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Abstract

Learning good representations involves capturing the diverse ways in which data
samples relate. Contrastive loss—an objective matching related samples—underlies
methods from self-supervised to multimodal learning. Contrastive losses, however,
can be viewed more broadly as modifying a similarity graph to indicate how
samples should relate in the embedding space. This view reveals a shortcoming
in contrastive learning: the similarity graph is binary, as only one sample is the
related positive sample. Crucially, similarities across samples are ignored. Based
on this observation, we revise the standard contrastive loss to explicitly encode how
a sample relates to others. We experiment with this new objective, called X-Sample
Contrastive, to train vision models based on similarities in class or text caption
descriptions. Our study spans three scales: ImageNet-1k with 1 million, CC3M
with 3 million, and CC12M with 12 million samples. The representations learned
via our objective outperform both contrastive self-supervised and vision-language
models trained on the same data across a range of tasks. When training on CC12M,
we outperform CLIP by 0.6% on both ImageNet and ImageNet Real. Our objective
appears to work particularly well in lower-data regimes, with gains over CLIP
of 17.2% on ImageNet and 18.0% on ImageNet Real when training with CC3M.
Finally, our objective seems to encourage the model to learn representations that
separate objects from their attributes and backgrounds, with gains of 3.3-5.6%
over CLIP on ImageNet9. We hope the proposed solution takes a small step
towards developing richer learning objectives for understanding sample relations
in foundation models.

1 Introduction

Contrastive loss underlies methods from self-supervised learning (SSL) to multimodal learning
[Radford et al., 2021, Chen et al., 2020, Oord et al., 2018]. In SSL, contrastive learning encourages
the model to associate a sample with another view of the sample created using hand-crafted data
augmentation—this related view is the positive sample. Other samples are then pushed away as
negative, unrelated samples in the models’ representation space. Contrastive losses also play a crucial
role in multimodal models such as CLIP [Radford et al., 2021], where the model associates an image
with its caption in representation space. Here contrastive learning designates the caption and image
representations as positives while all other text-image pairs are designated as unrelated negatives.

More broadly, contrastive losses can be seen as modifying a similarity graph to indicate how samples
should relate in the model’s representation space [Cabannes et al., 2023]. This view reveals a
shortcoming in contrastive learning: the similarity graph is binary, as only one sample is the related
positive sample. Crucially, similarities across samples, containing precious signals about how aspects
of one sample may relate to another, are ignored. For example, as shown in section 1, contrastive
learning treats each text-image pair independently, without explicitly encoding similarities in the
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Figure 1: a) The diagram of X-CLR. X-CLR objective learns representations of images with the
help of a soft relationship graph. The graph can be built based on accompanying data, e.g. taxonomy
for biological data. In our experiments, we use captioned images, and build similarities based on the
similarity of captions. b) Python-style pseudo-code of X-CLR with similarity based on captions.

images depicting dogs and the others sharing a grassy background. Standard contrastive objectives
do not explicitly account for similarities across samples, thereby limiting the quality of the learned
representations. Here, we explore here how to capture such similarities by modifying the standard
contrastive objective.

To account for similarities across samples, we first remove the binary negative vs. positive designa-
tions in standard contrastive loss. We introduce instead a similarity graph with continuous scalars
capturing the extent to which two samples are related. Consider the example in section 1, where the
two dog images have a high similarity while the dog and cat images have a more moderate similarity.
We experiment with this new objective, called X-Sample Contrastive (X-CLR), by training vision
models using a graph of similarities inferred from class or text caption descriptions found in common
datasets. Our study spans three training dataset scales from 1 million samples with high-quality labels
from ImageNet [Deng et al., 2009] to 3 and 12 million noisy image-text caption pairs from CC3M
and CC12M [Sharma et al., 2018].

We find that compared to contrastive baseline methods trained on the same data, representation
trained using X-CLR outperform contrastive training on a range of tasks from standard classification
to tasks involving the decomposition of objects from their attributes and backgrounds. When training
on CC12M, we outperform CLIP by 0.6% on both ImageNet and ImageNet Real [Beyer et al., 2020].
Furthermore, X-CLR seems to encourage the model to learn representations that separate objects from
their attributes and backgrounds, with gains of 3.3-5.6% over CLIP on ImageNet9 [Xiao et al., 2020].
We also find for fine-grained disambiguation of object attributes, the quality of labels used to infer
the similarity graph is much more important than the data quantity. Compared to noisier web caption
data, we find X-CLR trained on 1 million higher quality class labels outperforms representations
learned via standard contrastive CLIP trained 12x more data. Finally, we find X-CLR appears to
work particularly well in lower-data regimes, with gains over CLIP of 17.2% on ImageNet and
18.0% on ImageNet Real when training with CC3M. In short, we find representations learned using
X-CLR generalize better, decompose objects from their attributes and backgrounds, and are more
data-efficient. Our contributions are:

1. We present a graph similarity perspective of contrastive losses, revealing standard losses
encode a sparse similarity matrix that treats other, related, samples as negatives.

2. We propose a new X-CLR loss that explicitly accounts for similarities across samples
3. We experiment with this objective across three levels of data scale from 1-12 million samples.
4. We find representations learned via X-CLR

(a) Generalize better on standard classification tasks with consistent gains over contrastive
baselines trained on the same data. For example, when training on CC12M we outper-
form CLIP by 0.6% on both ImageNet and ImageNet Real.

(b) Disambiguate aspects of images such as attributes and backgrounds more reliably, with
gains of 3.3-5.6% over CLIP on background robustness benchmarks for ImageNet.

(c) Finally, we find X-CLR learns more efficiently when data is scarce, with gains of 17.2%

on ImageNet and 18.0% on ImageNet Real when pretraining on the smaller 3 million
sample CC3M dataset.



2 Understanding contrastive losses via similarity graphs

2.1 X-Sample Graphs

Throughout this study, a similarity graph denotes a graph in which the nodes represent data samples,
and edges similarity — relationships. Given the number of data samples in the dataset N, a graph is
expressed through its symmetric adjacency matrix G € RV*¥ | the semantic relation between inputs
i and j being encoded in the real entry G; ;. In fig. 2, we show graphs of different learning paradigms.
We elaborate on the connection between graphs and learning objectives more in appendix A.2.

2.2 Revisiting contrastive losses with similarity graphs: X-CLR

We introduce the soft cross-sample similarity to the widely used InfoNCE objective [Oord et al.,
2018]. In SimCLR [Chen et al., 2020], given a batch of N, images, each image is augmented twice,
so each sample has a true positive. The 2N, images are then encoded to get representation vectors z.
Then: .

b
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where H is the cross-entropy, and 1,/ is the one-hot distribution where all the probability mass is
assigned to the index of the positive sample corresponding to ¢, and sim is the cosine similarity.
Intuitively, we are training the model to classify positive examples in a batch, so the similarity p
should be high only for the true positive. We introduce the soft objective by replacing the hard
positive distribution 1,/ with a distribution s;. Or, in terms of graphs, we replace the graph from the
eq. (1) with a soft graph where connection strengths can be any number in [0, 1], and, similarly, the
distribution s; and does not have to be one-hot. Considering the example of section 1, we want the a
photo of a dog to have a representation similar to that of another photo of a dog, somewhat similar to
the representation of a cat photo, and different from the representation of a photo of a mug. Given
that distribution s, we can plug it in directly:

Pij =

1 2Nb
Lx. = ST H iy i
X-CLR 2Nb; (5, pz)

There are many possible ways to obtain this distribution s. We could use the meta-data associated
with the dataset; in our case, we utilize a trained text encoder fiext, and encode the text provided
with each image to obtain a representation, which is then used to calculate similarity between
samples ¢ and j using the cosine similarity. Those pairwise similarities describe the soft graph:
ngfft) = sim( fiext (¢i), frext(c;)). Here ¢; is the caption associated with the i-th sample. The last
step before pluggmg the similarities into the loss function is converting them to a valid probability
distribution using a softmax function:
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Note that 7, is a separate hyperparameter from 7 in the softmax to calculate the learned similarities.
Higher values of 75 put more weight on the ’soft’ positives, while lower values in the limit recover
the original SimCLR objective.

3 Experiments

Experimental setup We test X-CLR on three datasets of varying scale: ImageNet [Deng et al.,
2009] (1M), and conceptual captions 3M and 12M [Sharma et al., 2018]. We blur faces in all datasets
before training our models. We compare to SImCLR [Chen et al., 2020], to CLIP [Radford et al.,
2021] when captions are available. On ImageNet, we compare to SupCon [Khosla et al., 2020] which
uses lables; SCE [Denize et al., 2023] and ReSSL [Zheng et al., 2021] which use self-distillation
with soft targets, and to SimCLR [Chen et al., 2020], VICReg [Bardes et al., 2021] and BarlowTwins
[Zbontar et al., 2021] which are purely self-supervised algorithms for learning from images. We use
the Sentence Transformer [Reimers and Gurevych, 2019] as the text encoder to construct similarities.



Table 1: X-Sample Contrastive loss outperforms contrastive (SimCLR) and even Supervised
Contrastive with ImageNet pretraining.

Background Decomposition MIT States
Method ImageNet ImageNet Real Same Class Mixed ObjectNet  Objects  Attributes
SCE 71.3 78.7 61.7 58.4 20.2 44.5 31.0
ReSSL (1 crop) 69.4 76.9 56.3 53.2 18.3 44.5 31.2
VICReg 72.4 79.0 60.8 56.8 20.5 43.5 26.9
Barlow Twins 72.8 80.0 62.7 594 21.6 459 31.7
SimCLR 63.4 67.8 44.7 38.9 12.1 40.9 29.1
SupCon 74.3 79.7 64.0 59.9 24.4 45.6 30.8
X-CLR 75.6 81.5 66.6 62.7 27.5 459 31.1

Table 2: X-Sample Contrastive with CC12M training outperforms contrastive baselines.

Background Decomposition
Method  ImageNet ImageNet Real Same Class Mixed ObjectNet

SimCLR 58.9 66 24.6 19.8 12.7
CLIP 58.8 66.1 20.5 17.1 11.9
X-CLR 59.4 66.7 26.1 204 134

For ImageNet experiments, we generate captions by using the template "a photo of a _" to generate
captions out of class names. For more details, see appendix A.12. In this section, we only present
some of the experiments, see section appendix A.3 for more experiments.

X-Sample Contrastive with Well-Labeled Samples We first experiment with X-Sample Contrastive
using well-labeled samples to understand the effect of incorporating similarities across samples in the
training objective. To do so, we use class labels from ImageNet. We compare X-Sample Contrastive
(X-CLR) to SimCLR as well as Supervised Contrastive (SupCon), a model whose objective is
to explicitly match samples based on their class labels. We evaluate all models across a suite of
benchmarks to gauge how well representations generalize in terms of classification performance.

We find in table 1 representations learned via X-CLR improve on standard classification performance,
with gains of 12.2% relative to SImCLR and 1.3% relative to Supervised Contrastive on ImageNet.
We find similar gains when evaluated on revised labels from ImageNet Real of 13.7% and 1.8%,
respectively. Finally, we find by capturing similarities across samples, representations learned via
X-CLR are more capable of disambiguating objects from backgrounds and attributes with gains on
ImageNet-9 (for details see appendix A.10) [Xiao et al., 2020] and ObjectNet [Barbu et al., 2019].

X-Sample Contrastive with Noisy Multimodal Samples Contrastive loss also plays a pivotal role
in multimodal vision-language models such as CLIP. The contrastive training objective matches noisy
caption-image pairs. Here we experiment with X-Sample Contrastive by using the noisy captions to
learn similarities across samples. We compare both SimCLR as a standard contrastive model and
CLIP trained on the same caption-image data across two levels of scale: 3 and 12 million samples
from CC3M and CC12M.

We find incorporating X-Contrastive leads to representations with higher classification accuracy and
disambiguation of objects from their attributes and backgrounds. With CC12M training shown in
table 2, X-Contrastive outperforms SimCLR by 0.5% and CLIP by 0.6% with CC12M with similar
gains for ImageNet Real. We also find X-CLR training can better disambiguate object foreground
from backgrounds, with gains of 0.6-1.5% over SimCLR and 3.3-5.6% over CLIP.

We find learning similarites across samples with X-CLR leads to more considerable gains when less
data is available. X-CLR outperforms SimCLR by 1.2% and CLIP by 17.2% on ImageNet, with
similar gains on ImageNet Real as shown in table 3. We find X-CLR training can more considerably
disambiguate object foregrounds from backgrounds compared to CLIP when less training data is
available, with gains of 9.7-14.2% over CLIP.
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Figure 2: Sample similarity adjacency matrices of existing methods vs. our X-Sample Con-
trastive similarity loss (right). We show pairwise similarities of 20 samples belonging to 4 classes.
Similarity of 1 means the samples are identical, O — they are completely unrelated. In case of self-
supervised learning, none of the inter-sample relationships are modelled (left). Supervised learning
relies on the labels to group samples of the same class together (center). X-CLR models inter-class
relationships by associating cats with dogs and pianos with guitars.

A Appendix / supplemental material

A.1 Related Work

Contrastive learning Various contrastive objectives have been proposed over the years [Chopra
et al., 2005, Schroff et al., 2015]. More recently, the InfoNCE objective [Oord et al., 2018] has been
the most popular choice for self-supervised methods, e.g. SImCLR [Chen et al., 2020] and MoCo
[He et al., 2020]. InfoNCE objective has also been successfully used to learn vision-language models
using CLIP [Radford et al., 2021]. The basis of those objectives is to make positive pairs have similar
representations, while the negatives, which typically are just all other elements in a batch, should
have a different representation. In its original form, InfoNCE is binary, meaning it only works with
positive and negative pairs, and does not support degrees of similarity. The positive pairs are usually
two augmentations of the same sample, which makes well-tuned augmentations crucial for good
performance [Ryali et al., 2021]. Dwibedi et al. [2021] estimate positives using nearest neighbors in
the latent space instead and therefore can use weaker augmentations, while Caron et al. [2020] use
cluster assignment. A few methods have proposed modifications wherein multiple positive pairs are
supported, e.g., Khosla et al. [2020] groups positive by class labels, Hoffmann et al. [2022] propose
using WordNet [Fellbaum, 1998] hierarchy to define ranked positive samples, and Tian et al. [2024]
uses a generative model to obtain multiple positives for the same concept. HaoChen et al. [2021] also
look at contrastive learning through the lens of graphs, and propose a novel spectral objective. Wang
et al. [2023] draw connections between contrastive learning and message passing on the augmentation
graph, while Wang et al. [2022] show that aggressive data-augmentations like cropping can connect
samples of the same class. Zhang et al. [2023] show that contrastive learning objective implicitly
learns the graph in which the samples are connected via augmentations in the case of SimCLR or via
captions in the case of CLIP. However, in that paradigm only visually similar samples or samples
with a common caption get connected in the graph, while in our proposed method the samples are
connected based on the semantics, and therefore visually dissimilar samples can be connected.

Soft targets Using soft targets provides more learning signal to the model, possibly making it learn
better and faster. This has been explored with distillation by Hinton et al. [2015]. Soft targets have
also been used with InfoNCE in the context of distillation in ReSSL [Zheng et al., 2021] and SCE
[Denize et al., 2023], where the target cross-sample similarity comes from the teacher model. [Feng
and Patras, 2023] use soft targets from self-distillation to train an image encoder with coarse labels.
Similarly, Fini et al. [2023a] compute soft targets via latent clustering and apply it to semi-supervised
learning. Shen et al. [2023] use patch-mixing to train ViT image encoders to model inter-sample
relationships. Andonian et al. [2022] proposes to use soft targets for CLIP [Radford et al., 2021]
training, and calculates the targets via self-distillation. Wu et al. [2023] use a similar objective to
ours to distill the CLIP model into a smaller one. Further soft CLIP objectives are explored by Fini
et al. [2023b], who apply label smoothing to obtain soft targets, and Gao et al. [2024], who estimate
soft targets by comparing fine-grained image information. Finally, Huang et al. [2024] train CLIP
with non-zero cross-sample similarities computed based on pre-trained uni-modal models for text



Table 3: X-Sample Contrastive with CC3M training outperforms contrastive baselines.

Background Decomposition

Method  ImageNet ImageNet Real Same Class Mixed ObjectNet
SimCLR 57.0 64.0 24.4 18.9 10.8
CLIP 41.0 47.6 12.5 10.6 7.8
X-CLR 58.2 65.6 26.7 20.3 11.5

and vision. In this study, we build on the work of Cabannes et al. [2023] who propose a unifying
framework to view SSL and supervised learning objectives as learning with different underlying
similarity graphs. We take inspiration from the soft targets literature and propose using a soft graph.
As opposed to distillation, we focus more on the graph design, and try different graph sources,
including ones not based on distillation, see table 8.

A.2 Viewing SSL through the lens of graphs

SSL does not rely on labels, but on positive pairs/tuples/views generated at each epoch. Let us denote
by V' the number of positive views generated, commonly V' = 2 for positive pairs, and denote by
FE the training epochs. In that case, the original N input samples are transformed into N x V x E
“augmented” samples

XD 2 T(ay), ..., T(@1),.... Tlax),.... T(xx)]",

repeated V' X E times

where each T is a random input transformation with its own random parameters. The corresponding
graph is given by:

(ssl) _
G =L{i/VE|=li/VE]} 4))

where the associated similarity graph captures if two samples were generated as augmentations of the
same original input. Such graphs G, as defined by eq. (1), are the ones used as targets in common
SSL methods, as formalized below denoting Z £ fy(X) € RV*X,

Theorem 1 ([Cabannes et al., 2023]). VICReg [Bardes et al., 2021], SimCLR [Chen et al., 2020],
and BarlowTwins [Zbontar et al., 2021] losses can be expressed in terms of the graph G (1)

Lsimcir(Z;G) = — Z G, jlog ( exp(% %) > ;

L]E[N] ZkG[N] exp(i;rik)

where Z £ z/ || z|| and Z the column normalized Z so that each column has unit norm.

In our study, we focus on contrastive learning, i.e., SimCLR family of losses. We demonstrate how to
move away from the ad-hoc graph G from eq. (1).

A.3 Additional results
A.3.1 Can we improve contrastive learning under data scarcity?

To answer this question, we train all three models SimCLR, SupCon, and X-CLR by varying the
number of samples seen for each class in ImageNet. We find X-CLR, by incorporating information
about class labels and how they relate, is able to learn representations that improve over the perfor-
mance of SupCon trained with ground truth class labels and outperform SimCLR even when few
training samples are available per class as shown in fig. 3a.

A.3.2 X-Sample Contrastive introduces only minimal computational overhead

Both for ImageNet and conceptual captions datasets, we don’t run the text encoder for each sample
we see, and instead precompute the similarity values. For more details, see appendix A.12. Avoiding
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Figure 3: (a) X-Sample Contrastive Loss is data efficient with ImageNet pretraining. We
outperform SimCLR in low data regimes and match Supervised Contrastive trained on ground truth
labels at varying levels of data scarcity. (b) KNN performance ImageNet. X-CLR outperforms other
methods with KNN probing for a range of values of K. (¢) Sensitivity of X-Sample Contrastive
to temperature. We test the performance of our method when trained with different values of
temperature 75 on ImageNet data.

Table 4: Analyzing the computation overhead of the X-Sample Contrastive objective during
training. X-CLR introduces nearly no computational overhead compared to SimCLR.

Method  Seconds per batch ImageNet  Seconds per batch CC

SimCLR  0.866 = 0.008 0.874 +0.034
X-CLR  0.866 =0.010 0.877 £ 0.032

running the text encoder during model training avoids the extra overhead at the price of some pre-
processing. Pre-processing takes less than 2 hours for CC12M when using one GPU, about 30
minutes for CC3M, and less than 5 minutes for ImageNet. To further analyze how much overhead
there is, we compare the average time it takes to process one batch for SimCLR and X-CLR. The
results are shown in table 4. Overall, we didn’t notice any significant difference in the amount of
time it takes to train models with the X-CLR objective compared to the regular contrastive objective.
To train on ImageNet, we used 8 Nvidia V100s, and each run took about 30 hours. With the same
setup, CC3M runs took about 50 hours, and CC12M runs took roughly 9 days.

A.3.3 X-Sample Contrastive can be used to finetune pretrained backbones

We validate whether X-CLR can be used as a finetuning objective for pretrained backbones, given the
growing abundance of publicly available backbones. Here, we evaluate a pretrained SimCLR model
by finetuning for 10 epochs on ImageNet with X-CLR instead of the original SimCLR contrastive
objective. We see in table 5 finetuning with X-CLR improves classification performance on ImageNet
by 3.1% and on ImageNet Real by 6.6%. Furthermore, we see by relating samples during the
finetuning stage, X-CLR can disambiguate object foregrounds from backgrounds with grains of
9.2-11.1% on ImageNet-9 as well as improvements on natural object transformations from ObjectNet
with a gain of 5.3% after finetuning.

A.3.4 KNN Clustering

To confirm the representations learned via X-CLR also work well for downstream tasks with non-
linear decision boundaries, we perform evaluation using the common K-nearest neighbor (KNN)

Table 5: X-CLR can be used to finetune pretrained models.

Background Decomposition

ImageNet ImageNet Real Same Class Mixed ObjectNet

SimCLR 63.4 67.8 44.7 38.9 12.1
+ X-CLR finetuning 66.5 74.4 53.9 50.0 17.4
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Table 6: Label quality matters for fine-grained attribute disambiguation.

Pretraining Data Size Quality MIT States Attributes MIT States Objects
CLIP CC3M 3M Noisy 27.0 40.1
CLIP CC12M 12M Noisy 233 36.9
X-CLR CC3M 3M Noisy 29.5 40.7
X-CLR CCI2M 12M Noisy 30.1 42.1
X-CLR ImageNet M High 30.9 45.8

protocol. The results shown in fig. 3b demonstrate X-CLR outperforms both SimCLR and SupCon
baselines across a range of choices for K. We also show KNN results for models trained on conceptual
captions in appendix A.9.

A.4 Analyzing representations learned via X-Sample Contrastive
A.4.1 Visualizing the learned graph from X-Sample Contrastive representations

Here we examine whether the learned representations from X-Sample Contrastive capture semanti-
cally meaningful similarities. To do so, we select four groups of three ImageNet classes: felines, dogs,
types of balls, and musical instruments. For each pair of classes, we then compare the representation
similarities using cosine similarity. A higher average pairwise similarity indicates the model’s latent
representations encode the classes similarly. In fig. 4 we show the graph of similarities learned
after training with X-CLR on ImageNet. We find that the image encoder successfully captures the
similarity within the class groups.

A4.2 The effect of softmax temperature, and inferred similarity graph

We also examine the effect of hyperparameter choices. We show the sensitivity of X-CLR to
temperature 7, in fig. 3c on ImageNet. In the limit, when temperature goes to 0, we recover
Supervised Contrastive method for ImageNet, or SimCLR in case of conceptual captions. With
low temperature, the similarity is 1 only if the captions are exactly the same. As the temperature
increases, more weight is put on the soft positives compared to the true positives (i.e. augmentations
of the same sample). With high temperature, our method is unstable as too much emphasis is put
on the soft positive examples compared to the true positives. We find that the value of 0.1 strikes
the optimal balance and provides an improvement over pure Supervised Contrastive objective, while
still emphasizing true positives enough. For more details regarding how 7, changes the objective, see
fig. 8b.

We also experiment with different ways of inferring the graph, including using different text encoders,
using WordNet [Fellbaum, 1998] hierarchy distance, and the purely random graph. We find that over-
all, calculating the similarities using the sentence transformer worked the best [Reimers and Gurevych,
2019]. A more detailed comparison of different graph sources can be found in appendix A.6.

A.4.3 The impact of label quality for fine-grained attribute disambiguation

we show in table 6 how label quality can impact downstream performance on finer-grained attribute
disambiguation. we find larger labels from noisy captions degrades performance for fine-grained
object attributes in mit states [Isola et al., 2015] for both contrastive and clip. we find X-CLR
with high quality labels from imagenet, can outperform models trained on much larger noisier data.
compared to clip trained on 12x larger data, X-CLR achieves 30.9% vs. 23.3% for clip on attribute
classification and 45.8% vs. 36.9% for clip on object classification under different states. to see more
details regarding the mit states evaluation, see appendix A.12.

A.5 Discussion

In the present work, we have proposed a new graph perspective on the commonly used contrastive
learning methods and used our insights to develop a better learning objective, X-CLR, by using a
soft similarity graph. The adjacency matrix of the proposed graph contains not just O and 1, but
also any values between, with the ability to capture the degree of similarity across samples. We
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Figure 4: Visualizing pairwise similarities SupCon [Khosla et al., 2020] objective does not encour-
age non-zero similarity between samples of different classes (left), while X-CLR target similarities
take into account semantic closeness within categories such as dogs or types of balls (center). On the
right, we see that the trained model successfully learns the soft similarity. For more graphs, see fig. 5.

Table 7: Analyzing statistical significance of ImageNet results. Each experiment is ran with 5
seeds, we report the mean and standard deviation.

Background Decomposition MIT States
Method ImageNet  ImageNet Real Same Class Mixed ObjectNet Objects Attributes

SimCLR 63.43+0.12 67.75+£0.27 12.07+0.33 38.88+043 44.67+0.60 40.92+0.26 29.08+0.17
SupCon  74.30+0.16 79.66+0.12  2442+025 59.08+0.44 64.00+0.62 4556+0.16 30.83+0.20
X-CLR  7556+0.09 81.54+0.13 27.53+0.13 62.74+027 66.59+0.25 4586+0.15 31.10+0.18

experiment with different ways of constructing the graph, and find that indeed we can build a soft
graph that improves over the existing binary graph contrastive methods. However, we believe that
there are better ways of constructing the graph than what we found, particularly for the conceptual
captions dataset where the captions are quite noisy. A better graph can possibly be built using other
metadata, such as location or time. We also believe that ideas from X-CLR can possibly be integrated
into non-contrastive objectives such as BYOL [Grill et al., 2020] or VICReg [Bardes et al., 2021] to
enrich representations with similarities across samples.

Limitations The main limitation of the present work is that constructing the cross-sample similarity
graph requires extra data, as well as some extra memory to store it. When the extra data is not
available, the only options remaining are to build the graph using the augmentations, self-distillation,
or other pre-trained models. The resulting method is also highly dependent on the quality of the
graph, as we have seen with conceptual captions datasets.

A.6 More learned similarities comparisons
We compare inferring the similarity graph using different text encoders:

* Graph with connections only between samples of the same class (SupCon);
* Graph with connections only between augmentations of the same image (SimCLR);

* Graph where soft similarity is inferred by comparing representations of the sample captions.
The representations are computed using the sentence transformer [Reimers and Gurevych,
2019], CLIP text encoder [Radford et al., 2021], LLama2 encoder [Touvron et al., 2023];

Graph where the connection strength is defined by the distance in WordNet [Fellbaum, 1998]
hierarchy;

Random graph where the cross-sample connections’ strengths are fully random;

The results are shown in table 8. We find that overall, the Sentence Transformer graph performs the
best, although the CLIP text encoder achieves good performance as well. Interestingly, we find that
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Figure 5: Target and learned similarities for different graphs.

using WordNet hierarchy distance did not work well. We visualize learned and target similarities for
SupCon graph and for the graph built using CLIP text encoder in fig. 5.

Visualising similarities In fig. 4, to visualize learned similarities, for each class we pick 100
examples from the dataset, encode them. Then, to calculate the average learned similarity between
two classes, we take the 100 examples for each of the two classes, and calculate the Cartesian product,
yielding 10,000 similarities. We take the mean over those 10,000 similarities to represent the average
learn similarity for a class pair.

Similarities when training on CC datasets In appendix A.7, we show the similarities learned by
X-CLR on CC3M and CC12M datasets.

A.7 Analyzing statistical significance of the results

To make sure the difference in performance we observe is statistically significant, we run X-CLR,
SimCLR, and SupCon pretraining with 5 different seeds. We report the results of the evaluations in
table 7.
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Figure 6: X-CLR Learned similarities when trained on a) CC3M and b) CC12M.

Table 8: The effect of the similarity source on the model performance.

Background Decomposition

Similarity source ImageNet ImageNet Real Same Class Mixed ObjectNet
Augmentation graph (SimCLR) 63.2 67.5 45.5 38.3 12.5
Sentence Transformer (X-CLR) 75.6 81.6 66.5 62.3 27.7
CLIP text encoder 74.4 80.6 67.5 64.2 24.5
LLama?2 text encoder 40.9 45.8 38.3 36.0 43
Random per class pair 74.5 80.8 71.0 68.0 26.6
Random per sample pair 0.1 0.1 0 0 0
True class graph (SupCon) 74.4 79.7 63.3 58.8 241
Distance in WordNet hierarchy 68.3 74.9 55.7 52.1 21.2

A.8 Analyzing the learned graph

We follow the analysis of Zhang et al. [2023] and results in table 9. The analysis studies two
values: label error which measures how similar samples of different classes are on average, and
intra-class connectivity, which measures the similarity of the samples within the class relative to
those from different classes. This allows us to determine how well the learned graph captures the
class relationships in the data. Since the open-source repository of that paper did not contain the code
for analysis, we re-implemented it to the best of our ability.

According to these metrics, X-CLR representation is the best among the baselines. We note that our
SimCLR numbers are much better than in the original paper. We suspect that it’s due to the fact that
the authors train SimCLR with the batch size of 512, while we use 2048. ImageNet classification
performance of our SimCLR model is also higher, at 63.4, compared to 61.2.

We also note that label error, which is the measure of average similarity between instances of different
classes, is lower for our method, although the loss itself encourages it to be higher for related samples.
This is due to the fact that in this analysis, we use the first 10 classes from ImageNet (replicating the
original procedure), and those classes are not related to each other.

Table 9: Analyzing the learned representations’ connectivity
Metric CLIP SimCLR SupCon X-CLR

Label error ({) 0.550 0.250 0.250 0.223
Intra-class connectivity (1) 1.233 1.700 2.005 2.193
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Figure 7: Results of models trained on ImageNet, CC3M, CC12M on ImageNet validation when
using KNN classifier.

Table 10: CLIP on CC3M We train our own models on CC3M and find that training longer improves
the performance. Nevertheless, CLIP struggles with small datasets.

Background Decomposition

Method ImageNet ImageNet Real Same Class Mixed ObjectNet
CLIP 100 epochs 41.0 47.6 12.5 10.6 7.8
CLIP 32 epochs 36.8 42.0 11.5 9.8 6.0

A.9 KNN evaluation

Apart from testing the models trained on ImageNet using KNN, we also evaluate the models trained
on CC3M and CC12M. The results are shown in fig. 7. We see that X-CLR performs better on CC3M,
and comparatively with SimCLR when trained on CC12M.

A.10 ImageNet-9 details

ImageNet-9 [Xiao et al., 2020] proposes multiple benchmarks to test model robustness to the back-
ground perturbation. In our work, we use "Mixed-Same" and "Mixed-Rand" tasks from ImageNet-9,
and refer to them together as "Background Decomposition".

A.11 CLIP details

In CC3M experiments, we train the model from scratch, as OpenCLIP didn’t have a checkpoint
trained on that dataset. We trained both for 32 and 100 epochs, and found that the model trained for
100 epochs performs better. Since 32 epochs is the default CLIP number of epochs, we also report
results for 32 epochs. The results are shown in table 10.

A.12 More training details

On ImageNet, we also report standard deviations over 5 seeds for the models which we trained in table
table 7 (SimCLR, SupCon, and X-CLR). For the remaining ImageNet models, we took pre-trained
encoders. For experiments on ImageNet, we follow SupCon and use AutoAugment [Cubuk et al.,
2018]. All experiments on the ImageNet dataset were run for 100 epochs with 1024 batch size. The
learning rate was set to 0.075 for ImageNet models. For experiments on CC3M and CC12M, we used
the standard SimCLR augmentations, and a learning rate of 0.1. The rest of the settings were kept the
same.

We train SimCLR, SupCon and X-CLR using the LARS optimizer [You et al., 2017]. In all cases, we
use the same ResNet-50, with a two layer projector on top. The output dimension of the projector is
128.

In all our experiments, to isolate the effect of our learning objective, we fix the backbone architecture
to be a ResNet-50 [He et al., 2015] model as this is the most widely studied, with optimized
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Figure 8: (a) Histograms of the similarities calculated using Sentence Transformer on ImageNet
and CC3M. While for ImageNet the average similarity is around 0.35, it is much lower on CC3M,
signifying that the graph contains less information for CC3M. (b) Effect of the temperature and batch
size on the weight assigned to the true positvie.

hyperparameters, for standard contrastive self-supervised learning [Chen et al., 2020]. We use
the same architecture for CLIP’s vision encoder and take advantage of already optimized publicly
available checkpoints provided by OpenCLIP [Ilharco et al., 2021] for CC12M. Since no comparable
public checkpoint is available for CC3M, we train our own model, see appendix A.11.

Fetching similarities For ImageNet, since the number of classes is known, we pre-compute the
similarity matrix of dimension 1000 x 1000, and retrieve elements from it depending on the associated
class labels for a given sample pair to obtain the similarity value. For conceptual captions, we run the
text encoder on the full dataset and save the encodings to disk. Then, when loading an image from
disk, we also load the associated encoding of the corresponding caption. The similarity matrix for a
given batch is then obtained by calculating the Cartesian product of those encodings.

MIT States In order to evaluate on this dataset using linear probing, we split the dataset randomly
into two even parts, one used for training the linear layer, the other for evaluation. We train separately
to classify objects and attributes.

A.13 Understanding similarities

To understand the graphs we built using for different datasets, we investigate the average cross-sample
similarity in the dataset. The result is shown in fig. 8a. We find that CC3M similarities are in
general lower, possibly because of lower quality annotations. We also investigate how much weight
is assigned to the true positive examples. For SimCLR, it’s always 1. For our method, the amount of
similarity assigned to other samples in the batch depends on the temperature 7, and the batch size.
The exact relationship is shown in fig. 8b.

A.14 Connection between Supervised Contrastive Learning and X-CLR

Here, we will outline how as the temperature 75 approaches 0, X-CLR becomes SupCon. Supervised
Contrastive Learning [Khosla et al., 2020] also uses image augmentations, and augments each image
twice, to obtain what they call "a multiviewed batch". Then, in equation 2, they propose the loss:

Lo = = i 2 lomniy
il i€l pEP(4)
where p; ; is defined as follows:
exp(sim(z;, z;)/7)
Z?ivlb W o2y exp(sim(z;, 2x) /T)

However, | P(i)| is exactly the number of positive samples, and p; ,, is the probability of ¢ and p being
a positive pair according to the model. We set s; 7 °°" to be a distribution over 2N, — 1 candidates

%

bij; =
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Figure 9: X-CLR and SupCon representations fall into a well-defined clusters, whereas SimCLR
representations are less structured.

for positive pairs and define it as follows:

Ssu}pcon _ |P%Z)‘7 lfj € P(l)

“J 0, otherwise

Then, we can write down the original loss as:
Esup — H(Ssupcon,pi)

out,? 7

where H is the cross-entropy. This looks exactly like the X-CLR objective. We can recover SupCon
objective if we increase the temperature 7: the resulting distribution s; will be equal to 577"

A.15 T-SNE of the learned representations

In appendix A.15, we show T-SNE plots of representations of a few superclasses from ImageNet. We
used the ’living 9’ set of classes from [Engstrom et al., 2019].
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