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ABSTRACT

Existing causal discovery methods are fundamentally limited by the assumption of
a static causal graph, a constraint that fails in real-world systems where causal rela-
tionships dynamically vary with underlying system parameters. This discrepancy
prevents the application of causal discovery in critical domains such as industrial
process control, where understanding how causal effects change is essential. We
address this gap by proposing a new paradigm that moves beyond static graphs
to learn functional causal representations. We introduce a framework that mod-
els each causal link not as a static weight but as a function of measurable system
parameters. By representing these functions using Polynomial Chaos Expansions
(PCE), we develop a tractable method to learn the complete parametric causal
structure from observational data. We provide theoretical proofs for the identi-
fiability of these functional models and introduce a novel, provably convergent
learning algorithm. On a large-scale chemical reactor dataset, our method learns
the dynamic causal structure with a 90.9% F1-score, nearly doubling the perfor-
mance of state-of-the-art baselines and providing an interpretable model of how
causal mechanisms evolve.

1 INTRODUCTION

Industrial process control systems generate massive volumes of sensor data requiring automated
analysis for optimization and predictive maintenance (Fang et al., 2022; Zhou et al., 2015). Under-
standing causal relationships between process variables is essential for root cause analysis, anomaly
detection, and adaptive control strategies (Zhang et al., 2016). However, industrial processes ex-
hibit unique challenges that violate assumptions of existing causal discovery methods: causal rela-
tionships may vary systematically with operating conditions, sensors exhibit complex multi-modal
and heavy-tailed noise distributions, and safety-critical applications demand rigorous uncertainty
quantification (Cao et al., 2025; Wang et al., 2025).

Many widely used causal discovery methods for observational data are formulated in terms of a
single, static causal graph whose edge strengths do not depend on observed context or operating pa-
rameters, even though there is a growing body of work on time-varying and context-specific causal
structures (Song et al., 2009; Huang et al., 2019). In reality, industrial causal effects are functions
of measurable parameters. For instance, in chemical reactors, the influence of feed temperature on
product quality depends strongly on catalyst activity, which degrades over time. Heat exchanger
effectiveness varies with fouling levels, fundamentally altering thermal control loops. These para-
metric dependencies are not mere nuisances but contain critical information for process optimization
and predictive maintenance. Our goal in this paper is therefore not to replace existing approaches
to epistemic or aleatoric uncertainty, but to complement them with a representation in which each
causal edge is an explicit function of a low-dimensional vector of operating parameters.

The field of causal discovery has evolved through three major directions, each with distinct limita-
tions for industrial applications. Constraint-based methods such as the Peter-Clark (PC) algorithm
(Spirtes et al., 2000), Fast Causal Inference (FCI) (Spirtes et al., 2001), and Really Fast Causal
Inference (RFCI) (Colombo et al., 2012) rely on conditional independence tests to infer causal
structures. While theoretically sound, these methods struggle with finite sample sizes and become
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Figure 1: Overview of the polynomial chaos theory for causal discovery framework in dynamic
uncertainty systems.

computationally intractable for high-dimensional industrial data with hundreds of sensors. Recent
advances like PC-stable (Colombo & Maathuis, 2014) improve stability but fail when faced with
complex noise distributions common in industrial sensors.

Score-based methods including Greedy Equivalence Search (GES) (Chickering, 2002) and Fast
Greedy Equivalence Search (FGES) (Ramsey et al., 2017) optimize scoring functions over possible
Directed Acyclic Graph (DAG) structures. The breakthrough NOTEARS algorithm (Zheng et al.,
2018) reformulated structure learning as continuous optimization with differentiable acyclicity con-
straints, spawning variants like Directed Acyclic Graph - Graph Neural Network (DAG-GNN) (Yu
et al., 2019) for nonlinear relationships, Reinforcement Learning - Bayesian Information Criterion
(RL-BIC) (Zhu et al., 2020) using reinforcement learning. In their most common instantiations,
these approaches return a single best-scoring DAG and point estimates of edge weights; uncertainty
over graphs and parameters is typically handled by separate Bayesian or bootstrap procedures (e.g.,
Lorch et al., 2021; Cundy et al., 2021) rather than being integrated with an explicit model of how
edge strengths vary with operating parameters. This limitation is particularly critical for safety-
critical industrial applications where confidence in causal recommendations directly impacts opera-
tional decisions and safety outcomes.

Functional causal models exploit asymmetries in data distributions for identifiability. The Linear
Non-Gaussian Acyclic Model (LINGAM) (Shimizu et al., 2006) proved that linear models with
non-Gaussian noise yield unique causal structures, later extended to DirectLiNGAM (Shimizu
et al., 2011) and Vector Autoregressive LINGAM (VAR-LINGAM) (Hyvirinen et al., 2010) for
time series. Nonlinear extensions include additive noise models (ANM) (Hoyer et al., 2008), post-
nonlinear models (PNL) (Zhang & Hyvirinen, 2009), and the general identifiable functional causal
model framework (Peters et al., 2014). However, in their standard form these models do not repre-
sent how causal effects change as an explicit function of observed operating parameters.

Recent industrial applications (Sui et al., 2025; Runge et al., 2019; Yang et al., 2025) have high-
lighted these limitations, often requiring extensive preprocessing or domain-specific modifications
lacking theoretical justification. Bayesian approaches such as Differentiable Bayes for Structure
Learning (DiBS) (Lorch et al., 2021) and Bayesian Causal Discovery with Neural Networks (BCD
Nets) (Cundy et al., 2021) explicitly quantify posterior uncertainty over graphs and parameters, ad-
dressing epistemic uncertainty due to finite data, but they still treat each edge as static and do not
model how its strength varies with operating parameters.

Polynomial Chaos Expansion (PCE), introduced by Wiener (Wiener, 1938) and generalized by
Xiu (Xiu & Karniadakis, 2002), provides a mathematically rigorous framework for representing and
propagating uncertainty through complex systems. PCE has been successfully applied in uncertainty
quantification for engineering systems (Sudret, 2008), sensitivity analysis (Crestaux et al., 2009),
and stochastic optimization (Picheny et al., 2013). Recent algorithmic advances including sparse
PCE (Jiang et al., 2025), adaptive basis selection (Dai et al., 2025), and multi-fidelity approaches
(Liu et al., 2020) have made PCE computationally tractable for high-dimensional problems. Despite
this success in forward uncertainty propagation, PCE has, to the best of our knowledge, not yet been
systematically exploited for causal discovery.
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This paper introduces PCT-CD, bridging uncertainty quantification and causal discovery. Figure 1
provides an overview of the proposed framework. Our contributions are summarized as follows:

1. From Static Graphs to Dynamic Functions: We formalize an industrial structural causal
model in which a single underlying DAG is equipped with edge weights that are explicit
functions of operating conditions, and we prove identifiability of these parametric mecha-
nisms under mild assumptions.

2. An End-to-End Solution for Dynamic Systems: We propose PCT-CD, an integrated algo-
rithm specifically designed for parametric causal discovery. It translates complex process
data into an interpretable model of how causal links evolve, providing actionable intelli-
gence beyond simple correlation.

3. Demonstrated Real-World Viability: We empirically validate PCT-CD on controlled syn-
thetic benchmarks with parameter-varying mechanisms and on a complex refinery dataset.
PCT-CD achieves high Fl-scores and equips engineers with uncertainty-aware tools that
are essential for making robust decisions in high-stakes environments.

The remainder of this paper is organized as follows. Section 2 details the PCT-CD methodology, in-
cluding parametric SEM formulation, PCE representation, and our novel conditional independence
test. Section 3 establishes theoretical foundations with identifiability and convergence proofs. Sec-
tion 4 validates our approach on both synthetic benchmarks with controlled parametric variation
and an industrial process dataset, comparing against a broad set of baseline methods. Section 5
concludes with implications for industrial deployment and future research directions.

2 METHODOLOGY

Our proposed framework, PCT-CD, introduces a novel paradigm for causal discovery by explic-
itly modeling how causal relationships vary as functions of measurable system parameters. This
is achieved by integrating the theory of PCE into a hybrid structure learning algorithm. While
Bayesian and bootstrap-based methods typically quantify epistemic uncertainty arising from finite
data (for example via posterior distributions over static graphs and parameters), PCT-CD is designed
to address parametric uncertainty by representing causal edges as explicit functions of measurable
system parameters, and is conceptually complementary to these existing approaches.

The methodology unfolds in four stages: first, we formulate a Structural Equation Model (SEM)
where causal coefficients are functions of a parameter vector £. Second, we represent these functions
using PCE, transforming the non-parametric problem into a tractable parametric one. Third, we
develop a novel conditional independence test tailored to this representation to discover an initial
causal skeleton. Finally, we refine this structure and quantify edge strengths using a score-based
optimization with a natural gradient approach, ensuring both accuracy and computational efficiency.

2.1 PROBLEM FORMULATION

We consider a complete probability space (Z, F,P) where all random quantities are defined. The
core innovation of our framework is the explicit modeling of parametric uncertainty through a ran-
dom vector £ € = C R%. This vector represents known, measurable operating conditions (e.g.,
ambient temperature, catalyst age, feedstock quality) with a joint probability distribution p, that has
finite moments of all orders. In our theoretical analysis we assume that ji¢ is known so that a stan-
dard PCE basis adapted to ;¢ can be chosen; in practice, when only samples of £ are available, an
empirical orthogonal basis can be constructed from the observed parameter values (see Appendix for
details). This formulation emphasizes a dimension that is often implicit in causal discovery, where
operating conditions are typically treated as fixed and uncertainty is mainly modeled as arising from
finite data and stochastic noise.

We observe n process variables, collected in a vector X = (Xi,...,X,)? € R™. We assume that
these variables are generated by a linear SEM (equivalently, a linear structural causal model in the
sense of structural causal inference) where the causal relationships are functions of the parameter
vector &:

JEPA,
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where PA;, C {1,...,n} \ {i} denotes the set of causal parents of variable X;, the functions
b;;(€) € L*(Z) are unknown, square-integrable functions capturing the parameter-dependent causal
effects, and ¢; are mutually independent, centered, sub-Gaussian noise terms. The underlying causal
structure forms a DAG G = (V,E), where V = {1,...,n} and an edge (j,i) € E exists if
and only if j € PA;. We make the standard assumptions of causal sufficiency (no unmeasured
common causes) and faithfulness (all conditional independencies in the data are consequences of
d-separation in G). Throughout, the edge set E' does not depend on &; only the edge weights b;; (&)
vary with operating conditions. We assume m i.i.d. samples {(X®) €®)} ™ | from this model,
where ¢ indexes samples rather than time.

2.2 POLYNOMIAL CHAOS REPRESENTATION

The central challenge is to learn the functions b;;(§), the true causal strength varying with system
parameters £&. We address this by representing each causal coefficient function using a PCE. For
many choices of p¢, including the classical Wiener—Askey scheme, there exists a corresponding
basis of orthogonal multivariate polynomials {¥, (&) },ene adapted to pe (e.g., Xiu & Karniadakis,
2002; Sudret, 2008; Crestaux et al., 2009). Common examples include Hermite polynomials for
Gaussian parameters, Legendre for uniform and Laguerre for exponential.

Any square-integrable function b;; (&) can be expanded in this basis. By truncating the expansion at
a total polynomial degree IV,,, we obtain a finite-dimensional approximation:

bij(€)~ Y 0iaVa(f) @)
aEAN,
where Ay, = {a € N? : |a| = ZZ:I ar < N,} is the set of multi-indices, and the

coefficients 0;; . are the spectral projections of the function onto the basis, given by 0;;, =
(bij (&), Ua(€))r2/(V2) 2. The cardinality of the basis is P = | Ay, | = (V*%). This representa-
tion converts the infinite-dimensional problem of learning functions b;;(§) into a finite-dimensional
problem of estimating the spectral coefficients 6;; .

For functions that are continuously differentiable s times, the spectral error decays polynomi-
ally: [|b;; — My, bijllr2 < CN,°, where Iy, is the projection operator. For analytic func-
tions, which are common in physical systems, convergence is exponential: ||b;; — IIn, bi;l[z2 <

C exp(—'yN,} / d) (e.g., Sudret, 2008; Crestaux et al., 2009). For high-dimensional parameter spaces
(d > 1), the basis size P can become computationally prohibitive. We employ hyperbolic trun-
cation schemes, which prioritize low-order interaction terms and significantly reduce the basis size
while often retaining high accuracy for functions with decaying importance of higher-order interac-
tions (Jiang et al., 2025; Dai et al., 2025).

2.3 PCT-CONDITIONAL INDEPENDENCE TEST

Once we have established the PCE representation, our initial goal is to identify the causal skele-
ton. Standard conditional independence (CI) tests that operate on the marginal distribution of
(Xa,Xp,Xz) can fail in the presence of parameter-varying mechanisms: a causal relationship
b;; (&) may have zero mean but large variance, so that marginal tests falsely conclude independence
even though the dependence is strong for many values of £. We therefore seek a test that is sensitive
to dependence across the entire parameter space rather than only to its average effect.

We define PCT-conditional independence as the vanishing of the expected conditional covariance
over the parameter space. That is, variables X 4 and X g are PCT-conditionally independent given a
set of variables X 7 if:

E¢[Cov(Xa, X5|X7,€)] =0 3)

This condition implies that the partial correlation between X4 and X p after accounting for Xz
is zero for almost every value of £&. Based on this definition, we derive a statistical test (Algo-
rithm 1). The core idea is to estimate the PCE coefficients of the conditional covariance function
Cap|z(§) = Cov(X 4, XB|Xz,&). The null hypothesis X 4 Xp X7 is equivalent to all PCE coeffi-
cients of C 4 |z (&) being zero. A detailed derivation of the test statistic and proofs of its asymptotic
properties are provided in the Appendix.
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Under the null hypothesis and mild regularity conditions (finite fourth moments of the residuals,
i.i.d. samples conditional on &, and bounded basis functions), the estimators for the standardized
coefficients are asymptotically independent and approximately standard normal (see Appendix for
a detailed proof). Consequently, the test statistic Tpor follows a chi-squared distribution with P
degrees of freedom:

2
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This test is used within a standard constraint-based algorithm to learn an initial graph structure by
systematically testing for conditional independencies. In our implementation we use a PC-style
skeleton search in which PCT-CI replaces the usual CI oracle.

2.4 SCORE-BASED LEARNING WITH NATURAL GRADIENT

Although constraint-based methods are effective for skeleton discovery, they can be unstable with
finite data. We therefore use the output of the constraint-based phase as an initialization for a more
robust score-based optimization. We formulate structure learning as the optimization of a penalized
likelihood score over the space of DAGs and PCE coefficients and define the PCT-BIC score as:

m n 2
S(B % ZZ<X5” YooY bial é“)X(“) +AIE, )0 (5)

t=1 JEPA; a€AN,

ml\')

where © = {6;; .} is the collection of all PCE coefficients, and the group sparsity penalty
[(E,0)llo = >, ; H{llijlla > 0} encourages sparse DAGs by penalizing the number of non-zero

causal links, with A = £ log(m).

Optimizing this score is challenging due to the combinatorial nature of the graph space and the high
dimensionality of the parameter space ©. We employ a greedy search strategy combined with ef-
ficient gradient-based optimization of the coefficients for a given graph structure, accepting edge
additions or deletions only when they preserve acyclicity of G. The parameter space of PCE coef-
ficients has a natural Riemannian geometry induced by the Fisher information matrix F(©). The
natural gradient, VoS = F~1VgS, respects this geometry and provides an update direction that
converges significantly faster than the standard Euclidean gradient. The Fisher matrix entries are:

1
(Flij,e), 157,00y = —5 0 EIX; Xy |Be[Ya (€) War (€)] (6)

€

Due to the orthogonality of the basis polynomials and the linear-Gaussian form of the likelihood,
this matrix is block-diagonal across edges and diagonal within each block, making its inversion
computationally efficient. The natural gradient descent update is:

O+ 0 -—nF VeS (7

The complete PCT-CD algorithm, summarized in Algorithm 2 in the appendix, integrates these
components into a multi-phase procedure that ensures both structural accuracy and robust parameter
estimation. This provides not only the final graph and functional relationships but also confidence
intervals for causal strengths and probabilities for the existence of each edge.

3 THEORETICAL ANALYSIS

In this section, we establish the theoretical foundations of the PCT-CD framework. We prove that
under reasonable conditions, the true parametric causal DAG is uniquely identifiable from observa-
tional data. Furthermore, we provide finite-sample guarantees for the recovery of the causal structure
and analyze the convergence properties of our optimization procedure. Formal statements and proofs
of the main results are deferred to the Appendix for clarity.
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3.1 ASSUMPTIONS AND PRELIMINARIES

Assumption 1 (Data-generating process). The variables X = (X1,...,X,) obey the SEM equa-
tion 1 with a DAG G, where each b;;j(€) € L*(p¢) admits the chaos expansion equation 2 with
truncation bias controlled by polynomial convergence theory. The parameter vector € is indepen-
dent of noises {¢;} and has a known distribution ¢ with finite moments of all orders. In the empiri-
cal setting ji¢ may be approximated by the empirical measure of observed operating conditions, as
discussed in Section 2.2 and Appendix A.1.

Assumption 2 (Noise). The disturbances €; are mutually independent, centered, sub-Gaussian with
proxy o2 and finite fourth moments. At least one ¢; is non-Gaussian, or the collection of coefficient
functions {b;;(€)} is non-degenerate in £ (defined below). This disjunction provides two alternative
routes to identifiability: either non-Gaussian noise (as in LINGAM) or sufficiently rich parametric
variation in the coefficient functions.

Assumption 3 (Faithfulness and stability). The joint law of (X, &) is faithful to G, and the operator
norm satisfies E[||B(&)]|op] < 1, where X = B(&)X + € is the matrix form with [B(£));; = b;;(&)
Sor j € PA, and zero otherwise. This stability condition ensures that (1 —B(&)) is invertible almost
surely and that the resulting mixing matrix admits a finite-variance chaos expansion.

Definition 1 (Non-degeneracy). A set of functions {b;;(-)} is non-degenerate if their PCE coefficient
matrices {0;;} are linearly independent across edges, i.e., no non-trivial linear combination of
coefficient vectors vanishes almost surely in €. Intuitively, non-degeneracy means that different edges
leave distinguishable “signatures” in the parameter space, which can be used to orient the graph
even when all noises are Gaussian.

3.2 IDENTIFIABILITY OF PARAMETRIC CAUSAL STRUCTURES

Identifiability is the cornerstone of any causal discovery method, ensuring that the underlying causal
structure can, in principle, be recovered from the joint distribution of the observed variables. We
extend the classical results of LINGAM to our parametric setting.

Theorem 1 (PCT Identifiability). Under Assumptions 1-3, if either (i) at least one €; is non-
Gaussian, or (ii) all €; are Gaussian but the PCE coefficient matrices {0;; } are linearly independent
(non-degenerate in the sense of Definition 1), then the DAG G and the parametric functions {b;;(£)}
are identifiable from the joint distribution of (X, £), up to the usual scale and permutation indeter-
minacies of the disturbances.

The proof (Appendix A.2) proceeds by writing the model in mixing-matrix form, applying a
LiNGAM-style argument to the zeroth-order chaos coefficients, and then using linear independence
of the higher-order PCE coefficients to rule out non-trivial alternative parameterizations.

3.3 FINITE-SAMPLE GUARANTEES AND CONSISTENCY

While identifiability ensures recovery from the true distribution, practical algorithms operate on
finite data samples. This section addresses the question: How many samples are required to reliably
recover the true causal graph? We establish the consistency of our coefficient estimators and provide
explicit sample complexity bounds for exact graph recovery. PCT-CD estimates the PCE coefficients
0.« through least-squares regression. The orthogonality of the polynomial basis {¥,} ensures
favorable statistical properties for these estimators.

Proposition 1 (Coefficient Consistency). Let éij,a be the estimator for 0;; . obtained via least-
squares regression. Under the model assumptions, for each i, j, a:

éij,a ﬂ) Hij,a as m — 00 (8)
The consistency follows from standard regression theory, where the orthogonality of basis functions
ensures that estimators are unbiased with variance decaying as O(1/m). The core challenge in
graph recovery is distinguishing genuine causal edges from spurious connections. For PCT-CD,
determining whether edge (4, j) exists is equivalent to testing whether the coefficient function b;; ()
is identically zero. We employ the L2-norm as our detection criterion:

bl = > 03 ,(W2) ©)

CKE.ANp
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The decision rule is:

Edge (3, 5) exists < ||b;;||z2 > 0 (10)
No edge (4, j) < [|bijl|2 =0 1D

Let k = ming j)ep ||bij|| 2 denote the strength of the weakest true edge. This parameter funda-
mentally determines the difficulty of the detection problem.

Theorem 2 (Sample Complexity for Graph Recovery). Assume the noise terms €; are sub-Gaussian
with variance proxy 2. For the PCT-CD algorithm to recover the true DAG G with probability at
least 1 — 0, a sufficient number of samples is:

2P 2n?P
m > C'—Ue2 log < o ) (12)
K 0

where C'is a constant depending on the data distribution and polynomial basis, P = | Ay, | is the
number of PCE basis functions, and k is the minimum edge strength.

The proof (Appendix A.3) combines sub-Gaussian concentration bounds for the least-squares esti-
mates, a union bound over all coefficients and edges, and the separation margin s between zero and
non-zero coefficient functions. The bound highlights the expected trade-offs: sample complexity
grows linearly in the basis size P and noise level o2, and quadratically in the inverse of the weakest
edge strength.

3.4 CONVERGENCE ANALYSIS

Finally, we analyze the convergence of the coefficient optimization phase, which is critical for the
efficiency of the score-based refinement. The use of natural gradient descent is key to achieving
rapid convergence.

Theorem 3 (Natural Gradient Convergence). Let the PCT-BIC score S(©) be restricted to a fixed
DAG. Assume the objective is p-strongly convex and L-smooth in a neighborhood of the optimum
©F. The natural gradient descent update with a constant step size n satisfies:

[0+ — o7p < (1 nL“F> 10 — e (13)

where || - || is the norm induced by the Fisher matrix, and Ly is the smoothness constant in the
Riemannian metric. With an optimal step size, this leads to a linear convergence rate of (1 — p),
where p = Amin (F) /Amax(F) is the condition number of the Fisher information matrix.

The analysis in Appendix A.4 exploits the fact that, in our linear-Gaussian setting with an orthog-
onal PCE basis, the Fisher matrix is block-diagonal across edges and diagonal within blocks. This
structure yields a well-conditioned Riemannian metric and explains the empirically fast convergence
of natural gradient updates compared to standard Euclidean gradient descent.

4 EXPERIMENTAL VALIDATION

We validate PCT-CD on a comprehensive industrial process dataset comprising 10,000 samples
from a chemical reactor network at Parkland Refinery in Canada. The system monitors 9 critical
process variables including feed temperatures, reactor pressures, product quality indicators, and
flow rates, with 11 established causal relationships verified through process engineering principles
and operational expertise. The system exhibits parametric uncertainty from three primary sources:
heat transfer coefficients (¢;), reaction rate constants (£5), and yield factors (£3), making it ideal for
demonstrating the advantages of modeling parameter-dependent causal relationships.

4.1 EXPERIMENTAL SETUP

The dataset represents a hierarchical chemical process where variables form a network structure
with source nodes (feed streams), intermediate processing stages (reactors and separators), and ter-
minal outputs (product quality metrics). Each sample includes simultaneous measurements of all
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Table 1: Performance Comparison Across All Methods

Method TP FP FN Prec. Recall F1 SHD
ICA-LINGAM 1 14 10 0.067 0.091 0.077 24
DirectLINGAM 2 13 9 0133 0.182 0.154 22
VAR-LINGAM 3 7 8 0300 0273 0.286 15
RECI 4 9 7 0308 0.364 0.333 16
PCMCI 4 8 7 0333 0364 0.348 15
CCD 5 11 6 0312 0455 0.370 17
LiNGAM 5 10 6 0333 0455 0.385 16
ElasticNet 5 8 6 0385 0455 0417 14
Entropy-Based 5 6 6 0455 0455 0455 12
GP-Based 5 5 6 0500 0455 0476 11
NOTEARS 5 5 6 0500 0455 0476 11
CGNN 7 10 4 0412 0.636 0.500 14
Lasso-Granger 6 7 5 0462 0.545 0.500 12
FCI 5 4 6 0556 0455 0.500 10
PC 5 4 6 0556 0455 0.500 10
ANM 6 6 5 0500 0.545 0522 11
PNL 6 6 5 0500 0.545 0.522 11
GIES 6 5 5 0545 0.545 0.545 10
GES 6 5 5 0545 0545 0.545 10
CAM 8 6 3 0571 0727 0.640 9
GraNDAG 8 6 3 0571 0727 0.640 9
SAM 8 6 3 0571 0.727  0.640 9
PCT-CD 10 1 1 0909 0.909 0.909 2

process variables along with the corresponding parameter values, captured under varying opera-
tional conditions over a 6-month period. The ground truth causal structure was established through
a combination of process flow diagrams, material balance equations, and expert knowledge from
plant operators. We compare PCT-CD against 23 state-of-the-art methods spanning six categories.

PCT-CD parameters were selected through cross-validation: N, = 4 (polynomial degree), avs;g =
0.05 (significance level for conditional independence tests), A = 1 (regularization parameter), and
B = 200 (bootstrap samples).

4.2 PERFORMANCE RESULTS

Table 1 presents comprehensive performance metrics across all methods. PCT-CD achieves ex-
ceptional performance with 90.9% F1-score, correctly identifying 10 out of 11 true edges (True
Positives) with only 1 false positive and 1 false negative, resulting in a structural Hamming distance
(SHD) of 2. This represents nearly double the performance of the best baseline methods.

Analyzing the results by method category reveals systematic patterns. Constraint-based methods
(PC, FCI) achieve moderate precision (55.6%) but suffer from low recall (45.5%), indicating con-
servative edge detection that misses many true relationships. Score-based approaches (GES, GIES,
NOTEARS) show balanced precision and recall around 50-54%, but their static graph assumption
fundamentally limits performance. Among functional causal models, traditional LINGAM performs
poorly (38.5% F1-score) while ICA-LiNGAM shows the worst performance (7.7% F1-score), sug-
gesting severe model misspecification under parametric variation.

Figure 2 visualizes the discovered causal structures across all 23 methods, providing a comprehen-
sive comparison of graph recovery quality. The performance gap between PCT-CD (90.9% F1-
score) and the next best methods (CAM, GraNDAG, SAM at 64.0%) highlights the value of explicit
uncertainty modeling.
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Figure 2: Discovered causal structures for all 23 methods. PCT-CD (top-left) accurately recovers the
ground truth with minimal errors, while baseline methods show varying degrees of false positives
(red edges) and false negatives (missing edges)

Causal Edge Strength as Functions of System Parameters
Direct Evidence of Parameter-Dependent Causality
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Figure 3: Left: Functional profiles of causal edge strengths as system parameters vary. Each subplot
shows how a specific edge’s causal effect changes with parameters &, &, and &3, with shaded re-
gions indicating 95% confidence bands. Right: Discovered relationships between process variables
with edge confidence levels

4.3  PARAMETRIC UNCERTAINTY QUANTIFICATION

Table 2 and Figure 3 reveal PCT-CD’s unique capability to quantify how causal relationships vary
with system parameters. Each edge’s strength is represented as a continuous function of the pa-
rameter vector £, with confidence intervals capturing both estimation uncertainty and parametric
variation. The strongest relationship X1—X2 varies by over 100% depending on heat transfer con-
ditions, while weaker edges show more constrained variation.
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Table 2: Parametric Causal Effects with Uncertainty Quantification

Edge Mean 95% CI1 Boot Prob Dominant ¢
X1 — X2 0.642 [0.411,0.873] 0.95 & (heat)
X1 —X3 0465 [0.305,0.669] 0.88 &5 (reaction)
X1 —X4 0359 [0.217,0.499] 0.84 & (heat)
X2 —+ X5 0275 [0.151,0.401] 0.78 & (heat)
X2 — X7 0.213 [0.142,0.284] 0.89 & (heat)

X3 —+X4 0.185 [0.098,0.272] 0.85 &5 (reaction)
X3 = X6 0214 [0.081,0.285] 0.81 &5 (reaction)

X4 — X7 0.176  [0.092, 0.244] 0.91 &3 (yield)
X5—+X8 0.133 [0.071,0.183] 0.82 &1 (heat)
X6 —+X9 0.109 [0.034,0.156] 0.93 &5 (reaction)
X7—X9 0452 [0.317,0.632] 0.95 &3 (yield)

Heat transfer coefficients (¢;) predominantly influence feed and thermal control pathways, reac-
tion rate constants (£2) govern intermediate transformations, and yield factors (£3) control product
quality paths. Figure 3 shows detailed functional profiles: X1—X2 increases monotonically with
&1, X2—XS5 exhibits non-monotonic behavior with optimal effect at £ = 1.0, and X7—X9 shows
strong yield factor dependence ranging from 0.317 to 0.632.

These results highlight how PCT-CD captures parameter-dependent variations in causal strength.
Rather than assigning a single static weight, each edge is represented as a function of &, with con-
fidence bands quantifying estimation and parametric uncertainty. This enables the method to dis-
tinguish edges that are consistently strong (e.g., X1—X2 under heat transfer variation) from those
whose influence is highly context-specific (e.g., X2— X5 with a non-monotonic dependence on &5).

From a methodological perspective, these results demonstrate that PCE-based representations al-
low the discovery algorithm to recover not only the existence of edges but also their functional
sensitivity to operating conditions. Such functional profiles provide interpretable evidence of how
causal mechanisms adapt to process variability, a feature not accessible to static graph models. This
property is particularly important in industrial domains where safe control requires anticipating how
interventions may propagate differently under changing parameters.

5 CONCLUSION

This paper addressed the critical limitation of static assumptions in industrial causal discovery
by introducing a framework to model dynamic, parameter-dependent relationships. Our proposed
method, PCT-CD, successfully learns these functional causal links, demonstrating superior perfor-
mance with a 90.9% F1-score on a real-world chemical process dataset. The core contribution lies in
establishing theoretical identifiability for parametric causal structures and providing a robust algo-
rithmic solution. This work provides a significant step towards building more realistic and reliable
causal models for smart manufacturing, enabling enhanced process control and more accurate root
cause analysis under varying operating conditions. Future research could extend this framework to
handle unobserved confounders, incorporate more complex nonlinear interactions, and explore its
application in online, adaptive control systems.
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A APPENDIX

In this appendix we collect proofs, algorithmic details, and additional experimental material, in-
cluding the full setup and results for the synthetic benchmarks with parameter-varying mechanisms
discussed in Section 4.

A.1 PROOF OF PCT IDENTIFIABILITY (THEOREM 1)

The parametric SEM can be written as X = B(&)X + €, which gives us X = (I — B(¢)) le =
A(€)e where A(€) = (I—B(€)) ! and [B(€)]i; = b;;(€) for j € PA,, zero otherwise.

Using the PCE representation from equation equation 2, both coefficient matrices can be expanded
as:

B(¢)= > Ba¥.(&) (14)
erANp

A= D> AT.(8) (15)
aEANp
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where B, A, are the corresponding coefficient matrices. Suppose there exists an alternative model
(B(&), €) that generates the same observational distribution. This implies:

4

A(e=A(g)é (16)

Since both models produce identical distributions, there must exist a permutation matrix P and
diagonal matrix D (&) such that:

A(§) = A(§)PD(¢) (17)

Substituting the PCE expansions into this relationship yields:
D ALTL(E) =) AT, (EPD(E) (18)

Since D(&) also admits a PCE expansion D(§) = >3 Dsg¥g(£), we can expand the right-hand
side and exploit the orthogonality condition (¥,,, ¥3) = 0 for a # 3 to obtain:

A=Y AsPD, 5, Vo (19)
BLla

For the zeroth-order term (o = 0), this constraint becomes:

Age £ AgPDyé (20)
The Darmois-Skitovich theorem states that if a linear combination ZZ ¢;Y; of independent random

variables is Gaussian, then each non-zero term c¢;Y; must be Gaussian. Since at most one ¢; is
Gaussian by Assumption 2, the non-Gaussian components force the mixing to be trivial, implying:

PDy=1=P=D;" 21
For higher-order terms (o > 0), we have:
A, =A,PD, + Z AzPD, 5 (22)
B<a
Rearranging this expression gives:
(A, — A,)PDg = Z AsPD, ;5 (23)
B<a
However, the linear independence of {B,, } guaranteed by Assumption 1, combined with the func-

tional relationship A, = f({Bg}s<q), ensures that no non-trivial linear combination of coefficient
matrices can vanish. This forces:

A, = Aaa Va (24)

Combining the results from the non-Gaussian identification and linear independence constraint, we
conclude that P =T and A, = A, for all . This immediately implies:

B, =B., Va (25)

Therefore, the parametric coefficient functions are identical:
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bi(€) = [BalijTa(€) = [BalijTa(€) = bi;(£) (26)

[e3 [

Since the DAG structure is uniquely determined by the set {(z, j) : b;;(§) # 0}, we have established
the identifiability of both the causal graph G and the parametric coefficient functions, up to the
inherent scaling ambiguity of the noise variables. [J

A.2 PROOF OF SAMPLE COMPLEXITY (THEOREM 2)

The central challenge in graph recovery is distinguishing true causal edges from spurious correla-
tions arising from finite-sample noise. We establish this distinction by analyzing the concentration
properties of the PCE coefficient estimators under the sub-Gaussian noise assumption.

Consider first the estimation of a single PCE coefficient 8;; ., through least-squares regression. Un-
der the null hypothesis that edge (¢, j) does not exist, the true coefficient is zero, and the estimator
éij,a is a centered sub-Gaussian random variable with variance proxy o2/m. The sub-Gaussian
property ensures that large deviations from zero decay exponentially, specifically:

R +2
P(10;.0] > t) < 2exp (- an ) 27)

2
O¢

where c is a constant depending on the sub-Gaussian parameter and the distribution of the polyno-
mial basis functions.

The detection of edge (i, 7) relies not on a single coefficient but on the L2-norm of the entire coef-

ficient function, which we estimate as [|b;;[|2. = 3¢ An, éizj’a (U2). For a non-existent edge, this
sum of squared coefficients concentrates around its expectation, which is approximately Po?/m
due to the estimation variance. We establish a detection threshold at /2, where  is the minimum
strength of any true edge. This choice ensures separation between the distributions of edge strengths

for true edges and non-edges.

For successful recovery, we require two simultaneous events to hold with high probability. First, all
true edges must be detected, meaning ||IA)” L2 > x/2 for every (i,j) € E. Since the true strength
exceeds ~ by definition, the estimation error must be bounded by /2. Using the concentration of
sub-Gaussian quadratic forms and the union bound over at most n(n — 1)/2 true edges, this event
fails with probability at most:

2

.o > n2 cme
P(36.) € B+ bijllze < /2) < % exp ( 4PU€2> (28)

Second, no spurious edges should be detected among the non-edges. For each non-edge, the esti-
mated strength must remain below /2. The sum of P squared coefficient estimates, each concen-
trating around zero, exhibits chi-squared-like behavior. Applying a refined concentration inequality
for the sum and taking a union bound over all non-edges yields:

. - n? cmk?
P (3(%3) ¢E: ||bz'jHL2 > "5/2) < ?exp (W) (29)

Combining both failure probabilities and requiring the total error probability to be at most §, we
obtain the constraint:

2
2 cCmer

Taking logarithms and solving for m yields the sample complexity bound m > C' Ugf log <#) ,

where the constant C' absorbs the factor 16/¢ and accounts for the additional logarithmic factor
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from the union bound over P coefficients. This bound reveals the fundamental trade-offs in causal
discovery: sample requirements scale linearly with the basis dimension P and noise variance o2,
while scaling inversely with the square of the minimum edge strength x2, emphasizing the difficulty
of detecting weak causal relationships. [

A.3 PROOF OF NATURAL GRADIENT CONVERGENCE (THEOREM 3)

The convergence analysis of natural gradient descent fundamentally differs from standard gradient
methods due to the incorporation of the Fisher information metric, which provides a more appro-
priate geometry for the parameter space. We establish the convergence rate by analyzing how the
algorithm behaves in the Riemannian manifold defined by the Fisher matrix.

For a fixed DAG structure, the PCT-BIC score S(©) becomes a quadratic function of the PCE
coefficients ©. The gradient in Euclidean space is:

(®)

VoS = 533 (K0 - x1") B

where X i(t) represents the model prediction. The natural gradient transforms this direction using the
inverse Fisher matrix:

VoS =F 'VeS (32)
The Fisher information matrix captures the local curvature of the log-likelihood surface. Due to
the orthogonality of the PCE basis functions {VU,,}, the Fisher matrix exhibits a block-diagonal
structure:

F = diag {F,; : (i,j) € E} (33)

where each block F';; corresponds to the coefficients of edge (4, j) and has entries:

1

[Fijlaar = —E[XIE[Va(§) Vo (£)] (34)

The orthogonality property E¢[V,, (€)W (€)] = 6o,/ (P2) further simplifies each block to a diag-
onal matrix, making the overall Fisher matrix diagonal. This structure enables efficient computation
of the natural gradient without matrix inversion.

To establish the convergence rate, we analyze the evolution of the error in the Fisher norm. Let
AW = e — ©* denote the error at iteration ¢. The natural gradient update yields:

AUFD = A _ pF-lyeSs(0W) (35)

Using the Taylor expansion of the gradient around ©* and the fact that Vo S(0*) = 0:

VoS(©®) =HA® + 0(|AD|?) (36)

where H is the Hessian matrix at the optimum. For the quadratic objective arising from linear
models, the Hessian is constant and equals H = F 4+ O(\), where the perturbation term comes from
the regularization.

Substituting this into the update equation:

AU = (T - pF'H) A® (37)

The strong convexity parameter 1 and smoothness constant L in the original Euclidean metric trans-
late to corresponding parameters pr and Ly in the Fisher metric through the eigenvalue bounds:
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I L
= — L [
Hr )\max(F) ’ F )\min(F) (38)

The spectral radius of the iteration matrix (I — 7F ~'H) determines the convergence rate. With the
optimal step size n* = 2/(ur + L¥), we achieve:

Lp —pr _1-p

I-7F 'H) = = 39
pL=m ) Le+pur 1+p 39
where p = pr /Ly = Amin(F)/Amax (F) is the condition number of the Fisher matrix.
Therefore, the error contracts at each iteration according to:
A e < (1922 ) A (40)
Lg

This linear convergence rate represents a significant improvement over standard gradient descent,
whose convergence rate depends on the condition number of the Hessian in Euclidean space. The
diagonal structure of the Fisher matrix, arising from the orthogonality of PCE basis functions, en-
sures that p remains well-bounded even as the problem dimension increases, making natural gradient
descent particularly effective for high-dimensional PCE coefficient estimation. [

A.4 PCT-CI TEST ALGORITHM

PCT Conditional Independence Test

Input: Samples {(X®) ¢®)}m  index sets A, B, Z, significance level i,
Output: p-value for PCT conditional independence test
for o € Ay, do
Perform regression to get residuals r A|z and |z

éAB\Z,a = % iy U, (6M) 'T,(axt\)zrg\)z
end for
for each o € Ay, do

-2 1 «m 0 O _ A 2
OAB|Za = moT 2at=1 (\I’a(‘g )TA|ZTB\Z - CABIZ@)

end for

. 2
Tror =M acay, (CAB\Z,Q/&AB\Z,Q)
Return: p-value =1 — F\2 (Tpcr)
if p-value < g, then

Reject Hy: Dependencies detected
else

Accept Hy: Conditionally independent
end if

A.5 PCT-CD MAIN ALGORITHM

PCT-CD: Polynomial Chaos Theory for Causal Discovery

Input: Data {(X®) ¢®))}™ parameters N, \, &
Output: Final graph G, coefficients {6;,}, uncertainty measures
// Phase 1: Initial Structure Discovery
Use PCT-CI test to obtain initial DAG G
// Phase 2: Score-Based Refinement
Initialize with G < Gy
// Forward Phase
while score improves do
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Find edge (4, j) that maximally improves PCT-BIC score
if adding (¢, j) maintains acyclicity then
G GU{(i4)}
Re-optimize coefficients © using natural gradient
end if
end while
/ Backward Phase
while score improves do
Find edge (i, j) whose removal maximally improves score
G <G\ {(,J)}
end while
// Phase 3: Edge Orientation Refinement
for each edge (i,7) € G do
Verify orientation using non-Gaussianity/residual methods
end for
for each non-adjacent pair (i, j) ¢ G do
Test for nonlinear relationship using MI and residual analysis
if criteria met AND acyclicity preserved then
Consider adding edge (i, j)
end if
end for
// Phase 4: Uncertainty Quantification
Generate B bootstrap samples from original data
forb=1to Bdo
Rerun Phases 1-3 on bootstrap sample b
Obtain G(*) and O
end for
Compute edge probabilities: P(i — j) = & S°p 1{(i,j) € E®}
Compute confidence intervals for each 60;; .,
Calculate Sobol indices from PCE coefficients
Return: G, {Bij}, edge probabilities, confidence intervals, Sobol indices

A.6 SYNTHETIC BENCHMARKS WITH PARAMETER-VARYING MECHANISMS

This section provides the full setup and numerical results for the synthetic experiments briefly sum-
marized in Section 4. We construct four benchmark families designed to stress-test the ability of
PCT-CD and baselines to recover graphs when edge strengths vary as functions of a scalar operating
parameter &.

Data-generating process. For each benchmark family, we generate 10 random DAGs with
n = 20 nodes and maximum in-degree 4. For a given DAG, we draw m = 5000 i.i.d. samples
{(X®,¢®)}m | from the model

X0 = T X0+, 0 002
JEPA;

with £() ~ Unif[0, 1] independent of the noises. The four benchmark families differ in the
functional form of b;;(£) on each true edge: (Exp 1) b;;(§) = ¢;; € (linear trend); (Exp 2)
bij(§) = cijsin(n§) (non-monotonic, sign-changing); (Exp 3) quadratic effects with added uni-
form perturbations; and (Exp 4) a mixture of the previous forms across edges. Coefficients c;; and
noise level o, are drawn to ensure signal-to-noise ratios comparable to the refinery dataset; exact
ranges are listed in Table B.1 of the supplementary material.

Methods and hyperparameters. We compare PCT-CD to a dynamic Bayesian network (DBN)
baseline adapted to use £ as a pseudo-time index, and to two representative static methods (PC
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Table 3: Fl-scores on synthetic datasets with parameter-varying edge strengths (mean + standard

deviation over 10 random graphs).

Scenario Form of b;; (&) PCT-CD DBN PC NOTEARS
Exp 1: Linear trend Linear c£ 094 +£0.02 0.82=+£004 0.78+£0.05 0.75+0.04
Exp 2: Non-monotonic  sin(7§) 091 +£0.03 0.65+0.06 0.42+0.08 0.38+0.07
Exp 3: High noise Quadratic + noise  0.88 £0.04 0.61 £0.05 0.51+£0.06 0.49 +0.05
Exp 4: Mixed Mixed forms 0.89 £0.03 0.58+0.07 045+0.06 0.414+0.05

Table 4: Ablation Study Results

Configuration Precision Recall F1 Score
Full PCT-CD 0.909 0.909 0.909
Without PCE 0.611 0.636 0.623
Without Multi-criteria 0.647 0.818 0.722
Without Bootstrap 0.769 0.727 0.747
PCE Order N,, = 2 0.667 0.545 0.600
PCE Order N, = 3 0.786 0.727 0.755
PCE Order N, = 4 0.909 0.909 0.909
PCE Order N, = 5 0.846 0.818 0.832
Penalty A = 0.01 0.611 0.818 0.700
Penalty A = 0.1 0.733 0.818 0.773
Penalty A = 1 0.909 0.909 0.909
Penalty A = 10 0.857 0.727 0.787

and NOTEARS). All methods operate on the same standardized data (zero mean, unit variance
per variable). PCT-CD uses a Legendre PCE of total degree N, = 4 in { (matching the main
experiments), oz = 0.05, A = 1, and B = 200 bootstrap samples. DBN uses a maximum lag of 1
and BIC for structure selection. PC and NOTEARS are run with their recommended default settings
and a small grid over regularization / significance parameters, tuned on held-out validation data.

Results. Table 3 reports Fl-scores (mean =+ standard deviation over 10 random DAGs) for all four
scenarios. These results correspond to the synthetic summary in Section 4.

Across all four synthetic families, PCT-CD consistently outperforms both static baselines and the
DBN variant, with the largest gains in Exp 2 and Exp 4 where edge functions change sign or combine
multiple functional forms. In these settings, methods that fit a single static coefficient per edge tend
to average over positive and negative effects and therefore underestimate or miss true dependencies,
whereas PCT-CD captures the full parameter-varying profile b;; (£).

A.7 ABLATION STUDIES AND COMPUTATIONAL SCALING

Table 4 quantifies each component’s contribution to overall performance. Removing PCE causes
the largest performance drop (28.6% F1 decrease), confirming polynomial chaos representation
as fundamental to capturing parametric uncertainty. Multi-criteria refinement improves precision
from 64.7% to 90.9% by preventing false positives. Bootstrap uncertainty quantification contributes
16.2% F1 improvement through better threshold calibration.

Parameter sensitivity analysis reveals optimal settings: PCE order IV,, = 4 balances expressiveness
and overfitting, while regularization A = 1 optimally trades model complexity against fit. Lower
PCE orders lack sufficient flexibility, while higher orders overfit given finite samples.

Table 5 evaluates scalability across different problem sizes and sample counts. Runtime scales
quadratically with variable count and linearly with samples, remaining tractable for industrial ap-
plications. Performance improves monotonically with sample size, reaching 96.4% F1-score at
100,000 samples, demonstrating effective utilization of large industrial datasets. The method scales
to 100-variable systems in 2.3 hours, confirming practical applicability to complex industrial pro-
cesses.
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Table 5: Computational Scaling Analysis

Variables Samples Runtime Memory F1 Score

9 10,000 42.3s 892MB 0.909
20 10,000 4.2min 3.1GB 0.795
50 10,000  28.5min 9.8GB 0.741
100 10,000 2.3hr 24.2GB 0.698

9 1,000 4.8s 218MB 0.636

9 5,000 23.1s 564MB 0.773

9 10,000 42.3s 892MB 0.909

9 50,000 3.7min 3.8GB 0.945

9 100,000  7.2min 7.3GB 0.964

A.8 ADDITIONAL EXPERIMENTAL RESULTS

Precision-Recall Trade-off

0.8

0.6

Precision
X
g

F1 Score

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4: Precision-recall trade-off across all methods. PCT-CD achieves both high precision and
recall simultaneously.

Figure 4 illustrates the precision-recall trade-off across all methods. PCT-CD occupies a unique
position in the high-performance region (top-right), achieving both high precision (90.9%) and high
recall (90.9%) simultaneously. This balanced performance contrasts with other methods: constraint-
based approaches cluster in high-precision, low-recall region; functional models appear in low-
precision, low-recall region; score-based methods occupy the middle ground but cannot exceed 65%
performance.

Figure 5 provides a forest plot of parametric causal effect strengths with 95% confidence intervals for
each discovered edge. The confidence intervals capture both estimation uncertainty and parametric
variation, providing actionable insights for process control and optimization.

A.9 LARGE LANGUAGE MODEL USAGE DISCLOSURE

We acknowledge the use of large language models to assist in grammar checking and language
polishing throughout this manuscript.
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Parametric Causal Effects with 95% CI
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Figure 5: Forest plot of parametric causal effect strengths with 95% confidence intervals for each
discovered edge.
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