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ABSTRACT

Function-guided protein design is a crucial task with significant applications in
drug discovery and enzyme engineering. However, the field lacks a unified and
comprehensive evaluation framework. Current models are assessed using incon-
sistent and limited subsets of metrics, which prevents fair comparison and a clear
understanding of the relationships between different evaluation criteria. To ad-
dress this gap, we introduce PDFBENCH, the first comprehensive benchmark for
function-guided de novo protein design. Our benchmark systematically evaluates
eight state-of-the-art models on 16 metrics across two key settings: description-
guided design, for which we repurpose the Mol-Instructions dataset, originally
lacking quantitative benchmarking, and keyword-guided design, for which we
introduce a new test set, SwissTest, created with a strict datetime cutoff to ensure
data integrity. By benchmarking across a wide array of metrics and analyzing their
correlations, PDFBENCH enables more reliable model comparisons and provides
key insights to guide future research. 1

1 INTRODUCTION

Proteins are essential macromolecules that play a key role in many biological processes by performing
a wide range of functions. Protein design (Huang et al., 2016; Albanese et al., 2025) is of great
significance in areas such as enzyme engineering (Planas-Iglesias et al., 2021; Kries et al., 2013)
and drug discovery (Hung & Chen, 2014; Tiwari & Singh, 2022). Compared with unconditional
generation (Ferruz et al., 2022), generation guided by specific functions (Lee et al., 2024) or control
tags (Hayes et al., 2025), protein design based on user-specified functions provides greater practical
value (Liu et al., 2025b; Madani et al., 2023). Current protein design from function tasks can be
categorized into two types, description-guided (which utilizes textual functional descriptions as input)
and keyword-guided (which employs function keywords such as InterPro (IPR) (Hunter et al., 2009)
entries or Gene Ontology (GO) (gen, 2021) terms as input).

To build protein design models, choosing proper evaluation metrics is crucial. Various metrics (e.g.,
language alignment, foldability) are applied in the literature, but different models are usually evaluated
in different ways. In Figure 1, we list existing evaluation metrics and depict how typical protein
design models are evaluated against them. It shows that among the eight representative models, only
half of them assess foldability, and only quarter of them evaluate novelty and diversity. For language
alignment metrics, models either ignore model-based or retrieval-based metrics. Moreover, none of
them consider all dimensions across the different metrics. The lack of a comprehensive evaluation
across all metrics can lead to unfair comparisons between methods. Furthermore, the correlations
among different metrics have not been thoroughly investigated, limiting the understanding of these
metrics and thereby hindering effective and insightful future research.

To bridge these gaps, we propose PDFBENCH, which, to the best of our knowledge, is the first bench-
mark designed to evaluate the capabilities of 8 novel function-guided de novo protein design methods,
encompassing both description-guided approaches and keyword-guided approaches. Comprehensive
benchmarking of the description-guided task is conducted using Mol-Instructions (Fang et al., 2023)
(MolinstTest), an instruction-following dataset of high quality but lacking any quantitative analysis

1 The codes and datasets are available in the Anonymous GitHub repository: https://anonymous.
4open.science/r/PDFBench and will be made publicly accessible in the final version.
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Figure 1: Overview of current function-guided protein design models evaluated using different
metrics, highlighting the lack of a unified and comprehensive evaluation framework. (a) Proportion of
metrics employed in each previous work. In PDFBENCH, metrics are categorized into 6 dimensions,
and we show that none of the prior works have been evaluated across all dimensions. (b) Detailed view
of the metrics in PDFBENCH, with several representative metrics from each dimension presented.

of the designed proteins. For the keyword-guided task, we introduce a new test set, SwissTest, with
a datetime cutoff to prevent data contamination. Furthermore, an in-depth analysis is conducted to
explore the correlations among various evaluation metrics used in PDFBENCH.

In summary, the contributions of PDFBENCH are as follows:

• We present PDFBENCH, the first comprehensive benchmark for function-guided de novo protein
design, encompassing both description-guided and keyword-guided settings (with 3 fine-grained
tasks). We benchmark 8 state-of-the-art models across 16 metrics spanning 6 dimensions (i.e.,
Plausibility, Foldability, Language Alignment, Similarity, Novelty, and Diversity).

• We analyze and ensure fairness of evaluations. For the description-guided task, we repurpose
Mol-Instructions in our benchmark (MolinstTest). We carefully analyze the testing configuration
(by partitioning datasets based on potential overlaps) and demonstrate that fairness of MolinstTest
results are reliable. For keyword-guided tasks, we introduce SwissTest which applies a strict
datetime cutoff (e.g., only including SwissProt annotations after 2025) to ensure fairness.

• We identify key correlations between different metrics that facilitate fairer comparisons and provide
insights for future model development. For instance, low PPL and Repeat scores consistently
indicate well-folded protein structures (e.g., PPL exhibits Pearson correlations of 0.76 with pLDDT
and -0.87 with PAE). Moreover, retrieval-based evaluations are highly sensitive to the chosen
retrieval strategy, and although random sampling can be beneficial, absolute values should be
interpreted with caution (e.g., the gap in Retrieval Accuracy for natural proteins across different
retrieval strategies can reach 66.31%.).

2 PDFBENCH

2.1 TASKS AND DATASETS

As demonstrated in Figure 2, de novo protein design from function can be categorized into two types,
description-guided and keyword-guided. The objective of both tasks is to generate novel proteins
with specific functions, while the input format differs.

2.1.1 DESCRIPTION-GUIDED PROTEIN DESIGN

Task Definition The description-guided task is to design novel protein P with function description
t written in natural language. The function description is to describe the overall function of P .
The objective of this task is to generate a novel protein using the 20 standard amino acids A =
{a1, a2, · · · , a20}.

p(P | t) = p((x1, x2, · · · , xk) | t,∀i, xi ∈ A)

2
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Description-
guided

Protein Sequence
PGPPLWLLAELTYRCPLQCPYCSNPLDFARHGAELSTAEWIEVFRQARELGAAQLGFS
GGEPLVRQDLSELIGAARGLGYYTNLITSGIGLSEARIAEFATAGLDHIQVSFQAADAELN
DLLAGSGKAFARKLAMARAVKAQGYPMVLNFVTHRHNIDAIERIIELCLELEADYIELAT
CQFYGWAELNRAGLLPTRAQLERAERITNQWREKLAA

ESMFold Structure

GO Gene Ontology [Molecular Function] terms

GO:0051539, GO:0031419, GO:0016853, GO:0046872

Desc textual description
Generate a protein sequence for a novel protein that integrates the following function 
keywords: 
1. The protein should contain one or more Elp3/MiaA/NifB-like_rSAM, rSAM, 
Cobalamin-bd, rSAM, rSAM that are essential for its biological function; 
2. The protein should belong to OxsB-like, Tetrapyrrole_Bchl_Biosynth_MTs that 
shares evolutionary origin and functional similarity; 
[…]
The designed protein sequence is

IPR InterPro entries

IPR006638, IPR007197, IPR023404, IPR006158, IPR007197

ProDVa

Pinal

ProteinDT

PAAG

Chroma

CFP-Gen

ESM3

ProteoGAN
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guided

IPR

GO
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Figure 2: Examples of inputs and outputs for the description-guided protein design task and the
keyword-guided protein design task (using GO and/or IPR keywords as inputs). Note that the GO
and IPR terms can be converted into textual descriptions. A detailed explanation of this paradigm is
provided in Appendix C.2.

Dataset Mol-Instructions (Fang et al., 2023) is a diverse, high-quality, large-scale instruction
dataset for the biomolecular domain. We use its protein-oriented instruction test set as the evaluation
set for the description-guided task, referred to as MolinstTest. The detailed construction process of
MolinstTest is provided in Appendix C.1.

2.1.2 KEYWORD-GUIDED PROTEIN DESIGN

Task Definition The keyword-guided task is to design a novel protein P based on a set of keywords
K = {k1, k2, · · · , kn}, where each keyword ki corresponds to either a Gene Ontology (molecular
function) term or an InterPro term in PDFBENCH. Additionally, the keyword names are converted
into textual function descriptions for comparison with models that accept text as input. The objective
is to generate a novel protein based on K.

p(P | K) = p((x1, x2, · · · , xk) | K,∀i, xi ∈ A)

Dataset In contrast to the description-guided task, the input for the keyword-guided task consists
of a series of keywords. In PDFBENCH, we manually curated a novel test dataset from UniPro-
t/SwissProt UniProt Consortium (2018), termed SwissTest. To prevent potential data leakage, the
inclusion period for SwissTest is restricted to January 1, 2025, through August 25, 2025. The detailed
construction of SwissTest is presented in Appendix C.2.

2.1.3 ANALYSIS FOR FAIRNESS EVALUATION IN BENCHMARKING

It is important to ensure that the benchmark evaluation remains fair under specific controlled settings.
To assess the impact of potential data contamination (i.e., overlaps 2 in protein functions or sequences
within the training sets of the baseline models), we provide a detailed quantitative analysis in
Appendix C.3. We ensure that PDFBENCH contains no hard overlaps by carefully selecting the test
set (the Mol-Instructions test set is excluded from all baseline models) or by curating it (in SwissTest,
we apply a datetime cutoff). For soft overlaps, our primary concern is that similar functions may
potentially overlap. In Appendix C.3, we show that only 0.24% of the proteins in the Mol-Instructions
test set share similar functions with at least 50% functional identity in SwissProt, which is primarily
used by the baselines as the training set or its subsets. Further analysis demonstrates that excluding
these soft overlaps in similar functions has minimal, or even positive, impact on the experimental
results. This indicates that soft overlaps do not compromise the fairness of our evaluation.

2.2 BASELINES

We ensemble recent de novo protein design from function baselines as shown in Table 1. For
description-guided task, ProDVa (Liu et al., 2025a), Pinal (Dai et al., 2024), PAAG (Yuan et al., 2024),
Chroma (Ingraham et al., 2023) and ProteinDT (Liu et al., 2025b) are supported. For keyword-guided

2We define hard overlaps as instances where an identical function–sequence pair appears in both the training
and test sets. Additionally, soft overlaps refer to instances where the functions or sequences are similar.
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task, ESM3 (Hayes et al., 2025), CFP-Gen (Yin et al., 2025) and ProteoGAN (Kucera et al., 2022)
are supported. More details about these baseline are listed in Appendix E.

Table 1: Comparison with various baselines. The symbols ✓ and ✗ denote "Supported" and "Not
Supported," respectively. As ProteoGAN, ESM3, and CFP-Gen offer only partial support for IPR
and GO keywords, we report both the number of keywords each model claims to support and the
number of keywords available in the SwissTest benchmark.

Baselines
Keyword

Desc
Training Set

Brief Summaries
GO IPR GO&IPR Size Access

ESM3 ✗ ✓
29026 (1197) ✗ ✗ 455M ✗

A frontier multimodal generative model tokenizing sequence, structure, and function in unified space,
trained with masked language modeling across modalities.

ProteoGAN ✓
50 (41) ✗ ✗ ✗ 158K ✗

Conditional GAN guided by Gene Ontology labels, designed for general-purpose protein generation
and evaluated with biologically/statistically inspired metrics.

CFP-Gen ✓
375 (92)

✓
1154 (170) ✓ ✗ 244K ✓

Diffusion-based multimodal generator introducing AGFM and RCFE modules, enabling precise
functional, structural, and residue-level control for multifunctional protein design.

ProteinDT ✓ ✓ ✓ ✓ 541K ✓
Multimodal framework using ProteinCLAP for joint embeddings, mapping text to protein representa-
tions, followed by autoregressive decoding for sequence generation.

Chroma ✓ ✓ ✓ ✓ 45K ✗
Diffusion-based protein designer integrating polymer physics, enabling programmable design through
composable conditioners to enforce multiple constraints.

PAAG ✓ ✓ ✓ ✓ 129K ✓
A multimodal design model that employs a multilevel alignment module to align sequences and
descriptions at both global and local levels.

Pinal ✓ ✓ ✓ ✓ 1.7B ✗
A large-scale framework, pretrained on 1.7B function–sequence pairs, most of which are synthetic,
designing sequence mediated by structure.

ProDVa ✓ ✓ ✓ ✓ 640K ✓
A multimodal framework integrating a text encoder, a protein language model, and a fragment
encoder that dynamically retrieves relevant fragments based on the specified function.

2.3 METRICS

Plausibility To evaluate the plausibility of the designed proteins, we introduce six metrics. Direct
experimental validation of sequence plausibility is impractical for large-scale studies. Instead,
we employ three protein language models—ProtGPT2 (Ferruz et al., 2022), ProGen2 (Nijkamp
et al., 2023), and RITA (Hesslow et al., 2022)—to compute sequence perplexity. These yield PPL-
ProtGPT2, PPL-ProGen2, and PPL-RITA, which provide model-based estimates of how well the
designed proteins conform to the distributional properties of natural proteins. Moreover, natural
proteins rarely contain long repetitive fragments, yet prior studies (Ferruz et al., 2022; Wang et al.,
2024b) indicate that generative models may produce sequences with abnormally high repetition,
potentially impairing protein functionality. To assess this, we compute Rep-2 and Rep-5 following
Rep-N (Welleck et al., 2019). In addition, we propose a new metric, Repeat, which evaluates the
fraction of repetitive sequence fragments from a biologically informed perspective.

Foldability We use ESMFold (Lin et al., 2022) to predict 3D structure for the designed sequence
and present two metrics for accessing its foldability. Reasonable proteins must exhibit sufficient
foldability to perform their functions. We compute the average predicted local distance difference test
(pLDDT) and predicted aligned error (PAE) across the entire structure (Jumper et al., 2021; Akdel
et al., 2022; Varadi et al., 2022).

Language Alignment Function-guided proteins should faithfully reflect user-specified properties.
To evaluate the degree of alignment between textual descriptions and designed proteins, we employ
five metrics: four model-based metrics (ProTrek Score, EvoLlama Score, IPR Recovery and GO
Recovery), and one retrieval-based metric (Retrieval Accuracy). For model-based evaluation, we
use ProTrek (Su et al., 2024), a multimodal protein language model pre-trained on large-scale
protein–function pairs, to compute the ProTrek Score, defined as the cosine similarity between
protein embeddings and function embeddings. In addition, EvoLlama (Liu et al., 2024), fine-tuned
on our dataset, is employed to derive the EvoLlama Score, which measures the cosine similarity
between the ground-truth function and the function predicted by EvoLlama. we calculate keyword-
level recovery rates of designed proteins relative to natural proteins, specifically IPR Recovery and
GO Recovery. The IPR annotations are obtained using InterProScan (Paysan-Lafosse et al., 2023),
while GO terms are derived from DeepGO-SE (Kulmanov et al.). Higher recovery rates indicate
stronger preservation of functional characteristics. For retrieval-based evaluation, we follow previous
work (Liu et al., 2025b) to compare each designed sequence against its ground-truth function and
T − 1 randomly selected functions using ProTrek. Retrieval Accuracy is defined as the proportion of
cases in which the true function–sequence pair ranks highest among all comparisons.

4
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Similarity Proteins with analogous sequences or structures often perform similar functions. ESM-
Score is a composite metric comprising ESM-F1, ESM-Precision, and ESM-Recall, which mea-
sures sequence similarity between designed sequences and ground truth using ESM-2-650M (Lin
et al., 2022), following the formulation of BERTScore (Zhang* et al., 2020). GT-Identity denotes
the sequence similarity between a designed sequence and the ground truth, computed with MM-
seqs2 (Kallenborn et al., 2024), which employs multiple sequence alignment (MSA) to quantify
similarity. Additionally, we assess structural similarity between designed proteins and ground truth
using TMscore (Zhang & Skolnick, 2004), denoted as GT-TMscore.

Novelty Novelty represents the dissimilarity of designed proteins with respect to reference
databases. Here, we assess novelty from both sequence and structure perspectives. We employ
MMseqs2 to calculate the novelty of designed sequences within UniProtKB (UniProt Consortium,
2018), denoted as Novelty-Seq. Additionally, we utilize Foldseek (Kim et al.) to evaluate the novelty
of designed protein structures within AlphaFoldDB/SwissProt, denoted as Novelty-Struct.

Diversity Diversity evaluates whether the model generates diverse proteins rather than producing
minor variations of a template sequence, by computing the average pairwise dissimilarity among all
proteins designed for the same function. Similar to Novelty, we use MMseqs2 to compute sequence
diversity (Diversity-Seq) and Foldseek to compute structural diversity (Diversity-Struct).

3 RESULTS

In this section, we conduct a comprehensive evaluation of these baselines across the two tasks (four
fine-grained tasks). The detailed experimental settings are shown in Section F.1.

Table 2: Benchmark results for the description-guided task (Best, Second Best, Third Best). - indicates
not applicable.

Models
Plausibility Foldability Language Alignment % Novelty % Diversity %

Perplexity ↓ Repeat % ↓ pLDDT ↑ PAE ↓ ProTrek
Score ↑

EvoLlama
Score ↑

Retrieval
Accuracy ↑ Seq ↑ Struct ↑ Seq ↑ Struct ↑

Natural 5.99 1.99 80.64 9.20 27.00 60.33 88.65 4.90 13.56 - -

Random(U) 21.71 0.72 22.96 24.85 1.03 36.22 13.03 58.14 77.64 97.01 81.59
Random(E) 18.68 1.15 25.77 24.71 1.04 34.11 12.73 60.19 76.82 99.56 81.45

ProteinDT 12.41 6.83 38.29 25.13 1.20 40.57 16.92 70.74 71.16 99.23 83.67
Chroma 12.19 2.59 59.18 15.03 2.10 40.10 13.01 58.68 51.06 96.13 79.90
PAAG 17.84 2.34 28.39 25.38 1.29 34.39 13.43 63.64 77.34 99.15 82.16
Pinal 5.81 12.83 75.25 10.96 17.50 53.40 63.43 43.82 17.23 82.96 72.73
ProDVa 7.63 1.92 76.86 8.66 17.40 51.19 66.83 14.64 36.31 83.29 36.92

3.1 DESCRIPTION-GUIDED

In Table 2, we report the benchmark results for the description-guided task on 11 main metrics. The
complete results are displayed in Appendix F.2. Findings are summarized as follows:

(1) ProDVa can design relatively plausible sequence. Good sequence plausibility is fundamental
to foldability and language alignment. The sequences designed by ProDVa exhibit repeat scores
exceeding those of natural proteins and suboptimal perplexity scores in sequence rationality, indicating
that ProDVa’s design modules are capable of generating reasonable protein sequences.

(2) ProDVa and Pinal Generate Foldable Proteins. Both ProDVa and Pinal achieve substantially
higher foldability scores compared with all other models. Specifically, ProDVa reaches the best
pLDDT (76.86) and lowest PAE (8.66), while Pinal follows closely with pLDDT (75.25) and PAE
(10.96). These results suggest that the sequences produced by both models are structurally stable and
more likely to fold into valid conformations, highlighting the effectiveness of their design modules in
capturing the structural constraints of proteins.

(3) ProDVa and Pinal exhibit comparable performance in Language Alignment, whereas the
remaining baselines demonstrate substantially inferior results. For language alignment, both
models outperform all baselines by large margins. ProDVa achieves the best retrieval accuracy

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(66.83), while Pinal attains a comparable score (63.43). They also perform significantly better in
ProTrek Score and EvoLlama Score compared to ProteinDT, Chroma, and PAAG. This indicates that
the semantic and evolutionary information embedded in the descriptions are effectively translated into
protein sequences by ProDVa and Pinal, whereas the baseline methods fail to capture such alignment

(4) ProDVa and Pinal perform poorly with respect to novelty and diversity. While excelling
in plausibility, foldability, and alignment, both models show relatively low novelty and diversity
compared with baselines. The low novelty scores (ProDVa Seq/Struct: 14.64/36.31, Pinal Se-
q/Struct: 43.82/17.23) suggest that the designed sequences tend to remain close to the natural protein
landscape. At the same time, their low diversity scores (ProDVa Seq/Struct: 83.29/36.92; Pinal
Seq/Struct: 82.96/72.73) indicate that the models may confine functional design to narrow clusters in
sequence/structure space. This reflects a trade-off: in order to achieve better functional alignment,
ProDVa and Pinal may sacrifice exploration of diverse solutions, thereby limiting their coverage of
the broader protein landscape.

Table 3: Benchmark results for the keyword-guided task (Best, Second Best, Third Best). - indicates
not applicable.

Models
Plausibility Foldability Language Alignment % Novelty % Diversity %

Perplexity ↓ Repeat % ↓ pLDDT ↑ PAE ↓ ProTrek
Score ↑

Retrieval
Accuracy ↑ IPR Recovery↑ GO Recovery↑ Seq ↑ Struct ↑ Seq ↑ Struct ↑

guided with GO keywords

Natural 9.17 2.17 76.92 10.54 21.60 100.0 100.00 77.49 4.07 18.15 - -

Random(U) 21.74 0.72 23.20 24.56 4.29 0.00 20.79 10.00 58.04 76.75 94.29 81.56
Random(E) 18.68 1.14 25.99 24.47 3.44 0.00 11.71 11.06 60.28 75.92 98.65 81.54

ProteoGAN 18.03 2.50 28.72 24.67 4.42 0.00 14.99 13.84 65.24 75.82 98.94 84.37
CFP-Gen 5.16 12.67 73.38 14.61 10.03 9.67 18.98 38.87 47.85 28.28 85.14 81.76
ProteinDT 12.23 7.98 40.35 25.57 1.70 0.03 18.52 15.39 75.41 74.62 99.7 84.53
Chroma 12.18 2.71 59.27 15.00 1.84 0.23 16.33 12.07 59.35 50.88 93.70 79.79
PAAG 18.08 2.48 31.47 23.88 4.38 0.00 21.66 16.45 62.36 73.36 98.57 81.73
Pinal 6.85 14.13 72.58 11.79 12.69 19.26 22.76 49.93 46.06 19.27 87.61 79.00
ProDVa 11.16 1.87 74.73 6.11 14.42 20.22 30.24 52.38 25.02 32.72 98.17 35.76

guided with IPR keywords

Natural 9.73 2.23 75.77 11.13 25.29 100.00 100.00 83.22 4.47 20.09 - -

Random(U) 21.76 0.69 23.40 24.42 7.53 0.00 25.75 11.72 57.21 76.47 94.44 81.56
Random(E) 18.67 1.16 26.29 24.34 6.11 0.00 13.06 12.80 59.57 75.05 98.58 81.46

ESM3 6.33 28.13 60.90 16.73 6.22 20.17 15.43 33.01 71.87 37.56 91.41 76.79
CFP-Gen 4.94 11.86 76.36 12.54 10.21 32.79 23.41 40.96 49.46 23.15 85.31 82.08
ProteinDT 11.87 10.02 37.59 26.19 3.85 0.08 20.76 16.13 73.57 76.03 99.71 84.81
Chroma 12.17 2.60 59.76 14.67 3.82 0.17 17.15 13.68 59.25 50.77 94.06 79.88
PAAG 17.85 2.32 30.89 24.98 5.98 0.08 13.85 14.37 64.71 79.23 99.16 81.48
Pinal 8.12 16.73 65.69 14.10 14.38 25.63 15.93 57.59 51.61 27.00 87.02 80.38
ProDVa 12.47 1.99 72.80 6.86 15.19 24.58 26.59 51.99 28.86 31.26 95.02 45.60

guided with IPR&GO keywords

Natural 8.96 2.16 77.17 10.48 27.36 100.00 100.00 87.39 3.89 17.72 - -

Random(U) 21.72 0.73 22.85 24.72 4.84 0.00 25.38 9.45 57.48 77.18 94.24 81.73
Random(E) 18.68 1.14 25.60 24.59 3.72 0.00 14.67 11.28 60.06 75.98 98.39 81.57

CFP-Gen 5.23 13.14 72.70 14.45 11.68 35.21 23.31 45.77 54.72 28.89 80.61 81.91
ProteinDT 12.81 6.81 36.46 25.75 3.06 0.36 15.92 19.29 71.44 75.73 99.39 84.18
Chroma 12.19 2.53 58.71 15.33 2.19 0.16 14.12 11.67 59.36 51.45 94.27 79.97
PAAG 17.80 2.32 30.05 25.69 4.66 0.02 9.77 11.82 65.07 81.53 99.22 81.51
Pinal 7.39 16.22 69.32 12.97 15.26 33.08 21.64 60.88 49.03 22.43 85.20 78.20
ProDVa 10.48 2.61 74.26 8.06 16.78 30.95 25.24 61.23 21.97 24.20 91.94 52.18

3.2 KEYWORD-GUIDED

As illustrated in Table 3, we report the benchmark results for keyword-guided task on 12 main metrics.
The complete results of keyword-guided task on all metrics are in Appendix F.3. Based on these
results, our key findings are as follows:

(1) CFP-Gen, Pinal and ESM3 show great performance in Perplexity while the Repeat show
poorly. These models achieve the lowest perplexity scores (CFP-Gen: 4.94–5.23; Pinal: 6.85–8.12;
ESM3: 6.33), indicating that their generated sequences exhibit strong rationality under the protein
language model. However, they also show much higher Repeat (ranging from 11.86 to 28.13)
compared with ProDVa or Chroma, suggesting that the improved plausibility comes at the cost of
local redundancy in sequence design.

(2) CFP-Gen, ProDVa and Pinal can design foldable proteins. These models consistently achieve
high pLDDT and low PAE across different evaluation settings. ProDVa stands out with the best
overall foldability (pLDDT: 72.80–74.73; PAE: 6.11–8.06), while CFP-Gen and Pinal also produce
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structures with good confidence (pLDDT around 69–76; PAE around 11–14). This indicates that their
design strategies are particularly effective at generating sequences that fold into stable 3D structures.

(3) CFP-Gen shows great performance among the keyword-guided baselines, while weak per-
formance among the description-guided baselines. Compared to other keyword-guided baselines
such as ProteinDT, Chroma, or PAAG, CFP-Gen achieves significantly higher alignment with bio-
logical annotations (e.g., IPR Recovery up to 35.21 and GO Recovery up to 21.05). In contrast, its
performance was still less competitive than Pinal and ProDVa.

(4) Baselines perform better on IPR-guided task than GO-guided task. In the single-keyword
setting, models achieve higher recovery performance on the metric that matches the input type. More-
over, using IPR as input generally leads to stronger performance across Plausibility, Foldability, and
most Language Alignment metrics, indicating that IPR annotations provide more precise constraints
for protein design than GO terms.

(5) The IPR&GO-guided task imposes stricter constraints than the other two tasks, while less
than description-guided task. When extending from single- to dual-keyword guidance, we observe
a nuanced trade-off. IPR Recovery increases while GO Recovery decreases, suggesting that IPR
contributes more strongly to functional alignment in this joint setting. Meanwhile, both ProTrek Score
and Retrieval Accuracy are improved, while Plausibility and Foldability remain largely unchanged.
These results imply that combining IPR and GO constraints reduces the design difficulty in terms of
language alignment, enabling models to better converge on functionally consistent sequences without
sacrificing structural quality. Nevertheless, the alignment scores are still higher than those obtained
in the description-guided setting, showing that structured keyword guidance provides clearer signals
for functional targeting, albeit at the cost of reduced novelty and diversity.

4 RETHINKING THE EVALUATION METRICS

In this section, we provide a comprehensive analysis regarding the correlations among different
evaluation metrics on PDFBENCH.

4.1 DOES PPL ACCURATELY REFLECT PLDDT AND PAE?

We begin by exploring to what extent sequence-level metrics reflect protein structures. Folding
proteins into 3D structures using AlphaFold (Jumper et al., 2021) or ESMFold (Lin et al., 2022) is
time-consuming and requires substantial computational resources, particularly for longer sequences.
Previous studies (Hesslow et al., 2022; Ferruz et al., 2022) have observed a correlation between
PPL and pLDDT scores. However, no empirical results or further analyses have been conducted to
investigate the correlation.

Results are randomly sampled from natural proteins with low PPL scores, Chroma-designed proteins
with medium PPL scores, and randomly generated proteins with high PPL scores. Figure 3 presents
the distributions of PPL, pLDDT, and PAE. Proteins with high pLDDT values are predominantly
clustered in the low PPL range, whereas those with low pLDDT values are concentrated in the high
PPL range. For the proteins situated between these two clusters, a negative correlation is observed
between PPL and pLDDT values. Specifically, lower PPL values are generally associated with
higher pLDDT scores. A similar pattern is observed in the distribution of PPL and PAE. Therefore,
we empirically categorize PPL values into three ranges, denoted as low PPL range (values above
500), medium PPL range (values between 500 and 2,000), and high PPL range (values above 2,000).
Additionally, the Pearson correlation (Cohen et al., 2009) in Figure 3(c) highlights the relationships
between PPL, pLDDT, and PAE.

Takeaway I. In the low PPL range, proteins are well-folded, exhibiting high pLDDT scores
and low PAE values. In contrast, proteins in the high PPL range struggle to fold into plausible
structures. Within the medium PPL range, proteins with higher PPL values tend to display lower
pLDDT scores and higher PAE values.
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4.2 DO REPETITIVE PATTERNS LEAD TO LOWER STRUCTURAL PLAUSIBILITY?

Previous research (Wang et al., 2024b) has found that repetitive patterns occurring in amino acid
sequences may result in low pLDDT scores, thereby leading to lower structural plausibility. We
conduct an empirical analysis using the Repeat metric to measure the correlation between this pattern
and foldability. Proteins designed by ESM3 and Pinal exhibit repetitive patterns, as indicated by their
high scores on the Repeat metric. Figure 4 presents the distribution of Repeat scores and pLDDT
and PAE values for proteins randomly sampled from natural sequences and those designed by ESM3
and Pinal. One observation is that when the Repeat score remains relatively low, there is no clear
relationship between Repeat and foldability. In other words, a low Repeat score does not necessarily
indicate that a protein is well-folded. However, when the Repeat score exceeds 10, higher Repeat
values are associated with lower pLDDT scores and higher PAE values. Therefore, it is important to
maintain repetitive patterns below a certain threshold (e.g., Repeat < 10) when designing well-folded
proteins.

Takeaway II. High Repeat scores (typically above 10) in protein sequences are associated with
lower structural plausibility as indicated by lower pLDDT and higher PAE values.

4.3 HOW FAITHFULLY DO DESIGNED PROTEINS ALIGN WITH FUNCTIONAL DESCRIPTIONS?

The most reliable strategy for evaluating the alignment between designed proteins and input textual
descriptions is through wet-lab experiments. However, such experiments are time-consuming and
costly. Therefore, employing computational methods to screen proteins involves a trade-off between
efficiency and accuracy. To more effectively evaluate the functions of designed proteins, both oracle
model-based and retrieval-based metrics have been proposed.

We first investigate whether the two oracle model-based language alignment metrics exhibit con-
sistency in evaluating natural proteins. These two metrics differ in two key perspectives. First, the
ProTrek Score measures similarity between ground truth and designed proteins directly based on
their embeddings, whereas the EvoLlama Score assesses similarity through predicted functional
descriptions. Second, ProTrek is an oracle model pre-trained on large-scale datasets without fur-
ther fine-tuning on specific downstream tasks. In contrast, EvoLlama is trained from scratch on
the downstream task, leading to a distinct intrinsic knowledge distribution between the two oracle
models. Figure 6(a) illustrates the consistency between the ProTrek Score and the EvoLlama Score
for natural proteins sampled from the validation and test sets of our description-guided task. The
results show that most proteins are accurately predicted and tightly clustered in the upper-right corner,
indicating strong agreement between the two metrics. Furthermore, following (Dai et al., 2024)
and the definitions introduced in Section 2.3, we establish empirical score thresholds to identify
well-aligned proteins. Specifically, proteins with a ProTrek Score above 15 and an EvoLlama Score
above 50 are considered to faithfully match the input functional descriptions.

Takeaway III. The ProTrek Score and the EvoLlama Score are two oracle-based metrics that
demonstrate high agreement in evaluating protein functions. Proteins with a ProTrek Score
above 15 and an EvoLlama Score above 50 are considered well-aligned, indicating they faithfully
match the input functional descriptions.

The above discussion has remained focused on the global level of protein function. However, attention
must also be directed toward local sequence alignment within proteins, particularly minor mutations
in functional sub-sequences (motifs). To assess whether ProTrek is sensitive to protein mutations,
we randomly select 1,000 natural proteins from MolinstTest and introduce random mutations with
specified probabilities. The results are illustrated in Figure 5.

Takeaway IV. The ProTrek Score assesses both global alignment between the overall proteins
and the functions, as well as local alignment between motifs and functions.

Next, we discuss the language alignment metrics that do not rely on oracle models. The GT-TM
Score measures the similarity between a designed protein and the ground truth structure. Since
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protein structure determines function, it is generally assumed that structurally similar proteins exhibit
similar functions. However, we argue whether proteins with similar functions can fold into dissimilar
structures. In Figures 6(b) and (c), proteins designed by Pinal and ProDVa are sampled for illustration.
The average score reported in Table 2 is used as the threshold to determine whether the GT-TM
score is considered high. It can be observed that 96.73% of the Pinal-designed proteins with high
similarity to the ground truth exhibit high ProTrek scores (above 15), while 75.89% achieve high
EvoLlama scores (above 50). A similar conclusion can be drawn from the ProDVa-designed proteins,
demonstrating that high structural similarity leads to similar functions. Furthermore, for proteins
with lower structural similarity, no correlation between the two similarities is observed.

Takeaway V. A high GT-TM Score generally indicates functional similarity among structurally
similar proteins. However, high structural similarity is not a prerequisite for designing well-
aligned proteins. Therefore, relying solely on this metric provides limited insight into whether
the designed proteins align well with their functional descriptions.

In addition to the aforementioned metrics, Retrieval Accuracy is a retrieval-based metric that measures
whether the embeddings of the positive function-sequence pair are the most similar among all
candidates. However, this metric is highly dependent on the retrieved sequences. To assess the extent
to which the retrieval strategy influences the results, we further define Soft Retrieval Accuracy and
Hard Retrieval Accuracy. The difference between them lies in whether the T −1 most or least relevant
texts and their corresponding sequences are retrieved in relation to the positive pair. The relevance
between textual descriptions is defined by the cosine similarity of their embeddings. In Figure 7, for
proteins designed by ProDVa and Pinal, the gap between Hard Retrieval Accuracy and Soft Retrieval
Accuracy is 60.64% and 55.82%, respectively. Even for natural proteins, the gap between the two
metrics on the ground truth can be as high as 66.31%. Therefore, the results demonstrate that the
retrieval strategy significantly impacts performance.

Takeaway VI. The retrieval strategy employed in the Retrieval Accuracy metric has a signif-
icant impact on the evaluation results. Randomly sampling the negative pairs can serve as a
workaround, but caution should be exercised when interpreting the absolute values of the metric.

5 RELATED WORK

De novo protein design refers to the process of creating novel proteins from scratch, as opposed
to the modification of existing sequences or structures (Huang et al., 2016). Current approaches
in this field can be broadly categorized into unconditional and conditional generation methods.
While unconditional generation operates without constraints, conditional generation methods—which
guide model output using specific conditions—offer greater practical utility. Within the conditional
generation domain, PDFBench primarily focuses on de novo protein design from function. The detail
of related work is presented in B.

6 CONCLUSION

The field of protein design has experienced growing interest in recent years, particularly in function-
guided approaches. However, the lack of comprehensive and efficient evaluation benchmarks has
hindered progress in this area. To address this gap, we introduce PDFBENCH, a benchmark designed
to evaluate de novo protein design from function. PDFBENCH focuses on four tasks and incorporates
16 metrics to ensure a fair and comprehensive assessment. Additionally, we analyze the utility of
these metrics and their interrelationships, offering deeper insights into de novo protein design and the
alignment between function and protein.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of PDFBENCH, we provide detailed descriptions of dataset curation
(Section 2.1 and Appendix C), baselines (Appendix E), and experimental settings (Appendix F.1).
Codes and datasets are available at the Anonymous GitHub.
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Figure 3: (a) presents the distribution of PPL and pLDDT. (b) displays the distribution of PPL and
PAE. (c) illustrates the Pearson correlation among these metrics. Note that PPL values are categorized
into three ranges: values below 500 indicate a low PPL range, values between 500 and 2,000 represent
a medium PPL range, and values above 2,000 correspond to a high PPL range.
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Figure 4: (a) Distribution of Repeat and pLDDT. (b) Distribution
of Repeat and PAE.

0%(Natural) 10% 20% 30% 40% 50% 60%

Mutation Probability
7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Pr
oT

re
k 

Sc
or

e

Motif
Non-Motif
Overall

Figure 5: Results for random mu-
tations in natural proteins. Motif
and Non-motif indicate mutations
within or outside motif regions.
Overall includes all mutations.

B De novo PROTEIN DESIGN

De novo protein design aims to generate novel proteins and can be categorized into unconditional and
conditional approaches.
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Figure 6: (a) presents the distribution of the ProTrek Score and EvoLlama Score for natural proteins.
(b) and (c) present the distributions of the GT-TM Score, ProTrek Score, and EvoLlama Score for
proteins designed by Pinal and the ProDVa.
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Figure 7: Experimental results are reported for Soft, Random, and Hard Retrieval Accuracy. The
random variant refers to the original implementation.

Unconditional de novo Unconditional design methods generate amino acid sequences without
constraints, employing either autoregressive models (Madani et al., 2023; Ferruz et al., 2022; Hesslow
et al., 2022) or discrete diffusion models (Alamdari et al., 2023; Wang et al., 2024b). Alternatively,
some methods (Watson et al., 2023; Mao et al., 2024; Wang et al., 2024a) adopt a two-stage paradigm:
first generating backbone structures through diffusion in SE(3) space, then predicting corresponding
sequences. Additionally, certain approaches (Ren et al., 2024; Wang et al., 2024) utilize diffusion
processes or energy-based models to jointly generate both backbone structures and sequences.

Conditional de novo Conditional de novo design methods incorporate additional information to
guide the design process, such as specified three-dimensional structures (Harteveld et al., 2022;
Dauparas et al., 2022; Hsu et al., 2022; Gao et al., 2022), secondary structures (Hu et al., 2024),
protein-protein interactions (Zhang et al.), control tags (Nijkamp et al., 2023), or function.

De novo protein design from function De novo protein design from function has recently gar-
nered substantial interest, Existing methods can be categorized as description-guided methods and
keyword-guided methods. Description-guided methods include Chroma (Ingraham et al., 2023),
ProteinDT (Liu et al., 2025b), PAAG (Yuan et al., 2024), Pinal (Dai et al., 2024), ProDVa (Liu et al.,
2025a). Chroma utilizes the diffusion framework to simultaneously design protein structure and
sequence. ProteinDT employs a contrastive learning paradigm to align the representation spaces
of function and protein, achieving over 90% retrieval accuracy on its own evaluation. PAAG in-
troduces a multi-level alignment module that enables simultaneous attention to both protein-level
and domain-level information, resulting in superior performance on success rate metrics compared
to previous approaches. Pinal differs from the end-to-end generation approaches mentioned above
by first generating the protein structure based on function, followed by sequence design informed
by both function and structure. Notably, Pinal utilizes the largest dataset, containing over 1000
times more protein-function pairs than all other methods. ProDVa employs a novel mechanism

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

to dynamically retrieve the most relevant fragments from natural protein sequences based on the
target function, significantly enhancing the method’s performance. Keyword-guided methods include
ProteoGAN (Kucera et al., 2022), ESM3 (Hayes et al., 2025) and CFP-Gen (Yin et al., 2025). Pro-
teoGAN employ a generative adversarial networks (GAN) to design protein sequences for 50 Gene
Ontology terms. ESM3, a cutting-edge multi-modal generative language model, integrates reasoning
over protein sequence, structure, and function. It can respond to complex prompts combining these
modalities and demonstrates high alignment responsiveness, enhancing its predictive fidelity. For
keyword-guided task, it can generate sequences for 29026 IPR entries (nearly three-fifths of the
InterPro). CFP-Gen utilizes the latest generative framework-masked diffusion model-to design protein
sequences for 375 GO terms and 1154 IPR entries. As has been previously mentioned, all of the
aforementioned methods claim to achieve optimal performance in their own reviews (i.e. their own
proposed metrics). The objective of PDFBENCH is to provide a fair and comprehensive benchmark
for evaluating the performance of the 8 novel methods.

C DETAILS OF DATASETS

C.1 MolinstTest

Mol-Instructions (Fang et al., 2023) comprises three key categories of instructions: molecule-oriented,
protein-oriented, and biomolecular text. The protein-oriented instructions3 include a 196K subset,
Protein Design, for de novo protein design, sourced from UniProtKB/Swiss-Prot and UniProtK-
B/TrEMBL. We use the test set of this subset with 5,876 proteins for our evaluation, referred to as
MolinstTest.

C.2 SwissTest

Unlike description-guided tasks, keyword-guided tasks lack a publicly available, high-quality evalua-
tion dataset. To address this gap, we constructed a novel dataset. Specifically, we selected proteins
from UniProt/SwissProt4 released between January 1, 2025, and August 25, 2025, and collected their
corresponding protein sequences, InterPro IDs, and Gene Ontology terms5. To allow description-
guided baselines to participate in the evaluation, we followed the approach of Mol-Instructions (Fang
et al., 2023) by concatenating the text descriptions associated with InterPro entries and Gene Ontology
terms using a prompt. The detailed processing steps are provided in Table 4. We finally curated
a novel dataset containing 1,057 proteins with 1,297 IPR entries and 380 GO terms, referred to as
SwissTest.

Table 4: Prompt and templates for converting keywords into textual description.

Prompt
Generate a protein sequence for a novel protein that integrates the following function keywords:

{textual annotations for all keywords connected by semicolons}. The designed protein sequence is

Keyword Type Template

InterPro (Domain) The protein should contain one or more {domains} that are essential for its biological function

InterPro (Family) The protein should belong to {familys} that shares evolutionary origin and functional similarity

InterPro (Homologous_Superfamily) The protein should be classified within {homologous superfamilys} sharing conserved structural features

InterPro (Repeat) The protein should include one or more {repeat} that provide structural or functional support

InterPro (Conserved_Site) The protein should contain {conversed sites} that is preserved across related proteins

InterPro (Active_Site) The protein must have {activate sites} that is conserved among related catalytic enzymes

InterPro (Binding_Site) The protein should include a {binding sites} that enables ligand binding under diverse conditions

InterPro (PTM) The protein should contain {PTM(s)} that allow regulation through chemical modifications

Gene Ontology (Molecular Function) The protein must be able to perform the {molecular functions} required for its activity

3https://huggingface.co/datasets/zjunlp/Mol-Instructions
4https://www.uniprot.org/uniprotkb?query=*
5Search with (date_created:[2025-01-01 TO 2025-08-25]) AND (reviewed:true)
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C.3 FAIRNESS ANALYSIS

For the description-guided task, the MolinstTest is excluded from the training process of all se-
lected baseline models, including ProteinDT (Liu et al., 2025b), Chroma (Ingraham et al., 2023),
PAAG (Yuan et al., 2024), Pinal (Dai et al., 2024), and ProDVa (Liu et al., 2025a). For the keyword-
guided task, we apply a datetime cutoff and exclude all proteins and their corresponding keyword
annotations dated prior to January 1, 2025, thereby strictly preventing potential data leakage. There-
fore, there is no risk of data contamination (hard overlaps) during the evaluation.

While we also consider soft overlap settings (i.e., cases involving similar functions or sequences),
in PDFBENCH, functions are provided as inputs, and the model is tasked with designing novel
proteins (outputs) aligned with these functions. The model’s predictions are conditioned solely on
the provided functions, and any overlap in outputs across splits neither confers an unfair advantage
nor compromises the integrity of the evaluation. Therefore, the presence of similar proteins does not
constitute data contamination in the conventional sense and has minimal impact on the evaluation. For
soft overlaps in similar functions, we conduct experiments to validate the fairness of our evaluation
on the three baselines with publicly available training set, including ProDVa (Liu et al., 2025a),
ProteinDT (Liu et al., 2025b), and PAAG (Yuan et al., 2024). First, we use ProTrek (Su et al.,
2024) to compute the embeddings of the functions and sequences in the three training sets and
MolinstTest. Then, for each function–sequence pair in MolinstTest, if an identical sequence exists in
the corresponding training set, we compute the cosine similarity between ProTrek embeddings of the
function in MolinstTest and the corresponding function in the training set. If the similarity exceeds
the Threshold, it is considered a soft overlap. We categorize the baseline results on MolinstTest
into two groups based on the presence or absence of overlap, as shown in Table 5. The analysis
shows that, for ProDVa and ProteinDT, excluding soft overlaps has a positive impact on Perplexity
(up to 2.12%), ProTrek Score (up to 2.74%), and Retrieval Accuracy (up to 4.56%). We observe
minimal impact on foldability, despite slight improvements in pLDDT and PAE when soft overlaps
are included. Additionally, for PAAG, the impact of including soft overlaps is consistently minimal
across all metrics.

Table 5: Soft overlap analysis on MolinstTest. Results including soft overlaps are presented in
parentheses, while those excluding soft overlaps are shown outside the parentheses.

Models #Threshold (#Num) Perplexity ↓ pLDDT ↑ PAE ↓ ProTrek Score ↑ Retrieval Accuracy ↑

ProDVa

0.0 (5876) - (7.63) - (76.86) - (8.66) - (17.40) - (66.83)
0.1 (1626) 7.13 (8.95) 76.75 (77.06) 9.08 (7.61) 18.16 (15.42) 67.93 (63.37)
0.3 (185) 7.56 (9.68) 76.81 (77.61) 8.72 (7.42) 17.49 (14.78) 66.83 (61.62)
0.5 (14) 7.63 (9.63) 76.83 (79.21) 8.68 (7.51) 17.41 (14.71) 66.67 (66.67)
0.7 (2) 7.63 (5.54) 76.84 (78.23) 8.68 (5.67) 17.40 (23.80) 66.66 (100.00)

ProteinDT

0.0 (5876) - (12.41) - (38.29) - (25.13) - (1.20) - (16.92)
0.1 (1524) 12.45 (12.29) 37.50 (40.55) 25.12 (25.17) 1.06 (1.59) 16.35 (17.15)
0.3 (112) 12.40 (12.49) 38.26 (39.77) 25.13 (25.29) 1.20 (1.05) 16.60 (14.58)

0.5 (5) 12.41 (11.55) 38.29 (44.35) 25.13 (26.21) 1.20 (1.96) 16.56 (13.33)
0.7 (0) - - - - -

PAAG

0.0 (5876) - (17.84) - (28.39) - (25.38) - (1.29) - (13.43 )
0.1 (749) 17.85 (17.79) 28.37 (28.53) 25.36 (25.47) 1.18 (2.00) 12.65 (14.11)
0.3 (698) 17.85 (17.79) 28.38 (28.49) 25.36 (25.51) 1.20 (1.89) 12.67 (14.04)
0.5 (579) 17.85 (17.79) 28.40 (28.29) 25.36 (25.55) 1.24 (1.74) 12.67 (14.28)
0.7 (318) 17.84 (17.83) 28.40 (28.20) 25.37 (25.57) 1.27 (1.53) 12.70 (15.09)

D DETAILS OF METRICS

D.1 PLAUSIBILITY

Repetitiveness We use the RepN metric to reflect the repetition at n-gram levels in the designed
protein sequence P . Additionally, we propose a metric, Repeat, to more accurately evaluate the
proportion of repetitive sequence fragments from a biological perspective.
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Rep-n = 100× (1.0− unique n-grams(P )

total n-grams(P )
)

Algorithm 1 Compute Repeat

Require: sequence ̸= ∅
Ensure: proportion ∈ [0.0, 1.0]
n← sequence
if n = 0 then

return 0.0
end if
regions← ∅
max_window_size← min

(
20, ⌊n/2⌋

)
for window_size = 1 to max_window_size do

for i = 0 to n− window_size do
pattern← sequence[i : i+ window_size]
count← 1
j ← i+ window_size
while j ≤ n− window_size and sequence[j:j+window_size] = pattern do
count← count+ 1
j ← j + window_size

end while
if count ≥ 3 then

regions← regions ∪ {(i, i+ window_size× count)}
end if

end for
end for
if regions = ∅ then

return 0.0
end if
merged← sorted and merged regions
total_repeat←

∑
(start,end)∈merged(end− start)

proportion← total_repeat/n
return proportion

D.2 LANGUAGE ALIGNMENT

ProTrek Score Given a designed sequence P and respective description T , ProTrek score is
defined as:

ProTrek Score = cos(τseq(P ), τtext(T ))/t

whereτseq(P ), τtext(T ) and t represent the protein sequence encoder, text encoder and temperature of
ProtTrek, respectively.

EvoLlama Score In addition to the ProTrek Score, we employ a generative approach for alignment
evaluation using EvoLlama (Liu et al., 2024). Specifically, we utilize EvoLlama, which comprises a
650M ESM2 protein sequence encoder and a 3B Llama-3.2 text decoder. The model is randomly
initialized and trained from scratch using the SwissMolinst dataset described in Liu et al. (2025a).
Given the designed protein P and respective function description t, we prompt the P with The
function of the protein is and fetch EvoLlama-generated function description t′ with it.
Assume that the t and t′ can be tokenized into k and k′ tokens, respectively. The EvoLlama Score is
defined as follows:

EvoLlama Score = sim(
1

k

k∑
i=1

Embed(t),
1

k′

k′∑
i=1

Embed(t′))

where Embed(·) denotes using PubMedBERT (Gu et al., 2021) as the embedding model.
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Keyword Recovery Given the designed sequence P and ground truth sequence GT , IPR Recovery
and GO Recovery are defined as:

IPR Recovery =


InterProScan(P ) ∩ InterProScanE(GT )

InterProScan(GT )
, if InterProScanO(GT ) ̸= ∅,

N/A, if InterProScan(GT ) = ∅.

GO Recovery =


DeepGO-SE(P ) ∩DeepGO-SE(GT )

DeepGO-SE(GT )
, if DeepGO-SE(GT ) ̸= ∅,

N/A, if DeepGO-SE(GT ) = ∅.

Retrieval Accuracy Retrieval Accuracy is obtained with a well-pretrained model, i.e. ProTrek:
Given the designed sequence P , respective description T0 and N randomly selected descriptions as
negative pool N = (T1, T2, ..., TN−1) from testing set, retrieval accuracy is defined as:

Retrieval Accuracy = [cos(τseq(P ), τtext(T0)) ≥ cos(τseq(P ), τtext(Ti)), ∀i ∈ N ]

D.3 SIMILARITY

GT-Identity Given the designed sequence P and ground truth sequence GT , we compute the
GT-Identity with the align module of MMseqs (Kallenborn et al., 2024).

GT-Identity = MMseqsalign(P,GT )

ESMScore Following the formula in (Zhang* et al., 2020), we compute the BertScore between
the ground truth sequence GT and the designed sequence P using ESM-2-650M (Lin et al., 2022),
namely ESMScore.

GT-TMscore We measures the GT-TMscore between the ESMFold-predicted structures between
the design sequence P and the ground truth sequence GT using TMscore.

GT-TMscore = TMscore(StructureP ,StructureGT )

D.4 NOVELTY

Sequence Novelty Initially, MMseqs2 is utilized to retrieve the num_prot most similar sequences
and the respective similarity simi of the designed sequence P to UniProtKB. Subsequently, it is
possible to obtain each novelty novi via 1− simi if a match sequence is present, otherwise 1. Finally,
Novelty-SeqEasy and Novelty-SeqHard can be defined as:

Novelty-SeqEasy =

∑
novi

num_prot
, Novelty-SeqHard = 1−max

i
simi

Stucture Novelty Similar to the Sequence Novelty, given the designed sequence P , Foldseek (Kim
et al.) is used to retrieve the num_prot most similar structures and their respective similarities simi

between the ESMFold-predicted structure StructureP to AlphafoldDB/SwissProt6.The values of
noviare then obtained in the same manner as for Sequence Novelty. Finally, Novelty-StructEasy and
Novelty-StructHard can be defined as:

Novelty-StructEasy =

∑
novi

numprot
, Novelty-StructHard = 1−max

i
simi

6https://alphafold.ebi.ac.uk/download#swissprot-section
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D.5 DIVERSITY

Sequence Diversity Given the N sequences P = (P1, P2, ..., PN ) designed from the same descrip-
tion, we employ MMseqs2 to compute the similarity between each pair of sequences in P . The same
as Novelty, we obtain each diversity divi via 1− simi if the similarity between two sequences can be
computed, otherwise 1, which means the two sequences are totally different. Finally, Diversity-Seq is
defined as:

Diversity-Seq =

∑
divi

N(N − 1)

Structure Diversity Given the N sequences P = (P1, P2, ..., PN ) designed from the same descrip-
tion and their corresponding ESMFold-predicted structures S = (S1, S2, ..., SN ), we use Foldseek to
compute pairwise structural similarities within S , , yielding similarity scores simi and corresponding
diversity values divi. Finally, Diversity-Struct is defined as:

Diversity-Struct =
∑

divi
N(N − 1)

E DETAILS OF BASELINES

E.1 DESCRIPTION-GUIDED DESIGN BASELINES

Chroma Chroma (Ingraham et al., 2023) is a diffusion-based and programmable generation model
for proteins. It employs a structured diffusion process that takes the physical properties of proteins as
polymer chains into consideration. Chroma not only generates protein sequences using functional
keywords, but it is also highly "programmable": users can guide the generation process using
composable conditioners to enforce constraints such as symmetry, substructure, shape, or semantic
properties (e.g., protein class, text prompts).

ProteinDT ProteinDT (Liu et al., 2025b) is a multimodal framework that utilizes function descrip-
tions to guide protein design. The fundamental principle underpinning the system is ProteinCLAP
(Contrastive LAnguage and Protein), which employs comparative learning to align description and
protein sequence representations within a shared embedding space. The framework is composed
of three sequential steps: ProteinCLAP aligns the representation, a facilitator maps the text embed-
ding to the protein representation, and a autoregressive decoder generates a sequence based on this
representation.

PAAG PAAG (Yuan et al., 2024) is a multimodal framework that focuses on both functional
descriptions and functional keywords. It employs a multilevel alignment module that aligns protein
sequences and description/keywords at the global and local levels. Subsequently, an autoregressive
decoder is employed to generate protein sequences based on the aligned annotation representations.

Pinal Pianl (Dai et al., 2024) is a large-scale(up to 16B parameters) de novo protein design
framework intended to translate natural language instructions into novel protein sequences. In lieu of
direct text-to-sequence generation, Pinal adopts a two-stage approach: first, protein structures are
generated from linguistic descriptions; then, sequences are designed based on the generated structures
and the original linguistic input. This strategy employs the relatively restricted structure space as a
preliminary step to efficiently constrain the extensive sequence search space.

ProDVa ProDVa (Liu et al., 2025a) is a multimodal protein design framework that combines textual
function descriptions with insights from natural protein fragments to create sequences that are both
functionally aligned and structurally plausible. It integrates a text encoder, a protein language model,
and a fragment encoder that dynamically retrieves the most relevant fragments based on the desired
function.
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E.2 KEYWORD-GUIDED DESIGN BASELINES

ProteoGAN ProteoGAN (Kucera et al., 2022) is a conditional generative adversarial network
designed to generate novel protein sequences based on functional labels from the Gene Ontology
(GO).

ESM3 ESM3 (Hayes et al., 2025) is a large-scale (up to 98 billion parameters) multimodal genera-
tive language model designed to simulate protein evolution. It represents protein sequence, structure,
and function as discrete tokens processed within a unified latent space. ESM3 is trained using
a generative masked language modeling (MLM) objective, predicting randomly masked tokens
across modalities to learn their complex interrelationships. The model can follow complex prompts
combining sequence, structure, and function information.

CFP-Gen CFP-Gen (Yin et al., 2025) is a novel diffusion language model designed for generating
functional proteins by simultaneously integrating multiple constraints from different modalities,
including function, sequence, and structure. It employs an Annotation-Guided Feature Modulation
(AGFM) module to control protein features using functional annotations and a Residue-Controlled
Functional Encoding (RCFE) module for precise residue-level control.

F DETAILS OF RESULTS

F.1 EXPERIMENT SETTING

We implement the baselines as follows,

Description-guided For description-guided baselines (ProDVa, Pinal, PAAG, Chroma, ProteinDT),
we directly use the description as input to prompt the model to generate sequences.

Keyword-guided Keyword-guided baselines only support restricted keywords, necessitating addi-
tional data processing. For InterPro entries unsupported by ESM3 and CFP-Gen, we opted to skip
these keywords to ensure comparative fairness. For Gene Ontology terms unsupported by ProteoGAN
and CFP-Gen, we attempted to find their ancestor terms in the GO database for substitution; if none
were found, we skipped the term.

All baselines We evaluated using the official baseline implementation and weights provided. The
results are averaged across three runs with different random seeds to ensure fairness. Additionally,
no further fine-tuning is performed on any of the baselines to ensure a fair evaluation of the models’
capability to design novel and functional proteins under the same settings.

F.2 COMPLETE RESULTS FOR THE DESCRIPTION-GUIDED TASK

Results on keyword-guided task are in Table 6, Table 7 and Table 8. We mark the top three models,
with deeper colors indicating superior performance.

Table 6: Benchmark results of Plausibility and foldability for the description-guided task.

Models
Perplexity Repetitveness Foldability

PPL-ProtGPT2 ↓ PPL-ProGen ↓ PPL-RITA ↓ Repeat ↓ Rep-2 ↓ Rep-5 ↓ pLDDT ↑ % > 70 ↑ PAE ↓ % < 10 ↑
Natural 318.15 5.99 5.52 1.99 44.49 0.25 80.64 81.16 9.20 65.64

Random(U) 2484.04±4.53 21.71±0.00 22.14±0.01 0.72±0.01 34.59±0.03 0.01±0.00 22.96±0.04 0.16±0.04 24.85±0.01 0.56±0.03
Random(E) 3136.88±4.17 18.68±0.00 19.04±0.00 1.15±0.01 40.99±0.01 0.01±0.00 25.77±0.03 0.19±0.06 24.71±0.01 0.60±0.03

ProteinDT 1576.23±4.32 12.41±0.01 12.44±0.01 6.83±0.10 62.47±0.14 2.82±0.05 38.29±0.04 0.98±0.17 25.13±0.02 0.40±0.09
Chroma 1370.21±1.48 12.19±0.00 12.42±0.01 2.59±0.02 55.41±0.03 0.60±0.01 59.18±0.09 20.17±0.23 15.03±0.04 28.62±0.62
PAAG 2782.70±9.63 17.84±0.01 18.05±0.02 2.34±0.02 45.83±0.03 0.09±0.01 28.39±0.07 0.07±0.03 25.38±0.01 0.10±0.03
Pinal 308.97±0.68 5.81±0.02 5.78±0.02 12.83±0.13 58.26±0.16 4.73±0.06 75.25±0.19 68.93±0.33 10.96±0.10 58.41±0.38
ProDVa 415.64±7.40 7.63±0.09 8.83±0.17 1.92±0.05 35.65±0.15 2.81±0.13 76.84±0.17 76.27±0.59 8.67±0.05 67.65±0.43

F.3 COMPLETE RESULTS FOR THE KEYWORD-GUIDED TASK

Results on keyword-guided task are in Table 9, Table 10 and Table 11. We mark the top three models,
with deeper colors indicating superior performance.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Benchmark results of Language Alignment for the description-guided task.

Models
Model-based Alignment Retrieval-based Alignment

ProTrek Score ↑ EvoLlama Score ↑ Soft(4) ↑ Soft(10) ↑ Soft(20) ↑ Normal(4) ↑ Normal(10) ↑ Normal(20) ↑ Hard(4) ↑ Hard(10) ↑ Hard(20) ↑
Natural 27.00 60.33 98.50 97.17 96.09 93.72 89.01 85.11 43.23 33.20 29.78

Random(U) 1.03±0.04 36.22±0.07 28.09±0.83 12.62±0.29 6.94±0.20 28.97±0.38 12.83±0.52 7.16±0.29 25.95±0.52 10.57±0.40 5.38±0.39
Random(E) 1.04±0.05 34.11±0.10 28.35±0.62 12.83±0.51 6.73±0.66 28.97±0.62 12.59±0.29 6.84±0.39 25.79±0.45 10.39±0.67 5.46±0.45

ProteinDT 1.20±0.06 40.57±0.05 42.91±0.68 24.97±1.33 16.77±1.16 34.58±0.99 16.56±0.44 9.43±0.33 25.09±1.17 10.38±0.55 5.01±0.43
Chroma 2.10±0.02 40.10±0.23 29.54±0.59 13.43±0.18 7.41±0.22 29.63±0.58 13.26±0.50 7.44±0.21 25.51±0.47 10.68±0.43 5.73±0.19
PAAG 1.29±0.04 34.39±0.18 33.33±0.25 15.24±0.33 8.27±0.20 29.63±0.70 12.83±0.14 6.87±0.17 25.19±0.65 10.13±0.34 4.96±0.23
Pinal 17.50±0.09 53.40±0.31 82.42±0.45 74.44±0.63 69.99±0.67 71.69±0.59 63.53±0.24 58.43±0.48 29.51±0.31 17.89±0.26 14.17±0.27
ProDVa 17.40±0.06 51.19±0.17 85.64±0.06 77.37±0.44 72.75±0.61 77.52±0.28 66.67±0.37 59.03±0.44 27.84±0.71 15.77±0.29 12.11±0.28

Table 8: Benchmark results of Similarity, Novelty, and Diversity for the description-guided task.

Models
Similarity Novelty Diversity

GT-Identity ↑ GT-TMScore ↑ ESM-F1 ↑ ESM-Precision ↑ ESM-Recall ↑ SeqEasy ↑ SeqHard ↑ StructEasy ↑ StructHard ↑ Sseq ↑ Struct ↑
Natural 100.00 100.00 100.00 100.00 100.00 36.11 4.90 38.51 13.56 - -

Random(U) 0.37±0.03 16.95±0.03 71.06±0.02 81.66±0.02 63.46±0.02 98.77±0.03 58.14±0.07 96.82±0.03 77.64±0.12 97.01 81.59
Random(E) 0.23±0.04 17.10±0.00 71.95±0.02 82.51±0.02 64.35±0.02 98.45±0.01 60.19±0.14 96.25±0.04 76.82±0.10 99.56 81.45

ProteinDT 0.18±0.02 13.94±0.03 72.80±0.05 81.44±0.03 66.38±0.05 96.92±0.12 70.74±0.07 94.68±0.02 71.16±0.08 99.23 83.67
Chroma 0.22±0.04 17.93±0.02 72.82±0.02 80.22±0.03 67.06±0.01 97.28±0.02 58.68±0.09 80.99±0.04 51.06±0.21 96.13 79.9
PAAG 0.17±0.02 14.63±0.03 73.26±0.03 83.10±0.02 66.04±0.03 98.90±0.02 63.64±0.09 96.44±0.03 77.34±0.12 99.15 82.16
Pinal 18.65±0.15 23.75±0.14 76.63±0.06 77.74±0.08 75.99±0.06 55.55±0.19 43.82±0.22 40.07±0.33 17.23±0.23 82.96 72.73
ProDVa 21.48±0.15 20.03±0.11 75.23±0.01 77.01±0.05 74.11±0.02 38.23±0.31 14.64±0.23 56.18±23.36 36.31±33.02 83.29 36.92

Table 9: Benchmark results of Plausibility and Foldability for the keyword-guided task.

Models
Perplexity Repetitveness Foldability

PPL-ProtGPT2 ↓ PPL-ProGen ↓ PPL-RITA ↓ Repeat ↓ Rep-2 ↓ Rep-5 ↓ pLDDT ↑ % > 70 ↑ PAE ↓ % < 10 ↑
guided with GO keywords

Natural 554.35 9.17 8.89 2.17 44.43 0.43 76.92 72.44 10.54 54.69

Random(U) 2473.84 21.74 22.18 0.72 35.52 0.01 23.20 0.10 24.56 0.19
Random(E) 3096.13 18.68 19.05 1.14 41.45 0.02 25.99 0.05 24.47 0.24

ProteoGAN 2708.39 18.03 18.31 2.50 42.73 0.03 28.72 0.06 24.67 0.12
CFP-Gen 187.72 5.16 4.65 12.67 59.67 13.82 73.38 65.65 14.61 35.20
ProteinDT 1531.76 12.23 12.29 7.98 64.01 3.32 40.35 1.15 25.57 0.00
Chroma 1354.61 12.18 12.40 2.71 55.09 0.67 59.27 22.17 15.00 30.93
PAAG 2650.36 18.08 18.38 2.48 39.23 0.05 31.47 0.34 23.88 0.24
Pinal 414.26 6.85 6.89 14.13 59.84 4.85 72.58 62.10 11.79 52.19
ProDVa 486.77 11.16 18.71 1.87 22.04 0.88 74.73 68.40 6.11 84.90

guided with IPR keywords

Natural 611.99 9.73 9.47 2.23 44.05 0.48 75.77 68.85 11.13 50.92

Random(U) 2475.07 21.76 22.21 0.69 35.18 0.01 23.40 0.08 24.42 0.11
Random(E) 3104.89 18.67 19.05 1.16 40.91 0.02 26.29 0.08 24.34 0.19

ESM3 330.44 6.33 6.59 28.13 68.98 21.11 60.90 32.93 16.73 22.68
CFP-Gen 135.57 4.94 5.03 11.86 59.17 13.57 76.36 72.52 12.54 47.23
ProteinDT 1506.64 11.87 11.93 10.02 65.68 5.83 37.59 0.04 26.19 0.00
Chroma 1336.19 12.17 12.39 2.60 54.53 0.54 59.76 23.75 14.67 31.38
PAAG 2748.12 17.85 18.06 2.32 44.78 0.08 30.89 0.11 24.98 0.19
Pinal 525.38 8.12 8.22 16.73 59.97 6.32 65.69 44.90 14.10 36.13
ProDVa 574.60 12.47 19.07 1.99 21.64 1.51 72.80 60.65 6.86 79.92

guided with IPR&GO keywords

Natural 534.49 8.96 8.66 2.16 45.01 0.44 77.17 73.15 10.48 54.90

Random(U) 2482.06 21.72 22.14 0.73 36.12 0.01 22.85 0.00 24.72 0.00
Random(E) 3120.95 18.68 19.03 1.14 42.08 0.02 25.60 0.00 24.59 0.00

CFP-Gen 163.51 5.23 5.23 13.14 59.86 14.17 72.70 60.90 14.45 42.69
ProteinDT 1697.89 12.81 12.87 6.81 63.58 2.91 36.46 0.20 25.75 0.00
Chroma 1360.90 12.19 12.40 2.53 55.65 0.56 58.71 19.29 15.33 29.72
PAAG 2807.41 17.80 17.98 2.32 47.64 0.09 30.05 0.00 25.69 0.00
Pinal 442.23 7.39 7.49 16.22 59.71 6.07 69.32 53.56 12.97 42.53
ProDVa 500.40 10.48 13.61 2.61 28.73 3.89 74.26 67.46 8.06 72.16

G LIMITATIONS

In this study, we conducted a fair and comprehensive benchmark of two tasks, 8 models, including
ProteinDT, Chroma, PAAG, Pinal, ProDVa, ProteoGAN, ESM3, CFP-Gen across all 16 metrics.
For keyword-guided tasks, to ensure a fair comparison, we restricted the evaluation dataset to 1,057
proteins released between January 1, 2025, and August 25, 2025. It should be noted that this limited
dataset size may affect the reliability of the evaluation results.
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Table 10: Benchmark results of Language Alignment for the keyword-guided task.

Models
Model-based Alignment Retrieval-based Alignment

ProTrek Score ↑ IPR Recovery ↑ GO Recovery ↑ Soft(4) ↑ Soft(10) ↑ Soft(20) ↑ Normal(4) ↑ Normal(10) ↑ Normal(20) ↑ Hard(4) ↑ Hard(10) ↑ Hard(20) ↑
guided with GO keywords

Natural 21.60 100.00 100.00 94.52 92.78 89.75 87.59 77.49 69.41 37.23 28.72 26.70

Random(U) 4.29 0.00 20.79 30.06 14.00 7.50 26.89 10.00 5.05 30.01 9.72 5.05
Random(E) 3.44 0.00 11.71 29.87 12.41 6.69 27.08 11.06 5.96 28.62 11.98 5.87

ProteoGAN 4.42 0.00 14.99 38.64 19.84 10.27 32.70 13.84 8.13 27.16 10.90 5.65
CFP-Gen 10.03 9.67 18.98 66.24 57.40 47.39 53.46 38.87 30.09 27.80 13.37 8.15
ProteinDT 1.70 0.03 18.52 37.52 16.59 8.90 34.05 15.39 8.51 27.08 12.51 6.30
Chroma 1.84 0.23 16.33 32.13 13.80 7.74 27.90 12.07 5.92 27.99 12.22 5.15
PAAG 4.38 0.00 21.66 38.58 20.49 11.16 34.10 16.45 8.85 31.36 12.07 6.30
Pinal 12.69 19.26 22.76 73.98 61.90 56.66 61.52 49.93 42.95 35.88 21.26 17.89
ProDVa 14.42 20.22 30.24 86.48 71.38 55.80 66.43 52.38 45.07 35.93 21.45 18.13

guided with IPR keywords

Natural 25.29 100.00 100.00 98.51 96.67 95.17 91.72 83.22 75.75 40.80 32.76 30.69

Random(U) 7.53 0.00 25.75 27.70 10.84 6.44 26.44 11.72 6.21 28.05 9.85 4.87
Random(E) 6.11 0.00 13.06 27.62 13.18 8.01 28.51 12.80 6.74 26.36 11.34 5.48

ESM3 6.22 20.17 15.43 55.41 37.77 31.64 48.31 33.01 26.47 29.82 14.69 10.69
CFP-Gen 10.21 32.79 23.41 64.47 50.78 43.36 55.90 40.96 34.38 29.36 15.88 12.43
ProteinDT 3.85 0.08 20.76 40.38 22.68 13.83 34.44 16.13 9.23 26.82 10.92 5.63
Chroma 3.82 0.17 17.15 37.13 17.05 9.27 29.35 13.68 6.78 27.20 11.15 5.25
PAAG 5.98 0.08 13.85 32.07 14.41 9.58 30.69 14.37 7.78 26.90 11.46 6.05
Pinal 14.38 25.63 15.93 80.96 70.88 64.21 71.00 57.59 48.24 31.88 20.31 16.59
ProDVa 15.19 24.58 26.59 80.15 64.90 57.05 65.29 51.99 44.44 33.26 20.73 15.90

guided with IPR&GO keywords

Natural 27.36 100.00 100.00 99.55 99.11 98.96 93.62 87.39 79.82 45.85 36.65 34.27

Random(U) 4.84 0.00 25.38 29.77 12.86 5.64 26.36 9.45 4.50 26.41 9.69 4.75
Random(E) 3.72 0.00 14.67 30.42 12.12 5.93 27.00 11.28 6.28 26.56 10.29 5.24

CFP-Gen 11.68 35.21 23.31 73.97 63.46 59.23 57.95 45.77 35.51 29.36 15.00 11.54
ProteinDT 3.06 0.36 15.92 47.08 29.13 19.63 38.72 19.29 9.99 27.45 10.48 5.39
Chroma 2.19 0.16 14.12 32.29 14.34 8.56 28.83 11.67 6.38 27.00 11.67 5.79
PAAG 4.66 0.02 9.77 28.24 14.14 7.22 28.19 11.82 6.03 29.08 12.17 6.08
Pinal 15.26 33.08 21.64 82.34 73.10 68.55 72.50 60.88 52.62 34.47 21.76 18.50
ProDVa 16.78 30.95 25.24 82.54 74.18 69.24 71.51 61.23 52.97 33.88 22.45 19.93

Table 11: Benchmark results of Similarity, Novelty and Diversity for the keyword-guided task.

Models
Similarity Novelty Diversity

GT-Identity ↑ GT-TMScore ↑ ESM-F1 ↑ ESM-Precision ↑ ESM-Recall ↑ SeqEasy ↑ SeqHard ↑ StructEasy ↑ StructHard ↑ Seq ↑ Struct ↑
guided with GO keywords

Natural 100.00 100.00 100.00 100.00 100.00 44.34 4.07 56.96 18.15 - -

Random(U) 0.84 16.76 73.37 82.81 66.40 98.66 58.04 96.54 76.75 94.29 81.56
Random(E) 0.63 17.03 74.24 83.70 67.24 98.44 60.28 95.85 75.92 98.65 81.54

ProteoGAN 0.28 14.75 74.25 84.37 66.84 99.13 65.24 96.19 75.82 98.94 84.37
CFP-Gen 2.30 13.98 67.52 68.36 67.46 59.60 47.85 54.07 28.28 85.14 81.76
ProteinDT 0.20 12.67 74.83 82.67 68.93 99.28 75.41 96.29 74.62 99.7 84.53
Chroma 0.38 17.67 74.29 80.80 69.15 97.44 59.35 80.22 50.88 93.70 79.79
PAAG 0.16 16.22 75.40 84.22 68.77 98.80 62.36 95.20 73.36 98.57 81.73
Pinal 5.35 15.84 71.36 72.24 71.06 61.98 46.06 46.42 19.27 87.61 79.00
ProDVa 9.07 20.25 72.54 75.81 70.25 48.37 25.02 62.12 32.72 98.17 35.76

guided with IPR keywords

Natural 100.00 100.00 100.00 100.00 100.00 44.92 4.47 59.46 20.09 - -

Random(U) 0.88 16.69 73.97 82.79 67.38 98.70 57.21 96.37 76.47 94.44 81.56
Random(E) 0.70 16.85 74.79 83.65 68.16 98.44 59.57 95.62 75.05 98.58 81.46

ESM3 4.43 21.30 72.22 75.06 69.96 85.30 71.87 73.80 37.56 91.41 76.79
CFP-Gen 7.75 16.73 66.82 68.61 65.74 63.79 49.46 50.44 23.15 85.31 82.08
ProteinDT 0.13 12.38 75.23 82.13 70.07 99.08 73.57 96.64 76.03 99.71 84.81
Chroma 0.38 17.45 74.81 80.85 70.00 97.35 59.25 80.19 50.77 94.06 79.88
PAAG 0.26 14.37 76.19 84.43 69.93 98.93 64.71 96.66 79.23 99.16 81.48
Pinal 6.70 17.23 74.14 76.19 72.59 74.01 51.61 60.24 27.00 87.02 80.38
ProDVa 7.39 20.75 73.31 76.62 70.99 51.80 28.86 65.58 31.26 95.02 45.60

guided with IPR&GO keywords

Natural 100.00 100.00 100.00 100.00 100.00 43.23 3.89 56.17 17.72 - -

Random(U) 0.85 16.73 73.09 82.66 66.02 98.85 57.48 96.58 77.18 94.24 81.73
Random(E) 0.69 16.89 73.97 83.59 66.85 98.54 60.06 95.79 75.98 98.39 81.57

CFP-Gen 8.00 16.12 66.07 68.60 64.41 65.78 54.72 52.97 28.89 80.61 81.91
ProteinDT 0.29 13.08 74.91 82.88 68.91 98.75 71.44 96.53 75.73 99.39 84.18
Chroma 0.29 17.51 74.09 80.76 68.84 97.49 59.36 80.76 51.45 94.27 79.97
PAAG 0.20 13.77 75.52 84.45 68.81 99.12 65.07 97.22 81.53 99.22 81.51
Pinal 9.41 18.11 74.00 75.46 73.01 66.95 49.03 54.41 22.43 85.20 78.20
ProDVa 10.08 19.36 73.11 75.47 71.48 46.43 21.97 60.12 24.20 91.94 52.18
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