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Abstract

The rapid advancement of text-to-image generation technologies based on diffusion
models has produced remarkable results, driving the emergence of video editing ap-
plications built upon these pretrained models. To achieve temporal consistency with
independent framewise text-to-image generation, existing video editing models
either fine-tune temporal layers or propagate temporal features at test time without
additional training. While these approaches show promise, the frame indepen-
dence of text-to-image generation creates a bottleneck in delivering consistent and
high-quality video outputs.In this paper, we propose a lightweight adaptor utilizing
prompt learning to enhance video editing performance with minimal training cost.
Our approach introduces shared prompt tokens to improve editing capabilities and
unshared frame-specific tokens to impose consistency constraints across frames.
The adaptor seamlessly integrates into existing video editing pipelines, offering sig-
nificant improvements in temporal coherence and overall video quality, benefiting
a broad spectrum of downstream video editing algorithms.

1 Introduction

With the rapid advancement of text-to-image (T2I) diffusion models, text-to-video (T2V) models
have also made significant strides. However, existing T2V models face challenges such as high
training costs, complex algorithms, and large parameter sets, which limit their practical application.
In this study, we propose a prompt-learning-based adapter to fine-tune T2I models, addressing these
challenges specifically for video editing tasks. Our approach integrates two key strategies to enhance
video quality and temporal consistency. First, we introduce a lightweight adapter that leverages
prompt learning to fine-tune pretrained T2I models, utilizing shared and unshared token mechanisms
to efficiently adapt to various video editing requirements. Second, we incorporate a cosine similarity
constraint between adjacent frames during early denoising steps, in addition to the mean squared error
(MSE) loss on noise. This prompt-learning-based adapter, with the loss constraints of consistency of
adjacent frame in early diffusion denoising period, enhances video quality and temporal coherence.
Experimental results demonstrate that our method not only reduces training costs but also achieves
notable improvements in temporal consistency, image quality, and text alignment in T2V generation,
offering an efficient and practical solution for video editing.
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• We propose a novel prompt-learning based adapter that is plug-and-play, trained on T2I
models using LoRA for fine-tuning. This approach is highly efficient and low-cost, making
it adaptable for various downstream applications.

• To improve temporal coherence when training, we introduce a consistency constraint be-
tween adjacent frames during early denoising, leveraging temporal depth information to
enhance video quality and frame continuity. Furthermore, we propose a shared token
strategy that integrates shared tokens with text embeddings and utilizes unshared tokens
for low-resolution frame constraints, thereby improving consistency throughout the video
generation process.

• Experimental results indicate that the proposed adapter enhances the performance of down-
stream video editing algorithms, delivering improved text-to-image alignment, high image
fidelity, and consistent frame coherence.

Figure 1: An overview of the video generation process using LoRA-enhanced feature extraction.
Depth and text embeddings are combined with latent vectors and processed through iterative denoising,
cross attention, and cosine similarity constraints between adjacent frames.

2 Related Work

Text-to-image (T2I) diffusion models have driven advancements in text-to-video (T2V) generation,
classified into three paradigms: Inversion and Sampling, Upstream, and Downstream. The Inversion
and Sampling paradigm improves efficiency by modifying diffusion mechanisms, using techniques
like latent diffusion models [7] and ODE solvers [9]. The Upstream approach incorporates adapters
into T2I models, facilitating fine-tuning and enhancing video editing [13]. The Downstream approach
refines architectures like Unet [8] and ControlNet [13], employing advanced attention mechanisms
for coherence and video quality. Methods like Gen-L-Video [10], FLATTEN [2], and StableVideo [1]
address T2I-based video editing but face challenges in validation, structural changes, and non-rigid
deformations. Low-Rank Adaptation (LoRA) techniques [4] further improve T2I models by enabling
personalized fine-tuning through block-wise and dynamic feature adjustments. These developments
underscore the evolving landscape of video generation and editing.

3 Method

Achieving temporal and semantic coherence in video generation requires effective fine-tuning. We
enhance the U-Net architecture by integrating Low-Rank Adaptation (LoRA) and registering hooks to
extract intermediate features at each forward pass. For each U-Net block (l, b) at time step t, feature
extraction is modified as:

Ft
l,b =

{
W0x, if rank(Al,b) = 0,

W0x+Bl,bAl,bx, otherwise,
(1)
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where x is the input feature vector. The projection matrices for query (Wq,l,t), key (Wk,l,t), and
value (Wv,l,t) are updated accordingly. Temporal coherence is enforced using similarity constraints
on adjacent frames:

Sim(Ft,Ft+1) =
Ft · Ft+1

∥Ft∥∥Ft+1∥
(2)

The temporal loss Ltemporal is formulated to minimize the difference in similarity across consecutive
frames:

Ltemporal =
1

T

T−1∑
t=1

(Sim(Ft,Ft+1)− Sim(Ft−1,Ft))
2 (3)

This constraint keeps features aligned between consecutive frames, reducing flickering and improving
content consistency across the video.

Figure 2: Shared and unshared token mechanism for video generation. Shared tokens ensure global
consistency across frames, while unshared tokens handle frame-specific details. The same prefix is
applied across all time steps, and only shared tokens are updated during the final phase.

To enhance text-to-video semantic alignment, we train shared tokens for multi-frame consistency to
improve image-text alignment, combining them with conditional and unconditional embeddings to
create unified text embedding guidance. The shared tokens are initialized from a normal distribution:

Tshare ∼ N (0, 0.02), Tshare ∈ RNshare×768 (4)

Given an input image I , the visual hidden representation is extracted using the CLIP model’s vision
encoder:

Hvision = fclip_vision(I) (5)

Subsampling is then applied to downsample the hidden states to obtain the unshared tokens:

Hsub =

{
Hvision if s = 1,

Concat (Hvision[:, : 1, :], Hvision[:, 1 :: s, :]) if s > 1,
(6)

The embedding tokens are subsampled along the sequence dimension, retaining the first token to
capture key information. The resulting visual representation, Hsub, is projected through a linear layer
to align the unshared tokens in the same latent space as the token embeddings previously processed
by the CLIP model:

Zunshare = Wproj ·Hsub (7)

The unshared token incorporates low-resolution information to enhance frame quality, while the
shared token ensures consistency across adjacent frames, and all tokens—shared, unshared, condi-
tional, and unconditional—are concatenated for LoRA fine-tuning:

Zfinal = Concat([Tshare, Zunshare, Zcond, Zuncond], dim = 0) (8)

During training, the CLIP vision encoder (θ) remains frozen while the LoRA parameters, shared
embeddings, and non-shared token projection layers (ϕ) are updated iteratively to minimize the loss:

Loss =

{
|ϵ− ϵθ(xt, t,D, Zfinal)|2 , if t ∈ [0, 0.9T ],

|ϵ− ϵθ(xt, t,D, Zfinal)|2 + λLlora, if t ∈ [0.9T, T ],
(9)
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4 Experiments

4.1 Quantitive Results

As shown in Table 1, the comparison between video generation algorithms with and without LoRA
highlights improvements in perceptual quality and text-image alignment. Lower LPIPS and FID
values indicate better visual fidelity, while higher CLIP scores suggest improved alignment with text
prompts. The results demonstrate that the inclusion of LoRA generally leads to better performance,
with the best outcomes highlighted in gray, showing enhanced image quality and semantic coherence
across the tested algorithms.

Table 1: Comparison of Algorithms with and without LoRA for LPIPS, CLIP, and FID metrics on the
MSR-VTT [12] testing set. Adapter parameters were injected during the 0.9 - 1.0 time intervals of
denoising. Best-performing results are highlighted with gray.

Algorithm LoRA LPIPS↓ CLIP↑ FID↓

Text2Video-Zero [5] w 0.319 31.38 –
w/o 0.402 28.82 –

TokenFlow [3] w 0.129 29.15 143.21
w/o 0.135 28.90 166.72

Vid2Vid [11] w 0.253 32.78 154.3
w/o 0.303 31.94 149.4

VidToMe [6] w 0.122 29.94 143.33
w/o 0.123 29.93 146.27

Table 2 summarizes the impact of removing depth maps, shared tokens, and LoRA fine-tuning on the
performance of different video generation algorithms. The results indicate that the combination of all
components (depth maps, shared tokens, and LoRA) consistently yields the best performance across
FID, CLIP, and LPIPS metrics, highlighting the significance of each component in improving video
quality and semantic alignment.

Table 2: Ablation Study: Effects of Depth Maps, Shared Tokens, and LoRA Fine-Tuning on
Downstream Algorithms

Configuration Algorithm FID↓ CLIP↑ LPIPS↓

w/o Depth Maps

Tokenflow [3] 164.60 28.23 0.131
Vid2Vid [11] 202.14 32.06 0.288
VidToMe [6] 159.20 29.74 0.134

Text2Video [5] – 29.37 0.381

w/o Shared Tokens

Tokenflow [3] 190.50 27.30 0.138
Vid2Vid [11] 231.05 32.80 0.261
VidToMe [6] 168.00 29.50 0.121

Text2Video [5] – 28.10 0.397

All Components (Base)

Tokenflow [3] 143.21 29.15 0.129
Vid2Vid [11] 154.37 32.78 0.253
VidToMe [6] 143.33 29.89 0.121

Text2Video [5] – 31.38 0.380

4.2 User Study

We conducted a user study with 67 random participants, independent of age and gender, to evaluate
video generation models trained on the MSR-VTT dataset. Each participant was shown video
clips generated with and without LoRA fine-tuning for four algorithms. Participants were asked
to choose the better video based on three criteria: (1) text-to-image alignment, (2) image quality,
and (3) consistency. As shown in Figure 3, LoRA fine-tuning was preferred across most algorithms,
particularly for VidToMe in terms of consistency, and TokenFlow for image quality. The results
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indicate that LoRA consistently improves both semantic alignment and frame quality, especially for
TokenFlow and Vid2Vid, where the improvements are more noticeable.

Figure 3: Comparison of user study results between video generation algorithms (Text2Video-Zero,
TokenFlow, Vid2Vid, and VidToMe) with and without LoRA fine-tuning. The results show the
percentage of user preferences for each method across the different algorithms.

4.3 Visualization Results

Figure 4 presents a qualitative comparison of video frames generated by four different algorithms
(Text2Video-Zero, TokenFlow, Vid2Vid, and VidToMe) with and without Low-Rank Adaptation
(LoRA). The results demonstrate that incorporating LoRA improves both the coherence and quality
of the generated videos across all algorithms.

Figure 4: Comparison of video generation quality between different algorithms (Text2Video-Zero,
TokenFlow, Vid2Vid, and VidToMe) with and without LoRA fine-tuning.

5 Conclusion and Future Work

In this paper, we introduced a prompt-learning based adaptor for video editing using pretrained
text-to-image diffusion models, leveraging Low-Rank Adaptation (LoRA) and a shared/unshared
token mechanism to significantly enhance temporal consistency and video quality with minimal
training costs. Our plug-and-play solution effectively integrates with existing models, improving
text-image alignment and reducing flickering. Future work will focus on adaptive LoRA injection
strategies, testing the approach across a broader range of video editing algorithms (both training-free
and those requiring training), extending to higher-resolution video generation, designing a more
generalized personalized adapter, and further improving both performance metrics and visual quality.
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A Appendix

A.1 Training Settins

Training adapter is mainly based on Stable Diffusion v1.5, which contains 860M UNet and 123M
text encoder, suitable for GPUs with at least 10GB VRAM. We first trained a ControlNet based on
Stable Diffusion v1.5 using the original image input and depth map to provide depth information
for subsequent UNet training. At the same time, we trained a PrefixToken module separately to
concatenate the shared token with the features extracted from the image, which helps to align the
generated video and the input prompt in the semantic space. Finally, we fixed the parameters of
the UNet and text encoder and added a trainable adapter to the UNet downsampling block. During
training, we only select timesteps in the range of 0.9 to 1.0 for DDPM, and use the pre-trained
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sharetoken to replace the original text input with probability at all times, with the probability set
to 0.3. The learning rate is controlled at 3e-5, the rank is 4, the mixed precision training of fp16
is adopted, the input image resolution is 512x512, and the loss ratio defaults to 0.01. Noting that
the low-rank structure significantly reduces computational overhead, our 10-epoch training on the
MSRVTT dataset can be completed in just 20 hours on a single NVIDIA GeForce RTX 4090.

A.2 Inference Settings

The versatility of this method means that when it is applied to downstream tasks, it only needs to
load lora weight in StableDiffusionPipeline. We default that the LoRA weight will be integrated into
the original model weight at a ratio of 50%, and the LoRA parameters will only be injected when the
timesteps are in the range of 0.9-1.0.

A.3 Datasets

Training sets MSR-VTT is a large-scale open-domain video captioning dataset with 10,000 video
clips from 20 categories, each annotated with 20 English sentences, totaling approximately 29,000
unique words, and split into 6,513 training clips, 497 validation clips, and 2,990 testing clips. We
used the MSR-VTT training set and the OpenAI ChatGPT API to modify video captions and generate
new content, employing a specialized DataLoader to concatenate early denoised adjacent frames into
single batches, and converting MP4 videos to WebDataset format to optimize training performance.
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