
000 PDFBENCH: A BENCHMARK FOR *De novo* PROTEIN 001 DESIGN FROM FUNCTION 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Function-guided protein design is a crucial task with significant applications in
007 drug discovery and enzyme engineering. However, the field lacks a unified and
008 comprehensive evaluation framework. Current models are assessed using incon-
009 sistent and limited subsets of metrics, which prevents fair comparison and a clear
010 understanding of the relationships between different evaluation criteria. To ad-
011 dress this gap, we introduce PDFBENCH, the first comprehensive benchmark for
012 function-guided *de novo* protein design. Our benchmark systematically evaluates
013 eight state-of-the-art models on 16 metrics across two key settings: description-
014 guided design, for which we repurpose the Mol-Instructions dataset, originally
015 lacking quantitative benchmarking, and keyword-guided design, for which we
016 introduce a new test set, *SwissTest*, created with a strict datetime cutoff to ensure
017 data integrity. By benchmarking across a wide array of metrics and analyzing their
018 correlations, PDFBENCH enables more reliable model comparisons and provides
019 key insights to guide future research.¹

020 1 INTRODUCTION

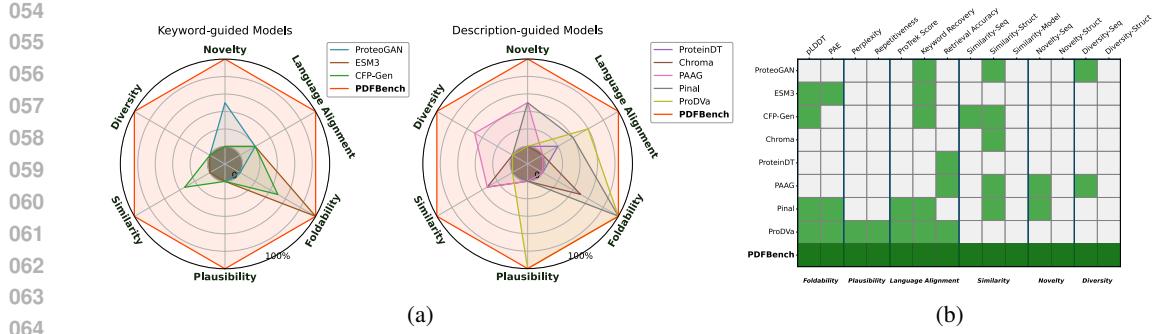
021 Proteins are essential macromolecules that play a key role in many biological processes by performing
022 a wide range of functions. Protein design (Huang et al., 2016; Albanese et al., 2025) is of great
023 significance in areas such as enzyme engineering (Planas-Iglesias et al., 2021; Kries et al., 2013)
024 and drug discovery (Hung & Chen, 2014; Tiwari & Singh, 2022). Compared with unconditional
025 generation (Ferruz et al., 2022), generation guided by specific functions (Lee et al., 2024) or control
026 tags (Hayes et al., 2025), protein design based on user-specified functions provides greater practical
027 value (Liu et al., 2025b; Madani et al., 2023). Current protein design from function tasks can be
028 categorized into two types, description-guided (which utilizes textual functional descriptions as input)
029 and keyword-guided (which employs function keywords such as InterPro (IPR) (Hunter et al., 2009)
030 entries or Gene Ontology (GO) (gen, 2021) terms as input).

031 To build protein design models, choosing proper evaluation metrics is crucial. Various metrics (e.g.,
032 language alignment, foldability) are applied in the literature, but different models are usually evaluated
033 in different ways. In Figure 1, we list existing evaluation metrics and depict how typical protein
034 design models are evaluated against them. It shows that among the eight representative models, only
035 half of them assess foldability, and only quarter of them evaluate novelty and diversity. For language
036 alignment metrics, models either ignore model-based or retrieval-based metrics. Moreover, none of
037 them consider all dimensions across the different metrics.

038 The lack of a comprehensive evaluation across all metrics can lead to unfair comparisons between
039 methods. Furthermore, the correlations among different metrics have not been thoroughly investigated,
040 limiting the understanding of these metrics and thereby hindering effective and insightful future
041 research.

042 To bridge these gaps, we propose PDFBENCH, which, to the best of our knowledge, is the first bench-
043 mark designed to evaluate the capabilities of 8 novel function-guided *de novo* protein design methods,
044 encompassing both description-guided approaches and keyword-guided approaches. Comprehensive
045 benchmarking of the description-guided task is conducted using Mol-Instructions (Fang et al., 2023)

046 ¹ The codes and datasets are available in the Anonymous GitHub repository: <https://anonymous.4open.science/r/PDFBench> and will be made publicly accessible in the final version.



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: Overview of current function-guided protein design models evaluated using different metrics, highlighting the lack of a unified and comprehensive evaluation framework. (a) Proportion of metrics employed in each previous work. In PDFBENCH, metrics are categorized into 6 dimensions, and we show that none of the prior works have been evaluated across all dimensions. (b) Detailed view of the metrics in PDFBENCH, with several representative metrics from each dimension presented.

(*MolinstTest*), an instruction-following dataset of high quality but lacking any quantitative analysis of the designed proteins. For the keyword-guided task, we introduce a new test set, *SwissTest*, with a datetime cutoff to prevent data contamination. Furthermore, an in-depth analysis is conducted to explore the correlations among various evaluation metrics used in PDFBENCH.

In summary, the contributions of PDFBENCH are as follows:

- We present PDFBENCH, the first comprehensive benchmark for function-guided *de novo* protein design, encompassing both description-guided and keyword-guided settings (with 3 fine-grained tasks). We benchmark 8 state-of-the-art models across 16 metrics spanning 6 dimensions (i.e., Plausibility, Foldability, Language Alignment, Similarity, Novelty, and Diversity).
- We analyze and ensure fairness of evaluations. For the description-guided task, we repurpose Mol-Instructions in our benchmark (*MolinstTest*). We carefully analyze the testing configuration (by partitioning datasets based on potential overlaps) and demonstrate that fairness of *MolinstTest* results are reliable. For keyword-guided tasks, we introduce *SwissTest* which applies a strict datetime cutoff (e.g., only including SwissProt annotations after 2025) to ensure fairness.
- We identify key correlations between different metrics that facilitate fairer comparisons and provide insights for future model development. For instance, low PPL and Repeat scores consistently indicate well-folded protein structures (e.g., PPL exhibits Pearson correlations of 0.76 with pLLDT and -0.87 with PAE). Moreover, retrieval-based evaluations are highly sensitive to the chosen retrieval strategy, and although random sampling can be beneficial, absolute values should be interpreted with caution (e.g., the gap in Retrieval Accuracy for natural proteins across different retrieval strategies can reach 66.31%).

2 PDFBENCH

2.1 TASKS AND DATASETS

As demonstrated in Figure 2, *de novo* protein design from function can be categorized into two types, description-guided and keyword-guided. The objective of both tasks is to generate novel proteins with specific functions, while the input format differs.

2.1.1 DESCRIPTION-GUIDED PROTEIN DESIGN

Task Definition The description-guided task is to design novel protein P with function description t written in natural language. The function description is to describe the overall function of P . The objective of this task is to generate a novel protein using the 20 standard amino acids $A = \{a_1, a_2, \dots, a_{20}\}$.

$$p(P \mid t) = p((x_1, x_2, \dots, x_k) \mid t, \forall i, x_i \in A)$$

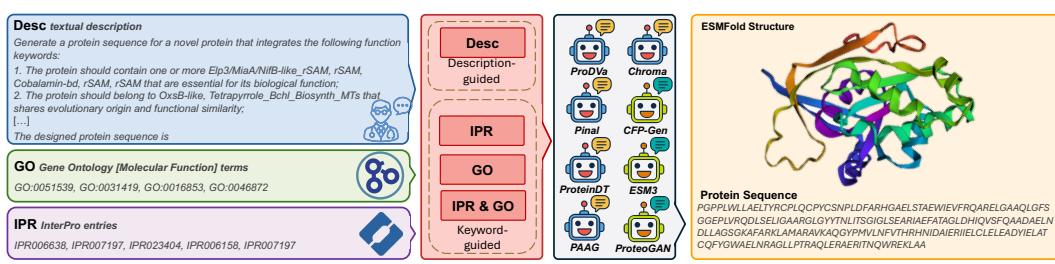


Figure 2: Examples of inputs and outputs for the description-guided protein design task and the keyword-guided protein design task (using GO and/or IPR keywords as inputs). Note that the GO and IPR terms can be converted into textual descriptions. A detailed explanation of this paradigm is provided in Appendix C.2.

Dataset Mol-Instructions (Fang et al., 2023) is a diverse, high-quality, large-scale instruction dataset for the biomolecular domain. We use its protein-oriented instruction test set as the evaluation set for the description-guided task, referred to as *MolinstTest*. The detailed construction process of *MolinstTest* is provided in Appendix C.1.

2.1.2 KEYWORD-GUIDED PROTEIN DESIGN

Task Definition The keyword-guided task is to design a novel protein P based on a set of keywords $K = \{k_1, k_2, \dots, k_n\}$, where each keyword k_i corresponds to either a Gene Ontology (molecular function) term or an InterPro term in PDFBENCH. Additionally, the keyword names are converted into textual function descriptions for comparison with models that accept text as input. The objective is to generate a novel protein based on K .

$$p(P \mid K) = p((x_1, x_2, \dots, x_k) \mid K, \forall i, x_i \in A)$$

Dataset In contrast to the description-guided task, the input for the keyword-guided task consists of a series of keywords. In PDFBENCH, we manually curated a novel test dataset from UniProt/SwissProt UniProt Consortium (2018), termed *SwissTest*. To prevent potential data leakage, the inclusion period for *SwissTest* is restricted to January 1, 2025, through August 25, 2025. The detailed construction of *SwissTest* is presented in Appendix C.2.

2.1.3 ANALYSIS FOR FAIRNESS EVALUATION IN BENCHMARKING

It is important to ensure that the benchmark evaluation remains fair under specific controlled settings. To assess the impact of potential data contamination (i.e., overlaps² in protein functions or sequences within the training sets of the baseline models), we provide a detailed quantitative analysis in Appendix C.3. We ensure that PDFBENCH contains no hard overlaps by carefully selecting the test set (the Mol-Instructions test set is excluded from all baseline models) or by curating it (in *SwissTest*, we apply a datetime cutoff). For soft overlaps, our primary concern is that similar functions may potentially overlap. In Appendix C.3, we show that only 0.24% of the proteins in the Mol-Instructions test set share similar functions with at least 50% functional identity in SwissProt, which is primarily used by the baselines as the training set or its subsets. Further analysis demonstrates that excluding these soft overlaps in similar functions has minimal, or even positive, impact on the experimental results. This indicates that soft overlaps do not compromise the fairness of our evaluation.

2.2 BASELINES

We ensemble recent *de novo* protein design from function baselines as shown in Table 1. For description-guided task, ProDVA (Liu et al., 2025a), Pinal (Dai et al., 2024), PAAG (Yuan et al., 2024), Chroma (Ingraham et al., 2023) and ProteinDT (Liu et al., 2025b) are supported. For keyword-guided

²We define hard overlaps as instances where an identical function–sequence pair appears in both the training and test sets. Additionally, soft overlaps refer to instances where the functions or sequences are similar.

task, ESM3 (Hayes et al., 2025), CFP-Gen (Yin et al., 2025) and ProteoGAN (Kucera et al., 2022) are supported. More details about these baseline are listed in Appendix E.

Table 1: Comparison with various baselines. The symbols \checkmark and \times denote "Supported" and "Not Supported," respectively. As ProteoGAN, ESM3, and CFP-Gen offer only partial support for IPR and GO keywords, we report both the number of keywords each model claims to support and the number of keywords available in the *SwissTest* benchmark.

Baselines	Keyword			Desc	Training Set Size	Access	Brief Summaries
	GO	IPR	GO&IPR				
ESM3	\times	\checkmark	29026 (1197)	\times	455M	\times	A frontier multimodal generative model tokenizing sequence, structure, and function in unified space, trained with masked language modeling across modalities.
ProteoGAN	\checkmark	\times	50 (41)	\times	158K	\times	Conditional GAN guided by Gene Ontology labels, designed for general-purpose protein generation and evaluated with biologically/statistically inspired metrics.
CFP-Gen	\checkmark	\checkmark	375 (92)	\checkmark	244K	\checkmark	Diffusion-based multimodal generator introducing AGFM and RCFE modules, enabling precise functional, structural, and residue-level control for multifunctional protein design.
ProteinDT	\checkmark	\checkmark		\checkmark	541K	\checkmark	Multimodal framework using ProteinCLAP for joint embeddings, mapping text to protein representations, followed by autoregressive decoding for sequence generation.
Chroma	\checkmark	\checkmark		\checkmark	45K	\times	Diffusion-based protein designer integrating polymer physics, enabling programmable design through composable conditions to enforce multiple constraints.
PAAG	\checkmark	\checkmark		\checkmark	129K	\checkmark	A multimodal design model that employs a multilevel alignment module to align sequences and descriptions at both global and local levels.
Pinal	\checkmark	\checkmark		\checkmark	1.7B	\times	A large-scale framework, pretrained on 1.7B function–sequence pairs, most of which are synthetic, designing sequence mediated by structure.
ProDVA	\checkmark	\checkmark		\checkmark	640K	\checkmark	A multimodal framework integrating a text encoder, a protein language model, and a fragment encoder that dynamically retrieves relevant fragments based on the specified function.

2.3 METRICS

Plausibility To evaluate the plausibility of the designed proteins, we introduce six metrics. Direct experimental validation of sequence plausibility is impractical for large-scale studies. Instead, we employ three protein language models—ProtGPT2 (Ferruz et al., 2022), ProGen2 (Nijkamp et al., 2023), and RITA (Hesslow et al., 2022)—to compute sequence perplexity. These yield **PPL-ProtGPT2**, **PPL-ProGen2**, and **PPL-RITA**, which provide model-based estimates of how well the designed proteins conform to the distributional properties of natural proteins. Moreover, natural proteins rarely contain long repetitive fragments, yet prior studies (Ferruz et al., 2022; Wang et al., 2024b) indicate that generative models may produce sequences with abnormally high repetition, potentially impairing protein functionality. To assess this, we compute **Rep-2** and **Rep-5** following Rep-N (Welleck et al., 2019). In addition, we propose a new metric, **Repeat**, which evaluates the fraction of repetitive sequence fragments from a biologically informed perspective.

Foldability We use ESMFold (Lin et al., 2022) to predict 3D structure for the designed sequence and present two metrics for accessing its foldability. Reasonable proteins must exhibit sufficient foldability to perform their functions. We compute the average predicted local distance difference test (**pLDDT**) and predicted aligned error (**PAE**) across the entire structure (Jumper et al., 2021; Akdel et al., 2022; Varadi et al., 2022).

Language Alignment Function-guided proteins should faithfully reflect user-specified properties. To evaluate the degree of alignment between textual descriptions and designed proteins, we employ five metrics: four model-based metrics (**ProTrek Score**, **EvoLlama Score**, **IPR Recovery** and **GO Recovery**), and one retrieval-based metric (**Retrieval Accuracy**). For model-based evaluation, we use ProTrek (Su et al., 2024), a multimodal protein language model pre-trained on large-scale protein–function pairs, to compute the **ProTrek Score**, defined as the cosine similarity between protein embeddings and function embeddings. In addition, EvoLlama (Liu et al., 2024), fine-tuned on our dataset, is employed to derive the **EvoLlama Score**, which measures the cosine similarity between the ground-truth function and the function predicted by EvoLlama. we calculate keyword-level recovery rates of designed proteins relative to natural proteins, specifically **IPR Recovery** and **GO Recovery**. The IPR annotations are obtained using InterProScan (Paysan-Lafosse et al., 2023), while GO terms are derived from DeepGO-SE (Kulmanov et al.). Higher recovery rates indicate stronger preservation of functional characteristics. For retrieval-based evaluation, we follow previous work (Liu et al., 2025b) to compare each designed sequence against its ground-truth function and $T - 1$ randomly selected functions using ProTrek. **Retrieval Accuracy** is defined as the proportion of cases in which the true function–sequence pair ranks highest among all comparisons.

216 **Similarity** Proteins with analogous sequences or structures often perform similar functions. **ESM-Score** is a composite metric comprising ESM-F1, ESM-Precision, and ESM-Recall, which measures sequence similarity between designed sequences and ground truth using ESM-2-650M (Lin et al., 2022), following the formulation of BERTScore (Zhang* et al., 2020). **GT-Identity** denotes the sequence similarity between a designed sequence and the ground truth, computed with MMseqs2 (Kallenborn et al., 2024), which employs multiple sequence alignment (MSA) to quantify similarity. Additionally, we assess structural similarity between designed proteins and ground truth using TMscore (Zhang & Skolnick, 2004), denoted as **GT-TMscore**.

224 **Novelty** **Novelty** represents the dissimilarity of designed proteins with respect to reference 225 databases. Here, we assess novelty from both sequence and structure perspectives. We employ 226 MMseqs2 to calculate the novelty of designed sequences within UniProtKB (UniProt Consortium, 227 2018), denoted as **Novelty-Seq**. Additionally, we utilize Foldseek (Kim et al.) to evaluate the novelty 228 of designed protein structures within AlphaFoldDB/SwissProt, denoted as **Novelty-Struct**. 229

230 **Diversity** Diversity evaluates whether the model generates diverse proteins rather than producing 231 minor variations of a template sequence, by computing the average pairwise dissimilarity among all 232 proteins designed for the same function. Similar to Novelty, we use MMseqs2 to compute sequence 233 diversity (**Diversity-Seq**) and Foldseek to compute structural diversity (**Diversity-Struct**). 234

235 3 RESULTS

238 In this section, we conduct a comprehensive evaluation of these baselines across the two tasks (four 239 fine-grained tasks). The detailed experimental settings are shown in Section F.1.

240 Table 2: Benchmark results for the description-guided task (Best, Second Best, Third Best). - indicates 241 not applicable.

243 244 245 Models	246 Plausibility		247 Foldability		248 Language Alignment %			249 Novelty %		250 Diversity %	
	251 Perplexity ↓	252 Repeat % ↓	253 pLDDT ↑	254 PAE ↓	255 ProTrek Score ↑	256 EvoLlama Score ↑	257 Retrieval Accuracy ↑	258 Seq ↑	259 Struct ↑	260 Seq ↑	261 Struct ↑
Natural	5.99	1.99	80.64	9.20	27.00	60.33	89.01	4.90	13.56	-	-
Random(U)	21.71	0.72	22.96	24.85	1.03	36.22	13.03	58.14	77.64	97.01	81.59
Random(E)	18.68	1.15	25.77	24.71	1.04	34.11	12.73	60.19	76.82	99.56	81.45
ProteinDT	12.41	6.83	38.29	25.13	1.20	40.57	16.92	70.74	71.16	99.23	83.67
Chroma	12.19	2.59	59.18	15.03	2.10	40.10	13.01	58.68	51.06	96.13	79.90
PAAG	17.84	2.34	28.39	25.38	1.29	34.39	13.43	63.64	77.34	99.15	82.16
Pinal	5.81	12.83	75.25	10.96	17.50	53.40	63.43	43.82	17.23	82.96	72.73
ProDVa	7.63	1.92	76.86	8.66	17.40	51.19	66.83	14.64	36.31	83.29	36.92

253 3.1 DESCRIPTION-GUIDED

255 In Table 2, we report the benchmark results for the description-guided task on 11 main metrics. The 256 complete results are displayed in Appendix F.2. Findings are summarized as follows:

258 **(1) ProDVa can design relatively plausible sequence.** Good sequence plausibility is fundamental 259 to foldability and language alignment. The sequences designed by ProDVa exhibit repeat scores 260 exceeding those of natural proteins and suboptimal perplexity scores in sequence rationality, indicating 261 that ProDVa’s design modules are capable of generating reasonable protein sequences.

262 **(2) ProDVa and Pinal Generate Foldable Proteins.** Both ProDVa and Pinal achieve substantially 263 higher foldability scores compared with all other models. Specifically, ProDVa reaches the best 264 pLDDT (76.86) and lowest PAE (8.66), while Pinal follows closely with pLDDT (75.25) and PAE 265 (10.96). These results suggest that the sequences produced by both models are structurally stable and 266 more likely to fold into valid conformations, highlighting the effectiveness of their design modules in 267 capturing the structural constraints of proteins.

268 **(3) ProDVa and Pinal exhibit comparable performance in Language Alignment, whereas the 269 remaining baselines demonstrate substantially inferior results.** For language alignment, both 270 models outperform all baselines by large margins. ProDVa achieves the best retrieval accuracy

(66.83), while Pinal attains a comparable score (63.43). They also perform significantly better in ProTrek Score and EvoLlama Score compared to ProteinDT, Chroma, and PAAG. This indicates that the semantic and evolutionary information embedded in the descriptions are effectively translated into protein sequences by ProDVa and Pinal, whereas the baseline methods fail to capture such alignment.

(4) ProDVa and Pinal perform poorly with respect to novelty and diversity. While excelling in plausibility, foldability, and alignment, both models show relatively low novelty and diversity compared with baselines. The low novelty scores (ProDVa Seq/Struct: 14.64/36.31, Pinal Seq/Struct: 43.82/17.23) suggest that the designed sequences tend to remain close to the natural protein landscape. At the same time, their low diversity scores (ProDVa Seq/Struct: 83.29/36.92; Pinal Seq/Struct: 82.96/72.73) indicate that the models may confine functional design to narrow clusters in sequence/structure space. This reflects a trade-off: in order to achieve better functional alignment, ProDVa and Pinal may sacrifice exploration of diverse solutions, thereby limiting their coverage of the broader protein landscape.

Table 3: Benchmark results for the keyword-guided task (**Best**, **Second Best**, **Third Best**). - indicates not applicable.

Models	Plausibility		Foldability		Language Alignment %				Novelty %		Diversity %	
	Perplexity ↓	Repeat % ↓	pLDDT ↑	PAE ↓	ProTrek Score ↑	Retrieval Accuracy ↑	IPR Recovery↑	GO Recovery↑	Seq ↑	Struct ↑	Seq ↑	Struct ↑
<i>guided with GO keywords</i>												
Natural	9.17	2.17	76.92	10.54	21.60	77.49	100.00	77.49	4.07	18.15	-	-
Random(U)	21.74	0.72	23.20	24.56	4.29	0.00	20.79	10.00	58.04	76.75	94.29	81.56
Random(E)	18.68	1.14	25.99	24.47	3.44	0.00	11.71	11.06	60.28	75.92	98.65	81.54
ProteoGAN	18.03	2.50	28.72	24.67	4.42	0.00	14.99	13.84	65.24	75.82	98.94	84.37
CFP-Gen	5.16	12.67	73.38	14.61	10.03	9.67	18.98	38.87	47.85	28.28	85.14	81.76
ProteinDT	12.23	7.98	40.35	25.57	1.70	0.03	18.52	15.39	75.41	74.62	99.7	84.53
Chroma	12.18	2.71	59.27	15.00	1.84	0.23	16.33	12.07	59.35	50.88	93.70	79.79
PAAG	18.08	2.48	31.47	23.88	4.38	0.00	21.66	16.45	62.36	73.36	98.57	81.73
Pinal	6.85	14.13	72.58	11.79	12.69	19.26	22.76	49.93	46.06	19.27	87.61	79.00
ProDVa	11.16	1.87	74.73	6.11	14.42	20.22	30.24	52.38	25.02	32.72	98.17	35.76
<i>guided with IPR keywords</i>												
Natural	9.73	2.23	75.77	11.13	25.29	83.22	100.00	83.22	4.47	20.09	-	-
Random(U)	21.76	0.69	23.40	24.42	7.53	0.00	25.75	11.72	57.21	76.47	94.44	81.56
Random(E)	18.67	1.16	26.29	24.34	6.11	0.00	13.06	12.80	59.57	75.05	98.58	81.46
ESM3	6.33	28.13	60.90	16.73	6.22	20.17	15.43	33.01	71.87	37.56	91.41	76.79
CFP-Gen	4.94	11.86	76.36	12.54	10.21	32.79	23.41	40.96	49.46	23.15	85.31	82.08
ProteinDT	11.87	10.02	37.59	26.19	3.85	0.08	20.76	16.13	73.57	76.03	99.71	84.81
Chroma	12.17	2.60	59.76	14.67	3.82	0.17	17.15	13.68	59.25	50.77	94.06	79.88
PAAG	17.85	2.32	30.89	24.98	5.98	0.08	13.85	14.37	64.71	79.23	99.16	81.48
Pinal	8.12	16.73	65.69	14.10	14.38	25.63	15.93	57.59	51.61	27.00	87.02	80.38
ProDVa	12.47	1.99	72.80	6.86	15.19	24.58	26.59	51.99	28.86	31.26	95.02	45.60
<i>guided with IPR&GO keywords</i>												
Natural	8.96	2.16	77.17	10.48	27.36	87.39	100.00	87.39	3.89	17.72	-	-
Random(U)	21.72	0.73	22.85	24.72	4.84	0.00	25.38	9.45	57.48	77.18	94.24	81.73
Random(E)	18.68	1.14	25.60	24.59	3.72	0.00	14.67	11.28	60.06	75.98	98.39	81.57
CFP-Gen	5.23	13.14	72.70	14.45	11.68	35.21	23.31	45.77	54.72	28.89	80.61	81.91
ProteinDT	12.81	6.81	36.46	25.75	3.06	0.36	15.92	19.29	71.44	75.73	99.39	84.18
Chroma	12.19	2.53	58.71	15.33	2.19	0.16	14.12	11.67	59.36	51.45	94.27	79.97
PAAG	17.80	2.32	30.05	25.69	4.66	0.02	9.77	11.82	65.07	81.53	99.22	81.51
Pinal	7.39	16.22	69.32	12.97	15.26	33.08	21.64	60.88	49.03	22.43	85.20	78.20
ProDVa	10.48	2.61	74.26	8.06	16.78	30.95	25.24	61.23	21.97	24.20	91.94	52.18

3.2 KEYWORD-GUIDED

As illustrated in Table 3, we report the benchmark results for keyword-guided task on 12 main metrics. The complete results of keyword-guided task on all metrics are in Appendix F.3. Based on these results, our key findings are as follows:

(1) CFP-Gen, Pinal and ESM3 show great performance in Perplexity while the Repeat show poorly. These models achieve the lowest perplexity scores (CFP-Gen: 4.94–5.23; Pinal: 6.85–8.12; ESM3: 6.33), indicating that their generated sequences exhibit strong rationality under the protein language model. However, they also show much higher Repeat (ranging from 11.86 to 28.13) compared with ProDVa or Chroma, suggesting that the improved plausibility comes at the cost of local redundancy in sequence design.

(2) CFP-Gen, ProDVa and Pinal can design foldable proteins. These models consistently achieve high pLDDT and low PAE across different evaluation settings. ProDVa stands out with the best

324 overall foldability (pLDDT: 72.80–74.73; PAE: 6.11–8.06), while CFP-Gen and Pinal also produce
325 structures with good confidence (pLDDT around 69–76; PAE around 11–14). This indicates that their
326 design strategies are particularly effective at generating sequences that fold into stable 3D structures.
327

328 **(3) CFP-Gen shows great performance among the keyword-guided baselines, while weak per-**
329 **formance among the description-guided baselines.** Compared to other keyword-guided baselines
330 such as ProteinDT, Chroma, or PAAG, CFP-Gen achieves significantly higher alignment with bio-
331 logical annotations (e.g., IPR Recovery up to 35.21 and GO Recovery up to 21.05). In contrast, its
332 performance was still less competitive than Pinal and ProDVA.

333 **(4) Baselines perform better on IPR-guided task than GO-guided task.** In the single-keyword
334 setting, models achieve higher recovery performance on the metric that matches the input type. More-
335 over, using IPR as input generally leads to stronger performance across Plausibility, Foldability, and
336 most Language Alignment metrics, indicating that IPR annotations provide more precise constraints
337 for protein design than GO terms.

338 **(5) The IPR&GO-guided task imposes stricter constraints than the other two tasks, while less**
339 **than description-guided task.** When extending from single- to dual-keyword guidance, we observe
340 a nuanced trade-off. IPR Recovery increases while GO Recovery decreases, suggesting that IPR
341 contributes more strongly to functional alignment in this joint setting. Meanwhile, both ProTrek Score
342 and Retrieval Accuracy are improved, while Plausibility and Foldability remain largely unchanged.
343 These results imply that combining IPR and GO constraints reduces the design difficulty in terms of
344 language alignment, enabling models to better converge on functionally consistent sequences without
345 sacrificing structural quality. Nevertheless, the alignment scores are still higher than those obtained
346 in the description-guided setting, showing that structured keyword guidance provides clearer signals
347 for functional targeting, albeit at the cost of reduced novelty and diversity.

348 4 RETHINKING THE EVALUATION METRICS

351 In this section, we provide a comprehensive analysis regarding the correlations among different
352 evaluation metrics on PDFBENCH.

354 4.1 DOES PPL ACCURATELY REFLECT PLDDT AND PAE?

356 We begin by exploring to what extent sequence-level metrics reflect protein structures. Folding
357 proteins into 3D structures using AlphaFold (Jumper et al., 2021) or ESMFold (Lin et al., 2022) is
358 time-consuming and requires substantial computational resources, particularly for longer sequences.
359 Previous studies (Hesslow et al., 2022; Ferruz et al., 2022) have observed a correlation between
360 PPL and pLDDT scores. However, no empirical results or further analyses have been conducted to
361 investigate the correlation.

362 Results are randomly sampled from natural proteins with low PPL scores, Chroma-designed proteins
363 with medium PPL scores, and randomly generated proteins with high PPL scores. Figure 3 presents
364 the distributions of PPL, pLDDT, and PAE. Proteins with high pLDDT values are predominantly
365 clustered in the low PPL range, whereas those with low pLDDT values are concentrated in the high
366 PPL range. For the proteins situated between these two clusters, a negative correlation is observed
367 between PPL and pLDDT values. Specifically, lower PPL values are generally associated with
368 higher pLDDT scores. A similar pattern is observed in the distribution of PPL and PAE. Therefore,
369 we empirically categorize PPL values into three ranges, denoted as low PPL range (values above
370 500), medium PPL range (values between 500 and 2,000), and high PPL range (values above 2,000).
371 Additionally, the Pearson correlation (Cohen et al., 2009) in Figure 3(c) highlights the relationships
372 between PPL, pLDDT, and PAE.

373 **Takeaway I.** In the low PPL range, proteins are well-folded, exhibiting high pLDDT scores
374 and low PAE values. In contrast, proteins in the high PPL range struggle to fold into plausible
375 structures. Within the medium PPL range, proteins with higher PPL values tend to display lower
376 pLDDT scores and higher PAE values.

378 4.2 DO REPETITIVE PATTERNS LEAD TO LOWER STRUCTURAL PLAUSIBILITY?

380 Previous research (Wang et al., 2024b) has found that repetitive patterns occurring in amino acid
381 sequences may result in low pLDDT scores, thereby leading to lower structural plausibility. We
382 conduct an empirical analysis using the Repeat metric to measure the correlation between this pattern
383 and foldability. Proteins designed by ESM3 and Pinal exhibit repetitive patterns, as indicated by their
384 high scores on the Repeat metric. Figure 4 presents the distribution of Repeat scores and pLDDT
385 and PAE values for proteins randomly sampled from natural sequences and those designed by ESM3
386 and Pinal. One observation is that when the Repeat score remains relatively low, there is no clear
387 relationship between Repeat and foldability. In other words, a low Repeat score does not necessarily
388 indicate that a protein is well-folded. However, when the Repeat score exceeds 10, higher Repeat
389 values are associated with lower pLDDT scores and higher PAE values. Therefore, it is important to
390 maintain repetitive patterns below a certain threshold (e.g., Repeat < 10) when designing well-folded
391 proteins.

392 **Takeaway II.** High Repeat scores (typically above 10) in protein sequences are associated with
393 lower structural plausibility as indicated by lower pLDDT and higher PAE values.

394 4.3 HOW FAITHFULLY DO DESIGNED PROTEINS ALIGN WITH FUNCTIONAL DESCRIPTIONS?

398 The most reliable strategy for evaluating the alignment between designed proteins and input textual
399 descriptions is through wet-lab experiments. However, such experiments are time-consuming and
400 costly. Therefore, employing computational methods to screen proteins involves a trade-off between
401 efficiency and accuracy. To more effectively evaluate the functions of designed proteins, both oracle
402 model-based and retrieval-based metrics have been proposed.

403 We first investigate whether the two oracle model-based language alignment metrics exhibit con-
404 sistency in evaluating natural proteins. These two metrics differ in two key perspectives. First, the
405 ProTrek Score measures similarity between ground truth and designed proteins directly based on
406 their embeddings, whereas the EvoLlama Score assesses similarity through predicted functional
407 descriptions. Second, ProTrek is an oracle model pre-trained on large-scale datasets without fur-
408 ther fine-tuning on specific downstream tasks. In contrast, EvoLlama is trained from scratch on
409 the downstream task, leading to a distinct intrinsic knowledge distribution between the two oracle
410 models. Figure 6(a) illustrates the consistency between the ProTrek Score and the EvoLlama Score
411 for natural proteins sampled from the validation and test sets of our description-guided task. The
412 results show that most proteins are accurately predicted and tightly clustered in the upper-right corner,
413 indicating strong agreement between the two metrics. Furthermore, following (Dai et al., 2024)
414 and the definitions introduced in Section 2.3, we establish empirical score thresholds to identify
415 well-aligned proteins. Specifically, proteins with a ProTrek Score above 15 and an EvoLlama Score
416 above 50 are considered to faithfully match the input functional descriptions.

417 **Takeaway III.** The ProTrek Score and the EvoLlama Score are two oracle-based metrics that
418 demonstrate high agreement in evaluating protein functions. Proteins with a ProTrek Score
419 above 15 and an EvoLlama Score above 50 are considered well-aligned, indicating they faithfully
420 match the input functional descriptions.

422 The above discussion has remained focused on the global level of protein function. However, attention
423 must also be directed toward local sequence alignment within proteins, particularly minor mutations
424 in functional sub-sequences (motifs). To assess whether ProTrek is sensitive to protein mutations,
425 we randomly select 1,000 natural proteins from *MolinstTest* and introduce random mutations with
426 specified probabilities. The results are illustrated in Figure 5.

427 **Takeaway IV.** The ProTrek Score assesses both global alignment between the overall proteins
428 and the functions, as well as local alignment between motifs and functions.

431 Next, we discuss the language alignment metrics that do not rely on oracle models. The GT-TM
432 Score measures the similarity between a designed protein and the ground truth structure. Since

protein structure determines function, it is generally assumed that structurally similar proteins exhibit similar functions. However, we argue whether proteins with similar functions can fold into dissimilar structures. In Figures 6(b) and (c), proteins designed by Pinal and ProDVa are sampled for illustration. The average score reported in Table 2 is used as the threshold to determine whether the GT-TM score is considered high. It can be observed that 96.73% of the Pinal-designed proteins with high similarity to the ground truth exhibit high ProTrek scores (above 15), while 75.89% achieve high EvoLlama scores (above 50). A similar conclusion can be drawn from the ProDVa-designed proteins, demonstrating that high structural similarity leads to similar functions. Furthermore, for proteins with lower structural similarity, no correlation between the two similarities is observed.

Takeaway V. A high GT-TM Score generally indicates functional similarity among structurally similar proteins. However, high structural similarity is not a prerequisite for designing well-aligned proteins. Therefore, relying solely on this metric provides limited insight into whether the designed proteins align well with their functional descriptions.

In addition to the aforementioned metrics, Retrieval Accuracy is a retrieval-based metric that measures whether the embeddings of the positive function-sequence pair are the most similar among all candidates. However, this metric is highly dependent on the retrieved sequences. To assess the extent to which the retrieval strategy influences the results, we further define Soft Retrieval Accuracy and Hard Retrieval Accuracy. The difference between them lies in whether the $T - 1$ most or least relevant texts and their corresponding sequences are retrieved in relation to the positive pair. The relevance between textual descriptions is defined by the cosine similarity of their embeddings. In Figure 7, for proteins designed by ProDVa and Pinal, the gap between Hard Retrieval Accuracy and Soft Retrieval Accuracy is 60.64% and 55.82%, respectively. Even for natural proteins, the gap between the two metrics on the ground truth can be as high as 66.31%. Therefore, the results demonstrate that the retrieval strategy significantly impacts performance.

Takeaway VI. The retrieval strategy employed in the Retrieval Accuracy metric has a significant impact on the evaluation results. Randomly sampling the negative pairs can serve as a workaround, but caution should be exercised when interpreting the absolute values of the metric.

5 RELATED WORK

De novo protein design refers to the process of creating novel proteins from scratch, as opposed to the modification of existing sequences or structures (Huang et al., 2016). Current approaches in this field can be broadly categorized into unconditional and conditional generation methods. While unconditional generation operates without constraints, conditional generation methods—which guide model output using specific conditions—offer greater practical utility. Within the conditional generation domain, PDFBench primarily focuses on *de novo* protein design from function. The detail of related work is presented in B.

6 CONCLUSION

The field of protein design has experienced growing interest in recent years, particularly in function-guided approaches. However, the lack of comprehensive and efficient evaluation benchmarks has hindered progress in this area. To address this gap, we introduce PDFBENCH, a benchmark designed to evaluate *de novo* protein design from function. PDFBENCH focuses on four tasks and incorporates 16 metrics to ensure a fair and comprehensive assessment. Additionally, we analyze the utility of these metrics and their interrelationships, offering deeper insights into *de novo* protein design and the alignment between function and protein.

486 **REPRODUCIBILITY STATEMENT**
487

488 To ensure the reproducibility of PDFBENCH, we provide detailed descriptions of dataset curation
489 (Section 2.1 and Appendix C), baselines (Appendix E), and experimental settings (Appendix F.1).
490 Codes and datasets are available at the Anonymous GitHub.
491

492 **REFERENCES**
493

494 The gene ontology resource: enriching a gold mine. *Nucleic acids research*, 49(D1):D325–D334,
495 2021.

496 Mehmet Akdel, Douglas EV Pires, Eduard Porta Pardo, Jürgen Jänes, Arthur O Zalevsky, Bálint
497 Mészáros, Patrick Bryant, Lydia L Good, Roman A Laskowski, Gabriele Pozzati, et al. A structural
498 biology community assessment of alphafold2 applications. *Nature Structural & Molecular Biology*,
499 29(11):1056–1067, 2022.
500

501 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholz, Bob Strome, Alan Moses,
502 Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with
503 evolutionary diffusion: sequence is all you need. *BioRxiv*, pp. 2023–09, 2023.

504 Katherine I Albanese, Sophie Barbe, Shunsuke Tagami, Derek N Woolfson, and Thomas Schiex.
505 Computational protein design. *Nature Reviews Methods Primers*, 5(1):13, 2025.
506

507 Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
508 Huang, and Israel Cohen. Pearson correlation coefficient. *Noise reduction in speech processing*,
509 pp. 1–4, 2009.

510 Fengyuan Dai, Shiyang You, Chentong Wang, Yuliang Fan, Jin Su, Chenchen Han, Xibin Zhou,
511 Jianming Liu, Hui Qian, Shunzhi Wang, et al. Toward de novo protein design from natural language.
512 *bioRxiv*, pp. 2024–08, 2024.
513

514 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
515 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–based
516 protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
517

518 Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
519 Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
520 models. *arXiv preprint arXiv:2306.08018*, 2023.

521 Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language model
522 for protein design. *Nature communications*, 13(1):4348, 2022.
523

524 Zhangyang Gao, Cheng Tan, Pablo Chacón, and Stan Z Li. Pifold: Toward effective and efficient
525 protein inverse folding. *arXiv preprint arXiv:2209.12643*, 2022.

526 Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
527 Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical
528 natural language processing. *ACM Transactions on Computing for Healthcare (HEALTH)*, 3(1):
529 1–23, 2021.
530

531 Zander Harteveld, Joshua Southern, Michaël Defferrard, Andreas Loukas, Pierre Vandergheynst,
532 Micheal Bronstein, and Bruno Correia. Deep sharpening of topological features for de novo
533 protein design. In *ICLR2022 Machine Learning for Drug Discovery*, 2022. URL <https://openreview.net/forum?id=DwN81YIXGQP>.
534

535 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
536 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of
537 evolution with a language model. *Science*, pp. eads0018, 2025.
538

539 Daniel Hesslow, Niccoló Zanichelli, Pascal Notin, Iacopo Poli, and Debora Marks. Rita: a study on
 scaling up generative protein sequence models. *arXiv preprint arXiv:2205.05789*, 2022.

540 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
541 Rives. Learning inverse folding from millions of predicted structures. In *International conference*
542 *on machine learning*, pp. 8946–8970. PMLR, 2022.

543 Yutong Hu, Yang Tan, Andi Han, Lirong Zheng, Liang Hong, and Bingxin Zhou. Secondary structure-
544 guided novel protein sequence generation with latent graph diffusion. In *2024 IEEE International*
545 *Conference on Bioinformatics and Biomedicine (BIBM)*, pp. 31–41. IEEE, 2024.

546 Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
547 *Nature*, 537(7620):320–327, 2016.

548 Che-Lun Hung and Chi-Chun Chen. Computational approaches for drug discovery. *Drug development*
549 *research*, 75(6):412–418, 2014.

550 Sarah Hunter, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Alex Bateman, David Binns, Peer
551 Bork, Ujjwal Das, Louise Daugherty, Lauranne Duquenne, et al. Interpro: the integrative protein
552 signature database. *Nucleic acids research*, 37(suppl_1):D211–D215, 2009.

553 John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
554 Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
555 space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

556 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
557 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
558 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

559 Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooyoung
560 Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. Gpu-accelerated
561 homology search with mmseqs2. *bioRxiv*, pp. 2024–11, 2024.

562 Woosub Kim, Milot Mirdita, Eli Levy Karin, Cameron L. M. Gilchrist, Hugo Schweke, Johannes
563 Söding, Emmanuel D. Levy, and Martin Steinegger. Rapid and sensitive protein complex alignment
564 with Foldseek-Multimer. 22(3):469–472. ISSN 1548-7105. doi: 10.1038/s41592-025-02593-7.
565 URL <https://doi.org/10.1038/s41592-025-02593-7>.

566 Hajo Kries, Rebecca Blomberg, and Donald Hilvert. De novo enzymes by computational design.
567 *Current opinion in chemical biology*, 17(2):221–228, 2013.

568 Tim Kucera, Matteo Togninalli, and Laetitia Meng-Papaxanthos. Conditional generative modeling
569 for de novo protein design with hierarchical functions. *Bioinformatics*, 38(13):3454–3461, 05
570 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/btac353. URL <https://doi.org/10.1093/bioinformatics/btac353>.

571 Maxat Kulmanov, Francisco J. Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T. Arold, and
572 Robert Hoehdorf. Protein function prediction as approximate semantic entailment. 6(2):220–228.
573 ISSN 2522-5839. doi: 10.1038/s42256-024-00795-w. URL <https://doi.org/10.1038/s42256-024-00795-w>.

574 Minji Lee, Luiz Felipe Vecchietti, Hyunkyu Jung, Hyun Joo Ro, Meeyoung Cha, and Ho Min Kim.
575 Robust optimization in protein fitness landscapes using reinforcement learning in latent space.
576 *arXiv preprint arXiv:2405.18986*, 2024.

577 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
578 dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
579 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

580 Nuowei Liu, Changzhi Sun, Tao Ji, Junfeng Tian, Jianxin Tang, Yuanbin Wu, and Man Lan. Evollama:
581 Enhancing llms' understanding of proteins via multimodal structure and sequence representations.
582 *arXiv preprint arXiv:2412.11618*, 2024.

583 Nuowei Liu, Jiahao Kuang, Yanting Liu, Changzhi Sun, Tao Ji, Yuanbin Wu, and Man Lan. Protein
584 design with dynamic protein vocabulary, 2025a. URL <https://arxiv.org/abs/2505.18966>.

594 Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili
595 Nie, Arvind Ramanathan, Chaowei Xiao, et al. A text-guided protein design framework. *Nature*
596 *Machine Intelligence*, pp. 1–12, 2025b.

597

598 Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
599 Jose Luis Olmos Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language
600 models generate functional protein sequences across diverse families. *Nature biotechnology*, 41(8):
601 1099–1106, 2023.

602

603 Weian Mao, Muzhi Zhu, Zheng Sun, Shuaike Shen, Lin Yuanbo Wu, Hao Chen, and Chunhua
604 Shen. De novo protein design using geometric vector field networks. In *The Twelfth International*
605 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=9UIGyJJpay>.

606

607 Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2: exploring
608 the boundaries of protein language models. *Cell systems*, 14(11):968–978, 2023.

609

610 Typhaine Paysan-Lafosse, Matthias Blum, Sara Chuguransky, Tiago Grego, Beatriz Lázaro Pinto,
611 Gustavo A Salazar, Maxwell L Bileschi, Peer Bork, Alan Bridge, Lucy Colwell, et al. Interpro in
612 2022. *Nucleic acids research*, 51(D1):D418–D427, 2023.

613

614 Joan Planas-Iglesias, Sérgio M Marques, Gaspar P Pinto, Milos Musil, Jan Stourac, Jiri Damborsky,
615 and David Bednar. Computational design of enzymes for biotechnological applications. *Biotechnology*
616 *Advances*, 47:107696, 2021.

617

618 Jin Su, Xibin Zhou, Xuting Zhang, and Fajie Yuan. Protrek: Navigating the protein universe through
619 tri-modal contrastive learning. *bioRxiv*, pp. 2024–05, 2024.

620

621 Anshul Tiwari and Sakshi Singh. Computational approaches in drug designing. In *Bioinformatics*,
622 pp. 207–217. Elsevier, 2022.

623

624 The UniProt Consortium. Uniprot: the universal protein knowledgebase. *Nucleic acids research*, 46
625 (5):2699–2699, 2018.

626

627 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
628 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein
629 structure database: massively expanding the structural coverage of protein-sequence space with
630 high-accuracy models. *Nucleic acids research*, 50(D1):D439–D444, 2022.

631

632 Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and Longxing
633 Cao. Proteus: exploring protein structure generation for enhanced designability and efficiency.
634 *bioRxiv*, pp. 2024–02, 2024a.

635

636 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
637 language models are versatile protein learners. In *International Conference on Machine Learning*,
638 2024b.

639

640 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
641 Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
642 structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

643

644 Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural
645 text generation with unlikelihood training, 2019. URL <https://arxiv.org/abs/1908.04319>.

646

647 Junbo Yin, Chao Zha, Wenjia He, Chencheng Xu, and Xin Gao. CFP-gen: Combinatorial functional
648 protein generation via diffusion language models. In *Forty-second International Conference on*
649 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=EiM163eZyg>.

650

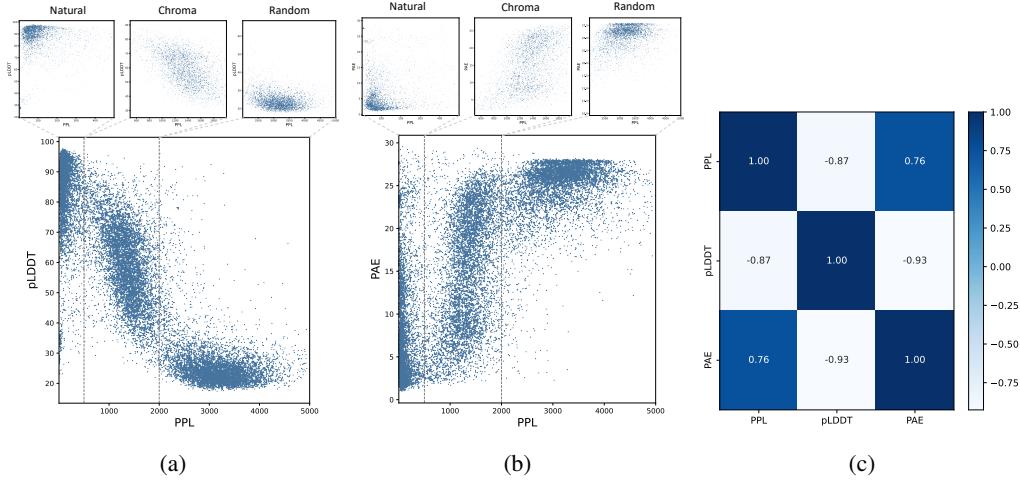
651 Chao-hao Yuan, Songyou Li, Geyan Ye, Yikun Zhang, Long-Kai Huang, Wenbing Huang, Wei Liu,
652 Jianhua Yao, and Yu Rong. Annotation-guided protein design with multi-level domain alignment.
653 *arXiv preprint arXiv:2404.16866*, 2024.

648 Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
 649 Evaluating text generation with bert. In *International Conference on Learning Representations*,
 650 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.

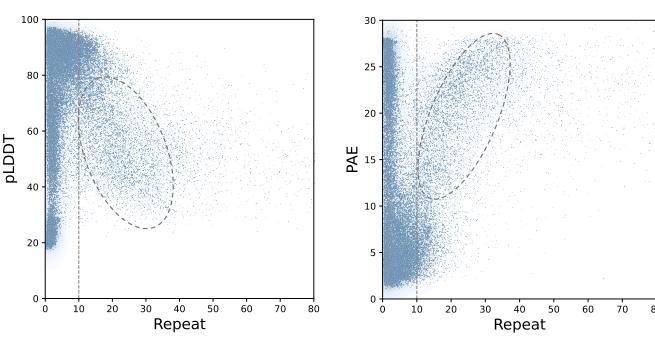
651 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
 652 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.

653 Yinuo Zhang, Phil He, Ashley Hsu, Sophia Vincoff, and Pranam Chatterjee. Ppi-llama2: De novo
 654 generation of binding proteins conditioned on target sequence alone. In *ICLR 2024 Workshop on*
 655 *Generative and Experimental Perspectives for Biomolecular Design*.

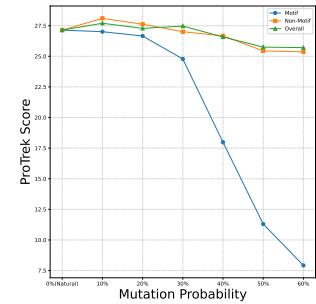
658 A ADDITIONAL FIGURES



656
 657 Figure 3: **(a)** presents the distribution of PPL and pLDDT. **(b)** displays the distribution of PPL and
 658 PAE. **(c)** illustrates the Pearson correlation among these metrics. Note that PPL values are categorized
 659 into three ranges: values below 500 indicate a low PPL range, values between 500 and 2,000 represent
 660 a medium PPL range, and values above 2,000 correspond to a high PPL range.



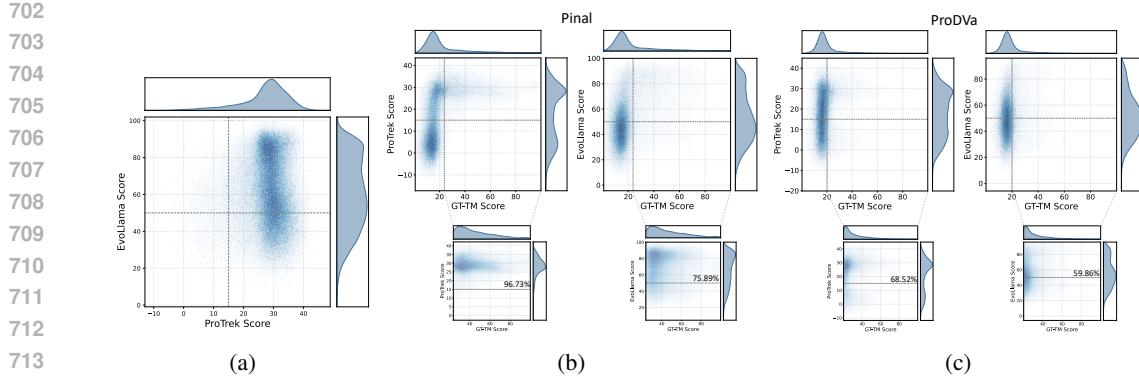
695 Figure 4: **(a)** Distribution of Repeat and pLDDT. **(b)** Distribution
 696 of Repeat and PAE.



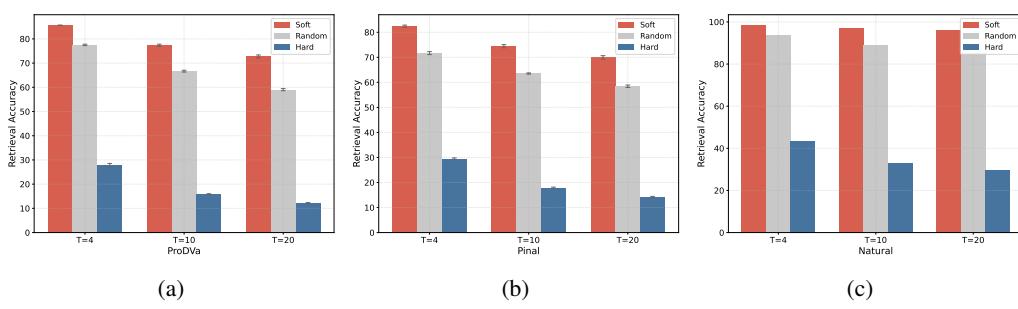
700 Figure 5: Results for random mutations in natural proteins. Motif
 701 and Non-motif indicate mutations
 702 within or outside motif regions.
 703 Overall includes all mutations.

698 B De novo PROTEIN DESIGN

701 *De novo* protein design aims to generate novel proteins and can be categorized into unconditional and
 702 conditional approaches.



715 Figure 6: **(a)** presents the distribution of the ProTrek Score and EvoLlama Score for natural proteins.
716 **(b)** and **(c)** present the distributions of the GT-TM Score, ProTrek Score, and EvoLlama Score for
717 proteins designed by Pinal and the ProDVA.



730 Figure 7: Experimental results are reported for Soft, Random, and Hard Retrieval Accuracy. The
731 random variant refers to the original implementation.

732 **Unconditional *de novo*** Unconditional design methods generate amino acid sequences without
733 constraints, employing either autoregressive models (Madani et al., 2023; Ferruz et al., 2022; Hesslow
734 et al., 2022) or discrete diffusion models (Alamdari et al., 2023; Wang et al., 2024b). Alternatively,
735 some methods (Watson et al., 2023; Mao et al., 2024; Wang et al., 2024a) adopt a two-stage paradigm:
736 first generating backbone structures through diffusion in $SE(3)$ space, then predicting corresponding
737 sequences. Additionally, certain approaches (Ren et al., 2024; Wang et al., 2024) utilize diffusion
738 processes or energy-based models to jointly generate both backbone structures and sequences.

739 **Conditional *de novo*** Conditional *de novo* design methods incorporate additional information to
740 guide the design process, such as specified three-dimensional structures (Harteveld et al., 2022;
741 Dauparas et al., 2022; Hsu et al., 2022; Gao et al., 2022), secondary structures (Hu et al., 2024),
742 protein-protein interactions (Zhang et al.), control tags (Nijkamp et al., 2023), or function.

743 ***De novo* protein design from function** *De novo* protein design from function has recently
744 garnered substantial interest. Existing methods can be categorized as description-guided methods and
745 keyword-guided methods. Description-guided methods include Chroma (Ingraham et al., 2023),
746 ProteinDT (Liu et al., 2025b), PAAG (Yuan et al., 2024), Pinal (Dai et al., 2024), ProDVA (Liu et al.,
747 2025a). Chroma utilizes the diffusion framework to simultaneously design protein structure and
748 sequence. ProteinDT employs a contrastive learning paradigm to align the representation spaces
749 of function and protein, achieving over 90% retrieval accuracy on its own evaluation. PAAG in-
750 troduces a multi-level alignment module that enables simultaneous attention to both protein-level
751 and domain-level information, resulting in superior performance on success rate metrics compared
752 to previous approaches. Pinal differs from the end-to-end generation approaches mentioned above
753 by first generating the protein structure based on function, followed by sequence design informed
754 by both function and structure. Notably, Pinal utilizes the largest dataset, containing over 1000
755 times more protein-function pairs than all other methods. ProDVA employs a novel mechanism

756 to dynamically retrieve the most relevant fragments from natural protein sequences based on the
757 target function, significantly enhancing the method’s performance. Keyword-guided methods include
758 ProteoGAN (Kucera et al., 2022), ESM3 (Hayes et al., 2025) and CFP-Gen (Yin et al., 2025). Pro-
759 teoGAN employ a generative adversarial networks (GAN) to design protein sequences for 50 Gene
760 Ontology terms. ESM3, a cutting-edge multi-modal generative language model, integrates reasoning
761 over protein sequence, structure, and function. It can respond to complex prompts combining these
762 modalities and demonstrates high alignment responsiveness, enhancing its predictive fidelity. For
763 keyword-guided task, it can generate sequences for 29026 IPR entries (nearly three-fifths of the
764 InterPro). CFP-Gen utilizes the latest generative framework-masked diffusion model-to design protein
765 sequences for 375 GO terms and 1154 IPR entries. As has been previously mentioned, all of the
766 aforementioned methods claim to achieve optimal performance in their own reviews (i.e. their own
767 proposed metrics). The objective of PDFBENCH is to provide a fair and comprehensive benchmark
768 for evaluating the performance of the 8 novel methods.

769 C DETAILS OF DATASETS

770 C.1 MolinstTest

771 Mol-Instructions (Fang et al., 2023) comprises three key categories of instructions: molecule-oriented,
772 protein-oriented, and biomolecular text. The protein-oriented instructions³ include a 196K subset,
773 Protein Design, for *de novo* protein design, sourced from UniProtKB/Swiss-Prot and UniProtK-
774 B/TREMBL. We use the test set of this subset with 5,876 proteins for our evaluation, referred to as
775 *MolinstTest*.

776 C.2 SwissTest

777 Unlike description-guided tasks, keyword-guided tasks lack a publicly available, high-quality evalua-
778 tion dataset. To address this gap, we constructed a novel dataset. Specifically, we selected proteins
779 from UniProt/SwissProt⁴ released between January 1, 2025, and August 25, 2025, and collected their
780 corresponding protein sequences, InterPro IDs, and Gene Ontology terms⁵. To allow description-
781 guided baselines to participate in the evaluation, we followed the approach of Mol-Instructions (Fang
782 et al., 2023) by concatenating the text descriptions associated with InterPro entries and Gene Ontology
783 terms using a prompt. The detailed processing steps are provided in Table 4. We finally curated
784 a novel dataset containing 1,057 proteins with 1,297 IPR entries and 380 GO terms, referred to as
785 *SwissTest*.

786 Table 4: Prompt and templates for converting keywords into textual description.

Prompt	
Keyword Type	Template
	Generate a protein sequence for a novel protein that integrates the following function keywords: {textual annotations for all keywords connected by semicolons}. The designed protein sequence is
InterPro (Domain)	The protein should contain one or more {domains} that are essential for its biological function
InterPro (Family)	The protein should belong to {familys} that shares evolutionary origin and functional similarity
InterPro (Homologous_Superfamily)	The protein should be classified within {homologous superfamiliy} sharing conserved structural features
InterPro (Repeat)	The protein should include one or more {repeat} that provide structural or functional support
InterPro (Conserved_Site)	The protein should contain {conserved sites} that is preserved across related proteins
InterPro (Active_Site)	The protein must have {activate sites} that is conserved among related catalytic enzymes
InterPro (Binding_Site)	The protein should include a {binding sites} that enables ligand binding under diverse conditions
InterPro (PTM)	The protein should contain {PTM(s)} that allow regulation through chemical modifications
Gene Ontology (Molecular Function)	The protein must be able to perform the {molecular functions} required for its activity

807 ³<https://huggingface.co/datasets/zjunlp/Mol-Instructions>

808 ⁴https://www.uniprot.org/uniprotkb?query=*

809 ⁵Search with (date_created: [2025-01-01 TO 2025-08-25]) AND (reviewed:true)

810 **C.3 FAIRNESS ANALYSIS**
811

812 For the description-guided task, the *MolinstTest* is excluded from the training process of all se-
813 lected baseline models, including ProteinDT (Liu et al., 2025b), Chroma (Ingraham et al., 2023),
814 PAAG (Yuan et al., 2024), Pinal (Dai et al., 2024), and ProDVA (Liu et al., 2025a). For the keyword-
815 guided task, we apply a datetime cutoff and exclude all proteins and their corresponding keyword
816 annotations dated prior to January 1, 2025, thereby strictly preventing potential data leakage. There-
817 fore, there is no risk of data contamination (hard overlaps) during the evaluation.

818 While we also consider soft overlap settings (i.e., cases involving similar functions or sequences),
819 in PDFBENCH, functions are provided as inputs, and the model is tasked with designing novel
820 proteins (outputs) aligned with these functions. The model’s predictions are conditioned solely on
821 the provided functions, and any overlap in outputs across splits neither confers an unfair advantage
822 nor compromises the integrity of the evaluation. Therefore, the presence of similar proteins does not
823 constitute data contamination in the conventional sense and has minimal impact on the evaluation. For
824 soft overlaps in similar functions, we conduct experiments to validate the fairness of our evaluation
825 on the three baselines with publicly available training set, including ProDVA (Liu et al., 2025a),
826 ProteinDT (Liu et al., 2025b), and PAAG (Yuan et al., 2024). First, we use ProTrek (Su et al.,
827 2024) to compute the embeddings of the functions and sequences in the three training sets and
828 *MolinstTest*. Then, for each function–sequence pair in *MolinstTest*, if an identical sequence exists in
829 the corresponding training set, we compute the cosine similarity between ProTrek embeddings of the
830 function in *MolinstTest* and the corresponding function in the training set. If the similarity exceeds
831 the Threshold, it is considered a soft overlap. We categorize the baseline results on *MolinstTest*
832 into two groups based on the presence or absence of overlap, as shown in Table 5. The analysis
833 shows that, for ProDVA and ProteinDT, excluding soft overlaps has a positive impact on Perplexity
834 (up to 2.12%), ProTrek Score (up to 2.74%), and Retrieval Accuracy (up to 4.56%). We observe
835 minimal impact on foldability, despite slight improvements in pLDDT and PAE when soft overlaps
836 are included. Additionally, for PAAG, the impact of including soft overlaps is consistently minimal
837 across all metrics.

838 Table 5: Soft overlap analysis on *MolinstTest*. Results including soft overlaps are presented in
839 parentheses, while those excluding soft overlaps are shown outside the parentheses.

840

Models	#Threshold (#Num)	Perplexity ↓	pLDDT ↑	PAE ↓	ProTrek Score ↑	Retrieval Accuracy ↑
ProDVA	0.0 (5876)	- (7.63)	- (76.86)	- (8.66)	- (17.40)	- (66.83)
	0.1 (1626)	7.13 (8.95)	76.75 (77.06)	9.08 (7.61)	18.16 (15.42)	67.93 (63.37)
	0.3 (185)	7.56 (9.68)	76.81 (77.61)	8.72 (7.42)	17.49 (14.78)	66.83 (61.62)
	0.5 (14)	7.63 (9.63)	76.83 (79.21)	8.68 (7.51)	17.41 (14.71)	66.67 (66.67)
	0.7 (2)	7.63 (5.54)	76.84 (78.23)	8.68 (5.67)	17.40 (23.80)	66.66 (100.00)
ProteinDT	0.0 (5876)	- (12.41)	- (38.29)	- (25.13)	- (1.20)	- (16.92)
	0.1 (1524)	12.45 (12.29)	37.50 (40.55)	25.12 (25.17)	1.06 (1.59)	16.35 (17.15)
	0.3 (112)	12.40 (12.49)	38.26 (39.77)	25.13 (25.29)	1.20 (1.05)	16.60 (14.58)
	0.5 (5)	12.41 (11.55)	38.29 (44.35)	25.13 (26.21)	1.20 (1.96)	16.56 (13.33)
	0.7 (0)	-	-	-	-	-
PAAG	0.0 (5876)	- (17.84)	- (28.39)	- (25.38)	- (1.29)	- (13.43)
	0.1 (749)	17.85 (17.79)	28.37 (28.53)	25.36 (25.47)	1.18 (2.00)	12.65 (14.11)
	0.3 (698)	17.85 (17.79)	28.38 (28.49)	25.36 (25.51)	1.20 (1.89)	12.67 (14.04)
	0.5 (579)	17.85 (17.79)	28.40 (28.29)	25.36 (25.55)	1.24 (1.74)	12.67 (14.28)
	0.7 (318)	17.84 (17.83)	28.40 (28.20)	25.37 (25.57)	1.27 (1.53)	12.70 (15.09)

855
856
857 **D DETAILS OF METRICS**
858

859 **D.1 PLAUSIBILITY**
860

862 **Repetitiveness** We use the *RepN* metric to reflect the repetition at n-gram levels in the designed
863 protein sequence P . Additionally, we propose a metric, *Repeat*, to more accurately evaluate the
864 proportion of repetitive sequence fragments from a biological perspective.

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

$$\text{Rep-n} = 100 \times (1.0 - \frac{\text{unique n-grams}(P)}{\text{total n-grams}(P)})$$

Algorithm 1 Compute Repeat

Require: $sequence \neq \emptyset$

Ensure: $proportion \in [0.0, 1.0]$

```

if  $n = 0$  then
    return 0.0
end if
regions  $\leftarrow \emptyset$ 
max_window_size  $\leftarrow \min(20, \lfloor n/2 \rfloor)$ 
for  $window\_size = 1$  to  $max\_window\_size$  do
    for  $i = 0$  to  $n - window\_size$  do
         $pattern \leftarrow sequence[i : i + window\_size]$ 
         $count \leftarrow 1$ 
         $j \leftarrow i + window\_size$ 
        while  $j \leq n - window\_size$  and  $sequence[j:j+window\_size] = pattern$  do
             $count \leftarrow count + 1$ 
             $j \leftarrow j + window\_size$ 
        end while
        if  $count \geq 3$  then
             $regions \leftarrow regions \cup \{(i, i + window\_size \times count)\}$ 
        end if
    end for
end for
if  $regions = \emptyset$  then
    return 0.0
end if
merged  $\leftarrow$  sorted and merged regions
total_repeat  $\leftarrow \sum_{(start,end) \in merged} (end - start)$ 
proportion  $\leftarrow total\_repeat/n$ 
return  $proportion$ 

```

D.2 LANGUAGE ALIGNMENT

ProTrek Score Given a designed sequence P and respective description T , **ProTrek score** is defined as:

$$\text{ProTrek Score} = \cos(\tau_{\text{seq}}(P), \tau_{\text{text}}(T))/t$$

where $\tau_{\text{seq}}(P)$, $\tau_{\text{text}}(T)$ and t represent the protein sequence encoder, text encoder and temperature of ProtTrek, respectively.

EvoLlama Score In addition to the ProTrek Score, we employ a generative approach for alignment evaluation using EvoLlama (Liu et al., 2024). Specifically, we utilize EvoLlama, which comprises a 650M ESM2 protein sequence encoder and a 3B Llama-3.2 text decoder. The model is randomly initialized and trained from scratch using the SwissMolinst dataset described in Liu et al. (2025a). Given the designed protein P and respective function description t , we prompt the P with The function of the protein is and fetch EvoLlama-generated function description t' with it. Assume that the t and t' can be tokenized into k and k' tokens, respectively. The **EvoLlama Score** is defined as follows:

$$\text{EvoLlama Score} = \text{sim}\left(\frac{1}{k} \sum_{i=1}^k \text{Embed}(t_i), \frac{1}{k'} \sum_{i=1}^{k'} \text{Embed}(t'_i)\right)$$

where $\text{Embed}(\cdot)$ denotes using PubMedBERT (Gu et al., 2021) as the embedding model.

918 **Keyword Recovery** Given the designed sequence P and ground truth sequence GT , **IPR Recovery**
 919 and **GO Recovery** are defined as:
 920

$$922 \quad \text{IPR Recovery} = \begin{cases} \frac{\text{InterProScan}(P) \cap \text{InterProScanE}(GT)}{\text{InterProScan}(GT)}, & \text{if } \text{InterProScanO}(GT) \neq \emptyset, \\ 923 \quad \text{N/A,} & \text{if } \text{InterProScan}(GT) = \emptyset. \end{cases}$$

$$926 \quad \text{GO Recovery} = \begin{cases} \frac{\text{DeepGO-SE}(P) \cap \text{DeepGO-SE}(GT)}{\text{DeepGO-SE}(GT)}, & \text{if } \text{DeepGO-SE}(GT) \neq \emptyset, \\ 927 \quad \text{N/A,} & \text{if } \text{DeepGO-SE}(GT) = \emptyset. \end{cases}$$

931 **Retrieval Accuracy** **Retrieval Accuracy** is obtained with a well-pretrained model, i.e. ProTrek:
 932 Given the designed sequence P , respective description T_0 and N randomly selected descriptions as
 933 negative pool $\mathcal{N} = (T_1, T_2, \dots, T_{N-1})$ from testing set, retrieval accuracy is defined as:
 934

$$935 \quad \text{Retrieval Accuracy} = [\cos(\tau_{\text{seq}}(P), \tau_{\text{text}}(T_0)) \geq \cos(\tau_{\text{seq}}(P), \tau_{\text{text}}(T_i)), \quad \forall i \in \mathcal{N}]$$

937 D.3 SIMILARITY

939 **GT-Identity** Given the designed sequence P and ground truth sequence GT , we compute the
 940 **GT-Identity** with the align module of MMseqs (Kallenborn et al., 2024).
 941

$$942 \quad \text{GT-Identity} = \text{MMseqs}^{\text{align}}(P, GT)$$

944 **ESMScore** Following the formula in (Zhang* et al., 2020), we compute the BertScore between
 945 the ground truth sequence GT and the designed sequence P using ESM-2-650M (Lin et al., 2022),
 946 namely **ESMScore**.
 947

948 **GT-TMscore** We measures the **GT-TMscore** between the ESMFold-predicted structures between
 949 the design sequence P and the ground truth sequence GT using TMscore.
 950

$$951 \quad \text{GT-TMscore} = \text{TMscore}(\text{Structure}_P, \text{Structure}_{GT})$$

953 D.4 NOVELTY

955 **Sequence Novelty** Initially, MMseqs2 is utilized to retrieve the num_prot most similar sequences
 956 and the respective similarity sim_i of the designed sequence P to UniProtKB. Subsequently, it is
 957 possible to obtain each novelty nov_i via $1 - sim_i$ if a match sequence is present, otherwise 1. Finally,
 958 **Novelty-Seq_{Easy}** and **Novelty-Seq_{Hard}** can be defined as:
 959

$$960 \quad \text{Novelty-Seq}_{\text{Easy}} = \frac{\sum nov_i}{num_prot}, \quad \text{Novelty-Seq}_{\text{Hard}} = 1 - \max_i sim_i$$

963 **Structure Novelty** Similar to the Sequence Novelty, given the designed sequence P , Foldseek (Kim
 964 et al.) is used to retrieve the num_prot most similar structures and their respective similarities sim_i
 965 between the ESMFold-predicted structure $Structure_P$ to AlphafoldDB/SwissProt⁶. The values of
 966 nov_i are then obtained in the same manner as for Sequence Novelty. Finally, **Novelty-Struct_{Easy}** and
 967 **Novelty-Struct_{Hard}** can be defined as:
 968

$$969 \quad \text{Novelty-Struct}_{\text{Easy}} = \frac{\sum nov_i}{num_prot}, \quad \text{Novelty-Struct}_{\text{Hard}} = 1 - \max_i sim_i$$

971 ⁶<https://alphafold.ebi.ac.uk/download#swissprot-section>

972 **D.5 DIVERSITY**
973

974 **Sequence Diversity** Given the N sequences $\mathcal{P} = (P_1, P_2, \dots, P_N)$ designed from the same description,
975 we employ MMseqs2 to compute the similarity between each pair of sequences in \mathcal{P} . The same
976 as Novelty, we obtain each diversity div_i via $1 - sim_i$ if the similarity between two sequences can be
977 computed, otherwise 1, which means the two sequences are totally different. Finally, **Diversity-Seq** is
978 defined as:

979
980
$$\text{Diversity-Seq} = \frac{\sum div_i}{N(N-1)}$$

981
982

983 **Structure Diversity** Given the N sequences $\mathcal{P} = (P_1, P_2, \dots, P_N)$ designed from the same description
984 and their corresponding ESMFold-predicted structures $\mathcal{S} = (S_1, S_2, \dots, S_N)$, we use Foldseek to
985 compute pairwise structural similarities within \mathcal{S} , , yielding similarity scores sim_i and corresponding
986 diversity values div_i . Finally, **Diversity-Struct** is defined as:
987

988
989
$$\text{Diversity-Struct} = \frac{\sum div_i}{N(N-1)}$$

990
991

992 **E DETAILS OF BASELINES**
993

994 **E.1 DESCRIPTION-GUIDED DESIGN BASELINES**
995

996 **Chroma** Chroma (Ingraham et al., 2023) is a diffusion-based and programmable generation model
997 for proteins. It employs a structured diffusion process that takes the physical properties of proteins as
998 polymer chains into consideration. Chroma not only generates protein sequences using functional
999 keywords, but it is also highly "programmable": users can guide the generation process using
1000 composable conditioners to enforce constraints such as symmetry, substructure, shape, or semantic
1001 properties (e.g., protein class, text prompts).

1002 **ProteinDT** ProteinDT (Liu et al., 2025b) is a multimodal framework that utilizes function descriptions
1003 to guide protein design. The fundamental principle underpinning the system is ProteinCLAP
1004 (Contrastive LAnguage and Protein), which employs comparative learning to align description and
1005 protein sequence representations within a shared embedding space. The framework is composed
1006 of three sequential steps: ProteinCLAP aligns the representation, a facilitator maps the text embedding
1007 to the protein representation, and a autoregressive decoder generates a sequence based on this
1008 representation.
1009

1010 **PAAG** PAAG (Yuan et al., 2024) is a multimodal framework that focuses on both functional
1011 descriptions and functional keywords. It employs a multilevel alignment module that aligns protein
1012 sequences and description/keywords at the global and local levels. Subsequently, an autoregressive
1013 decoder is employed to generate protein sequences based on the aligned annotation representations.
1014

1015 **Pinal** Pinal (Dai et al., 2024) is a large-scale(up to 16B parameters) *de novo* protein design
1016 framework intended to translate natural language instructions into novel protein sequences. In lieu of
1017 direct text-to-sequence generation, Pinal adopts a two-stage approach: first, protein structures are
1018 generated from linguistic descriptions; then, sequences are designed based on the generated structures
1019 and the original linguistic input. This strategy employs the relatively restricted structure space as a
1020 preliminary step to efficiently constrain the extensive sequence search space.
1021

1022 **ProDVA** ProDVA (Liu et al., 2025a) is a multimodal protein design framework that combines textual
1023 function descriptions with insights from natural protein fragments to create sequences that are both
1024 functionally aligned and structurally plausible. It integrates a text encoder, a protein language model,
1025 and a fragment encoder that dynamically retrieves the most relevant fragments based on the desired
 function.

1026 E.2 KEYWORD-GUIDED DESIGN BASELINES
1027
1028 **ProteoGAN** ProteoGAN (Kucera et al., 2022) is a conditional generative adversarial network
1029 designed to generate novel protein sequences based on functional labels from the Gene Ontology
1030 (GO).
1031
1032 **ESM3** ESM3 (Hayes et al., 2025) is a large-scale (up to 98 billion parameters) multimodal genera-
1033 tive language model designed to simulate protein evolution. It represents protein sequence, structure,
1034 and function as discrete tokens processed within a unified latent space. ESM3 is trained using
1035 a generative masked language modeling (MLM) objective, predicting randomly masked tokens
1036 across modalities to learn their complex interrelationships. The model can follow complex prompts
1037 combining sequence, structure, and function information.
1038

1039 **CFP-Gen** CFP-Gen (Yin et al., 2025) is a novel diffusion language model designed for generating
1040 functional proteins by simultaneously integrating multiple constraints from different modalities,
1041 including function, sequence, and structure. It employs an Annotation-Guided Feature Modulation
1042 (AGFM) module to control protein features using functional annotations and a Residue-Controlled
1043 Functional Encoding (RCFE) module for precise residue-level control.
1044

F DETAILS OF RESULTS

F.1 EXPERIMENT SETTING

We implement the baselines as follows,

Description-guided For description-guided baselines (ProDVa, Pinal, PAAG, Chroma, ProteinDT), we directly use the description as input to prompt the model to generate sequences.

Keyword-guided Keyword-guided baselines only support restricted keywords, necessitating additional data processing. For InterPro entries unsupported by ESM3 and CFP-Gen, we opted to skip these keywords to ensure comparative fairness. For Gene Ontology terms unsupported by ProteoGAN and CFP-Gen, we attempted to find their ancestor terms in the GO database for substitution; if none were found, we skipped the term.

All baselines We evaluated using the official baseline implementation and weights provided. The results are averaged across three runs with different random seeds to ensure fairness. Additionally, no further fine-tuning is performed on any of the baselines to ensure a fair evaluation of the models' capability to design novel and functional proteins under the same settings.

F.2 COMPLETE RESULTS FOR THE DESCRIPTION-GUIDED TASK

Results on keyword-guided task are in Table 6, Table 7 and Table 8. We mark the top three models, with deeper colors indicating superior performance.

Table 6: Benchmark results of Plausibility and foldability for the description-guided task.

Models	Perplexity			Repetitiveness			Foldability			
	PPL-ProtGPT2 ↓	PPL-ProGen ↓	PPL-RITA ↓	Repeat ↓	Rep-2 ↓	Rep-5 ↓	pLDDT ↑	% > 70 ↑	PAE ↓	% < 10 ↑
Natural	318.15	5.99	5.52	1.99	44.49	0.25	80.64	81.16	9.20	65.64
Random(U)	2484.04±4.53	21.71±0.00	22.14±0.01	0.72±0.01	34.59±0.03	0.01±0.00	22.96±0.04	0.16±0.04	24.85±0.01	0.56±0.03
Random(E)	3136.88±4.17	18.68±0.00	19.04±0.00	1.15±0.01	40.99±0.01	0.01±0.00	25.77±0.03	0.19±0.06	24.71±0.01	0.60±0.03
ProteinDT	1576.23±4.32	12.41±0.01	12.44±0.01	6.83±0.10	62.47±0.14	2.82±0.05	38.29±0.04	0.98±0.17	25.13±0.02	0.40±0.09
Chroma	1370.21±1.48	12.19±0.00	12.42±0.01	2.59±0.02	55.41±0.03	0.60±0.01	59.18±0.09	20.17±0.23	15.03±0.04	28.62±0.62
PAAG	2782.70±9.63	17.84±0.01	18.05±0.02	2.34±0.02	45.83±0.03	0.09±0.01	28.39±0.07	0.07±0.03	25.38±0.01	0.10±0.03
Pinal	308.97±0.68	5.81±0.02	5.78±0.02	12.83±0.13	58.26±0.16	4.73±0.06	75.25±0.19	68.93±0.33	10.96±0.10	58.41±0.38
ProDVa	415.64±7.40	7.63±0.09	8.83±0.17	1.92±0.05	35.65±0.15	2.81±0.13	76.84±0.17	76.27±0.59	8.67±0.05	67.65±0.43

F.3 COMPLETE RESULTS FOR THE KEYWORD-GUIDED TASK

Results on keyword-guided task are in Table 9, Table 10 and Table 11. We mark the top three models, with deeper colors indicating superior performance.

1080
1081

Table 7: Benchmark results of Language Alignment for the description-guided task.

1082
1083
1084
1085
1086
1087

Models	Model-based Alignment					Retrieval-based Alignment					
	ProTrek Score \uparrow	EvoLlama Score \uparrow	Soft(4) \uparrow	Soft(10) \uparrow	Soft(20) \uparrow	Normal(4) \uparrow	Normal(10) \uparrow	Normal(20) \uparrow	Hard(4) \uparrow	Hard(10) \uparrow	Hard(20) \uparrow
Natural	27.00	60.33	98.50	97.17	96.09	93.72	89.01	85.11	43.23	33.20	29.78
Random(U)	1.03 \pm 0.04	36.22 \pm 0.07	28.09 \pm 0.83	12.62 \pm 0.29	6.94 \pm 0.20	28.97 \pm 0.38	12.83 \pm 0.52	7.16 \pm 0.29	25.95 \pm 0.52	10.57 \pm 0.40	5.38 \pm 0.39
Random(E)	1.04 \pm 0.05	34.11 \pm 0.10	28.35 \pm 0.62	12.83 \pm 0.51	6.73 \pm 0.66	28.97 \pm 0.62	12.59 \pm 0.29	6.84 \pm 0.39	25.79 \pm 0.45	10.39 \pm 0.67	5.46 \pm 0.45
ProteinDT	1.20 \pm 0.06	40.57 \pm 0.05	42.91 \pm 0.68	24.97 \pm 1.33	16.77 \pm 1.16	34.58 \pm 0.99	16.56 \pm 0.44	9.43 \pm 0.33	25.09 \pm 1.17	10.38 \pm 0.55	5.01 \pm 0.43
Chroma	2.10 \pm 0.02	40.10 \pm 0.23	29.54 \pm 0.59	13.43 \pm 0.18	7.41 \pm 0.22	29.63 \pm 0.58	13.26 \pm 0.50	7.44 \pm 0.21	25.51 \pm 0.47	10.68 \pm 0.43	5.73 \pm 0.19
PAAG	1.29 \pm 0.04	34.39 \pm 0.18	33.33 \pm 0.25	15.24 \pm 0.33	8.27 \pm 0.20	29.63 \pm 0.70	12.83 \pm 0.14	6.87 \pm 0.17	25.19 \pm 0.65	10.13 \pm 0.34	4.96 \pm 0.23
Pinal	17.50 \pm 0.09	53.40 \pm 0.31	82.42 \pm 0.45	74.44 \pm 0.63	69.99 \pm 0.67	71.69 \pm 0.59	63.53 \pm 0.24	58.43 \pm 0.48	29.51 \pm 0.31	17.89 \pm 0.26	14.17 \pm 0.27
ProDVA	17.40 \pm 0.06	51.19 \pm 0.17	85.64 \pm 0.06	77.37 \pm 0.44	72.75 \pm 0.61	77.52 \pm 0.28	66.67 \pm 0.37	59.03 \pm 0.44	27.84 \pm 0.71	15.77 \pm 0.29	12.11 \pm 0.28

1088
1089
1090

Table 8: Benchmark results of Similarity, Novelty, and Diversity for the description-guided task.

1091
1092
1093
1094
1095
1096

Models	Similarity					Novelty				Diversity	
	GT-Identity \uparrow	GT-TMScore \uparrow	ESM-F1 \uparrow	ESM-Precision \uparrow	ESM-Recall \uparrow	SeqEasy \uparrow	SeqHard \uparrow	StructEasy \uparrow	StructHard \uparrow	Sseq \uparrow	Struct \uparrow
Natural	100.00	100.00	100.00	100.00	100.00	36.11	4.90	38.51	13.56	-	-
Random(U)	0.37 \pm 0.03	16.95 \pm 0.03	71.06 \pm 0.02	81.66 \pm 0.02	63.46 \pm 0.02	98.77 \pm 0.03	58.14 \pm 0.07	96.82 \pm 0.03	77.64 \pm 0.12	97.01	81.59
Random(E)	0.23 \pm 0.04	17.10 \pm 0.00	71.95 \pm 0.02	82.51 \pm 0.02	64.35 \pm 0.02	98.45 \pm 0.01	60.19 \pm 0.14	96.25 \pm 0.04	76.82 \pm 0.10	99.56	81.45
ProteinDT	0.18 \pm 0.02	13.94 \pm 0.03	72.80 \pm 0.05	81.44 \pm 0.03	66.38 \pm 0.05	96.92 \pm 0.12	70.74 \pm 0.07	94.68 \pm 0.02	71.16 \pm 0.08	99.23	83.67
Chroma	0.22 \pm 0.04	17.93 \pm 0.02	72.82 \pm 0.02	80.22 \pm 0.03	67.06 \pm 0.01	97.28 \pm 0.02	58.68 \pm 0.09	80.99 \pm 0.04	51.06 \pm 0.21	96.13	79.9
PAAG	0.17 \pm 0.02	14.63 \pm 0.03	73.26 \pm 0.03	83.10 \pm 0.02	66.04 \pm 0.03	98.90 \pm 0.02	63.64 \pm 0.09	96.44 \pm 0.03	77.34 \pm 0.12	99.15	82.16
Pinal	18.65 \pm 0.15	23.75 \pm 0.14	76.63 \pm 0.06	77.74 \pm 0.08	75.99 \pm 0.06	55.55 \pm 0.19	43.82 \pm 0.22	40.07 \pm 0.33	17.23 \pm 0.23	82.96	72.73
ProDVA	21.48 \pm 0.15	20.03 \pm 0.11	75.23 \pm 0.01	77.01 \pm 0.05	74.11 \pm 0.02	38.23 \pm 0.31	14.64 \pm 0.23	56.18 \pm 23.36	36.31 \pm 33.02	83.29	36.92

1097
1098
1099

Table 9: Benchmark results of Plausibility and Foldability for the keyword-guided task.

1100
1101
1102
1103
1104
1105
1106
1107

Models	Perplexity			Repetitiveness			Foldability				
	PPL-ProtGPT2 \downarrow	PPL-ProGen \downarrow	PPL-RITA \downarrow	Repeat \downarrow	Rep-2 \downarrow	Rep-5 \downarrow	pLDDT \uparrow	% > 70 \uparrow	PAE \downarrow	% < 10 \uparrow	
<i>guided with GO keywords</i>											
Natural	554.35	9.17	8.89	2.17	44.43	0.43	76.92	72.44	10.54	54.69	
Random(U)	2473.84 \pm 10.48	21.74 \pm 0.01	22.18 \pm 0.02	0.72 \pm 0.03	35.52 \pm 0.04	0.01 \pm 0.00	23.20 \pm 0.02	0.10 \pm 0.08	24.56 \pm 0.01	0.19 \pm 0.08	
Random(E)	3096.13 \pm 18.42	18.68 \pm 0.01	19.05 \pm 0.01	1.14 \pm 0.04	41.45 \pm 0.07	0.02 \pm 0.00	25.99 \pm 0.12	0.05 \pm 0.08	24.47 \pm 0.03	0.24 \pm 0.08	
ProteinGAN	2708.39 \pm 32.50	18.03 \pm 0.01	18.31 \pm 0.02	2.50 \pm 0.05	42.73 \pm 0.86	0.03 \pm 0.00	28.72 \pm 0.43	0.06 \pm 0.10	24.67 \pm 0.17	0.12 \pm 0.20	
CFP-Gen	187.72 \pm 9.71	5.16 \pm 0.03	4.65 \pm 0.02	12.67 \pm 0.79	59.67 \pm 0.83	13.82 \pm 0.74	73.38 \pm 0.26	65.65 \pm 1.11	14.61 \pm 0.27	35.20 \pm 1.76	
ProteinDT	1531.76 \pm 17.19	12.23 \pm 0.06	12.29 \pm 0.06	7.98 \pm 0.51	64.01 \pm 0.25	3.12 \pm 0.38	40.35 \pm 0.30	1.15 \pm 0.00	25.57 \pm 0.03	0.00 \pm 0.00	
Chroma	1354.61 \pm 4.81	12.18 \pm 0.03	12.40 \pm 0.03	2.71 \pm 0.05	55.09 \pm 0.12	0.67 \pm 0.03	59.27 \pm 0.20	22.17 \pm 0.65	15.00 \pm 0.10	30.93 \pm 0.08	
PAAG	2650.36 \pm 11.01	18.08 \pm 0.02	18.38 \pm 0.02	2.48 \pm 0.20	39.23 \pm 0.05	0.05 \pm 0.01	31.47 \pm 0.10	0.34 \pm 0.36	23.88 \pm 0.05	0.24 \pm 0.08	
Pinal	414.26 \pm 77.15	6.85 \pm 0.59	6.89 \pm 0.64	14.13 \pm 2.58	59.84 \pm 4.37	4.85 \pm 1.63	72.58 \pm 5.55	62.10 \pm 14.24	11.79 \pm 2.52	52.19 \pm 12.03	
ProDVA	486.77 \pm 9.51	11.16 \pm 0.29	18.71 \pm 0.77	1.87 \pm 0.07	22.04 \pm 0.09	0.88 \pm 0.05	74.73 \pm 0.24	68.40 \pm 0.38	6.11 \pm 0.02	84.90 \pm 0.46	

1108
1109
1110
1111
1112
1113
1114

Models	guided with IPR keywords					guided with IPR&GO keywords					
	Natural	611.99	9.73	9.47	2.23	44.05	0.48	75.77	68.85	11.13	50.92
Random(U)	2475.07 \pm 10.83	21.76 \pm 0.02	22.21 \pm 0.02	0.69 \pm 0.06	35.18 \pm 0.07	0.01 \pm 0.00	23.40 \pm 0.07	0.08 \pm 0.07	24.42 \pm 0.02	0.11 \pm 0.00	
Random(E)	3104.89 \pm 24.07	18.67 \pm 0.02	19.05 \pm 0.02	1.16 \pm 0.02	40.91 \pm 0.08	0.02 \pm 0.01	26.29 \pm 0.18	0.08 \pm 0.07	24.34 \pm 0.03	0.19 \pm 0.07	
ESM3	330.44 \pm 9.90	6.33 \pm 0.07	6.59 \pm 0.07	28.13 \pm 0.24	68.98 \pm 0.42	21.11 \pm 0.47	60.90 \pm 0.77	32.93 \pm 2.43	16.73 \pm 0.27	22.68 \pm 1.83	
CFP-Gen	135.57 \pm 4.51	4.94 \pm 0.12	5.03 \pm 0.11	11.86 \pm 0.29	59.17 \pm 0.57	13.57 \pm 0.88	76.36 \pm 0.35	72.52 \pm 1.45	12.54 \pm 0.26	47.23 \pm 2.51	
ProteinDT	1506.64 \pm 5.70	11.87 \pm 0.02	11.93 \pm 0.02	10.02 \pm 0.38	65.68 \pm 0.30	5.83 \pm 0.39	37.59 \pm 0.15	0.04 \pm 0.07	26.19 \pm 0.03	0.00 \pm 0.00	
Chroma	1336.19 \pm 7.55	12.17 \pm 0.01	12.39 \pm 0.02	2.60 \pm 0.08	54.53 \pm 0.08	0.54 \pm 0.03	59.76 \pm 0.26	23.75 \pm 1.35	14.67 \pm 0.05	31.38 \pm 0.75	
PAAG	2748.12 \pm 25.25	17.85 \pm 0.04	18.06 \pm 0.03	2.32 \pm 0.11	44.78 \pm 0.06	0.08 \pm 0.01	30.89 \pm 0.03	0.11 \pm 0.11	24.98 \pm 0.02	0.19 \pm 0.13	
Pinal	525.38 \pm 80.49	8.12 \pm 0.45	8.22 \pm 0.47	16.73 \pm 1.96	59.97 \pm 3.55	6.32 \pm 1.28	65.69 \pm 4.42	44.90 \pm 12.43	14.10 \pm 2.19	36.13 \pm 9.57	
ProDVA	574.60 \pm 5.52	12.47 \pm 0.77	19.07 \pm 1.06	1.99 \pm 0.02	21.64 \pm 0.11	1.51 \pm 0.12	72.80 \pm 0.48	60.65 \pm 0.65	6.86 \pm 0.10	79.92 \pm 1.03	
GPT-5	769.53 \pm 13.47	10.87 \pm 0.14	10.99 \pm 0.13	4.63 \pm 0.14	64.60 \pm 0.26	15.41 \pm 0.61	32.12 \pm 0.11	1.93 $\pm</math$			

Table 10: Benchmark results of Language Alignment for the keyword-guided task.

Models	Model-based Alignment					Retrieval-based Alignment							
	ProTrek Score ↑	IPR Recovery ↑	GO Recovery ↑	Soft(4) ↑	Soft(10) ↑	Soft(20) ↑	Normal(4) ↑	Normal(10) ↑	Normal(20) ↑	Hard(4) ↑	Hard(10) ↑	Hard(20) ↑	
	guided with GO keywords												
Natural	21.6	100.0	100.0	94.52	92.78	89.75	87.59	77.49	69.41	37.23	28.72	26.7	
Random(U)	4.29±0.04	0.00±0.00	20.79±0.37	30.06±1.33	14.00±4.45	7.50±2.57	26.89±1.83	10.00±0.08	5.05±1.44	30.01±3.21	9.72±0.46	5.05±0.29	
Random(E)	3.44±0.01	0.00±0.00	11.71±1.48	29.87±0.50	12.41±2.18	6.69±1.04	27.08±0.30	11.06±0.55	5.96±0.98	28.62±2.22	11.98±0.66	5.87±0.79	
ProteoGAN	4.42±0.17	0.00±0.00	14.99±1.36	38.64±2.86	19.84±2.14	10.27±1.11	32.70±1.42	13.84±0.69	8.13±0.52	27.16±1.67	10.90±1.05	5.65±0.53	
CFP-Gen	10.03±0.33	9.67±1.07	18.98±1.14	66.24±2.17	57.40±1.85	47.39±3.10	53.46±2.49	38.87±2.00	30.09±0.92	27.80±3.72	13.37±0.74	8.15±0.42	
ProteinDT	1.70±0.21	0.03±0.03	18.52±2.07	40.52±6.22	16.59±1.25	8.90±0.36	34.05±1.91	15.39±1.42	9.51±0.88	27.08±1.79	12.51±1.23	6.30±0.73	
Chroma	1.84±0.03	0.23±0.05	16.33±2.36	32.13±0.79	13.80±2.03	7.74±0.87	27.90±0.96	12.07±1.06	5.92±0.38	27.99±0.43	12.22±0.92	5.15±0.82	
PAAG	4.38±0.17	0.00±0.00	21.66±2.71	38.58±1.75	20.49±1.59	11.16±1.42	34.10±0.92	16.45±0.76	8.85±0.79	31.36±2.33	12.07±0.46	6.30±1.21	
Pinal	12.69±1.42	19.26±1.90	22.76±1.78	73.98±4.37	61.90±8.29	56.66±7.96	61.52±4.86	49.93±3.82	42.95±3.35	35.88±4.96	21.26±2.48	17.89±2.27	
ProDVA	14.42±0.07	20.22±0.14	30.24±0.75	86.48±1.78	71.38±5.34	55.80±0.60	66.43±0.58	52.38±0.66	45.07±0.30	35.93±3.38	21.45±2.75	18.13±0.96	
guided with IPR keywords													
Natural	25.29	100.0	100.0	98.51	96.67	95.17	91.72	83.22	75.75	40.8	32.76	30.69	
Random(U)	7.53±0.07	0.00±0.00	25.75±3.21	27.70±3.13	10.84±1.76	6.44±0.75	26.44±1.78	11.72±0.11	6.21±0.64	28.05±1.44	9.85±0.63	4.87±0.24	
Random(E)	6.11±0.08	0.00±0.00	13.06±1.17	27.62±2.25	13.18±1.93	8.01±1.29	28.51±2.22	12.80±1.33	6.74±0.93	26.36±0.65	11.34±1.53	5.48±0.27	
ESM3	6.22±0.18	20.17±0.86	15.43±2.74	38.64±2.76	12.12±1.88	8.31±1.72	31.64±1.72	28.31±1.52	33.01±1.24	26.47±1.63	29.82±0.88	14.69±0.18	10.69±0.43
CFP-Gen	10.21±0.16	32.79±0.93	23.41±1.82	64.47±1.84	50.78±1.88	43.36±0.65	55.90±1.73	40.96±1.19	34.38±1.48	29.36±1.73	15.88±1.31	12.43±0.48	
ProteinDT	3.85±0.03	0.08±0.05	20.76±1.46	40.38±3.85	22.68±1.32	13.83±0.98	44.34±0.49	16.13±1.04	9.23±0.58	26.82±2.94	10.92±1.66	5.63±1.41	
Chroma	3.82±0.03	0.17±0.01	17.15±1.93	37.13±1.05	17.05±3.30	9.27±1.04	29.35±1.09	13.68±0.80	6.78±0.20	27.20±2.24	11.15±0.87	5.25±0.87	
PAAG	5.98±0.17	0.08±0.05	13.85±1.02	32.07±3.27	14.41±2.50	9.58±1.78	30.69±2.26	14.37±1.85	7.78±0.86	26.90±0.92	11.46±2.17	6.05±0.87	
Pinal	14.38±1.38	25.63±3.95	15.93±1.49	80.96±7.50	70.88±9.31	64.21±10.47	71.00±4.87	57.59±5.90	48.24±6.90	31.88±1.90	20.31±1.36	16.59±1.90	
ProDVA	15.19±0.19	24.58±0.69	26.59±2.25	64.90±3.11	57.05±4.15	65.29±0.64	51.99±0.93	44.44±0.88	33.26±1.24	20.73±1.50	15.90±0.54		
guided with IPR&GO keywords													
Natural	27.36	100.0	100.0	99.55	99.11	98.96	93.62	87.39	79.82	45.85	36.65	34.27	
Random(U)	4.84±0.09	0.00±0.00	25.38±3.32	29.77±1.88	12.86±2.64	5.64±1.27	26.36±1.34	9.45±1.44	4.50±1.84	26.41±1.12	9.69±0.45	4.75±1.07	
Random(E)	3.72±0.09	0.00±0.00	14.67±4.14	30.42±2.20	12.12±0.62	5.93±0.90	27.00±1.46	11.28±1.04	6.28±1.30	26.56±1.46	10.29±1.30	5.24±0.31	
CFP-Gen	11.68±0.15	35.21±0.30	23.31±2.49	73.97±1.60	63.46±2.00	59.23±1.54	57.95±1.94	45.77±1.92	35.51±3.11	29.36±1.46	15.00±0.00	11.54±0.77	
ProteinDT	3.06±0.11	0.36±0.03	15.92±1.14	47.08±1.20	23.93±1.43	19.63±1.63	38.72±1.43	19.29±0.68	9.99±0.97	27.45±2.32	10.48±0.69	5.39±1.09	
Chroma	2.19±0.12	0.16±0.06	14.12±1.86	32.29±2.15	14.34±2.12	8.56±0.46	28.83±0.69	11.67±1.65	6.38±0.53	27.00±2.50	11.67±0.73	5.79±0.74	
PAAG	4.66±0.12	0.02±0.02	9.77±0.90	28.24±3.82	14.14±3.71	7.22±2.06	28.19±1.67	11.82±0.82	6.03±0.60	29.08±1.80	12.17±1.55	6.08±0.51	
Pinal	15.26±1.27	33.08±3.75	21.64±0.47	82.34±3.25	73.10±4.55	68.55±4.53	72.50±3.87	60.88±2.79	52.62±3.12	34.47±1.34	21.76±1.12	18.50±1.24	
ProDVA	16.78±0.12	30.95±0.56	25.24±0.45	82.54±1.19	74.18±1.36	69.24±1.63	71.51±0.93	61.23±1.50	52.97±2.43	33.88±1.79	22.45±1.09	19.93±1.09	
GPT-5	9.13±0.10	6.64±0.31	29.43±1.02	77.50±2.08	63.60±2.31	54.35±1.57	61.08±2.41	42.78±2.27	29.97±1.51	26.61±0.45	12.81±0.67	7.52±0.17	

Table 11: Benchmark results of Similarity, Novelty and Diversity for the keyword-guided task.

Models	Similarity					Novelty					Diversity	
	GT-Identity ↑	GT-TMScore ↑	ESM-F1 ↑	ESM-Precision ↑	ESM-Recall ↑	SeqEasy ↑	SeqHard ↑	StructEasy ↑	StructHard ↑	Seq ↑	Struct ↑	
	guided with GO keywords											
Natural	100.0	100.0	100.0	100.0	100.0	44.34	4.07	56.96	18.15	-	-	
Random(U)	0.84±0.23	16.76±0.05	73.37±0.04	82.81±0.05	66.40±0.03	98.66±0.07	58.04±0.69	96.54±0.11	76.75±0.20	94.29	81.56	
Random(E)	0.63±0.16	17.03±0.03	74.24±0.04	83.70±0.05	67.24±0.03	98.44±0.04	60.28±0.09	95.85±0.15	75.92±0.19	98.65	81.54	
ProteoGAN	0.28±0.07	14.75±0.24	74.25±0.07	84.37±0.10	66.84±0.05	99.13±0.06	65.24±0.27	96.19±0.17	75.82±0.29	98.94	84.37	
CFP-Gen	2.30±0.25	13.98±0.26	67.52±0.17	68.36±0.26	67.46±0.30	59.60±0.61	47.85±0.95	54.07±1.87	28.28±1.47	85.14	81.76	
ProteinDT	0.20±0.12	12.67±0.05	74.83±0.02	82.67±0.10	68.93±0.05	99.28±0.01	75.41±0.30	96.29±0.05	74.62±0.63	99.7	84.53	
Chroma	0.38±0.07	17.67±0.06	74.29±0.02	80.80±0.02	69.15±0.02	97.44±0.16	59.35±0.58	80.22±0.45	50.88±0.84	93.7	79.79	
PAAG	0.16±0.05	16.22±0.18	75.40±0.05	84.22±0.07	76.87±0.05	98.80±0.03	62.36±0.47	95.20±0.27	73.36±0.18	98.57	81.73	
Pinal	5.35±0.35	15.84±0.47	71.36±0.66	72.24±1.85	71.06±0.46	61.98±0.67	46.06±5.23	46.42±9.10	19.27±6.43	87.61	79.0	
ProDVA	9.07±0.14	20.25±0.13	72.54±0.10	75.81±0.06	70.25±0.12	48.37±0.72	25.02±0.81	62.12±0.19	32.72±0.02	98.17	35.76	
guided with IPR keywords												
Natural	100.0	100.0	100.0	100.0	100.0	44.92	4.47	59.46	20.09	-	-	
Random(U)	0.88±0.03	16.69±0.04	73.97±0.04	82.79±0.02	67.38±0.05	98.70±0.06	57.21±0.77	96.37±0.05	76.47±0.35	94.44	81.56	
Random(E)	0.70±0.15	16.85±0.12	74.79±0.03	83.65±0.03	68.16±0.04	98.44±0.08	59.57±0.81	95.62±0.14	75.05±0.48	98.58	81.46	
ESM3	4.43±0.22	21.30±0.28	72.22±0.09	75.06±0.13	69.96±0.25	85.30±0.68	71.87±1.23	73.80±1.08	37.56±0.41	91.41	76.79	
CFP-Gen	7.75±0.16	16.73±0.42	66.82±0.17	68.61±0.13	65.74±0.25	63.79±0.11	49.46±0.57	50.44±1.32	23.15±0.97	85.31	82.08	
ProteinDT	0.13±0.02	12.38±0.06	75.23±0.04	82.13±0.08	70.07±0.02	99.08±0.13	73.57±0.65	96.64±0.12	76.03±0.19	99.71	84.81	
Chroma	0.38±0.13	17.45±0.06	74.81±0.02	80.85±0.03	70.00±0.01	97.35±0.13	59.25±0.27	80.19±0.68	50.77±1.26	94.06	79.88	
PAAG	0.26±0.07	14.37±0.07	76.19±0.01	84.43±0.03	69.93±0.03	98.93±0.07	64.71±0.70	96.66±0.16	79.23±0.22	99.16	81.48	
Pinal	6.70±0.90	17.23±0.57	74.14±0.28	76.19±1.29	72.59±0.62	74.01±0.01	51.61±3.45	60.24±6.98	27.00±6.19	87.02	80.38	
ProDVA	7.39±0.08	20.75±0.36	73.31±0.09	76.62±0.17	70.99±0.09	51.80±1.34	28.86±1.37	65.58±0.77	31.26±1.57	95.02	45.6	
guided with IPR&GO keywords												
Natural	100.0	100.0	100.0	100.0	100.0	43.23	3.89	56.17	17.72	-	-	
Random(U)	0.85±0.34	16.73±0.10	73.09±0.02	82.66±0.03	66.02±0.01</							

1188
1189
1190 Table 12: [Settings of GPT-5](#)
1191
1192
1193
1194
1195

temperature	1.0
top_p	0.1
system prompt	You are an expert in designing novel functional proteins tailored to user requirements.
user prompt	Do not explain your answer; directly provide an amino acid sequence. <i>{The functional description of the protein}</i>

1196
1197
1198 Designing proteins that satisfy a greater number of functional keywords is inherently more
1199 challenging. Accordingly, we compare performance across tasks of varying difficulty. We first
1200 calculated the number of InterPro entries and Gene Ontology (Molecular Function) terms associated
1201 with each protein in SwissProt. Using the median frequency as a threshold, we classified each
1202 keyword-guided task into **Easy** and **Hard** sub-tasks. The median frequency was 2 for Gene
1203 Ontology (Molecular Function) terms, 7 for InterPro entries, and 9 for combined IPR&GO keywords.
1204 Overall, GPT-5 outperforms ProteinDT, PAAG, and Chroma in protein sequence comprehension and
1205 language alignment, yet it remains markedly limited in its understanding of protein structures.
1206

1206 Table 13: [Results for Plausibility, Foldability, and Alignment, categorized by keyword count.](#)
1207

Model	PPL-ProGen			pLDDT			ProTrek Score		
	Easy	Hard	Overall	Easy	Hard	Overall	Easy	Hard	Overall
<i>guided with GO keywords</i> (The samples with > 2 GO terms are treated as Hard.)									
Natural	9.99	7.05	9.17	75.64	80.21	76.92	21.05	23.00	21.60
ProteoGAN	18.00 ± 0.02	18.08 ± 0.03	18.03 ± 0.01	28.89 ± 0.41	28.35 ± 0.47	28.72 ± 0.43	4.98 ± 0.14	3.28 ± 0.24	4.42 ± 0.02
CFP-Gen	5.05 ± 0.01	5.48 ± 0.13	5.16 ± 0.03	75.95 ± 0.27	65.90 ± 0.24	73.38 ± 0.26	10.82 ± 0.44	7.75 ± 0.08	10.03 ± 0.33
ProDVA	11.59 ± 0.28	10.08 ± 0.47	11.16 ± 0.29	73.70 ± 0.30	77.40 ± 0.09	74.73 ± 0.24	14.71 ± 0.08	13.68 ± 0.07	14.42 ± 0.07
<i>guided with IPR keywords</i> (The samples with > 7 IPR entries are treated as Hard.)									
Natural	11.23	6.87	9.73	72.46	82.04	75.77	25.82	24.29	25.29
ESM3	26.82 ± 0.10	5.30 ± 0.01	6.33 ± 0.07	59.87 ± 0.54	63.08 ± 1.27	60.90 ± 0.77	6.21 ± 0.12	6.24 ± 0.69	6.22 ± 0.18
CFP-Gen	5.04 ± 0.13	4.65 ± 0.13	4.94 ± 0.12	76.98 ± 0.14	74.57 ± 0.93	76.36 ± 0.35	8.86 ± 0.23	14.03 ± 0.42	10.21 ± 0.16
ProDVA	14.21 ± 1.05	9.18 ± 0.30	12.47 ± 0.77	70.38 ± 0.46	77.41 ± 0.71	72.80 ± 0.48	14.25 ± 0.25	16.98 ± 0.10	15.19 ± 0.19
<i>guided with IPR&GO keywords</i> (The samples with > 9 keywords are treated as Hard.)									
Natural	10.64	6.71	8.96	73.61	81.96	77.17	28.59	25.70	27.36
CFP-Gen	5.34 ± 0.19	4.96 ± 0.31	5.23 ± 0.04	71.60 ± 1.31	75.26 ± 0.55	72.70 ± 1.07	9.52 ± 0.09	16.73 ± 0.34	11.68 ± 0.15
ProDVA	12.44 ± 0.23	7.87 ± 0.17	10.48 ± 0.07	73.56 ± 0.23	75.19 ± 0.71	74.26 ± 0.27	15.40 ± 0.08	18.62 ± 0.24	16.78 ± 0.12

1220 Table 14: [Results for Similarity, Novelty and Diversity, categorized by keyword count.](#)
1221

Model	GT-Identity			Novelty-Seq			Diversity-Seq		
	Easy	Hard	Overall	Easy	Hard	Overall	Easy	Hard	Overall
<i>guided with GO keywords</i> (The samples with > 2 GO terms are treated as Hard.)									
Natural	100.00	100.00	100.00	4.25	3.59	4.07	-	-	-
ProteoGAN	0.12 ± 0.04	0.60 ± 0.25	0.28 ± 0.07	65.36 ± 0.57	64.97 ± 1.49	65.24 ± 0.27	99.42	97.94	98.94
CFP-Gen	1.78 ± 0.14	3.80 ± 0.66	2.30 ± 0.25	41.65 ± 0.78	65.89 ± 1.68	47.85 ± 0.95	84.42	87.22	85.14
ProDVA	7.73 ± 0.27	12.50 ± 0.81	9.07 ± 0.14	27.19 ± 1.22	19.45 ± 0.63	25.02 ± 0.81	98.57	97.13	98.17
<i>guided with IPR keywords</i> (The samples with > 7 IPR entries are treated as Hard.)									
Natural	100.00	100.00	100.00	4.75	3.94	4.47	-	-	-
ESM3	3.06 ± 0.09	7.30 ± 0.84	4.43 ± 0.22	73.24 ± 1.30	68.99 ± 2.57	71.87 ± 1.23	93.14	87.78	91.41
CFP-Gen	4.19 ± 0.18	17.87 ± 1.11	7.75 ± 0.16	50.42 ± 0.68	46.73 ± 0.27	49.46 ± 0.57	87.98	77.72	85.31
ProDVA	3.64 ± 0.27	14.49 ± 0.69	7.39 ± 0.08	35.52 ± 2.01	16.27 ± 0.20	28.86 ± 1.37	97.20	90.89	95.02
<i>guided with IPR&GO keywords</i> (The samples with > 9 keywords are treated as Hard.)									
Natural	100.00	100.00	100.00	4.10	3.61	3.89	-	-	-
CFP-Gen	3.55 ± 0.33	18.37 ± 0.86	8.00 ± 0.30	57.52 ± 2.31	48.21 ± 0.94	54.72 ± 1.90	83.20	74.57	80.61
ProDVA	5.40 ± 0.39	16.35 ± 0.40	10.08 ± 0.36	28.79 ± 1.56	12.83 ± 0.72	21.97 ± 0.59	96.35	86.02	91.94

1236 As shown in Table 13&14, We selected representative baselines for three keyword-guided subtasks,
1237 choosing one metric from each of six dimensions. The evaluation results were categorized
1238 as Easy, Hard, and Overall (without distinction). Based on the results for Natural Protein,
1239 plausibility, foldability, and similarity improve as the number of keywords increases, whereas
1240 language alignment, novelty, and diversity decline. Most baselines follow trends similar to those
1241 observed for Natural Protein, though some exceptions occur. For example, CFP-Gen consistently
attains optimal and stable plausibility across both Hard and Easy samples. In contrast, ProTrek Score

1242 exhibits divergent trends across subtasks, which we attribute to dataset imbalance resulting from the
1243 limited volume of test data.

1245 G.3 WHAT IS THE OPTIMAL EVALUATION STRATEGY WHEN USING PDFBENCH?

1247 As noted in Section 4.1, the Perplexity, used to assess sequence plausibility, can to some extent
1248 capture two metrics of Foldability, the latter typically requiring extremely more computational time.
1249 In this section, we evaluate the computational costs of proposed metrics and propose a practical
1250 evaluation scheme.

1251 Here, we randomly selected 50 and 500 samples from *SwissTest* and performed evaluations on a
1252 single machine equipped with 4 NVIDIA GeForce RTX3090 and one 48-core CPU. For Perplexity,
1253 we only evaluated the PPL-ProGen2. For Repetitiveness, we computed only the Repeat. For
1254 Foldability, both pLDDT and PAE metrics can be obtained simultaneously in a single inference
1255 of ESMFold. For Novelty and Diversity, we considered computing both Sequence and Structure
1256 metrics concurrently.

1257 Table 15: Computation time for all metrics. The values below represent the mean time required to
1258 evaluate 50 samples.

Num of Samples	Plausibility		Foldability	Language Alignment				Similarity		Novelty	Diversity
	Perplexity	Repetitiveness		ProTrek Score	IPR Recovery	Retrieval Accuracy	GO Recovery	ESMScore	GT-Identity		
50	39s	2s	9m34s	32s	3s	38s	65s	11s	18s	18s	21s
500	23s	3s	61m50s	47s	29m39s	104s	103s	24s	91s	35s	38s

1263 As shown in Table 15, the computational cost of Foldability is 160 times greater than that of
1264 Perplexity, as previously noted. The IPR Recovery is time-intensive, primarily because it relies
1265 on *InterProScan*—a Java-based retrieval tool that cannot be accelerated using GPUs. In summary,
1266 we recommend using metrics other than Foldability and IPR Recovery for the initial screening,
1267 followed by these two metrics in a subsequent evaluation round. Furthermore, it should be noted
1268 that all metrics, except Repetitiveness, IPR Recovery, and GT-TMScore, depend on GPU processing.
1269 Therefore, the GPU requirements of PDFBENCH should not be underestimated.

1271 H LIMITATIONS

1273 In this study, we conducted a fair and comprehensive benchmark of two tasks, 8 models, including
1274 ProteinDT, Chroma, PAAG, Pinal, ProDVa, ProteoGAN, ESM3, CFP-Gen across all 16 metrics.
1275 For keyword-guided tasks, to ensure a fair comparison, we restricted the evaluation dataset to 1,057
1276 proteins released between January 1, 2025, and August 25, 2025. It should be noted that this limited
1277 dataset size may affect the reliability of the evaluation results.