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ABSTRACT

A central component of rational behavior is logical inference: the process of de-
termining which conclusions follow from a set of premises. Psychologists have
documented several ways in which humans’ inferences deviate from the rules
of logic. Do language models, which are trained on text generated by humans,
replicate these biases, or are they able to overcome them? Focusing on the case
of syllogisms—inferences from two simple premises, which have been studied
extensively in psychology—we show that larger models are more logical than
smaller ones, and also more logical than humans. At the same time, even the
largest models make systematic errors, some of which mirror human reasoning
biases such as ordering effects and logical fallacies. Overall, we find that lan-
guage models mimic the human biases included in their training data, but are able
to overcome them in some cases.

1 INTRODUCTION

The capacity to reason deductively—that is, to determine which inferences, if any, follow from a
given set of premises—is central to rational thought (Newell & Simon, |1972; [Laird et al.l [1987;
Fodor & Pylyshyn, [1988; |Griffiths et al., 2010). Still, human reasoning often displays systematic
biases (Gigerenzer & Gaissmaier, 201 1; Marcus, 2009; Kahneman, [2013}; |McClelland et al.| 2010).
In recent years, neural network language models (LMs) trained using self-supervised objectives have
been reported to display a range of capabilities, including the ability to reason (Brown et al., [2020;
Chowdhery et al.l[2022; [Bubeck et al.,[2023). Do LMs’ logical reasoning abilities follow the rules of
logic to a greater extent than humans’? To the extent that LMs’ reasoning deviates from normative
logic, are their biases similar to humans biases (Binz & Schulz, 2023};|Dasgupta et al.| 2022))?

In this work, we address these questions with a detailed study of a particularly simple case—
inferences from pairs of premises, or syllogisms:

No artists are bakers,
and All bakers are chemists,

therefore: some chemists are not artists.

In a syllogism, each premise relates two terms with one of four quantifiers (or “moods”: all, some,
none and some are not) and only one term is shared between the premises (here bakers), and so
deducing a relationship between the terms not shared (artists and chemists) requires inference.

Humans show a wide range of behaviours when making syllogistic inferences, often deviating from
logic; in fact, for some syllogisms the vast majority of participants draw incorrect inferences (Khem-
lani & Johnson-Laird, |2012). This could pose a challenge to language models (LMs), which learn
from corpora consisting primarily of human-generated text, which reflects human beliefs and infer-
ences. Is there sufficient signal in the training corpus to steer LMs away from the (often incorrect)
human inferences and toward normative logic, whic is desired for most applications? We perform a
detailed comparison of the performance of the PaLM 2 family of transformer LMs (Google, [2023)
with findings from the human syllogistic reasoning literature.

We report the following results:
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1. LMs draw correct syllogistic inferences more often than humans and larger LMs are more ac-
curate than smaller ones, but even the largest LM obtains an accuracy of only about 80% (Sec-
tion [A.T)).

2. LM errors are systematic, with very low accuracy on particular syllogism types (Section[d.1)); the
syllogisms that LMs struggle with are a subset of those that humans find difficult (Section4.2).

3. Like humans, LMs are sensitive to the ordering of terms in the premises of a syllogism even when
it is logically irrelevant (Section 4.2} this pattern is known as the “figural effect” in cognitive
psychology; Johnson-Laird & Steedman||1978)).

4. LMs show many of the same syllogistic fallacies (characterized by high confidence and low ac-
curacy) as humans. The largest LM is more susceptible to these fallacies (Section[d.2} [Khemlani
& Johnson-Laird|[2017).

5. We use the Mental Models theory to show larger LMs show signatures of being more deliberative
in reasoning, irrespective of their accuracy on the syllogisms (Section [5} [Khemlani & Johnson-
Laird 2022).

Overall, we find that LMs replicate many of the human biases discovered in psychology studies,
consistent with the fact that LMs are trained on human-generated text. At the same time, for some
syllogisms, sufficiently large models overcome those biases and achieve dramatically better accuracy
than humans.

2 BACKGROUND

2.1 SYLLOGISMS

Syllogisms are logical arguments consisting of two premises relating three variables, A, B and C
(e.g., artists, bakers, and chemists in the previous example). Each premise relates just two of the
variables. The variables can be related by one of four quantificational statements, often referred to
as “moods” in the classic literature (Table |1} left). The variables in the premises can be ordered
in either of the two directions—e.g., all artists are bakers vs. all bakers are artists—and so there
are four possible pairs of orderings (Table |1} right). These orderings are traditionally refered to
as numbered “figures” (e.g. figure 1), but we will use the less confusing term “variable ordering”.
Taking the crossproduct of these building blocks yields 64 possible syllogisms: two premises, each
of which can take one of four quantifiers and one of two possible orderings.

Though the premises only relate A and B, or B and C—never A and C—27 of the 64 syllogisms im-
ply a quantified relationship between A and C (e.g., some A are C). In the remaining 37 syllogisms,
no relation between A and C can be deduced; in human experiments, the expected response to these
syllogisms is “nothing follows”.

2.2 HUMAN SYLLOGISTIC REASONING

Cognitive psychologists, going back to the early 20th century, have found that in many cases the
conclusions that humans draw from the premises of a syllogism deviate from logical norms (for a
review, see |Khemlani & Johnson-Laird||2012). These errors are systematic: some syllogisms are
much harder than others, and the incorrect conclusions that participants tend to draw are consistent
across participants. For example, the vast majority of participants incorrectly conclude no artists
are chemists in response to the syllogism in the beginning of Section [1|(we analyse similar cases in
detail in Section [d.2).

Several other human reasoning biases have been documented. For example, when given a syllo-
gistic argument where variables are ordered according to the variable ordering (A-B, B-C; variable

1 2 3 4

A: All artists are bakers 1: Some artists are bakers A-B B-A A-B B-A
E: No artists are bakers O: Some artists are not bakers B-C C-B C-B B-C

Table 1: Syllogism moods (left) and variable orderings (right).
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ordering 1), participants show a pronounced bias toward predicting conclusions with a A-C variable
ordering, even though the variable ordering in the premises is irrelevent to a syllogism’s logical
content: reordering the premises does not effect the conclusions it implies (Johnson-Laird & Steed-
man, [1978)). Participants are also likely to produce a conclusion when it is true in the real world,
independently of whether it follows from the premises (“content effects”, Evans et al.|1983).

Several theories have been proposed to explain human syllogistic reasoning. An influential account
that we focus on in the present work is the Mental Models Theory (Johnson-Laird & Byrne, [1991).
This theory posits that human reasoners construct “mental models” populated by a small number
of entities that instantiate the premises; e.g., to instantiate all artists are bakers, a reasoner might
construct a world in which there are three specific artists, all of whom are bakers. These worlds are
constructed based on a number of fallible heuristics, and human reasoning errors arise when those
heuristics produce incorrect conclusions (see Section [5).

2.3 LANGUAGE MODELS AND REASONING

LMs trained with self-supervised objectives on large text corpora have been instrumental in achiev-
ing high performance on a range of tasks. Some of the tasks that LMs have shown promise in have
been referred to as reasoning tasks, including commonsense reasoning, natural language inference,
or question answering (e.g., Chowdhery et al.[2022). In this work, we focus more specifically on
deductive logical reasoning: drawing conclusions that must, rather than is likely to, be true given the
premises, and where the inference is based only on the premises, and does not rely on world knowl-
edge. Unlike work on datasets collected from textbooks or through crowdsourcing, we perform a
well-controlled, analysis of a simple logical task that has received a lot of attention in cognitive
science.

Several studies have benchmarked LMs on logical reasoning tasks (Han et al., 2022; BIG-bench
collaboration, [2022; |Wu et al., [2023a; |Betz et al., | 2020; |[Saparov & He, [2022; Saparov et al., [2023))
and examined LM reasoning biases (Dasgupta et al.| 2022} Razeghi et al., 2022} |Wu et al.| 2023b;
McCoy et al., |2023). Saparov & Hel (2022) take a similarly controlled experimental approach to
ours (see also[Saparov et al.|2023)), but they analyze LMs’ performance on formal logic rather than
problems phrased in natural language as we do, and do not compare their results to humans. The
closest study to ours is |Dasgupta et al.| (2022), which demonstrates content effects in a number of
logical reasoning domains, including syllogisms. We extend their approach to study other aspects
of syllogistic reasoning.

3 METHODS

3.1 DATA

Human data We use the data from Ragni et al|(2019), an online experiment where 139 partic-
ipants responded once to each of the syllogisms. In each trial, a participant was presented with
a syllogism and was instructed to choose among nine options: the eight possible conclusions and
“nothing follows”. The experimental trials were preceded by a brief training phase where partici-
pants were familiarized with the task.

Materials for LM evaluation. To reduce the likelihood that the items we used have appeared in
the models’ training corpus, we generate our own dataset of syllogisms. To do this, we generate
30 content triples—i.e., nouns to fill in the abstract terms A, B, C in a syllogism—where there
is no obvious semantic association between the terms, for example the triple “hunters, analysts,
swimmers” (see Appendix [A]for the full list of content triples used). This procedure is similar to the
one|Ragni et al.|(2019) used to generate their experimental materials.

3.2 MODELS AND INFERENCE

We evaluate the PaLLM 2 family of LMs, which are publicly available in four sizes (XXS, XS, S and
L; |Google2023). The PaLM 2 models are transformer-based (Vaswani et al.,|2017) and were trained
on a large corpus of multilingual web documents, books, code, mathematics, and conversational
data.
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Figure 2: Accuracy of PaLM 2 models, humans (red), and random guessing (grey). Syllogisms are
partitioned into variable ordering (by row) and ordered by decreasing human accuracy from left to
right. The top right inset shows the average accuracy across all syllogisms. Syllogisms are identified
with the letters of the moods and the premise and the number associated with their variable ordering.

Following the emerging standard practice for eliciting rea-
soning from large LMs, we use zero-shot “chain-of-thought”
prompting (Kojima et al.l |2022; Wei et al.| 2022). We specu-
late that the more explicit reasoning process triggered by the
chain-of-thought prompt may resemble the behavior of human
participants in experiments more closely; for an analysis of al-
ternative prompting strategies that we explored before settling
on this one, see Appendix The prompt we use is illus-
trated in Figure[T] We randomize the order of the conclusions
in the prompt to control for LMs’ sensitivity to answer order-
ing (Pezeshkpour & Hruschka, [2023).

Following the prompt, we generate 75 tokens from the LM,
with a temperature of 0.5. We repeat this process 30 times for
each combination of syllogism type and content triple. We use
uncased string matching to identify conclusions in the sam-
ples, filtering out samples for which no match was identified.
We then take the conclusion that was produced most frequently
across the 30 samples to be the model’s answer on that syllo-
gisms (see Appendix [B] for further details and an exploration
of the impact of different prompts and decoding parameters).

4 RESULTS

4.1 Do LMS REASON ACCURATELY?

"Choose the conclusion that logically follows
given the premises or ‘nothing follows’ if
none of the other conclusions logically follow

Premise 1:
Premise 2:

all artists are bakers
some chemists are bakers

the possible conclusions are:

all artists are chemists

some artists are chemists

no artists are ahemists

some artists are not chemists

shuffled

all chemists are artists

some chemists are artists

no chemists are artists

some are chemists not artists

nothing follows

Let’s think this through, step by step

(PaLlM2 ) — all artists are chemists

Figure 1: Example of the zero-shot
chain-of-thought prompt we use to
assess LM syllogistic reasoning.

We first examine the LMs’ behavior on each of the 64 syllogisms separately. The LMs rarely pro-
duced the output “nothing follows”, which is the correct conclusion for 37 of the syllogisms. We
return to this behavior briefly in Section [d.2] but in most of the following analyses we restrict our-
selves to the 27 syllogisms that derive conclusion other than “nothing follows™ (Figure ). We
compute the LMs’ accuracy for each syllogism by dividing the number of logically valid conclu-
sions produced by the LM by the total number of responses; note that some syllogisms have more
than one valid conclusion (up to four) and so the random baseline in Figure 2] varies by syllogism.
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When averaged across all syllogisms, LM accuracy improves with scale, with the largest model
exceeding human performance. However, there is considerable by-syllogism variance; for multiple
syllogisms, accuracy stays very low and can even decrease as model size increases (this is the case,
for example, for all B are A, all B are C).

4.2 Do LMs REASON LIKE HUMANS?

Human accuracy averaged across all syllogisms roughly 50% (Fig- Overall -1
ure@]; red-dashed line); as such, high LM accuracy on this task does o—o—9
not necessarily imply humanlike reasoning. We find that the syllo-
gisms that models struggle with are ones that humans also find chal-
lenging, but the inverse is not always true: there are multiple syl-

05

random
logisms that are hard for humans but are solved correctly by larger [~~~ "~~~ "7777 °
models. For example, for the syllogism some B are A, no B are C
human accuracy is barely above chance whereas PalLM 2 Large is ' ' ' 05
near ceiling. XXS XS S L

Comparing the distribution over responses. To compute the Figure 3: Correlation with hu-
probability distribution over conclusions for each syllogism, we ag- man predictions for the PaALM
gregate response counts for each syllogism and normalize them into 2 models.

a probability distribution as in [Khemlani & Johnson-Laird| (2016).

Figure [3| shows the result of correlating the probability estimates from humans with the estimates
from PalLM 2 models across the entire dataset (though see Figure [11|in the Appendix for a by-
syllogism break down). Overall, larger models are more correlated with the human data than smaller
ones (Figure[3). We note that PaLM 2 Large displays, at the same time, both a high correlation with
human responses and a higher-then-human accuracy. This suggests that the miscalibration to human
data that models accrue due to higher accuracy is balanced by better fit to humans elsewhere in the
dataset. The next sections test this hypothesis, zooming in on two specific biases.

Variable ordering effects Humans’ syllogistic inferences are sensitive to variable ordering, even
when it is logically irrelevant (Johnson-Laird & Steedmanl [1978))). Specifically, humans produce
more conclusions with an A-C variable order when reasoning in response to a syllogism presented
in variable order 1 (A-B, B-C), and they show a pronounced bias in the other direction (that is,
they produce more C-A-ordered conclusions) when presented with a syllogism in ordering 2 (B-A,
C-B). We aggregate the human and LM responses across all (A-B, B-C) syllogisms and across all
(B-A, C-B) syllogisms separately and normalize the aggregated response counts. We find that the
PalLM 2 models show a variable ordering effect in the same direction as humans (Figure f). We
compute the magnitude of the efffect for variable ordering 1 by subtracting the mass placed on C-A
conclusions from the mass placed on A-C conclusions, P (C-A) — P (A-C). Similarly, we compute
the difference in the opposite direction, P (A-C) — P (C-A), to estimate the effect magnitude for
variable ordering 2. Our results are shown in Figure |4} left), we find that the magnitude of the bias
is smallest for the smallest model and increases in larger ones.

-

L 4
_4? Q Q g ! -©-ordering 1
3 (o3 (o9 ~ N < 0751 ._\/ —@-ordering 2
205 ~o ~o N S LR . A o= @ L®XS
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Conclusion Variable Ordering

Figure 4: (Left)The marginal probabilies of A-C/C-A ordered conclusion as estimated from hu-
man and LM response counts. Humans and LMs show the variable ordering effect. (Right) The
magnitude of the variable ordering effect in PaLM 2 increases with model size.
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Figure 5: (Right) Each syllogism plotted by accuracy (y-axis) and entropy (x-axis) and the regression
line relating the two. Dashed lines black lines show the residuals for each of the top three human
syllogistic fallacies. (Left) The result of correlating PaLLM 2’s residuals with residuals estimated
from human data.

Syllogistic fallacies In general, humans are well calibrated syllogistic reasoners—their accuracy
is inversely correlated with the entropy of their responses (Figure [} also see Khemlani & Johnson-
Laird||2012). In other words, for most syllogisms where humans give incorrect answers, the par-
ticular incorrect answers they give vary substantially across individuals and trials. However, there
are exceptions to this tendency: in some cases, humans confidently and consistently choose a par-
ticular incorrect answer (that is, low entropy coincides with low accuracy). For example, given the
syllogism ‘no artists are bakers, all bakers are chemists’, humans overwhelmingly respond with the
logically invalid conclusion ‘no artists are chemists’; the correct conclusion, ‘some chemists are not
artists’ is produced only 3% of the time. The distribution over responses elicited from humans for
this syllogism has one of the lowest entropies in the [Ragni et al.[|(2019) dataset. We refer to such
cases as syllogistic fallacies (Newsome & Johnson-Laird, [2006; |Khemlani & Johnson-Laird, [2017)).

To identify potential fallacies in LMs, we fit a regression line relating entropy (in nats) and accuracy,
and then compute the distance from this line (the residual error) for each syllogism. Figure [5|shows
the regression lines as well as the top three human syllogistic fallacies, the top three outliers when
plotting accuracy against entropy, in humans—we find that these syllogisms are also outliers for the
PalLM 2 models (especially so for PaLM 2 Large). Furthermore we correlate the residual errors (for
all 27 syllogisms) estimated for the PaLM 2 models with the residual errors estimated for humans
and found larger models have stronger correlations (Figure[3] left). Fallacies are a particularly strong
test of human-like reasoning performance in this setting: if the models are becoming increasingly
human-like, we expect LM accuracy to decrease with size on the fallacy syllogisms. We find that
LMs do in fact show this trend, even though their overall accuracy increases across the dataset.

LMs avoid “nothing follows” An important diver- nothing follows other(s)
gence from human behavior is that LMs rarely conclude
“nothing follows”, even for the 37 syllogisms for which
this is the correct conclusion. Humans also show a reluc-
tance to conclude “nothing follows”; Ragni et al.| (2019)
analyse this behavior and show that cognitive models
struggle to capture this aspect of human syllogistic rea-
soning. That said, this LM bias goes far beyond a human-
like aversion—we observe accuracies around 0% (Fig-
ure [6) and very low correlation to human behavior on Figure 6: The proportion of ‘nothing
this part of the dataset. The ‘nothing follows’ conclusion follows’ responses from humans and
stands out from the others in that it does not relate A and LMs on (left) the 37 syllogisms whose
C, and we find that it is difficult to enable models to gen- only valid conclusion is “nothing fol-
erate it in the zero-shot setting (though see Appendix[B:3] lows” and (right) the syllogisms that
for a more involved procedures that better elicits that con- ~ derive conclusions other than “nothing
clusion). We leave futher analysis of this behaviour to fu- follows”.

ture work and beyond this section continue to consider just those syllogisms that derive conclusions
other than ‘nothing follows.’
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Figure 7: (Left) Schematic of mReasoner deducing an incorrect conclusion before finding con-
terexamples (system 2 processes shown in green) and updating to the correct conclussion—‘nothing
follows’. (Center) PC coordinates assigned by projecting PaLLM 2’s behaviour. (Center - top right)
PC1 coordinate assigned to models after setting the probabilities of correct answers to zero. This
dimension has 0.66 correlation with SYSTM2 despite having O correlation with accuracy and we
find a similar effect of scale in this dimension. (Right) correlation matrix between the coordinates
assigned to our mReasoner instantiations and the original parameter values of those instantiations.

5 INTERPRETING LANGUAGE MODELS USING MENTAL MODELS THEORY

The Mental Models theory of human logical reasoning (Johnson-Laird, |[1983) has been developed
over decades to account for a range of human experimental data. The theory takes humans to be
resource-limited and simulation-based reasoners (Craik||1967; [Lake et al.[|2017; |[Lieder & Griffiths
2019; [Johnson-Laird|/1983] i.a.), with a potentially high degree of variability. The implementation
we use—mReasonelﬂKhemlani & Johnson-Laird, 2022))—captures these aspects of human reason-
ing with a small set of interpretable hyperparameters that enable it to construct, refine, and draw
conclusions from internal ‘mental models’ of the situations described in a syllogism.

Mental models in mReasoner consist of sets of entities (Figure[7), where an entity is represented by
a conjunction of logical properties. For example, Figure [/] (left) illustrates mReasoner constructing
a mental model from the syllogism ‘some artists are bakers, some bakers are chemists’. Its model
(shown in the pane labeled ‘mental model’) consists of just three enities, the first of whom is an
artist who is also a baker and a chemist, the second is an artist and a baker (who may or may not be a
chemist, this uncertainty is represented in the Figure with a blank space), and so on. mReasoner con-
structs and maintains its mental model with a set of actions parameterized by four hyperparameters,
which we describe briefly here and in further detail in Appendix

e LEN (A € [1,00)): Determines the average number of entities generated by mReasoner. mRea-
soner samples a Poisson random variable with mean=LEN. The number sampled is the number of
entities mReasoner will generate.

e BROAD (¢ € [0,1]): Determines the set of individuals the mReasoner samples from. There are
two possible sets: a smaller, canonical (biased) set of individuals consistent with the premises
(shown in Figure [I2) and a broader, complete, set of individuals consistent with the premises.
Higher values of BROAD indicate that the reasoner is more likely to sample from the complete set.

e SYSTM2 (0 € [0,1]): The reasoner’s propensity to reconsider its conclusion and search for
counterexamples. Search is conducted either by adding a new entity to the model, moving a
property from one entity to another or by decomposing an entity into two entities (illustrated in
Figure[13). Higher SYSTM2 correspond to a greater liklihood of searching.

e WEAKEN (w € [0, 1]): Determines the model’s reaction to finding a counterexample. mReasoner’s
options in this case are (1) respond “nothing follows” and (2) avoid “nothing follows”, but weaken
its response (i.e., amending erroneous global conclusions e.g., ‘All A are C’ to ‘weaker’ particular

'https://github.com/skhemlani/mReasoner
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conclusions e.g., ‘Some A are C’). When WEAKEN is higher, mReasoner is more likely to weaken
and less likely to answer “nothing follows”.

We illustrate mReasoner processing the syllogism ‘some artists are bakers, some bakers are
chemists’ in Figure [/} First, mReasoner constructs a mental model (with length governed by LEN
and content governed by BROAD) consisting of the entities discussed above (an artist-baker-chemist,
an artist-baker, and an artist). The conclusion ‘some artists are chemists’ is consistent with this par-
ticular model (i.e., the first entity is both an artist and a chemist), but is not true in every model that is
consistent with the premises (i.e., the conclusion is not logically valid). If the mReasoner procedure
does not trigger a system 2 process, it will (incorrectly) take this conclusion as valid and return it.
Alternatively, with probability SYSTM2 mReasoner will scrutinize the conclusion by amending its
model in an attempt to find a counterexample. In this case, mReasoner successfully finds a coun-
terexample by breaking the first entity into two new entities that are still consistent with the premises
but which are not consistent with “Some artists are chemists”; in this case, mReasoner corrects its
answer to ‘nothing follows’.

Mapping LM predictions onto cognitively meaningful dimensions. Syllogistic reasoning be-
haviour is high dimensional; in the set of syllogisms and conclusions we consider, there are 27
syllogisms and eight possible responses to each, for a total of 216. We evaluate mReasoner on each
syllogism and represent each instance as a vector in this 216-dimensional space. Finally, we use
PCA to identify the top four principal components in this 216-dimensional space. We instantiate
923 mReasoner models, one for each point in a large grid (Table [3|in Appendix).

Characterizing the space of reasoning behaviours described by mReasoner. Although mRea-
soner is characterized by four parameters, we find a single principal component (PC 1) that captures
77% of the variance in the model’s behaviour (Figure[7] center). We find that this component loads
heavily on SYSTM2 and, to a lesser degree, on WEAKEN. Following Khemlani & Johnson-Laird
(2016), we view this dimension as representing deliberative reasoning. Similarly, PC 2 loads heav-
ily on BROAD. This dimension, however, describes much less behavioural variance in mReasoner.
(For the relations between the 4 components and the original parameters, please see Figure[7] right.)

LMs show signatures of deliberative reasoning. We project the 216-dimensional vectors de-
scribing the human data as well as each of our LMs into this space. This allows us to interpret the
LM behaviour, in particular as model size increases, in terms of reasoning strategies (Figure[7). We
find that PaLM 2’s responses moved upward along PC 1 and PC 2 as models grew larger; in other
words, larger LMs show behavioural signatures of deliberative reasoning, their behaviour is more
like mReasoner instantiations with high SYSTM2 and WEAKEN values.

Deliberative reasoning is partly dissociable from accuracy. PC 1 is strongly correlated with
SYSTM2, but is also strongly correlated with accuracy. Can the changes in coordinates assigned to
PalLM 2 be explained by differences in accuracy alone? To test this, we conduct the same analysis,
this time setting the probabilities of the correct answers to O for all mReasoner instantiates, LMs, and
humans and renormalizing (Figure[7] center). In this control analysis, the accuracy of all models is
0%, but the models still show an increase in deliberative reasoning with size. Here the deliberative
component has zero correlation with accuracy but has .6 correlation with SYSTM2; correlations
with all other parameters are below .15. This result indicates that even the models’ errors are more
consistent with deliberative reasoning, which provides evidence for nontrivial behavioural signatures
of deliberative reasoning as manifested in mReasoner.

6 DISCUSSION AND LIMITATIONS

Do language models learn to reason correctly from self-supervised learning alone, even though much
of their training data was produced by humans, whose reasoning often deviates from normative
logic? We address this question through a detailed examination of PaLM 2’s syllogistic reasoning
behaviour. We find that (1) the largest LMs make significantly fewer mistakes than humans, but still
display systematic errors (Section [d.T)), and (2) the mistakes LMs make are only somewhat aligned
with human errors, even though LMs are susceptible to several qualitative reasoning biases shown
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by humans (Section @]) We discuss takeaways, limitations, and connections to broader literature
in the remainder of this section.

Human-like reasoning or accurate reasoning? Because of humans’ systematic reasoning errors,
syllogistic reasoning is a particular clear demonstration of the tension between the two central aims
of artificial intelligence: human-likeness and accuracy. We hypothesize that for most applications
accuracy is more important; one notable exception is cognitive modeling, where the goal is to better
understand human reasoning by developing models that reason like humans.

Why are LMs more accurate than humans? LMs learn from human generated text, which is
likely to reflect human beliefs and biases; it is natural to hypothesize that the language modeling
objective would incentivize LMs to replicate those biases. We find only partial support for this
hypothesis. While the largest model’s responses are indeed slightly more correlated with human
responses than the smaller ones, for some syllogisms it overcomes human biases and reasons cor-
rectly. One possible explanation for this finding is that the data that PaLM 2 models were trained
on includes not only natural language text, but also source code (Chowdhery et al., [2022), which
may teach models to reason more effectively. The effect of the composition of the LM’s training
corpus can be tested in a controlled comparison in the future, though retraining state-of-the-art LMs
requires substantial computational resources.

Eliciting LM reasoning The space of possible ways to evalute LMs on paradigms from human
experiments is fairly large. Evaluations can be done in a zero-shot way, as we did, or in a few-shot
way, which may better approximate the training phase used in some reasoning experiments, such as
Ragni et al.[(2019); see Lampinen| (2022). One can generate from the model (Aina & Linzen,|[2021)),
as we did; elicit meta-level judgements (Hu & Levy, [2023; Begus et al.l 2023); or simply compare
the probabilities assigned by the LM to possible continuations (Linzen et al.,|2016; Dasgupta et al.,
2022). Finally, generative approaches can rely on a large set of possible prompts, and can be used
with or without “chain-of-thought” incantations whose stated purpose is to cajole the model into
revealing its reasoning process. Following preliminary experiments (Appendix [B]), we focused on
zero-shot chain-of-thought; a more systematic evaluation of the different elicitation approaches is
an important direction for future work.

Cognitive science for LM interpretation We have used cognitive science to shed light on LM
reasoning in two ways. First, we used the biases documented in the cognitive pscyhology as hy-
potheses for the biases that LMs might acquire. The hypothesis is that since LMs are trained on
texts generated by humans, which reflect human biases and beliefs, they will be incentivized to
replicate those biases to improve perplexity. This hypothesis is supported by the fact that larger
LMs showed stronger human-like biases in some cases (Section {.2), a phenomenon referred to
elsewhere as inverse scaling (McKenzie et al.| [2023)).

The second, and more novel, way in which we use cognitive science is by using a computational
cognitive model based on Mental Models theory to interpret LM behavior. Under the assumption
that LM reasoning follows the same heuristic strategies as humans do (Section 3, we can conclude
from this analysis that LMs become more deliberative as their size increases. Of course, this is not
the only possible mechanism that might underlie LM reasoning. Other accounts of human reasoning
have argued that people do in fact apply normative logic rules (Rips} [1994)), perform probabilistic
inference with constrained resources (Chater & Oaksford,|1999), or combine probabilistic, heuristic
and pragmatic reasoning (Tessler et al.l [2022); future work can apply our methodology to these
theories, which may provide a better explanation of LM reasoning than does Mental Models Theory.
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A CONTENT WORDS FOR SYLLOGISMS

Table [2|displays the full list of the content tripples used in our experiments chosen to be minimally
semantically associated with each other.

Table 2: The 30 content word triples we use to construct syllogisms (e.g., for the first entry in the
table, the variables A, B and C in the syllogism are replaced with actuaries, sculptors and writers,
respectively). The words in each triple were chosen to be minimally semantically associated with
each other.

actuaries, sculptors, writers
chemists, drivers, dancers
dancers, bankers, riders
farmers, surfers, writers
hunters, analysts, swimmers
linguists, skaters, singers
models, tailors, florists
riders, agents, waiters
scientists, novelists, florists
students, hikers, designers

assistants, poets, scientists
chemists, workers, painters
doctors, riders, investors
gamblers, cleaners, models
joggers, actors, carpenters
managers, clerks, butchers
nurses, scholars, buyers
riders, novelists, linguists
skaters, barbers, cooks
surfers, painters, porters

athletes, assistants, chefs
clerks, butchers, athletes
drivers, porters, chemists
golfers, cyclists, assistants
linguists, cooks, models
miners, tellers, poets
planners, sailors, engineers
runners, opticians, clerks
students, cashiers, doctors
therapists, hikers, opticians
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B PROMPTING & EVALUATION

Before settling for the generative chain-of-thought evaluation strategy that we focus on in this pa-
per, we explored two additional strategies for eliciting and scoring syllogistic inferences from LMs.
First, we explored a multiple-choice approach, where, following the prompt, we computed the mu-
tual information of each of the nine possible conclusions (eight valid conclusions plus “nothing
follows”); and second, we explored a simplified binary discrimination approach, where, following
the prompt and a particular conclusion, we computed the mutual information of the strings “valid”
and “invalid”. Of these three methods, chain-of-thought prompting achieved the highest accuracy
generally and has stable performance in a wide range of hyperparameters, so we use it in the main
text. We do note that the binary discrimination approach has the highest correlation with humans
and is the only method that consistently provides the response “nothing follows” when appropriate,
and as such is a promising method to explore in future work. The remainder of this appendix pro-
vides additional details about the different elicitation methods and the variations on those methods
that we explored.

B.1 ZERO-SHOT CHAIN-OF-THOUGHT

The zero-shot chain-of-thought approach is illustrated in Figure [l We first describe the inference
task: “Choose the conclusion that necessarily follows from the premises or “nothing follows” if none
of the other conclusions logically follow, ”. We then define the conclusion space, with the string
“the possible conclusions are: ” followed by the list of all possible conclusions, including “nothing
follows”. Next, we provide the two premises for the syllogism being queried in the format: ‘Premise
1: PREMISEIL, Premise 2: PREMISE?2, . Finally, we instruct the LM to produce a reasoning trace
by adding “Let’s think this through, step by step”.

B.1.1 ROBUSTNESS TO PROMPT AND DECODING HYPERPARAMETERS

The analyses presented in the main text are based on a decoding process in which we sequentially
generate 75 tokens from the LM, with a temperature of 0.5, and take 30 such samples for each
combination of syllogism type and content triple. Due to compute limitations we are unable to
conduct a systematic exploration of different variations on these hyperparameters, especially for
the larger and compute-intensive models; in this section, we focus on PaLM 2 XS. Again due to
compute limitations, we draw only 12 samples for each combination of content triple and syllogism
pair, as opposed to 30 used in the main text. Finally, with the exception of the analyses investigating
the impact of the number of tokens we decode, we set this parameter to 50 (instead of 75 in the main
text). As such, the accuracy values we report in this section are not directly comparable to those in
the main text. As in the main text, we only report accuracy for the 27 syllogisms that have valid
conclusions, and exclude the syllogisms for which “nothing follows” is the correct response.

Prompts. In addition to the prompt we used in the main text, which we refer to as stepxstep,
we consider three variations on the prompt (Figure [9); in all of these experiments, we hold the
decoding temperature at 0.5 and the maximum number of decoded tokens at 50:

l. logically: The same as stepxstep, except the zero-shot reasoning trigger “Let’s think this
through, step by step” is replaced by “Think logically” (like stepxstep, this prompt inspired
by a prompt from Kojima et al.[2022).

2. empty: This prompt does not include any zero-shot reasoning trigger (“Let’s think this through,
step by step” is replaced with the empty string).

3. alt: We created this prompt in an attempt to mitigate the LMs’ reluctace to produce “nothing
follows”; here the possibility of a “nothing follows” response is highlighted closer to the end of
the prompt and in a more verbose way. This prompt also encourages the model to use the exact
wording used in the prompt, and replaces “Let’s think this through, step by step” with the slight
variation “Let’s think step by step”.

We report results in Figure [8] the variants show similar behavior though stepxstep achieves a
modest improvement in accuracy.
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Figure 8: Accuracy for the chain-of-thought prompting method, with different prompts, tempera-
tures and number of decoding steps.

stepxstep empty ) . .
. . . Choose the conclusion that necessarily follows from the premises
Choose the conclusion that necessarily follows from the premises " hi follows" if £ th h lusi logicall
or "nothing follows" if none of the other conclusions logically ?gugot ing follows"™ if none of the other conclusions logically
W,
follow, the possible conclusions are:

the possible conclusions are:

"all artists are chemists",

"some artists are chemists",

"no artists are chemists",

"some artists are not chemists",
"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"some are chemists not artists",
"nothing follows".

Premise 1: all artists are bakers,
Premise 2: some chemists are bakers.

"all artists are chemists",

"some artists are chemists",

"no artists are chemists",

"some artists are not chemists",
"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"some are chemists not artists",
"nothing follows".

Premise 1: all artists are bakers,
Premise 2: some chemists are bakers.

Let's think this thr h t t
. alt
logically ) ) . Output the conclusion or conclusions that are logically true giver
Choose the conclusion that necessarily follows from the premises premises.
or "nothing follows" if none of the other conclusions logically The possible conclusions are as follows (your output should use tt
follow, . exact wording): "all artists are chemists",
the possible conclusions are: "some artists are chemists",
"all artists are chemists", "no artists are chemists",
"some artists are chemists", "some artists are not chemists",
no artists are chemists", "all chemists are artists",
"some artists are not chemists", "some chemists are artists",
"all chemists are artists", "no chemists are artists",
some chemists are artists", "some are chemists not artists",
"no chemists are artists", "nothing follows".
"some are chemists not artists", Premise 1: all artists are bakers,
""nothing TDUUWS"-‘ Premise 2: some chemists are bakers.
Premise 1: all artists are bakers, In some cases, none of these conclusions will be logically valid,
Premise 2: some chemists are bakers. output the words ‘nothing follows' in this case.

Think logically.

Figure 9: Variations on the prompt we used for the generative elicitation method; the prompt used
in the main text is stepxstep.

Decoding hyperparameters We also vary experiment decoding length and temperature indepen-
dently (Figure E[) We use the temperatures {0.1,0.25,0.5,0.75}, holding the decoding length at
50 and using the stepxstep prompt. Likewise, we vary the number of tokens decoded between
50, 75, 100, keeping the temperature at 0.5 and the stepxstep prompt. We also find that overall
accuracy is largely robust to these ranges.

B.2 MULTIPLE-CHOICE EVALUATION.

The second approach we present discriminatively ranks each conclusion but otherwise looks very
similar to the chain-of-thought approach. We remove the zero-shot chain-of-thought trigger from
stepxstep and replace it with ‘The conclusion that necessarily follows is: ’, then feed this to the
models and score each of the conclusions. To normalise for idiosyncratic features of each conclusion
(i.e., length and prior probability), we use the mutual information (Holtzman et al, 2021)) between
the prompt and the conclusion as the score:

MI(conclusion; prompt) = log P(conclusion|prompt) — log P(conclusion|*”) ()
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Figure 10: Accuracy across prompting strategies. CoT achieves high accuracy, motivating our
choice. Binary validity discrimination yields lower accuracy on the 27 syllogisms we consider in
the main text but markedly higher accuracy on the ‘nothing follows’ syllogisms.” Both outperform
‘multiple-choice substantially.

We then renormalise these scores to compute a distribution over the conclusions:

exp (MI (conclusion;; prompt))

2
>~ exp (MI (conclusion;; prompt))’ @

P (conclusion;) =

and take the conclusion with max P (conclusion) to be the language model’s prediction for a given
syllogism, content-triple pair.

B.3 SIMPLIFIED BINARY EVALUATION

While the multiple-choice format allows us to draw a parallel to the human experiments, it poses a
significantly harder task than simple binary discrimination. As such, we include a binary discrimi-
nation task inspired by Dasgupta et al.[(2022). In this setting, we present the model with the prompt
“Is this conclusion valid given the premises:” followed by the premises and a single conclusion (we
refer to the concatenation of the prompt and conclusion; as prompt; below). We do this for all eight
possible conclusions (omitting ‘nothing follows’). We, again, use the mutual information to score
and compute the binary probability of ‘valid* as:

exp (MI (“valid’; prompt, ))
exp (MI (‘valid’; prompt,) + exp (MI (‘invalid’; prompt,)))

P (‘valid’|conclusion;) =

We compute discrete conclusion decisions by normalizing P(‘valid’) for each conclusion into a
probability distribution:
P (‘valid’|prompt, )

P lusion;) = 7 3
(conclusion;) Zj P (‘Valid’ promPtj) N

And taking the conclusion with the largest probability according to Equation [3| to be the model’s
selected conclusion for a syllogism (the conclusion most likely to be valid according to the model).
In this approach, the model’s prediction is taken to be ‘nothing follows’ if P (‘valid’|conclusion)
does not exceed 50% for any of the conclusions.
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C FURTHER COMPARISONS WITH HUMANS

This section provides syllogism-level correlations across our dataset.
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Figure 11: Correlation between language model and probabilities derived from normalizing human
responses by syllogism. Syllogisms are partitioned into variable ordering type (by row) and ordered
by decreasing human accuracy from left to right. Chance performance (dashed grey line) reflects
random guessing. The top right inset shows correlation across the entire dataset.

D MREASONER

D.1 MODEL DETAILS

In this section, we describe the heuristics mReasoner uses to construct its mental models and provide
further details on our PCS analysis.

all artists are bakers
baker,}

no artists are bakers

—baker,

f{artist
baker }

{artist
—artist

some artists are bakers some artists are not bakers

{artist  baker, {artist —baker,
artist artist baker ,
baker }

Figure 12: The ‘canonical sets’ used by mReasoner. The canonical set for a syllogism depends on
the moods of the syllogism’s premises. We show the possible individuals each premise contributes
to a syllogism’s canonical set here for hypothetic content words ‘artists’ and ‘bakers.’
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o mmmm- artist baker chemist ===== -
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artist baker chemist artist—bak hremtst artist baker chemist
baker artist baker baker chemist
chemist baker chemist Tremist

baker baker

chemist

Figure 13: Subroutines used by mReasoner to edit its mental model in order to check for counterex-
amples. Here denoted as ADD, BREAK, and MOVE following [Khemlani & Johnson-Laird! (2022).
ADD adds one more entity to mReasoners mental model. BREAK decomposes an entities properties
into constituent entities with subsets of those properties. MOVE simply moves a property from on
entity to another.

D.2 MREASONER INSTANTIATIONS

We instantiate one mReasoner model for every parameter vector in the grid shown in Table [3] This
resulted in a total of 1,296 models. As the models are stochastic, we evaluate each 100 times to
estimate their distribution over responses. Due to resource constraints, we discarded models that did
not finish these 100 iterations in 60 seconds, leaving us with 923 models spaced relatively evenly
over the grid (i.e., this timeout criterion did not favour including some models over others).

Each of the 923 models corresponds to a 216-dimension vector (2728 = 216). We perform PCA on
the 923 vectors.

LEN | 2.0 25 3.0 35 40 45
BrROAD | 00 02 04 06 08 09
sysT™M2 | 00 02 04 06 08 09
WEAKEN | 00 02 04 06 08 09

Table 3: Parameter grid used to instantiate our mReasoner models.
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