoning capabilities arise from RL rather than con-
founding factors (e.g., pretraining artifacts, implicit biases, or task-specific optimizations) is essential
for correctly interpreting DeepSeek-R1’s findings.

1.3 Our Contributions

This paper provides a theoretical and computational analysis of DeepSeek-R1’s RL-based reasoning claims.
Specifically, we:

1.4

Develop a Theoretical Framework: We construct a model of LLM reasoning that suggests RL alone
is unlikely to induce emergent reasoning at scale.

Analyze Sample Efficiency and Reward Sparsity: We demonstrate that RL suffers from high sample
complexity and reward sparsity constraints, making it inefficient for learning complex reasoning.

Evaluate Computational Scalability: We compare RI-based approaches against pretraining scaling
laws, identifying structural inefficiencies in RL optimization.

Outline Empirical Testing: We propose controlled experiments to isolate RL-driven reasoning effects
from pretraining-based improvements.

Structure of the Paper
e Section 2 introduces a mathematical framework analyzing RL’s limitations in emergent reasoning.

e Section 3 presents a structured critique of DeepSeek-R1’s claims, focusing on theoretical and com-

putational constraints.

o Section 4 discusses implications for Al research and suggests directions for future work.
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2 Mathematical Constraints on RL-Induced Reasoning in DeepSeek-R1

DeepSeek-R1 claims that reinforcement learning (RL) induces emergent reasoning in large language models.
However, this assertion must be examined in light of fundamental mathematical constraints, including sample
complexity, reward sparsity, and computational feasibility. In this section, we analyze DeepSeek-R1’s RL
function—Group Relative Policy Optimization (GRPO) |Guo et al| (2025); [Shao et al.| (2024)—and evaluate
its theoretical limitations in inducing reasoning.

2.1 Group Relative Policy Optimization (GRPO) in DeepSeek-R1

GRPO is a variant of Proximal Policy Optimization (PPO) that removes the need for a separate critic model.
Instead, it estimates advantage values using a relative scoring mechanism, where performance is compared
against a group of outputs rather than an absolute reference. This reduces computational overhead but
introduces higher variance, requiring larger batch sizes for stability.

A key feature of GRPO is the KL divergence constraint, which penalizes excessive deviation from the
original model’s output distribution. This ensures that RL fine-tuning does not drastically change pretrained
knowledge but rather refines responses within existing constraints.. The GRPO objective function is given
by:
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e Dxi, is the KL-divergence from a reference policy mef, controlled by hyperparameter 5.

Unlike standard RL with a learned critic model, GRPO’s lack of a baseline leads to higher instability in
policy updates, requiring larger batch sizes to maintain convergence.

2.1.1 Key Mathematical Insights from GRPO

1. High Variance in Advantage Estimation: The use of group-based advantage normalization introduces
noise in gradient updates, slowing convergence.

2. KL Regularization as Implicit Pretraining Constraint: The KL-divergence term discourages excessive
divergence from the reference policy, ensuring RL fine-tuning operates within pretrained constraints.
This limits drastic behavioral shifts but does not necessarily prevent new capabilities from emerging.

3. Limited Expressiveness of Policy Updates: The clipping operation in GRPO prevents drastic up-
dates, which further suggests RL fine-tunes existing knowledge rather than inducing new reasoning
capabilities.
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2.2 Sample Complexity Analysis: RL vs. Pretraining

A crucial question in determining whether RL can induce emergent reasoning is how efficiently it learns
compared to pretraining. The efficiency of a learning paradigm is often measured by its sample complexity,
which quantifies how much training data is needed to achieve a given level of accuracy.

o Supervised Learning (SL) leverages direct supervision from labeled data, leading to high efficiency
with sample complexity O(nlogn).

o Reinforcement Learning (RL), in contrast, relies on sparse rewards and trial-and-error exploration,
making it significantly less efficient with sample complexity O(n?/e).

o Hybrid approaches (DeepSeek-R1) combine both, inheriting some benefits of SL but also suffering
from RL’s inefficiencies.

To formalize these insights, we define the sample complexity bounds:

Nuybria ~ O(nlogn +n/e)
where:

e n represents task complexity.
e ¢ is the accuracy threshold.
e The log term comes from supervised learning benefits.

o The n/e term captures RL’s inefficiencies.

2.2.1 Comparative Analysis of Learning Paradigms

To understand the trade-offs between SL, RL, and Hybrid RL, we compare their sample complexity scaling
characteristics:

Learning Paradigm Sample Complexity

Supervised Learning (SL) O(nlogn)
Reinforcement Learning (RL)  O(n?/e)
Hybrid RL (DeepSeek-like) O(nlogn +n/e)

Table 1: Comparative Sample Complexity of Learning Paradigms. SL exhibits efficient scaling, whereas RL
suffers from quadratic inefficiencies.

The key observations from this comparison are:

e SL is the most efficient: The logarithmic scaling enables rapid generalization, making it ideal for
training large language models (LLMs).

e RL suffers from exploration inefficiencies: Sparse rewards and trial-and-error updates require signif-
icantly more samples.

o Hybrid RL inherits RL inefficiencies: Although it benefits from pretraining, RL introduces additional
computational overhead.
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2.2.2 Why RL is Inefficient for Reasoning Tasks

For RL to drive emergent reasoning, it must efficiently optimize policies in high-dimensional linguistic spaces.
However, theoretical limitations make this challenging:

1. Sparse Rewards: Reasoning tasks lack frequent rewards, making RL exploration inefficient.
2. High Sample Complexity: Long-horizon dependencies require exponentially increasing interactions.

3. Limited Generalization: Unlike SL, RL does not leverage structured representations effectively.

Given these constraints, RL-based fine-tuning is inherently inefficient for complex reasoning tasks, supporting
the argument that DeepSeek-R1’s observed performance gains are more likely attributable to pretraining
rather than RL-induced reasoning.

2.3 Reward Sparsity and Its Effect on RL-Based Reasoning

DeepSeek-R1 does not use a neural reward model, instead relying on handcrafted reward functions:

R(s,a) = A\ Racc(8,a) + AaRemt (s, a) (3)
where:

o R, is an accuracy-based reward (e.g., correct math answers),
o Rpy is a format-based reward (e.g., enforcing structured reasoning with (think) and (answer) tags),

e A1 and Ay are weighting parameters.

However, in long-horizon reasoning tasks, reward sparsity worsens due to the credit assignment prob-
lem—where useful learning signals become increasingly delayed, making policy optimization inefficient.
Without a structured mechanism for propagating rewards effectively, RL struggles to optimize multi-step
reasoning." :

P(meaningful reward) = O(1/V*) (4)
where:

o V is the vocabulary size,

e L is the sequence length.

2.3.1 Key Issues with DeepSeek-R1’s Reward Model

1. Sparse Rewards in Open-Ended Reasoning: Unlike deterministic math/coding tasks, open-ended
reasoning lacks direct correctness signals, leading to poor reward propagation.

2. Risk of Mode Collapse: The format reward forces responses into a predefined template, which may
lead to reward hacking rather than true reasoning emergence.

3. Absence of Learned Rewards: The lack of adaptive neural reward models means DeepSeek-R1’s RL
signal is static and does not generalize well.



Under review as submission to TMLR

2.4 Computational Complexity of DeepSeek-R1’s RL

Using previous scaling laws [Kaplan et al.| (2020); [Luo| (2024), we compare computational cost across ap-
proaches:

Csr, = O(NPlog P) (Supervised Fine-Tuning) (5)
Crr, = O(NP?*log P) (Pure RL) (6)
Chybria = O(NP(log P+ k)) (DeepSeek-like Hybrid) (7)

where:

e N is the training sample count,
e P is the model parameter count,

e k is an RL-specific term from policy optimization.

2.5 Summary of Findings

e GRPO'’s constraints suggest RL in DeepSeek-R1 serves as fine-tuning rather than inducing new
reasoning capabilities.

e RL sample inefficiency limits its ability to drive emergent reasoning.
o Reward sparsity further reduces RL’s effectiveness in general reasoning tasks.

o Computational cost of RL in DeepSeek-R1 is significantly higher than pretraining-based methods.

3 Rebuttal of DeepSeek-R1’s Claims on RL-Induced Reasoning

DeepSeek-R1 claims that reinforcement learning (RL), specifically Group Relative Policy Optimization
(GRPO), is responsible for inducing emergent reasoning in large language models (LLMs). Our analysis
in Section 2 highlights the theoretical limitations of GRPO, including sample inefficiency, reward sparsity,
and computational overhead, suggesting that RL in DeepSeek-R1 primarily fine-tunes behavior rather than
inducing new reasoning capabilities.

In this section, we systematically evaluate and rebut DeepSeek-R1’s core claims using mathematical reasoning
and empirical scaling constraints.

3.1 Claim: RL Alone Induces Emergent Reasoning

DeepSeek-R1 claim: DeepSeek-R1 argues that reinforcement learning (RL) alone is responsible for the
emergence of reasoning capabilities in its R1 Model.

Rebuttal via Theoretical and Empirical Analysis: From our unified mathematical framework (Section
2), the total reasoning capability of a model can be expressed as:

H(z) = P(z)+ R(z) + S(P,R,x) (8)
where:

o P(x) represents pretraining contributions.

o R(z) represents RL-induced improvements.
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o S(P,R,x) captures potential synergies between pretraining and RL.

If RL were the primary driver of reasoning, we would expect:

H(z) = R(x) (without pretraining) 9)

However, our sample complexity analysis (Section 2.2) shows that pure RL follows:

Ngp ~ O(n?/e) (10)

which is exponentially larger than supervised learning, making it impractical for complex reasoning.

Additionally, DeepSeek-R1’s reported improvements align with known pretraining scaling laws [Kaplan et al.
(2020); [Luo (2024) rather than demonstrating an independent RL-driven effect. This suggests that DeepSeek-
R1’s reasoning capabilities are not emergent from RL but rather a refinement of pretrained knowledge.

Implication for DeepSeek-R1 : If RL were solely responsible for reasoning emergence, an RL-only model
should exhibit strong reasoning abilities. However, DeepSeek-R1 relies heavily on pretrained checkpoints,
meaning its observed reasoning behavior can be fully explained by pretraining effects rather than RL.

Conclusion: RL alone does not induce reasoning emergence; pretraining remains the dominant factor.

3.2 Claim: Scaling RL Improves Reasoning

DeepSeek-R1’s Claim: DeepSeek-R1 asserts that scaling reinforcement learning enhances the reasoning
capabilities of language models.

Rebuttal via Scaling Laws: Scaling laws for large language models suggest that model performance
follows a power-law relationship with respect to model size, compute, and data. However, RL does not
exhibit the same efficiency trend.

From our sample complexity analysis (Section 2.2), the scaling behavior is as follows:

Learning Paradigm Sample Complexity

Supervised Learning (SL) Ngp, ~ O(nlogn)
Pure RL Ngr ~ O(n?/e)
Hybrid RL (DeepSeek-like) Npg ~ O(nlogn +n/e)

Table 2: Comparative Sample Complexity of Learning Paradigms

Key Insights:

e RL has suboptimal sample efficiency, making it inefficient for improving reasoning at scale.
e Even if RL provides marginal gains, these come at an exponentially higher computational cost

compared to pretraining-based methods.

Why DeepSeek-R1’s Results Are Not Novel: DeepSeek-R1 claims that its reinforcement learning
approach produces novel reasoning abilities beyond pretraining. However, based on our scaling analysis and
reward sparsity constraints (Section 2.3), we find no theoretical or empirical justification for this claim:

1. Pretraining Follows Logarithmic Growth:
Empirical studies [Kaplan et al.| (2020); [Luo| (2024) show that pretraining gains scale as:

P(x) x O(log N) (11)
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This aligns with the improvements observed in DeepSeek-R1, suggesting that pretraining is the
primary driver of its reasoning capabilities.

2. RL Contributions Exhibit High Variance and Poor Scaling:
RL-based learning typically follows a power-law decay:

R(z) x O(N™?), >0 (12)

This indicates that RL’s role in reasoning is secondary to pretraining and does not drive novel
emergent capabilities.

3. DeepSeek-R1’s Improvements Are Consistent with Pretraining Effects:
If RL were introducing a novel capability, we would expect deviations from pretraining trends in
scaling performance. However, DeepSeek-R1’s results closely follow known pretraining scaling laws,
meaning its performance gains are indistinguishable from those of a well-tuned pretrained model.

Conclusion: Scaling RL does not introduce novel reasoning abilities—it acts primarily as a fine-tuning
mechanism within known pretraining constraints.

3.3 Analysis of DeepSeek-R1’s RL Function

DeepSeek-R1 employs Group Relative Policy Optimization (GRPO) as its reinforcement learning (RL) al-
gorithm to fine-tune the model’s reasoning capabilities. Unlike conventional Proximal Policy Optimization
(PPO), GRPO estimates advantage values using group-based relative scoring rather than an explicit critic
network. Additionally, DeepSeek-R1 incorporates a rule-based reward model that prioritizes response accu-
racy and format adherence.

In this section, we analyze whether GRPO, as implemented in DeepSeek-R1, can overcome the theoretical
limitations of RL identified in Sections 3.1 and 3.2, where we demonstrated that:

e RL alone is unlikely to induce reasoning without a strong pretraining foundation.

e Scaling RL does not introduce novel reasoning capabilities beyond pretraining effects.

We now investigate whether DeepSeek-R1’s specific RL formulation (GRPO + rule-based rewards) presents
an exception to these conclusions.

3.3.1 KL Constraint and Its Restrictive Effect on Reasoning

The GRPO objective function, as defined in DeepSeek-R1, optimizes policy updates via:

G
1 . 79 (0i|q)
Jarpro(0) = Equp(Q).0i~m . (Ola) & E min ( 6
q~P(Q),0i~mg,, 4 (O]q) G — T (0ilq)
clip (”e(o”q) 1—el+ e> AZ-) — BDyy (|| mer)  (13)
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where:

o A, is the group-relative advantage estimate.
e ¢ is the clipping threshold.

e D, is a KL divergence penalty that ensures the fine-tuned model does not deviate significantly
from the pretrained reference model 7.

e [ is a regularization coefficient controlling KL divergence strength.
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Key Observations

1. KL Regularization Limits Novel Reasoning

e The Dky, penalty term forces the RL-updated policy to stay close to the pretrained distribution
Tref-

o This directly contradicts the premise that RL introduces emergent reasoning. Instead, GRPO
ensures that the fine-tuned model remains behaviorally similar to the pretrained model.

o Prior studies|Hoffmann et al.[(2022)); Kaplan et al.[(2020) show that large KL constraints prevent
RL from learning fundamentally new capabilities beyond pretraining.

2. Scaling RL under GRPO Cannot Drive Reasoning Emergence

e Unlike conventional RL settings where policy optimization can explore novel reasoning strate-
gies, GRPO limits policy divergence, meaning that the optimization remains constrained within
the pretrained knowledge space.

e The KL penalty effectively caps the impact of RL scaling, preventing it from developing gen-
uinely novel reasoning capabilities.

Thus, the core conclusions from Section 3.2 remain valid—scaling RL under DeepSeek-R1’s formulation does
not enhance reasoning beyond what pretraining already enables.

3.3.2 Reward Function Analysis: Accuracy and Format Rewards

DeepSeek-R1 employs a rule-based reward system, composed of:

o Accuracy rewards (R,e.): Ensure model’s outputs are correct (e.g., solving math problems).

o Format rewards (Rgyt): Enforce structured output generation .

The total reward function is:

R(s,a) = M Race($, a) + ARt (s, a) (14)
where A\; and Ao are weighting coefficients.

Key Observations

1. Reward Sparsity Constraints Still Apply

e Asshown in Section 2.3, reward sparsity poses a fundamental challenge for RL-driven reasoning.

o The accuracy reward Rac. applies primarily to deterministic tasks (e.g., math, coding), meaning
it does not contribute significantly to complex open-ended reasoning tasks.

e Format rewards R,y do not optimize reasoning quality but rather reinforce syntactic con-
straints—this does not contribute to genuine reasoning emergence.

2. Reward Hacking Risks

e The rule-based reward structure discourages free-form exploration, reinforcing pattern-matching
behaviors rather than genuine reasoning.

e DeepSeek-R1 explicitly avoids using learned neural reward models, citing risks of reward hacking
(where the model learns to game the reward system without improving true reasoning).

o This is consistent with prior findings that reinforcement learning on LLMs primarily optimizes
response style and coherence rather than inducing new capabilities Wainwright| (2019).
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Aspect DeepSeek-R1’s RL Implementation

Policy Optimization Group Relative Policy Optimization (GRPO)
Scaling Effect RL scaling limited by reference model constraints
Reward Structure Accuracy and format-based rewards

Empirical Behavior =~ No evidence of RL-driven reasoning emergence

Table 3: Key limitations of DeepSeek-R1’s RL implementation.

Thus, DeepSeek-R1’s reward system does not meaningfully contribute to reasoning emergence—it merely
refines structured responses and correct answer formatting.

To summarize, rather than introducing new reasoning abilities, GRPO merely refines pretrained patterns,
reinforcing the findings of Sections 3.1 and 3.2. DeepSeek-R1’s RL implementation is fundamentally con-
strained by KL divergence penalties and a non-generalizable reward structure:

1. DeepSeek-R1’s RL function (GRPO) is restricted by KL divergence, limiting reasoning emergence.
2. Its reward structure optimizes for response format rather than genuine logical reasoning.

3. Scaling DeepSeek-R1’s RL function does not lead to novel reasoning abilities—pretraining remains
the dominant factor.

4. These findings reinforce the theoretical conclusions from Sections 3.1 and 3.2, showing that RL in
DeepSeek-R1 serves only as a fine-tuning mechanism, not a driver of emergent reasoning.

4 Implications and Future Work

The analysis presented in previous sections demonstrates that DeepSeek-R1’s reinforcement learning (RL)
function does not induce emergent reasoning but instead serves as a fine-tuning mechanism that aligns pre-
trained knowledge with specific optimization objectives. Given the theoretical constraints of RL in reasoning
tasks, we now explore the broader implications of these findings and suggest directions for future research.

4.1 The Broader Implications of Our Findings

4.1.1 Reevaluating RL’s Role in Reasoning

Reinforcement learning has been considered a potential driver of emergent intelligence in Al systems. How-
ever, our findings challenge this assumption, indicating that RL alone is insufficient to create reasoning
abilities beyond what is already learned during pretraining. DeepSeek-R1’s use of Group Relative Policy
Optimization (GRPO) refines response consistency and aligns outputs with predefined criteria (e.g., cor-
rectness and formatting). However, this process does not introduce new reasoning capabilities; rather, it
reinforces patterns established during pretraining. RL, in its current formulation, lacks explicit reason-
ing structures beyond what the model has already acquired. Unlike supervised learning, which leverages
structured datasets to build linguistic and logical relationships, RL depends on reward signals that may be
too sparse or misaligned to drive meaningful generalization. This raises concerns about its effectiveness in
fostering complex reasoning.

4.1.2 Pretraining as the Dominant Factor in Reasoning

A key takeaway from our analysis is that pretraining remains the primary driver of reasoning in LLMs. The
improvements observed in DeepSeek-R1 are more plausibly attributed to its strong pretrained foundation
rather than the RL fine-tuning process. Empirical scaling laws suggest that pretraining benefits scale loga-
rithmically with dataset size, while RL scaling follows a power-law decay. This indicates that RL, even at
scale, is unlikely to significantly contribute to emergent reasoning. Instead, as pretraining data and model

10
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capacity increase, LLMs will continue to exhibit improved reasoning abilities—but RL will contribute only
marginal refinements rather than fundamental advancements.

4.1.3 Reward-Based RL: Optimizing Responses, Not Reasoning

DeepSeek-R1’s rule-based reward system, incorporating accuracy and format-based signals, is effective for
reinforcing response structure but fails to support open-ended reasoning emergence. A key limitation of
reward-based RL is its inability to constructively guide models through multi-step logical processes. RL
excels at optimizing behaviors where objectives are well-defined (e.g., formatting constraints), but it struggles
with ambiguous, open-ended reasoning, where the correct solution is not explicitly predefined. This raises an
important question: Is RL the right paradigm for improving logical reasoning in AI? Our findings suggest that
alternative approaches—such as retrieval-augmented learning, structured fine-tuning on curated reasoning
datasets, or hybrid architectures integrating explicit logical frameworks—may be more effective in advancing
reasoning capabilities.

4.2 Future Directions: Empirical Validation of RL’s Role in Reasoning

While our theoretical analysis strongly suggests that RL does not induce emergent reasoning, empirical
studies are necessary to further clarify RL’s impact. We propose controlled experiments that can isolate
RL’s contribution and determine whether it meaningfully improves reasoning beyond pretraining.

4.2.1 Comparing RL-Only Models vs. Pretraining-Only Models

Objective: Evaluate reasoning capabilities in models trained exclusively with RL versus those trained exclu-
sively via pretraining.

Hypothesis: If RL induces reasoning, an RL-only model (without pretraining) should demonstrate compa-
rable reasoning abilities to a pretraining-only model.

Experiment: (1) Train one model using only RL (without pretraining); (2) Train another model only via
pretraining (without RL fine-tuning); and (3) Compare their performance on reasoning benchmarks.

Expected Outcome: If RL alone drives emergent reasoning, the RL-only model should exhibit strong rea-
soning abilities. However, if RL merely refines pretrained knowledge, the pretraining-only model should
outperform the RL-only model.

4.2.2 Analyzing Changes in Model Outputs Due to RL Fine-Tuning

Objective: Determine whether RL fine-tuning significantly alters reasoning capabilities or merely refines
pretrained responses.

Hypothesis: If RL meaningfully enhances reasoning, RL-finetuned models should produce qualitatively dif-
ferent outputs from their pretrained versions.

Experiment: (1) Compare responses before and after RL fine-tuning; (2) Use semantic similarity metrics
to measure divergence in outputs; and (3) Assess whether RL introduces new reasoning patterns or merely
reinforces existing ones.

Expected Outcome: If reasoning emerges due to RL, response divergence should be high. If RL mainly
refines response formatting, similarity scores will remain high.

4.2.3 Testing RL's Impact on Generalization to New Reasoning Tasks

Objective: Assess whether RL-trained models generalize better to novel reasoning tasks.

Hypothesis: If RL enhances reasoning, models fine-tuned with RL should perform better on out-of-
distribution (OOD) tasks.

11
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Experiment: (1) Evaluate models on datasets unseen during training; and (2) Compare pretraining-only vs.
RL-finetuned models on novel reasoning challenges.

Expected Outcome: If RL meaningfully improves reasoning, it should enhance generalization. If performance
remains unchanged, RL’s role in reasoning is limited.

4.2.4 Clarifying RL’s Scaling Effects

Objective: Determine whether scaling RL introduces independent improvements beyond pretraining.

Hypothesis: If RL enhances reasoning, performance trends in RL-finetuned models should deviate from
pretraining scaling laws.

Experiment: (1) Compare RL-finetuned models across different sizes; and (2) Assess whether scaling RL
leads to distinct improvements or mirrors standard pretraining trends.

Expected Outcome: If RL contributes to reasoning, performance should improve uniquely with scaling. If
trends remain consistent with pretraining, RL’s role is likely secondary.

4.3 Implications for Future Al Research

Our findings suggest important considerations for Al research and deployment. While RL has been widely
explored as a potential driver of advanced reasoning in LLMs, our analysis suggests that it primarily refines
pretrained knowledge rather than inducing reasoning capabilities.

Redirecting Research Priorities : Future efforts should prioritize pretraining advancements over RL-
based fine-tuning for reasoning tasks. Given RL’s limitations in handling long-horizon reasoning and sparse
rewards, retrieval-based architectures, structured fine-tuning, and hybrid models incorporating explicit log-
ical frameworks may offer superior reasoning performance.

Reevaluating RL’s Best Use Cases : RL remains valuable in structured optimization tasks, such as
behavioral policy shaping, Al safety mechanisms, and user interaction modeling, but its ability to enhance
logical reasoning remains unproven. Future research should carefully delineate the appropriate domains for
RL application.

The Need for Rigorous Empirical Studies : Many prior studies have attributed model improvements
to RL without controlling for pretraining influences. Future work should explicitly separate these factors
through controlled experiments comparing RL-only training with pretraining-only baselines.

4.4 Summary of Key Findings
e RL in DeepSeek-R1 functions primarily as fine-tuning, rather than inducing reasoning capabilities.

e Scaling RL does not yield independent reasoning improvements; observed benefits align with pre-
training scaling laws.

e Reward-based learning optimizes response structure but does not drive conceptual reasoning ad-
vancements.

These findings suggest that Al reasoning research should focus toward improved pretraining techniques,
retrieval-augmented learning, and hybrid models with explicit logical structures, rather than relying on
RL as the primary driver of reasoning. Further empirical validation is necessary to isolate RL’s specific
contributions and confirm whether it enhances reasoning beyond pretraining effects.

12
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Appendix A: Theoretical Proofs and Derivations

A.1 Proof of Sample Complexity Bounds (Section 2.2)

Theorem 1 (Sample Complexity of Supervised Learning, RL, and Hybrid Approaches). Let n be the task
complezity and € the accuracy threshold. Then, the sample complexity for different learning paradigms is
given by:

1. Supervised Learning: Ngi, ~ O(nlogn)

2. Pure RL: Nrp ~ O(n?/e)

3. Hybrid (DeepSeek-like): Ny ~ O(nlogn + n/e)
Proof. o Supervised Learning: Standard statistical learning theory Kaplan et al. (2020); [Luo| (2024)

suggests that achieving e-accuracy in supervised learning scales as O(nlogn) under reasonable as-
sumptions on data distribution and model complexity.

e Pure RL: From reinforcement learning theory Wainwright| (2019), the number of samples required
to achieve e-accuracy is at least O(n?/¢), due to the sparse reward signal and inefficient exploration.

e Hybrid Learning: Combining both methods, the hybrid approach maintains the logarithmic de-
pendency from supervised learning while inheriting the 1/e inefficiency from RL, resulting in
O(nlogn + n/e).

Thus, RL alone is significantly less sample-efficient compared to pretraining-based approaches. O
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A.2 Proof of Reward Sparsity Bound (Section 2.3)

Theorem 2 (Reward Sparsity Constraint). Given a reasoning task with vocabulary size V' and sequence
length L, the probability of obtaining a meaningful reward follows:

P(meaningful reward) = O(1/V%), (15)

which leads to an expected learning time of:

1
E[T) = =0(V?h). 16
7] P(meaningful reward) V) (16)
Proof. o Consider a language model that must generate a reasoning chain of length L with vocabulary
size V.

o The probability of randomly generating a correct response in each step is at most 1/V, assuming
uniform distribution.

o Therefore, the probability of producing an entirely correct sequence is (1/V)%, leading to:

P(meaningful reward) = O(1/V1). (17)

e The expected number of trials required to obtain a reward follows:

_ 1 _ L
ElT] = P(meaningful reward) ov™). (18)

Thus, RL is computationally intractable for long-horizon reasoning due to the exponential scaling of reward
sparsity. O

A.3 Proof of RL vs. Pretraining Compute Complexity (Section 2.4)

Theorem 3 (Computational Complexity Scaling). The computational cost for different training approaches
follows:

1. Supervised Fine-Tuning: Cs;, = O(NP log P)
2. Pure RL: Cr, = O(NP?log P)
3. Hybrid (DeepSeek-like): Cxg = O(NP(log P+ k))
Proof. e Supervised Learning Complexity: Given NN training samples and model parameter count P,
gradient-based optimization converges in O(P log P) steps, leading to a total cost of:
CSL:O(NPlOgP). (19)
e Pure RL Complexity: Policy optimization in RL incurs quadratic scaling due to the inefficiency of
policy search Hoffmann et al. (2022)). This results in a compute cost of:
Crr = O(NP?log P). (20)
o Hybrid Approach Complexity: Hybrid RL still inherits RL’s inefficiencies but leverages pretraining

benefits, yielding:
Cy = O(NP(log P+ k)), (21)

where k is an RL-specific optimization term.

Thus, RL suffers from quadratic complexity scaling, making it computationally inefficient for large models.
O

14



Under review as submission to TMLR

A.4 Theoretical Constraints on RL-Induced Reasoning (Section 3)

Theorem 4 (Pretraining vs. RL Dominance). Given a pretraining-driven model and an RL-optimized
model, the total reasoning capability can be modeled as:

H(z) = P(z)+ R(z) + S(P, R, x). (22)
Under empirical scaling laws:
P(z) x O(log N), R(z) x O(N~P), B>o0. (23)
Thus, for large-scale reasoning tasks, we have:
P(z) > R(z), (24)
itmplying RL acts as a fine-tuning mechanism rather than an independent driver of reasoning.

Proof. o Empirical studies |Kaplan et al.| (2020) show that pretraining gains scale logarithmically with
data size N, leading to P(z) ~ O(log N).

o In contrast, RL-based methods follow a power-law decay Hoffmann et al.| (2022)), with diminishing
returns at large scale:
R(z) ~O(N?), Bg>0. (25)

 Since logarithmic growth dominates over power-law decay for large N, it follows that:

P(z) > R(x) for sufficiently large datasets. (26)

e The synergy term S(P, R, x) is secondary and does not fundamentally shift this balance.

Thus, RL alone is unlikely to induce reasoning emergence; it only refines pretrained knowledge. O

A.5 Summary of Theoretical Results

Theorem Key Finding
Sample Complexity (A.1) RL requires quadratically more samples than supervised learning.
Reward Sparsity (A.2) Meaningful rewards become exponentially rare as sequence length increases.
Compute Complexity (A.3) | RL scales quadratically in model size, making it computationally inefficient.
Pretraining vs. RL (A.4) Pretraining dominates reasoning, while RL acts as fine-tuning.

Table 4: Summary of theoretical findings.
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