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Abstract

Supervised learning has gone beyond the expected risk minimization framework. Central
to most of these developments is the introduction of more general aggregation functions
for losses incurred by the learner. In this paper, we turn towards online learning under
expert advice. Via easily justified assumptions we characterize a set of reasonable loss
aggregation functions as quasi-sums. Based upon this insight, we suggest how to tailor
Vovk’s Aggregating Algorithm to these more general aggregation functions. The “change of
variables” we propose, let us highlight that “weighting profiles” determine the contribution
of each expert to the next prediction according to their loss and the multiplicative structure
of the weight updates in the Aggregating Algorithm translates into the additive structure of
the loss aggregation in the regret bound. In addition, we suggest that the mixability of the
loss function, which is functionally necessary for the Aggregating Algorithm, is intrinsically
relative to the log loss, because the standard aggregation of losses in online learning is the
sum. Finally, we conceptually and empirically argue that our generalized loss aggregation
functions express the attitude of the learner towards losses.

1 Introduction

Whether it is framed as collaborative learning, distribution shift or data corruption, machine learning scholar-
ship encountered the necessity to rethink the gold standard of learning theory: expected risk minimization.1
Central to this paradigm is the minimization of the average loss over a set of instances incurred by the
learner. In the named, more recent learning scenarios the average is replaced by other aggregation function-
als which take into account the different data sources (Haghtalab et al., 2022, Eq. (1)), the distribution shift
(Rahimian and Mehrotra, 2019, Eq. (R0)) or structured noise (Iacovissi et al., 2023). See (Fröhlich and
Williamson, 2024) for a nice stratification of reasonable aggregations and an axiomatical approach to loss
aggregation in online learning. However, an axiomatical approach to generalized loss aggregations remained
within the borders of offline learning. An analogous development in online, adversarial learning does, to the
best of our knowledge, not exist.

When focusing on learning under expert advice the main quantity of interest is the regret (Cesa-Bianchi
and Lugosi, 2006). It compares the sum of losses between learner and experts. In this work, we suggest a
broader perspective on this sum of losses.

First, we put forward an axiomatical approach to reasonable loss aggregations in online learning, providing
a generalized definition of regret. More concretely, under easily justified assumptions the aggregation forms
a quasi-sum generated by an appropriate function u : [0,∞) −→ [0,∞), given by

Qu
n(x1, . . . , xn) = u−1

(
n∑
i=1

u(xi)
)
.

Based upon this insight, we suggest how to tailor the Aggregating Algorithm to these more general aggre-
gation functions. The Aggregating Algorithm, first suggested by Vovk (1990), solves the learning under
expert advice problem. It enjoys nice theoretical guarantees, e.g., a time-independent bound on regret and

1This list is far from being exhaustive, e.g., fair machine learning (Williamson and Menon, 2019).
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the recovery of Bayes’ updating under an appropriate choice of loss function, while keeping simplicity. The
“change of variables” we propose in this work, leads us to several structural insights on the Aggregating
Algorithm: (a) We identify a “weighting profile” which determines the contribution of each expert to the
next prediction. (b) We argue that the multiplicative structure of the weight updates in the Aggregating
Algorithm translates into the additive structure of the loss aggregation in the regret bound. (c) We show
that the mixability of the loss function, which is functionally necessary for the Aggregating Algorithm, is
intrinsically relative to the log loss, because the standard aggregation of losses in online learning is the sum.
Finally, we argue that generalized aggregations express the attitude of the learner towards losses incurred
by providing predictions. In particular, we can tune the generator u of the quasi-sum to express the aversity
towards extreme losses (convex u) or the risk-seeking behavior of a learner (concave u). We provide exper-
imental evidence corroborating this statement, which closes the loop by motivating the use of generalized
aggregations in the first place.

2 Vovk’s Aggregating Algorithm

For an intuitive and illustrated introduction to Vovk’s Aggregating Algorithm see Appendix A. Here, we
describe it in a rigorous way following (Vovk, 1990). We also use this part to set up notation and remark its
main properties. A prediction game (Ω,Γ,Θ, λ, η) consists of the following objects:

Sample space Ω. This is regarded as the set of outcomes from nature. In general, we do not impose any
structure on it.

Decision space Γ. This is thought as the allowed predictions. Γ is a topological space endowed with the
σ-algebra generated by the open sets.

Parameter space Θ. We index the experts (or decision strategies) by θ ∈ Θ. We define (Θ,F , µ) as a
measure space with µ being a base measure on the σ-algebra F on Θ. For the sake of simplicity we
do not write out the base measure µ in the rest of the paper, e.g., we write the Lebesgue-integral
for a measurable E ∈ F , µ(E) =

∫
E
dθ.

Loss function λ : Ω × Γ −→ [0,∞]. This gives us a way to measure the quality of the predictions.

Learning rate η > 0. A positive real number, typically as large as possible.

Example 2.1. A widely used loss function in the prediction game is the log-loss λln : Ω × Γ −→ [0,∞). In
particular, when elements in Γ are of the form γ : Ω −→ [0, 1], we define it as λln(ω, γ) := − ln(γ(ω)).

The prediction game works as follows. At each time t ∈ [T ] = {1, ..., T} ⊂ N,

1. The experts make their predictions. That is, we have a measurable map ξt : Θ −→ Γ. ξt(θ) is
interpreted by the prediction made by the expert θ.

2. The learner (who observes the predictions made by the experts) makes a prediction γt ∈ Γ.

3. Nature chooses the outcome ωt ∈ Ω.

The goal of the learner is to ensure that its cumulative loss is as good as the best expert’s cumulative loss.
In other words, we want to bound the regret,

RT (θ) := LT (learner) − LT (θ) :=
T∑
t=1

λ(ωt, γt) −
T∑
t=1

λ(ωt, ξt(θ)), ∀θ ∈ Θ.

Vovk’s Aggregating Algorithm (Vovk, 1990; 2001) (see Algorithm 1) gives a bound which is independent of
the number of played rounds T ,

LT (learner) − LT (θ) ≤ lnn
η
, ∀θ ∈ Θ, (1)
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when the number of experts is finite (n = |Θ| < ∞) and when the game is mixable, i.e., we assume the
existence of a substitution function Σ for given λ and η such that λ(ω,Σ(ψ)) ≤ ψ(ω), for all w ∈ Ω and
all pseudo-predictions ψ of the form (2) below.2 As one can easily see, mixability is required for the third
step of the Algorithm 1. Since the first two steps are independent of how the substitution concretely looks
like, they are sometimes summarized as the Aggregating Pseudo-Algorithm (APA). The separation as well
simplifies the analysis of the algorithm. A fundamental property of the AA is that, under some conditions,
the updating scheme (Step (1) in AA (Algorithm 1)) is reduced to Bayesian updating (see Appendix A.1).

Algorithm 1: Aggregating Algorithm (AA)
Data: Mixable prediction game (Ω,Γ,Θ, λ, η) and prior distribution P0.
Result: Predictions (γt)t≥0.
for every t do

(1) Update experts’ weights Pt(θ) := e−ηλ(ωt,ξt(θ))Pt−1(θ) ;
(2) Provide pseudo-prediction ,

ψt(ω) := lne−η

[∫
Θ
e−ηλ(ωt,ξt(θ))P ∗

t−1 dθ

]
, with P ∗

t−1(θ) := Pt−1(θ)∫
Θ Pt−1(θ) dθ

. (2)

(3) Substitute the pseudo-prediction by an allowed prediction γt := Σ(ψt) such that
λ(ω,Σ(ψt)) ≤ ψ(ω), for all ω ∈ Ω;

end

3 Generalizing the loss aggregation in learning under expert advice

The primary goal of the AA, as well as other algorithms solving the learning under expert advice problem,
is to bound the summed loss of the learner by the summed loss of each of the experts plus an error term. We
now turn towards an approach to loss aggregation from first principles. Instead of presuming the standard
summation we provide a list of axioms for loss aggregation functionals which we readily justify (see for
example (Grabisch et al., 2009)).
Definition 3.1 (Aggregation Functions). A function A :

⋃
n∈N[0,∞)n −→ [0,∞) is called an aggregation

function. We write An(x1, . . . , xn) for the aggregation of n instances. Let x1, . . . , xn, x ∈ [0,∞). We define
the following properties of A.

(A1) Continuity. We say A is continuous if for every xi, i ∈ [n],

lim
xi−→x

An(x1, . . . , xi, . . . , xn) = An(x1, . . . , x, . . . , xn).

(A2) Monotonicity. We say that A is strictly increasing if for xi < x′
i, i ∈ [n], we have

An(x1, . . . , xi, . . . , xn) < An(x1, . . . , x
′
i, . . . , xn).

(A3) Associativity. We say that A is associative if for all x ∈ [0,∞) and i ∈ [n] we have

A1(x) = x,

An(x1, . . . , xi, . . . , xn) = A2(Ai(x1, . . . , xi),An−i(xi+1, . . . , xn)).

(A4) Loss compatibility. We say that A is loss compatible if A(0, ..., 0) = 0.

Properties (A1)-(A4) are natural to impose on an aggregation A of losses since they can be interpreted as
follows. If A is continuous, an infinitesimally small change in a loss will result in an infinitesimal change

2For several games, the log-loss (Example 2.1) can be shown to be mixable for η ≤ 1.
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in the aggregate of the losses. If it is strictly increasing, more loss on any instance give more aggregated
loss. If it is associative, it is irrelevant how the losses are grouped together for aggregation. Note that even
though this type of associativity immediately implies that the aggregation function is completely determined
by the binary aggregation (Grabisch et al., 2009, p. 33), it does not directly imply commutativity.3 Loss
compatibility means that 0 losses aggregate to 0. It turns out we can fully characterize aggregation functions
satisfying the properties above.
Lemma 3.2 (Axiomatical Characterization of Loss-Aggregations). Let A :

⋃
n∈N[0,∞)n −→ [0,∞) be an

aggregation function. Suppose that A satisfies (A1) - (A4). Then, there exists a continuous, strictly increas-
ing function u : [0,∞) −→ [0,∞), with u(0) = 0, such that

An(x1, . . . , xn) = u−1

(
n∑
i=1

u(xi)
)
. (3)

We call such aggregations quasi-sums generated by u, and we denote them by Qu. (Proof F.1)

Example 3.3 (p-Norms). Let u(x) = xp for p > 0. Then Qu
n(x1, . . . , xn) = (

∑n
i=1 x

p
i )

1/p.

If furthermore A is positively homogeneous, i.e., scaling the losses scales the aggregation of losses
An(λx1, . . . , λxn) = λAn(x1, . . . , xn) for all λ > 0, then u(x) = xk for some k ∈ (0,∞) in (3) (Proof F.1).
The statement here resembles a related older characterization of quasi-arithmetic means by Kolmogorov and
Castelnuovo (1930) and Nagumo (1930).4

Lemma 3.4 (Quasi-Sum to Quasi-Product). Let Qu be a quasi-sum. Then, there exists a continuous,
strictly decreasing function f : [0,∞) −→ (0, 1] with f(0) = 1, such that

Qn(x1, ..., xn) = g (f(x1) × ...× f(xn)) , (4)

where g : (0, 1] −→ [0,∞) is the inverse of f .5 (Proof F.2)
Example 3.5. Let u(x) = x, then f(x) = e−x and the corresponding aggregation of the form (4) is the usual
sum:

An(x1, ..., xn) = g (f(x1)...f(xn)) = Ln(x1, ..., xn).

In the remainder of this work we will sometimes write a quasi-sum Qu as an aggregation function A of the
form (4) when convenient. This will be explicitly stated or clear from context.

Equipped with this characterization of reasonable aggregation functions of losses, it is natural to ask how can
we solve the extended learning under expert advice problem: In which way do we have to modify existing
online learning algorithms in order to provide regret guarantees such that the aggregated loss of the learner
is bound above in terms of the aggregated loss of any expert and some constant error term?

3.1 Relation to existing literature

We have not found an axiomatical approach to loss aggregation in online learning. In standard offline
learning such an approach is for instance given in (Fröhlich and Williamson, 2024). Nevertheless, generalized
aggregations in online learning have played a role, in particular, discounted aggregation of losses (Cesa-
Bianchi and Lugosi, 2006, p. 32). Discounted loss aggregation downweights the history of incurred losses of
learners and experts. An adapted Aggregating Algorithm in such a setting has been proposed in (Chernov
and Zhdanov, 2010). Interestingly, these discounted loss aggregations fullfill all axioms listed in Definition 3.1,
including positive homogeneity, except for associativity. In fact, an axiomatical approach to aggregations of
experts, not the losses, is put forward in (Neyman and Roughgarden, 2023). The authors use quasi-means,
a related notion to our quasi-sums, to pool forecaster in a low-regret fashion.

3For instance, consider the aggregation which gives back the last value, in terms of the intrinsic ordering of the input, of all
elements.

4Actually, quasi-sums and quasi-arithmetic means are related by idempotization. See (Grabisch et al., 2009, Section 6.5.1)
for details.

5For the sake of readability we neglect the multiplication sign in further expressions.
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4 A change of variables for the AA

It turns out that the answer to the question how to learn under expert advice such that the learner can
provide regret guarantees under generalized loss aggregations is relatively straightforward. Via a “change of
variables”-trick we obtain regret bounds for generalized aggregations relying on the standard Aggregating
Algorithm. Despite its simplicity, we take this observation as a starting point to re-investigate the structure
and requirements of the Aggregating Algorithm.
Corollary 4.1 (Change of variables for the AA). Let G := (Ω,Γ,Θ, λ̃, η) be a mixable prediction game with
|Θ| = n. Furthermore, we assume λ̃ = u ◦ λ for some loss function λ and continuous, strictly increasing
function u : [0,∞) −→ [0,∞), with u(0) = 0. The AA applied on G achieves the following regret bound:

Qu
T (learner) := Qu

T (λ(ω1,Σ(ψ1))...λ(ωT ,Σ(ψT ))) ≤ Qu
2

(
Qu
T (θ), u

(
ln(n)
η

))
, (5)

for any θ ∈ Θ.

Proof. Under the assumptions on G the AA achieves the following regret bound (Vovk, 1990),
T∑
t=1

u (λ(ωt,Σ(ψt))) ≤
T∑
t=1

u (λ(ωt, ξt(θ∗))) + ln (n)
η

,

which is equivalent to
T∑
t=1

u (λ(ωt,Σ(ψt))) ≤ u

(
u−1

(
T∑
t=1

u (λ(ωt, ξt(θ∗)))
))

+ u

(
u−1

(
ln (n)
η

))
,

and, because u is strictly increasing,

u−1

(
T∑
t=1

u (λ(ωt,Σ(ψt)))
)

≤ u−1

(
u

(
u−1

(
T∑
t=1

u (λ(ωt, ξt(θ∗)))
))

+ u

(
u−1

(
ln (n)
η

)))
,

which is (5).

Remark 4.2. It is worth to point out that often one is interested in composing loss functions from the
“inside”, i.e., reparametrizations (Williamson et al., 2016). Here the transformation is extrinsic, we push
the loss curve via u obtaining a “distorted” version of the original loss function λ.

The lemma shows that it is a matter of perspective to consider the loss u ◦ ℓ with standard sum aggregation
or the loss ℓ with Qu-aggregation. Obtained in this way, the regret bound seems artificial and the arithmetic
juggling unmotivated. Therefore, we shift our focus to understanding what is happening in the background,
that is, why does a loss distortion can be translated into a change of aggregation. In order do so we detour
through the development of an Aggregated Algorithm adapted to Quasi-Sums, which is a reparametrization
of the standard Aggregating Algorithm. On this way, we learn that:

(a) The Aggregating Algorithm involves a weighting function, by default fixed to be the negative expo-
nential e−x, which explains the down- the or up-weighting of experts based on their incurred loss.
(Section 4.1)

(b) The multiplicative structure of the weight updates directly translates into the additive structure of
the loss aggregation. (Section 4.2)

(c) The fundamentality of the log loss in the definition of mixability required for the Aggregating
Algorithm is an artifact of the standard use of summation for loss aggregation. (Section 4.3)

Let G := (Ω,Γ,Θ, λ̃, η) be a prediction game. In the following, we step-by-step go through the Aggregating
Algorithm under the premise that the loss function λ̃ is decomposable, i.e., λ̃ = u ◦ λ, with λ being a loss
function and u : [0,∞) −→ [0,∞) being a continuous, strictly increasing function with u(0) = 0.
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4.1 The Weight Updates

Step (1) in Algorithm 1 is the updating of the experts’ weights. For the sake of the moment, we set the
learning rate η = 1. Under the assumption of decomposability of λ̃, i.e., λ̃ = u◦λ, the update can be written
as,

Pt(θ) := e−λ̃(ωt,ξt(θ))Pt−1(θ) = f(λ(ωt, ξt(θ)))Pt−1(θ),

for f(x) := e−u(x). In particular, the function f allows for the interpretation as being the profile to judge the
experts. It determines how much the expert θ contributes to the next pseudo-prediction (Step 2) depending
on the incurred loss in the current time step. For this reason, we call f weighting profile. Weighting profiles
fulfill three simple requirements directly derived from the properties of u (cf. Lemma F.2).
Definition 4.3 (Weighting Profile). We say that a continuous f : [0,∞) −→ (0, 1] is a weighting profile if
(a) f(0) = 1, (b) f is strictly decreasing, and (c) lim

x→∞
f(x) = 0.

However, the properties of f can be justified independently of the properties of u. The normalization f(0) = 1
means that weights should be positive and bounded from above by 1. The expert incurring 0 loss should get
assigned full weight, while f being strictly decreasing implies that the higher the loss the less weight should
be put on the expert. The limiting behavior of f says that an expert which incurs extremely large losses
should be punished by getting down-weighted to 0. Note that most of our following statements are framed
for a choice of weighting profile f instead for the tantamount choice of u. Hence, the change of aggregation
Qu amounts to the change of weighting profile.

To illustrate Table 1 provides a short list of potential aggregation functions, their corresponding function u
(see Section 5.1) and weighting profile. Note that we use the term focal aggregation in the table to emphasize
that the composition of the corresponding u with the log-loss recovers the often used focal loss (with γ = 2)
(Lin et al., 2017).

For a fixed loss function we can analyze and compare weighting profiles for different aggregation functions.
For instance (see Table 1), observe that for Lp-norm aggregations switching the value of p from less than
1 to strictly bigger than 1 drastically changes the shape of the weighting profile. Let us shortly compare
the L2-norm and sum. For the sake of simplicity, we focus on the arbitrary learning rate η = 0.5. The
weighting profile corresponding to the L2-norm punishes higher losses stronger than smaller losses compared
to the sum. This, however, comes with the cost that for small losses the L2 weighting profile does not finely
distinguish between good and even better experts. Both of them get nearly updated with the same weight,
in contrast to the sum.

Crucially, comparisons of weighting profiles require to fix a loss a priori. The domain and distribution of the
loss values themselves strongly interact with the choice of aggregation. For instance, the Brier score only
provides values between 0 and 1. Thus, the weighting profile beyond 1 on the x-axis is irrelevant for the
comparison. Hence, conclusive interpretations are only possible for fixed losses and different aggregations.
Note that mixability might not be maintained for arbitrary combinations of losses and weighting profiles
(Section B). For this reason, we go beyond this qualitative interpretation of the effect of aggregations and
illustrate via an experiment how the aggregation changes the performance of the Aggregating Algorithm in
Section 5.2.

The properties of a weighting profile f imply the existence of a continuous inverse, which we denote by
g : (0, 1] −→ [0,∞), such that (a) g(1) = 0, (b) g is strictly decreasing, and (c) lim

x→0+
g(x) = ∞. Finally,

note that when choosing λ(x) = g(x) in the experts’ weight updates one recovers Bayes’ updating much as
described in detail in (Vovk, 2001, Section 2.2) for λ(x) = − log x.

4.2 The Pseudo-Prediction

Different to the exponential weight algorithm (cf. (Cesa-Bianchi and Lugosi, 2006, p. 14)), which shares the
weight updates, the Aggregating Algorithm additional involves a pseudo-prediction step, which is then used
to derive the actual prediction. For η = 1, λ̃ = u ◦ λ and f(x) := e−u(x) as above, the pseudo-prediction (2)

6
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Table 1: Aggregations, their corresponding function u and weighting profiles for different learning rates
(lightseagreen: η = 0.001, limegreen: η = 0.5, mediumseagreen: η = 1, seagreen: η = 2, darkgreen: η = 10,
darkslategray: η = 100).

Aggregation u(x) = Weighting Profile

L0.5-norm (√x1 + √
x2 + . . .)2 √

x

Sum x1 + x2 + . . . x

L2-norm
√
x2

1 + x2
2 + . . . x2

L10-norm (x10
1 + x10

2 + . . .) 1
10 x10

Focal aggregation (1 − exp(−x))2x

writes as,

ψt(ω) = lne−1

(∫
Θ
f(λ(ω, ξt(θ)))P ∗

t−1(θ) dθ
)
, P ∗

t−1(θ) := Pt−1(θ)∫
Θ Pt−1(θ) dθ

.

For notational convenience, we introduce the following slight variant,

ψft (ω) := u−1(ψt(ω)) = g

(∫
Θ
f(λ(ω, ξt(θ)))P ∗

t−1(θ) dθ
)
, (6)

where g is the inverse of f as described above. For the sake of readability, we sometimes do not explicitly
highlight the dependence of ψ on f in every instance. However, we use the ψf notation in those cases where
the dependency on f is not clear or particularly important.

The pseudo-prediction allows for several interpretations:

Normalizing Factor At each step t we define the Ω-dependent family of measures on Θ, given by

pt(θ;ω) = f(λ(ω, ξt(θ)))f(ψft (ω))−1P ∗
t−1(θ),

where P ∗
t−1 is the normalization of Pt−1. Here, we do not specify ψft : Ω −→ [0,∞). Imposing

pt(θ;ω) to be a probability distribution on Θ yields to the pseudo-prediction given in (6). Hence,
we can interpret ψft as the normalizing factor of pt(θ;ω).

7
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Loss Mapping Suppose that ωt ∈ Ω is revealed by nature. Then

ψft (ωt) = g

[∫
Θ
f(λ(ωt, ξt(θ)))P ∗

t−1(θ) dθ
]
.

If λ(ωt, ξt(θ)) ≫ 1 for all θ ∈ Θ, by properties of the weighting profile f , the value of ψft (ωt) will be
very large. On the other hand, if λ(ωt, ξt(θ)) ≈ 0, for all θ ∈ Θ, then its value will be close to 0. In
this sense, we can interpret ψft (ωt) as the loss incurred by pseudo-prediction ψft when ωt is observed
(cf. (Vovk, 2001, Section 2.1)).

Concluding, we summarize the reparametrization of the first two steps of the Aggregating Algorithm in
Algorithm 2. Leaning on Vovk (2001)’s naming convention we call it the Aggregating Pseudo-Algorithm for
Quasi-Sums (APA-QS). Given the loss interpretation of the pseudo-prediction, we can prove the following
Lemma 4.4. Note that we consider the aggregation function A :

⋃
n∈N[0,∞)n −→ [0,∞) given by

An(x1, ..., xn) := g(f(x1)f(x2)...f(xn)). (7)

for a fixed weighting profile f (and hence its inverse g). Recall that using (4) A can be expressed as a
quasi-sum Qu via the relation f(x) = e−u(x).

Algorithm 2: Aggregating Pseudo-Algorithm for Quasi-Sums (APA-QS)
Data: Prediction game (Ω,Γ,Θ, λ, η) and prior distribution P0.
Result: Predictions (γt).
for every t do

(1) Update experts’ weights Pt(θ) := f(λ(ωt, ξt(θ)))Pt−1(θ) ;
(2) Provide pseudo-prediction with P ∗

t−1(θ) := Pt−1(θ)∫
Θ
Pt−1(θ) dθ

,

ψft (ω) = g

[∫
Θ
f(λ(ω, ξt(θ)))P ∗

t−1(θ) dθ
]

; (8)

end

Lemma 4.4 (Bound for APA-Loss). Let f : [0,∞) −→ R be a weighting profile and g its inverse. Then

AT (APA(P0)) := AT

(
ψf1 (ω1), ψf2 (ω2), ..., ψfT (ωT )

)
= g

[∫
Θ
f (AT (θ))P0(θ) dθ

]
.

Moreover, when |Θ| = n and P0 is the uniform probability distribution with weights 1/n,

AT (APA(P0)) ≤ A2
(
AT (θ∗), g

(
n−1)) , (9)

for any expert θ∗ ∈ Θ.(Proof F.3)

The statement follows from yet another “change of variables” for Lemma 1 in (Vovk, 2001). However, for
didactic reasons we include a full proof from scratch in the appendix (Lemma F.3). In particular, the proof
reveals that the multiplicative structure of the weight updates directly translates into the multiplicative
structure of AT . This gives rise to the additive structure by the exponential relation in (4).

Note that incorporating a learning rate η > 0 in the APA (as in (Vovk, 2001)) amounts to set f(x) = e−ηx.
Corollary 4.5. Let f : [0,∞) −→ R be a weighting profile. Let η ∈ (0,∞) be a learning rate and define
gη(x) := (f(x)η)−1. When |Θ| = n and P0 is the uniform probability distribution with weights 1/n,

AT (APA(P0), η) = AT (APA(P0)) ≤ A2
(
AT (θ∗), gη

(
n−1)) , (10)

for any expert θ∗ ∈ Θ.(Proof F.4)

Finally, notice that by setting f(x) = e−x in Corollary 4.5 we recover the bound found by Vovk (1990).
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4.3 The Substitution Step

As a last step the Aggregating Algorithm derives an actual prediction from the pseudo-prediction. This
is achieved by using a substitution function Σ. The substitution function maps a pseudo-prediction to
an allowed prediction such that the loss of the allowed prediction is smaller than the value of the pseudo-
prediction evaluated in every possible outcome. More formally, a substitution function Σ makes the following
inequality hold, λ̃(ω,Σ(ψt)) ≤ ψt(ω) for all ω ∈ Ω and all pseudo-predictions ψt. The existence of such
a substitution function is guaranteed by the mixability of the game G := (Ω,Γ,Θ, λ̃, η) (see Section 2).
Concretely, Vovk (2001) suggests the substitution function Σ(ψ) ∈ arg minγ∈Γ supω∈Ω λ̃(ω, γ)/ψ(ω).6 Since
λ̃ decomposes, we apply the change of variables as well to the definition of mixability. To this end, we
introduce P(λ, f) as the set of all pseudo-predictions of the form,

ψf (ω) = g

[∫
Θ
f(λ(ω, ξt(θ)))P ∗

t−1(θ) dθ
]

= g

[∫
Γ
f(λ(ω, γ))Q(γ) dγ

]
, (11)

for some distribution Q on Γ.
Definition 4.6 ((f, η)-Mixability). Let (Ω,Γ,Θ, λ, η) be a prediction game. Let f : [0,∞) −→ [0, 1] be a
weighting profile and consider pseudo-predictions ψf ∈ P(λ, fη) given by (11). We call (Ω,Γ,Θ, λ, η) (f, η)-
mixable there exists a substitution function Σ such that

λ(ω,Σ(ψf )) ≤ ψf (ω), (12)

for all ω ∈ Ω. If the game is (f, η)-mixable for some η, we say the game is f -mixable.
Lemma 4.7 (f -Mixability is Mixability of Composite Loss). A loss λ is (f, η)-mixable if and only if λ̃ = u◦λ
for u(x) := − ln f(x) is η-mixable. (Proof F.5)

As noted by Erven et al. (2011) and Cabrera Pacheco and Williamson (2023), the definition of mixability is a
comparison of the loss function λ and the learning rate η with the log-loss. Our (f, η)-mixability emphasizes
the relativity to some function f . Note that if f(x) = e−x = (− log x)−1, the definition directly reduces to
the original definition.

Given the prediction game (Ω,Γ,Θ, λ, η) is (f, η) (respectively the prediction game (Ω,Γ,Θ, λ̃, η) is η-
mixable), the substitution steps completes the Aggregating Algorithm. We finally obtain Corollary 4.1
in a slightly different, but equivalent, formulation.
Corollary 4.8. Let f : [0,∞) −→ R be a weighting profile. Let η ∈ (0,∞) be a learning rate. When
(Ω,Γ,Θ, λ, η) is (f, η)-mixable, |Θ| = n and P0 is the uniform probability distribution with weights 1/n,

AT (learner) := AT (λ(ω1,Σ(ψf1 )), ..., λ(ωT ,Σ(ψfT ))) ≤ A2
(
AT (θ∗), gη

(
n−1)) , (13)

for any expert θ∗ ∈ Θ.
Remark 4.9. The substitution function is a computational bottleneck which, in particular in high-
dimensional prediction tasks, might lead to suboptimal time performance. We haven’t found literature to
address this shortcoming.
Remark 4.10. Vovk (2015) argues that the log-loss is in a particular way fundamental. As Cabrera Pacheco
and Williamson (2023) have shown, both Vovk’s fundamentality and mixability (in the sufficiently differen-
tiable case) are equivalent to a curvature comparison between a given loss and the log-loss. Definition 4.6
and the analysis of the AA with more general aggregation functions, emphasize that the choice of aggregation
is tightly intertwined with the definition of mixability. Particularly, standard sum aggregation corresponds to
standard mixability. Hence, the fundamentality of the log-loss is a particularity of the standard sum aggre-
gation and does not imply that the log-loss is fundamental for other aggregations. However, Corollary 4.1
suggest a connection back to a type fundamentality of log-loss via u, which can potentially be described
geometrically. We will not go deeper into this observation here.

The corollary requires the prediction game to be (f, η)-mixable. However, it turns out that we can generalize
the bound on the aggregated loss of the learner to non-mixable losses.

6When proper, mixable loss functions are considered in class probability estimation, Kamalaruban et al. (2015) argue that
antipolar losses constitute another universal substitution function.
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4.3.1 The Mixability Constant for Non-Mixable Losses

To slacken the requirement of mixability (Vovk, 2001) introduced the mixability constant. In our symbols,

c(f) := inf{c ∈ R | ∀ψf ∈ P(λ, f), ∃ γ ∈ Γ, ∀ω, f(λ(ω, γ)) ≥ f(ψf (ω))c}, (14)

and set inf{∅} := ∞. Note that c(f) ≥ 1 (Lemma C.2). Our definition of the mixability constant is
equivalent to Vovk (2001)’s definition. This is easy to see, since f(λ(ω, γ)) ≥ f(ψf (ω))c ⇔ λ̃(ω, γ)) ≥ cψ(ω)
(cf. Proof F.5). When the infimum in (14) is attained, a substitution function Σ (which also depends on η
and λ) exists and satisfies

f(λ(ω,Σ(ψ))) ≥ f(ψ(ω))c(f), (15)

for all ω ∈ Ω.
Remark 4.11. Note that if we fix f and consider fη(x) = f(x)η, where η > 0 is the learning rate, then we
can consider the constant c(fη) in (11) to depend only on η. When we do this we simply denote it by c(η).

With the mixability constant at hand one can provide a generalized bound on the aggregated loss of the
learner to non-mixable losses (Theorem C.3), which is analogous to (Vovk, 1990, Eq. (15)). Even the
optimality result for the AA (Vovk, 1995), i.e., the constants in this Theorem C.3 cannot be undercut by
any other prediction algorithm, translates to our reparametrization and even slightly generalizes the former
statement (Section C).

5 How aggregation changes prediction

In the previous sections we have argued that the Aggregating Algorithm is generally applicable for losses
interacting nicely with “reasonable” aggregation functions. However, it is still unclear how the aggregation
influences the actual predictions made by the Aggregating Algorithm.

We qualitatively approach this question in two ways. First, we propose to interpret the generator functions
of aggregations as utility functions. Then, we illustrate in an experiment that aggregations can actually
express the forecaster’s attitude towards losses.

5.1 Aggregation and utility of losses

Aggregation functions for losses are, under mild conditions, quasi-sums Qu (cf. Lemma 3.2). On one hand,
as we have shown, the u-quasi-sum of losses λ in the regret bound is tantamount to summing up distorted
losses u ◦ λ (Corollary 4.1). On the other hand, u can be interpreted as the negative utility function for the
losses λ of the predictors. It expresses the dis-satisfaction of the learner to incur certain losses. Therefore,
whether we talk about a certain choice of negative utility of losses or whether we talk about u-quasi-sums as
aggregation functional does not make a difference. For an illustrated, comparative example see Appendix D.

More generally, it is true that risk-avoider prefer convex u, i.e., high losses are up-valued, low losses are
down-valued. In contrast, risk-taker consider concave u, which means that low losses are up-valued and high
losses are down-valued (cf. (Winkler and Murphy, 1970), concavity and convexity are switched therein for
reasons of sign flip). Hence, we can conclude: the type of aggregation captures the attitude of the
forecaster towards losses.

5.2 Weather prediction via Aggregating Algorithm

The preceding discussions suggest that aggregation, weighting profile and utility are essentially different
facets of the same object. We earlier asked, how does the type of aggregation change the behavior of the
Aggregating Algorithm? The proposed interpretations as weighting profile and utility lead us to the following
three hypothesis, which we substantiate by a real-world data prediction experiment.

H-(a) Convex additive generators express the aversion towards extreme losses.

10
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Table 2: Aggregations, and their corresponding utility function u. The loss histogram shows the number of
predictions (y-axis) incurring the loss (x-axis) in a certain bin. The blue line depicts the average loss.

Aggregation u(x) = Loss Histogram (Weather - Zugspitze)

L0.5-norm
√
x

Sum x

L2-norm x2

L10-norm x10

Focal aggregation (1 − exp(−x))2x

H-(b) Concave additive generators express the risk-loving behavior in terms of accepting extreme losses,
but seeking for the “perfect” predictor.

H-(c) Focal aggregation expresses aversion towards extreme losses.

We provide the log-loss profile of several applications of the AA-QS for different aggregations on a sequential
weather classification task. We use the Aggregating Algorithm to aggregate probabilistic predictions of 9
simple classification algorithms. The task is detailed in Appendix E. Table 2 summarizes our findings for
the data collection from the Zugspitze (Germany). See Appendix E.1 for further experiments. The loss
histograms particularly reveal the difference between convex and concave utility function. Concave utility
functions (i.e., L0.5 and Sum) lead to a high number of predictions with extremely small loss values, with
the downside that some predictions incur a high loss. Convex utility functions (i.e., L2 and Sum) damp
the tails of high losses, i.e., only few predictions with high losses are made. On the other hand, there are
many predictions made incurring small but suboptimal loss. In this realm, L10 is the most extreme example
in which many sub-optimal predictions are made, but the tails are banned. The focal aggregation leads
to behavior largely similar to the one induced by L2-aggregation. All three hypothesis about the change
of prediction given a certain aggregation can be substantiated in this explorative study. An exhaustive
experimental study would be required to provide more conclusive statements.

11
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6 Conclusion

In this paper, we put forward a general, axiomatical approach to loss aggregation in online learning. Anal-
ogous to the development in offline learning, but differently motivated, we show that a set of reasonable
aggregations in online learning is characterized by the set of quasi-sums. It turns out that the AA can be
adapted to deal with those general aggregations. Not only can we transfer the nice theoretical properties of
the AA to its modified variant, we also provide experimental evidence that the choice of general aggregation
determines the extreme-loss seeking or extreme-loss averse behavior of the AA. Hence, we span up a new
dimension of choice, for which we think that the modified AA is just a starting point. We believe that simi-
lar modifications can be provided for other online learning algorithms such as weighted majority algorithm
(Littlestone and Warmuth, 1994).

6.1 Broader impact and position statement

The generality of the learning under expert advice setting allows for the deployment of the adapted Ag-
gregating Algorithm in a variety of settings, which do not exclude any malicious nor benevolent use. Note
that the type of aggregation creates another choice parameter which, depending on the deployment context,
might call for a participatory, democratic approach to the determination of the used quasi-sum. This con-
textualization requires further studies. We are convinced that our socialization has shaped our method and
approach to research. We might have been ignorant to aspects of our work which against other socio-cultural
backgrounds might miss or need reframing.
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A A simple introduction to Aggregating Algorithm

The Aggregating Algorithm is a relatively straightforward algorithm with strong theoretical guarantees. In
order to motivate our theoretical development in this paper and to provide a low-threshold introduction to
this algorithm, we first lead the reader through a sensibly simplified scenario of learning under expert advice.

Consider a binary class probability estimation task on the outcome space Ω := {0, 1}. We repeatedly see
2 experts Θ := {θ1, θ2} predicting the probability that the next outcome will be 1, i.e., in every round
t ∈ [T ] := {1, . . . , T} each expert θ ∈ Θ provides a prediction ξt(θ) ∈ [0, 1]. After the predictions are given,
the learner (who has seen the experts’ predictions) has to commit to a prediction γt ∈ [0, 1] as well. Then,
nature reveals an outcome ωt ∈ {0, 1}. We measure the quality of the experts’ and learner’s prediction by
the log-loss, that is, λ(s, ωt) = Jωt = 0K (− ln(s)) + Jωt = 1K (− ln(1 − s)), for s ∈ [0, 1] (s here refers to
the prediction made either by the expert or the learner). Note that the set of possible predictions can be
regarded as the probability simplex s 7→ (s, 1 − s) for s ∈ [0, 1], cf. top-left in Figure 1. Moreover, we can
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(s, 1 − s)

x1 := ξ(θ1)

x′
1

x2 := ξ(θ2)

(− ln s,− ln 1 − s)

(eη ln s, eη ln 1−s)

ω = 1

ω = 0

λ = − ln

e−ηx

x′
2

x′′
1

ψ

Σ(ψ)

x′′
2

Figure 1: Graphical Summary of the Steps in the Aggregating Algorithm. Experts θ1 and θ2 provide
predictions ξ(θ1) and ξ(θ2), respectively, which are placed in the simplex (top-left) as x1 := (ξ(θ1), 1 − ξ(θ1))
and x2 := (ξ(θ2), 1 − ξ(θ2)) via s 7→ (s, 1 − s). The log-loss embeds the simplex as a curve in R2 (top-right),
i.e., s 7→ − ln s is applied coordinate-wise and maps x1 and x2 to x′

1 and x′
2. Then, the exponential mapping

projects them into [0, 1]2. The Aggregating Algorithm forms a convex combination ψ of the projected
predictions x′′

1 and x′′
2 based on weights updated by a Bayesian-type formula (orange-brown), called a pseudo-

prediction , which is substituted back to the simplex via a substitution function Σ (darkgreen).
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interpret the log-loss as an embedding of the simplex into R2, i.e., (s, 1 − s) 7→ (− ln(s),− ln(1 − s)), see
top-right in Figure 1.

Now, the Aggregating Algorithm, as a learner, uses the embedding of the simplex into R2 and exponentiates
it by the exponential mapping (λ0, λ1) 7→ (e−ηλ0 , e−ηλ1), where η > 0 is called the learning rate. Figure 1
right-top to bottom illustrates this step. In particular, the predictions of the experts can be traced through
both mappings, the log-loss and the exponential mapping. The Aggregating Algorithm then forms a convex
combination of the mapped experts’ predictions ψt. The weights on how much each experts’ prediction
contributes to this mixture are based on a generalized Bayes’ updating (see Section A.1). The updating puts
more weight on the experts which performed well in the past. As Figure 1 (orange-brown) illustrates, the
obtained convex combination is not necessarily on the exponentiated embedding of the simplex anymore.
We later call it a pseudo-prediction for this reason. Pseudo-predictions have nice theoretical properties (see
Section 4.2), but they are not helpful as predictions, since they are not in the prediction space. That is
why the Aggregating Algorithm requires a characteristical step: the substitution Σ of the pseudo-prediction
by an actual prediction with similar theoretical properties. This substitution Σ is intuitively a projection
of the pseudo-prediction ψ to the exponentiated embedded simplex (cf. Figure 1 darkgreen). Crucially, a
property called “mixability” (see Definition 4.6) guarantees that the pseudo-prediction lies bottom-left to
the exponentiated embedded simplex. The obtained actual predictions guarantee that the accumulated loss
of the Aggregating Algorithm (learner), i.e.,

∑T
t=1 λ(γt, ωt) with γt = Σ(ψt) is always smaller than the

accumulated loss of any expert, i.e.,
∑T
t=1 λ(ξt(θ), ωt) for all θ ∈ Θ, up to a constant C. In other words,

the Aggregating Algorithm’s regret is bounded above by a constant, independent of the number of played
rounds:

T∑
t=1

λ(γt, ωt) −
T∑
t=1

λ(ξt(θ), ωt) ≤ C,∀θ ∈ Θ.

A.1 Bayes’ updating for weights

A fundamental property of the AA is that, under some conditions, the updating scheme (Step (1) in AA
(Algorithm 1)) is reduced to Bayesian updating (Vovk, 2001, Section 2.2). More precisely, make the following
choices: (a) Ω is finite, (b) Γ = ∆(Ω), the set of all probability measures on Ω, (c) loss function is the log-loss
λln and (d) the learning rate η = 1.

For an expert θ whose prediction at time t is ξt(θ) ∈ ∆(Ω), we write ξt(θ)(ωt) as the probability of seeing ωt
forecasted by θ, who has observed all data points up to time step t − 1. Let Pt(θ)∗ denote the normalized
density Pt(θ):

Pt(θ)∗ = e−ηλln(ωt,ξt(θ))Pt−1(θ)∫
e−ηλln(ωt,ξt(θ))Pt−1(θ)dθ

= ξt(θ)(ωt)Pt−1(θ)∫
ξt(θ)(ωt)Pt−1(θ)dθ

.

One can interpret ξt(θ)(ωt) as the likelihood to observe ωt at time t given the expert θ. Analogously,
Pt−1(θ) can be thought of as the prior on the experts after t − 1 observations. Note that crucial in this
derivation is the correspondence of the exponential projection e−x (with η = 1) used in the definition of the
pseudo-predictions and the log-loss λln.

B The Effect of u on the Mixability of Losses

The crucial property making the substitution step of the Aggregating Algorithm run, is mixability. A priori
it is unclear how the composition of a loss function λ with a strictly increasing, continuous function u with
u(0) = 0 effects the mixability. We shortly argue that all interesting cases are possible. For the sake of
simplicity, we look a binary outcome sets and predictions p ∈ [0, 1]. Hence, we can write the loss function as
λ(p) = (λ0(p), λ1(p)).
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(1) non-mixable to mixable The absolute loss λabs(p) = (1 − p, p) is not mixable for any learning
rate η > 0. Applying the function u(x) = − ln x gives λln(p) = (− ln 1 − p,− ln p) the log-loss which
is mixable, e.g., for η = 0.

(2) mixable to non-mixable The Brier score λB(p) = ((1 − p)2, p2) is mixable for η = 2. However,
the square root of the Brier score recovers the absolute loss λabs, which not mixable for any η > 0.

(3) mixable to mixable The mixable (with η = 1) log loss λln(p) = (− ln 1 − p,− ln p) composed with
u(x) = (1 − ex)2 gives the Brier score λB(p) = ((1 − p)2, p2) which is mixable for η = 2.

C AA-optimality for quasi-sums

In the majority of the paper we have assumed that the prediction game in consideration is (f, η)-mixable.
In this case we obtain a direct bound for the aggregated loss of the predictions given via the substitution
function and the APA-QS. As it happens with the usual AA, there is no guarantee that the given loss will be
(f, η)-mixable. We deal with this situation in this section. With this at hand we also provide an optimality
result for the Aggregating Algorithm under quasi-sum aggregation.

First, it will be useful to impose some mild conditions on the prediction game.
Definition C.1 (Regular Local Prediction Game (Vovk, 1995)). We call the tuple (Ω,Γ, λ) a local prediction
game. A local prediction game is called regular if the following four assumptions hold

(a) Γ is a compact topological space.

(b) For each ω ∈ Ω the function γ 7→ λ(ω, γ) is continuous.

(c) There exists γ ∈ Γ such that, λ(ω, γ) < ∞ for all ω ∈ Ω.

(d) For all γ ∈ Γ there exists ω ∈ Ω such that λ(ω, γ) ̸= 0.

In this section it will be always assumed that the (Ω,Γ, λ) is a local prediction game.

C.1 Aggregation algorithm for non-mixable losses

Fix (Ω,Γ,Θ, λ) and a weighting profile f , as in Section 4.3. Note, we assume that we obtain a regular local
prediction game when we drop the set of experts Θ. Recall that in this case, the pseudo-predictions belong
to P(λ, f), that is, they are of the form

ψ(ω) = g

[∫
Γ
f(λ(ω, γ)Q(γ) dγ

]
,

for some distribution Q on Γ.

First we show that c ≥ 1 as in (Vovk, 1990). The proof is basically the same and we include it for the
reader’s convenience.
Lemma C.2. For given (Ω,Γ, θ, λ) and a weighting profile f , then c(f) ≥ 1.

Proof. Suppose that there is f such that c := c(f) < 1. Let γ′ ∈ Γ and Qγ′ be defined as Qγ′(γ′) = 1 and 0
otherwise. Then, there exists γ ∈ Γ such that for all ω ∈ Ω,

f(λ(ω, γ)) ≥ f

(
g

[∫
Γ
f(λ(ω, γ))Qγ′ dΓ

])c
≥ f(λ(ω, γ′))c.

Since 0 < f(x) ≤ 1 for all x, we have

0 ≤ − ln (f(λ(ω, γ))) ≤ c (− ln (f(λ(ω, γ′)))) .
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By assumption (c), we know there exists γ1 ∈ Γ such that λ(ω, γ1) < ∞. By the argument above (with
γ′ = γ1) we know there is γ2 ∈ Γ such that

0 ≤ − ln (f(λ(ω, γ2))) ≤ c (− ln (f(λ(ω, γ1)))) .

Continuing this way, we obtain a sequence {γk} ⊂ Γ such that

0 ≤ − ln (f(λ(ω, γk+1))) ≤ c (− ln (f(λ(ω, γk)))) .

Using the compactness of Γ (assumption (a)), let γ ∈ Γ be a limit point of this sequence. By continuity
(assumption (b)), − ln (f(λ(ω, γ))) is the limit of a subsequence {− ln (f(λ(ω, γk)))}.

Note that we have

0 ≤ − ln (f(λ(ω, γk))) ≤ ck−1 (− ln (f(λ(ω, γ1)))) ,

thus when k → ∞ we conclude that ln (f(λ(ω, γ)) = 0, that is λ(ω, γ) = 0, which contradicts (d).

We are now ready to obtain an analogous bound to (13).
Theorem C.3. For given (Ω,Γ, θ, λ) and a weighting profile f . Let c := c(f). When |Θ| = n and P0 is the
uniform probability distribution with weights 1/n, we have the bound

AT (learner) ≤ AT (APA-QS(P0)) ≤ g

[
f(AT (θ∗))c

nc

]
. (16)

for any expert θ∗ ∈ Θ.

Moreover, if we consider a learning rate η > 0, fη(x) = f(x)η and cη := c(fη), we have

AT (learner) ≤ AT (APA(P0)) ≤ g(f(AT (θ∗))cηf(gη(n−1))cη ), (17)

where gη is the inverse of fη.

Proof. Let ψ be a pseudo-prediction . Then, we have f(λ(ω, γ) ≥ f(ψ(ω))c.

AT (learner) = g(f(λ(ω1, γ1)...f(λ(ωT , γT )) ≤ g(f(ψ1(ω1))c...f(ψT (ωT ))c).

This motivate us to define a new aggregation function given by

Bc
n(x1, ..., xn) := g (f(x1)c...f(xn)c) .

Using the fact that c ≥ 1 (Lemma C.2) and the notation in Lemma 4.4, we see that

f(Bc(θ))P0(θ) = f(λ(ω1, ξ1(θ))c....f(λ(ωT , ξT (θ))cP0(θ)
≤ f(λ(ω1, ξ1(θ))....f(λ(ωT , ξT (θ))P0(θ)

Proceeding as the in the proof of Lemma 4.4, we obtain

∫
Θ
f (Bc

T (θ))P0(θ) dθ ≤ f(ψ1(ω1))...f(ψT (ωT )),

17



Under review as submission to TMLR

and hence,

g

[∫
Θ
f (Bc

T (θ))P0(θ) dθ
]

≥ g (f(ψ1(ω1))...f(ψT (ωT ))) = AT (APA(P0)). (18)

We are left to estimate the LHS of (18):

g

[∫
Θ
f (Bc

T (θ))P0(θ) dθ
]

= g

[∫
Θ
f (AT (θ))c P0(θ) dθ

]
≤g
[
f(AT (θ∗))c

n

]
≤g
[
f(AT (θ∗))c

nc

]
,

proving (16).

To obtain (17), let f = fη and cη := c(fη), then we have

gη

[∫
Θ
fη
(
(Bη)cη

T (θ)
)
P0(θ) dθ

]
= gη

[∫
Θ
fη (Aη

T (θ))cη P0(θ) dθ
]

≤ gη

[
fη(Aη

T (θ∗))cη

ncη

]
,

where (Bη)cn(x1, ..., xn) := gη(fη(x1)c, ..., fη(xn) = Bc
n(x1, ..., xn).

The result follows since

gη

[
fη(Aη

T (θ∗))cη

ncη

]
= (Bη)cη

2 (Aη
T (θ∗), gη(n−1))

= Bcη

2 (AT (θ∗), gη(n−1))
=g(f(AT (θ∗))cηf(gη(n−1))cη ).

Remark C.4. Recall that the weighting profile f in Theorem C.3 can be written in the form f(x) = e−u(x)

for an appropriate u. In this case, for η > 0, we have

g(f(AT (θ∗))cηf(gη(n−1))cη ) = u−1 (cηu(AT (θ∗)) + cηu(gη(n−1))
)

= u−1
(
cηu(AT (θ∗)) + cη

η
ln(n)

)
.

In particular, when u(x) = x, this gives

LT (APA(P0, η)) ≤ cηLT (θ∗) + cη
ln(n)
η

,

as in (Vovk, 1990).

C.2 AA-optimality

Surprisingly, it is possible to show that the Aggregating Algorithm is in a game-theoretic sense optimal (Vovk,
1995). In a general game between an adversarial environment, which gets to choose experts’ predictions and
nature’s outcome and a learner, the learner can only win if they achieve the bounds which are suggested
by the Aggregating Algorithm, cf. Remark C.4. We formalize this statement and extend it to more general
aggregation functions in the following.
Definition C.5. Let A be a continuous, strictly increasing and associative aggregation function. Let (Ω,Γ, λ)
be a regular local prediction game. We call the following full-information game G between environment E
and learner L a global prediction game:
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1. E chooses the size n of a set of experts Θ.

2. For every t ∈ [T ],

(i) E chooses predictions ξt(θ) ∈ Γ for every θ ∈ Θ.
(ii) L chooses a prediction γt ∈ Γ.

(iii) E chooses an outcome ωt ∈ Ω.
(iv) At(θ) := A2(At−1(θ), λ(ωt, ξt(θ))) for all θ ∈ Θ.7

(v) At(learner) := A2(At−1(learner), λ(ωt, γt)).

Definition C.6. We say that the learner L wins the global prediction game G if for all t ∈ [T ] and θ ∈ Θ
there are constants c and a such that

At(learner) ≤ u−1(c u(At(θ)) + a ln(n)), (19)

otherwise, we say that nature wins. Note, that the aggregation function is a quasi-sum with generator u,
i.e., A = Qu.

Optimality here is grounded in the global game specified above. Intuitively, the following theorem shows
that in a worst-case scenario, concerning the choice of experts and outcomes, every learner under expert
advice can at best achieve the regret bound parametrized by c and a of (19). Note that we don’t put any
restrictions on the abilities of the learner until this point. Strikingly, the Aggregating Algorithm can achieve
this regret bound, hence is optimal.
Theorem C.7 (Optimality of Constant Regret Bound for All Predictors). Let A be a continuous, strictly
increasing and associative aggregation function. Consider the global prediction game following Definition C.5.
There exists a learner L which against an arbitrary adversarial environment wins, i.e., for all T ∈ N and all
θ ∈ Θ,

AT (L) := AT (λ(ω1, γ1), . . . , λ(ωT , γT )) ≤ u−1(c u(AT (θ∗)) + a ln(n)),

if and only if c ≥ c(η) and a ≥ c(η)
η for some η ∈ [0,∞) with c(η) as defined in (14), and u is the generator

of the aggregation, i.e., A = Qu.

Proof. First, we note that the aggregation A fulfills (A1)-(A3). Hence, A = Qu for some generator
u : [0,∞) −→ [0,∞), continuous and strictly increasing with u(0) = 0 (Lemma 3.2).

Let us define the surrogate loss λ̃ := u◦λ. It is straightforward to check that (Ω,Γ, λ̃) fulfills all conditions for
a regular local prediction game. The first condition holds by assumption. The second condition is clear, since
the composition of continuous functions is continuous. Thirdly, there exists γ ∈ Γ such that, λ(ω, γ) < ∞
for all ω ∈ Ω. It follows λ̃(ω, γ) = u(λ(ω, γ)) < ∞ for all ω ∈ Ω. Finally, for all γ ∈ Γ there exists ω ∈ Ω
such that λ(ω, γ) ̸= 0, hence for all γ ∈ Γ there exists ω ∈ Ω such that λ̃(ω, γ) = u(λ(ω, γ)) ̸= 0, because
u(0) = 0 and u strictly increasing. Concluding, (Ω,Γ, λ̃) is a regular local prediction game.

Theorem 1 in (Vovk, 1995) states that in the specified game the learner L is guaranteed to achieve the regret
bound, for all T ∈ N and all θ ∈ Θ,

T∑
t=1

λ̃(ωt, γt)) ≤ c

T∑
t=1

λ̃(ωt, ξt(θ))) + a ln (|Θ|) , (20)

if and only if c ≥ c̃(η) and a ≥ c̃(η)
η for some η ∈ [0,∞), where

c̃(η) := inf{c ∈ R | ∀ψ ∈ P(λ̃, e−ηx), ∃ γ ∈ Γ, ∀ω, e−ηλ̃(ω,γ) ≥ e−ηψ(ω)c

},

7we set A0(θ) = 0 for all θ ∈ Θ.

19



Under review as submission to TMLR

and set inf{∅} := ∞, cf. (14). Note, that

c̃(η) = inf{c ∈ R | ∀ψ ∈ P(λ, e−ηu(x)), ∃ γ ∈ Γ, ∀ω, e−ηu(λ(ω,γ)) ≥ e−ηu(ψ(ω))c

}
= inf{c ∈ R | ∀ψ ∈ P(λ, fη), ∃ γ ∈ Γ, ∀ω, f(λ(ω, γ))η ≥ (f(ψ(ω))η)c},

for f = e−u, hence c̃(η) coincides with c(η) defined in (14).

We give equivalent forms of (20). First, since u−1(x) is increasing, (20) is equivalent to

u−1

(
T∑
t=1

λ̃(ωt, γt))
)

≤ u−1

(
c

T∑
t=1

λ̃(ωt, ξt(θ))) + a ln (|Θ|)
)
.

Furthermore, λ̃ = u ◦ λ and f(x) = e−u(x), so (20) is equivalent to

AT (λ(ω1, γ1), . . . , λ(ωT , γT )) ≤ u−1(c u(AT (θ∗)) + a ln(n)).

Remark C.8. The optimality of the Aggregating Algorithm under quasi-sum aggregation only refers to this
specific definition of global prediction game. Note, if c > 1 the tightness of the regret-like bound depends
on the performance of the experts. Standard O(

√
T )-regret algorithms in learning under expert advice, e.g.,

Exponential Weighting Algorithm, can potentially perform better, in terms of less loss, than the Aggregating
Algorithm, even though the Aggregating Algorithm is optimal in the sense specified above (Cesa-Bianchi and
Lugosi, 2006, p. 14).

D An illustrated, comparative example for different aggregations

Let us consider a comparative example: the simple negative utility function u(x) = x corresponds to the
standard sum. The negative utility function u(x) = x2 generates the Euclidean norm aggregation. Compared
to summation, in the Euclidean norm large loss values contribute relatively more to the result than small loss
values. The analogous statement is true for the utility functions. As a negative utility function u(x) = x2,
large loss values hurt, since higher negative utility (cf. orange-brown arrow in Figure 2), relatively more than
small loss values (cf. darkgreen arrow in Figure 2).

E Sequential weather classification task

We run a tabular classification task on weather data collection. The data is curated and provided by the
DWD (German Weather Agency). The data collections are publicly available at https://opendata.dwd.de/
climate_environment/CDC/observations_germany/climate/daily/kl/historical/. For the file names
see Table 3. Note that the files are constantly updated, hence the file names potentially change. The file
names are of the format tageswerte_KL_[location identifier]_[start date]]_[end date]_hist.zip.
Each collection provides daily measurements of weather-related attributes for one place. In every collection
we deleted days with missing values. For statistic of the data collections see Table 3.

Based on daily average air pressure, average temperature, average relative humidity, maximum temperature,
minimum temperature and date we train 9 classifiers to distinguish between four classes of weather: cloudy,
rainy/snowy, sunny and unsettled, which are defined according to Table 4. We use the first (in chronological
order) 80% of the data points as training set for the following classifiers provided by the scikit learn
package: logistic regression (LR), gaussian naive bayes (NB), support vector machine (SVC), linear model
with stochastic gradient descent (SGD), decision tree (DT), k-nearest neighbors (KNN), random foreast
(RF), bagging on decision trees (BAGGING), gradient boosting on decision trees (GB).

Then, we run the classifiers on the remaining 20% of the data. We apply the Aggregating Algorithm for
quasi-sums with the log-loss.8 We use different aggregations in the Aggregating Algorithm as specified

8Note that the classifiers have not necessarily been trained using the log-loss function. This “mismatch” in classification
tasks does not diminish the performance of the Aggregating Algorithm. However, it does allow for further optimization of the
entire classification pipeline.
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u(x) = x

λ

u(λ) u(x) = x2

Figure 2: Comparative Example of Linear and Squared Utility. The horizontal axis denotes the loss value.
The vertical axis the negative utility of the loss. We compare the negative utility function u(x) = x to
u(x) = x2. In particular, for two values highlighted by a darkgreen arrow, low value, and an orange-brown
arrow, high value.

Table 3: Weather data collections from the DWD (German Weather Agency).
Place File

Zugspitze tageswerte_KL_05792_19000801_20221231_hist.zip
Potsdam tageswerte_KL_03987_18930101_20231231_hist.zip
Putbus tageswerte_KL_04024_18530701_20231231_hist.zip

Weissenburg-Emetzheim tageswerte_KL_05440_18790101_20231231_hist.zip

Place Days with Missing Values Final Number of Days (Train/Test)
Zugspitze 15 8386 (6708/1678)
Potsdam 7 8759 (7007/1752)
Putbus 431 8323 (6658/1665)

Weissenburg-Emetzheim 22 8744 (6995/1749)

Table 4: Definition of weather classes.
Precipitation ≤ 2mm Precipitation > 2mm

Sunshine Hours > 4h sunny unsettled
Sunshine Hours ≤ 4h cloudy rainy/snowy
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in Table 1. We observed that the learning rate did not have a big impact on the loss histograms in our
experiment. So slightly arbitrarily, we chose η = 1 for sum and focal aggregation, we chose η = 2 for L0.5,
η = 0.001 for L10 and η = 0.5 for L2. We remark that the chosen learning rates (or the aggregations) don’t
necessarily guarantee that (f, η)-mixability with respect to the aggregation holds for the log-loss function.
However, Theorem C.3 still applies for all aggregations.

The code was run on MacBook Pro with Intel Core i9. However, the experiments only required a fraction of
the compute power. We used Python 3.10.2, scikit learn 1.4.0, pandas 1.4.1, numpy 1.22.2, matplotlib
3.5.1.

For the loss histograms we used automatic binning on the interval 0.0 to 3.4. Higher values, which turned
out to be np.inf, were cut off. For this reason, we introduced the ∞-bars in the plots where necessary. See
Section E.1 for more experiments.
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E.1 More Experiments

The following tables provide more examples of the same experiment as described in Section 5.2. Note that
in some of the experiments we observed ∞-losses due to numerical instabilities close to 0.

Table 5: Aggregations, their corresponding utility function and loss histograms for the AA-QS on the
weather data collection from Potsdam. The blue line depicts the average loss excluding ∞-losses.

Aggregation
u(x) = Loss Histogram (Weather – Potsdam)

L0.5-norm√
x

Sum
x

L2-norm
x2

L10-norm
x10

Focal
aggregation

(1 − exp(−x))2x
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Table 6: Aggregations, their corresponding utility function and loss histograms for the AA-QS on the
weather data collection from Putbus. The blue line depicts the average loss excluding ∞-losses.

Aggregation
u(x) = Loss Histogram (Weather – Putbus)

L0.5-norm√
x

Sum
x

L2-norm
x2

L10-norm
x10

Focal
aggregation

(1 − exp(−x))2x
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Table 7: Aggregations, their corresponding utility function and loss histogram for the AA-QS on the weather
data collection from Weissenburg-Emetzheim. The blue line depicts the average loss excluding ∞-losses.

Aggregation
u(x) = Loss Histogram (Weather – Weissenburg-Emetzheim)

L0.5-norm√
x

Sum
x

L2-norm
x2

L10-norm
x10

Focal
aggregation

(1 − exp(−x))2x

F Proofs

Lemma F.1 (Proof of Lemma 3.2). Let A :
⋃
n∈N[0,∞)n −→ [0,∞) be an aggregation function. Suppose

that A is continuous, strictly increasing, associative and loss compatible, i.e., it satisfies (A1) - (A4). Then,
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there exists a continuous, strictly increasing function u : [0,∞) −→ [0,∞), with u(0) = 0, such that

An(x1, . . . , xn) = u−1

(
n∑
i=1

u(xi)
)
. (21)

If furthermore A is positively homogeneous, i.e., for every c ∈ [0,∞) and n ∈ N we have An(cx1, . . . , cxn) =
cAn(x1, . . . , xi, . . . , xn), then u(x) = xk for some k ∈ (0,∞) in (3).

Proof. Associativity (A3) guarantees that we can write

An(x1, . . . , xn) = A2(x1,A2(x2,A2(. . .))),

for all n ≥ 2 (cf. (Grabisch et al., 2009, p. 33))

In particular,

A3(x1, x2, x3) = A2(x1,A2(x2, x3)) = A2(A2(x1, x2), x3).

Hence, A2 : [0,∞) × [0,∞) −→ [0,∞) is monotone, i.e., strictly increasing, continuous and associative in the
sense of Aczél (1948) (for an English translation see (Aczél, 2012), for a different proof (Craigen and Páles,
1989)), where it is shown that there exists u : [0,∞) −→ [0,∞) strictly increasing and continuous such that

A2(x1, x2) = u−1 (u(x1) + u(x2)) .

Since 0 = A2(0, 0) = u−1(u(0) + u(0)), it follows that u(0) = 0.

Finally, we obtain by induction (and associativity)

An(x1, . . . , xn) = A2(An−1(x1, ..., xn−1), xn)

= u−1

(
u

(
u−1

(
n−1∑
i=1

u(xi)
))

+ u(xn)
)

= u−1

(
n∑
i=1

u(xi)
)
.

For the second statement, we go back to A2, which is now not only strictly increasing, continuous, associative
and loss compatible, but as well positive homogeneous, i.e.,

A2(cx1, cx2) = cA2(x1, x2),

for all c ∈ (0,∞). Hence, Theorem 2 in (Aczél, 1955) (cf. (Gardner and Kiderlen, 2018, p. 797)) applies.
This implies

A2(x1, x2) =
(
xk1 + xk2

) 1
k ,

for some k ∈ (0,∞). By induction as above, we have

An(x1, . . . , xn) =
(

n∑
i=1

xki

) 1
k

.

Lemma F.2 (Proof of Lemma 3.4). Let Qu be a quasi-sum. Then, there exists a continuous, strictly
decreasing function f : [0,∞) −→ (0, 1] with f(0) = 1, such that

Qn(x1, ..., xn) = g (f(x1)...f(xn)) , (22)

where g : (0, 1] −→ [0,∞) is the inverse of f .
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Proof. Let f(x) := e−u(x). It is straightforward to check that f is strictly decreasing and that f(0) = 1. Let
g(x) = u−1(− ln(x)) be its inverse. Then, we can write

Qn(x1, ..., xn) = u−1

(
n∑
i=1

u(xi)
)

= g
(
e−(
∑n

i=1
u(xi))

)
= g (f(x1)...f(xn)) .

Lemma F.3 (Proof of Lemma 4.4). Let f : [0,∞) −→ R be a weighting profile. Then

AT (APA(P0)) := AT (ψ1(ω1), ψ2(ω2), ..., ψT (ωT )) = g

[∫
Θ
f (AT (θ))P0(θ) dθ

]
.

Moreover, when |Θ| = n and P0 is the uniform probability distribution with weights 1/n,

AT (APA(P0)) ≤ A2
(
AT (θ∗), g

(
n−1)) , (23)

for any expert θ∗ ∈ Θ.

Proof. We will follow the general idea of the proof of Lemma 1 in (Vovk, 2001). Recall that using the
updating rule (2), we have

PT (θ) = f(λ(ωT , ξT (θ)))...f(λ(ω1, ξ1(θ)))P0(θ).

It follows that:

f(AT (θ))P0(θ) = f (λ(ωT , ξT (θ))) f (λ(ωT−1, ξT−1(θ))) . . . f (λ(ω1, ξ1(θ)))P0(θ)

= f (λ(ωT , ξT (θ)))PT−1(θ)
∫

Θ PT−1(θ) dθ∫
Θ PT−1(θ) dθ

=
∫

Θ
PT−1(θ) dθ · f (λ(ωT , ξT (θ)))P ∗

T−1(θ)

=
∫

Θ
PT−1(θ) dθ · f(ψT (ωT ))f (λ(ωT , ξT (θ))) f(ψT (ωT ))−1P ∗

T−1(θ)

=
∫

Θ
PT−1(θ) dθ · f(ψT (ωT ))pT (θ;ωT ).

Integrating with respect to θ we obtain∫
Θ
f (AT (θ))P0(θ) dθ =

∫
Θ
PT−1(θ) dθ · f(ψT (ωT )) (24)

We now analyze
∫

Θ PT−1(θ) dθ. Using similar arguments as above, we have

PT−1(θ) = f(λ(ωT−1, ξT−1(θ)))f(λ(ωT−2, ξT−2(θ)))...f(λ(ω1, ξ1(θ)))P0(θ)

= f(λ(ωT−1, ξT−1(θ)))PT−2(θ)
∫

Θ PT−2(θ) dθ∫
Θ PT−2(θ) dθ

=
∫

Θ
PT−2(θ) dθ · f(ψT−1(ωT−1))f(λ(ωT−1, ξT−1(θ)))f(ψT−1(ωT−1))−1P ∗

T−2(θ)

=
∫

Θ
PT−2(θ) dθ · f(ψT−1(ωT−1))pT−1(θ;ωT−1).

Integrating over Θ gives ∫
Θ
PT−1(θ) dθ =

∫
Θ
PT−2(θ) dθ · f(ψT−1(ωT−1)).
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Continuing this process we arrive to

∫
Θ
f (AT (θ))P0(θ) dθ =

∫
Θ
P0(θ) dθ · f(ψ1(ω1))...f(ψT (ωT )) (25)

= f(ψ1(ω1))...f(ψT (ωT )) (26)

Applying g to both sides of (25), we obtain

g

[∫
Θ
f (AT (θ))P0(θ) dθ

]
= g (f(ψ1(ω1)) . . . f(ψT (ωT ))) = AT (APA(P0)),

as desired.

If |Θ| = n and P0 is the uniform probability distribution with weights 1/n (cf. Vovk (1990)), we have for
any fixed θ∗ ∈ Θ,

g

[∫
Θ
f (AT (θ))P0(θ) dθ

]
= g

[
n∑
θ=1

f (AT (θ))
n

]

≤ g

[
f (AT (θ∗))

n

]
= g

[
f (AT (θ∗)) f

(
g
(
n−1))]

= A2
(
AT (θ∗), g

(
n−1)) .

Corollary F.4 (Proof of Corollary 4.5). Let f : [0,∞) −→ R be a weighting profile. Let η ∈ (0,∞) be a
learning rate. When |Θ| = n and P0 is the uniform probability distribution with weights 1/n,

AT (APA(P0), η) = AT (APA(P0)) ≤ A2
(
AT (θ∗), gη

(
n−1)) , (27)

for any expert θ∗ ∈ Θ.

Proof. Consider fη(x) = f(x)η to define Aη (see (7)), and notice that

Aη(x1, ...xn) = gη(fη(x1)...fη(xn)) = g(f(x1)...f(xn)) = A(x1, ..., xn). (28)

Thus, applying Lemma 4.4 with Aη we have

AT (APA(P0), η) := Aη
T (APA(P0)) = gη

[∫
Θ
fη (Aη

T (θ))P0(θ) dθ
]
.

Further assuming that |Θ| = n and P0 is the uniform probability distribution with weights 1/n, we have (by
the proof of Lemma 4.4)

gη

[∫
Θ
fη (Aη

T (θ))P0(θ) dθ
]

≤ Aη
2
(
Aη
T (θ∗), gη

(
n−1)) ,

for any θ∗ ∈ Θ.

Using (28) again, we conclude that

AT (APA(P0), η) ≤ A2
(
AT (θ∗), gη

(
n−1)) .
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Lemma F.5 (Proof of Lemma 4.7). A loss λ is (f, η)-mixable if and only if λ̃ = u ◦ λ for u(x) := − ln f(x)
is η-mixable.

Proof. If λ is (f, η)-mixable, there exists a substitution function Σ such that for all ψf ∈ P(λ, fη),

λ(ω,Σ(ψf )) ≤ ψf (ω),∀ω ∈ Ω

⇐⇒ λ(ω,Σ(ψf )) ≤ gη

[∫
Γ
fη(λ(ω, γ))Q(γ) dγ

]
,∀ω ∈ Ω

⇐⇒ λ(ω,Σ(ψf )) ≤ u−1
(

− ln
η

[∫
Γ
e−ηu(λ(ω,γ))Q(γ) dγ

])
,∀ω ∈ Ω

⇐⇒ u(λ(ω,Σ′(ψ))) ≤ lne−η

[∫
Γ
e−ηu(λ(ω,γ))Q(γ) dγ

]
,∀ω ∈ Ω,

where ψ := u ◦ ψf with ψ ∈ P(λ̃, e−ηx) and Σ′ is the mapping such that ψ 7→ ψf 7→ Σ(ψ). Hence, Σ is a
substitution function for all ψ ∈ P(λ̃, fη(x) = e−ηx), which is the standard η-mixability.
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