

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING DYNAMIC CAUSAL GRAPHS UNDER PARA- METRIC UNCERTAINTY VIA POLYNOMIAL CHAOS EX- PANSIONS

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Existing causal discovery methods are fundamentally limited by the assumption of
014 a static causal graph, a constraint that fails in real-world systems where causal rela-
015 tionships dynamically vary with underlying system parameters. This discrepancy
016 prevents the application of causal discovery in critical domains such as industrial
017 process control, where understanding how causal effects change is essential. We
018 address this gap by proposing a new paradigm that moves beyond static graphs
019 to learn functional causal representations. We introduce a framework that mod-
020 els each causal link not as a static weight but as a function of measurable system
021 parameters. By representing these functions using Polynomial Chaos Expansions
022 (PCE), we develop a tractable method to learn the complete parametric causal
023 structure from observational data. We provide theoretical proofs for the identi-
024 fiability of these functional models and introduce a novel, provably convergent
025 learning algorithm. On a large-scale chemical reactor dataset, our method learns
026 the dynamic causal structure with a 90.9% F1-score, nearly doubling the perfor-
027 mance of state-of-the-art baselines and providing an interpretable model of how
028 causal mechanisms evolve.

029 1 INTRODUCTION

031 Industrial process control systems generate massive volumes of sensor data requiring automated
032 analysis for optimization and predictive maintenance (Fang et al., 2022; Zhou et al., 2015). Under-
033 standing causal relationships between process variables is essential for root cause analysis, anomaly
034 detection, and adaptive control strategies (Zhang et al., 2016). However, industrial processes ex-
035 hibit unique challenges that violate assumptions of existing causal discovery methods: causal rela-
036 tionships may vary systematically with operating conditions, sensors exhibit complex multi-modal
037 and heavy-tailed noise distributions, and safety-critical applications demand rigorous uncertainty
038 quantification (Cao et al., 2025; Wang et al., 2025).

039 Many widely used causal discovery methods for observational data are formulated in terms of a
040 single, static causal graph whose edge strengths do not depend on observed context or operating pa-
041 rameters, even though there is a growing body of work on time-varying and context-specific causal
042 structures (Song et al., 2009; Huang et al., 2019). In reality, industrial causal effects are functions
043 of measurable parameters. For instance, in chemical reactors, the influence of feed temperature on
044 product quality depends strongly on catalyst activity, which degrades over time. Heat exchanger
045 effectiveness varies with fouling levels, fundamentally altering thermal control loops. These pa-
046 rametric dependencies are not mere nuisances but contain critical information for process optimization
047 and predictive maintenance. Our goal in this paper is therefore not to replace existing approaches
048 to epistemic or aleatoric uncertainty, but to complement them with a representation in which each
049 causal edge is an explicit function of a low-dimensional vector of operating parameters.

050 The field of causal discovery has evolved through three major directions, each with distinct limita-
051 tions for industrial applications. Constraint-based methods such as the Peter-Clark (PC) algorithm
052 (Spirtes et al., 2000), Fast Causal Inference (FCI) (Spirtes et al., 2001), and Really Fast Causal
053 Inference (RFCI) (Colombo et al., 2012) rely on conditional independence tests to infer causal
structures. While theoretically sound, these methods struggle with finite sample sizes and become

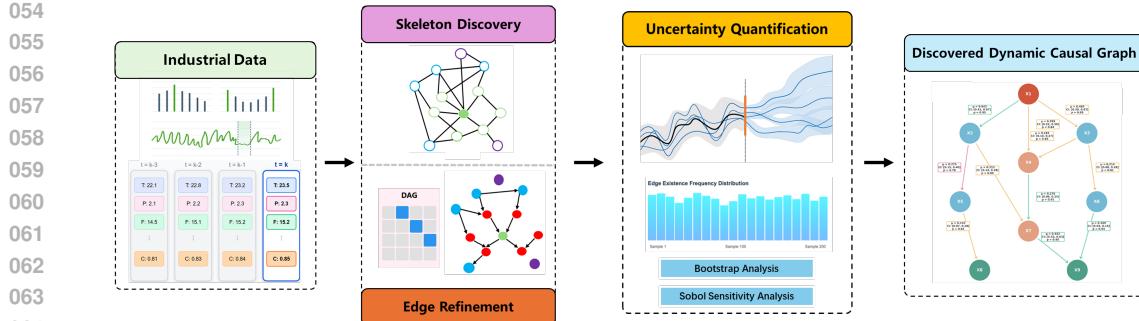


Figure 1: Overview of the polynomial chaos theory for causal discovery framework in dynamic uncertainty systems.

computationally intractable for high-dimensional industrial data with hundreds of sensors. Recent advances like PC-stable (Colombo & Maathuis, 2014) improve stability but fail when faced with complex noise distributions common in industrial sensors.

Score-based methods including Greedy Equivalence Search (GES) (Chickering, 2002) and Fast Greedy Equivalence Search (FGES) (Ramsey et al., 2017) optimize scoring functions over possible Directed Acyclic Graph (DAG) structures. The breakthrough NOTEARS algorithm (Zheng et al., 2018) reformulated structure learning as continuous optimization with differentiable acyclicity constraints, spawning variants like Directed Acyclic Graph - Graph Neural Network (DAG-GNN) (Yu et al., 2019) for nonlinear relationships, Reinforcement Learning - Bayesian Information Criterion (RL-BIC) (Zhu et al., 2020) using reinforcement learning. In their most common instantiations, these approaches return a single best-scoring DAG and point estimates of edge weights; uncertainty over graphs and parameters is typically handled by separate Bayesian or bootstrap procedures (e.g., Lorch et al., 2021; Cundy et al., 2021) rather than being integrated with an explicit model of how edge strengths vary with operating parameters. This limitation is particularly critical for safety-critical industrial applications where confidence in causal recommendations directly impacts operational decisions and safety outcomes.

Functional causal models exploit asymmetries in data distributions for identifiability. The Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006) proved that linear models with non-Gaussian noise yield unique causal structures, later extended to DirectLiNGAM (Shimizu et al., 2011) and Vector Autoregressive LiNGAM (VAR-LiNGAM) (Hyvärinen et al., 2010) for time series. Nonlinear extensions include additive noise models (ANM) (Hoyer et al., 2008), post-nonlinear models (PNL) (Zhang & Hyvärinen, 2009), and the general identifiable functional causal model framework (Peters et al., 2014). However, in their standard form these models do not represent how causal effects change as an explicit function of observed operating parameters.

Recent industrial applications (Sui et al., 2025; Runge et al., 2019; Yang et al., 2025) have highlighted these limitations, often requiring extensive preprocessing or domain-specific modifications lacking theoretical justification. Bayesian approaches such as Differentiable Bayes for Structure Learning (DiBS) (Lorch et al., 2021) and Bayesian Causal Discovery with Neural Networks (BCD Nets) (Cundy et al., 2021) explicitly quantify posterior uncertainty over graphs and parameters, addressing epistemic uncertainty due to finite data, but they still treat each edge as static and do not model how its strength varies with operating parameters.

Polynomial Chaos Expansion (PCE), introduced by Wiener (Wiener, 1938) and generalized by Xiu (Xiu & Karniadakis, 2002), provides a mathematically rigorous framework for representing and propagating uncertainty through complex systems. PCE has been successfully applied in uncertainty quantification for engineering systems (Sudret, 2008), sensitivity analysis (Crestaux et al., 2009), and stochastic optimization (Picheny et al., 2013). Recent algorithmic advances including sparse PCE (Jiang et al., 2025), adaptive basis selection (Dai et al., 2025), and multi-fidelity approaches (Liu et al., 2020) have made PCE computationally tractable for high-dimensional problems. Despite this success in forward uncertainty propagation, PCE has, to the best of our knowledge, not yet been systematically exploited for causal discovery.

108 This paper introduces PCT-CD, bridging uncertainty quantification and causal discovery. Figure 1
 109 provides an overview of the proposed framework. Our contributions are summarized as follows:
 110

- 111 **1. From Static Graphs to Dynamic Functions:** We formalize an industrial structural causal
 112 model in which a single underlying DAG is equipped with edge weights that are explicit
 113 functions of operating conditions, and we prove identifiability of these parametric mecha-
 114 nisms under mild assumptions.
- 115 **2. An End-to-End Solution for Dynamic Systems:** We propose PCT-CD, an integrated algo-
 116 rithm specifically designed for parametric causal discovery. It translates complex process
 117 data into an interpretable model of how causal links evolve, providing actionable intelli-
 118 gence beyond simple correlation.
- 119 **3. Demonstrated Real-World Viability:** We empirically validate PCT-CD on controlled syn-
 120 thetic benchmarks with parameter-varying mechanisms and on a complex refinery dataset.
 121 PCT-CD achieves high F1-scores and equips engineers with uncertainty-aware tools that
 122 are essential for making robust decisions in high-stakes environments.

123 The remainder of this paper is organized as follows. Section 2 details the PCT-CD methodology, in-
 124 cluding parametric SEM formulation, PCE representation, and our novel conditional independence
 125 test. Section 3 establishes theoretical foundations with identifiability and convergence proofs. **Sec-
 126 tion 4 validates our approach on both synthetic benchmarks with controlled parametric variation
 127 and an industrial process dataset, comparing against a broad set of baseline methods.** Section 5
 128 concludes with implications for industrial deployment and future research directions.

130 2 METHODOLOGY

131 Our proposed framework, PCT-CD, introduces a novel paradigm for causal discovery by explic-
 132 itly modeling how causal relationships vary as functions of measurable system parameters. This
 133 is achieved by integrating the theory of PCE into a hybrid structure learning algorithm. **While**
 134 **Bayesian and bootstrap-based methods typically quantify epistemic uncertainty arising from finite**
 135 **data (for example via posterior distributions over static graphs and parameters), PCT-CD is designed**
 136 **to address *parametric* uncertainty by representing causal edges as explicit functions of measurable**
 137 **system parameters, and is conceptually complementary to these existing approaches.**

138 The methodology unfolds in four stages: first, we formulate a Structural Equation Model (SEM)
 139 where causal coefficients are functions of a parameter vector ξ . Second, we represent these functions
 140 using PCE, transforming the non-parametric problem into a tractable parametric one. Third, we
 141 develop a novel conditional independence test tailored to this representation to discover an initial
 142 causal skeleton. Finally, we refine this structure and quantify edge strengths using a score-based
 143 optimization with a natural gradient approach, ensuring both accuracy and computational efficiency.

145 2.1 PROBLEM FORMULATION

146 We consider a complete probability space $(\Xi, \mathcal{F}, \mathbb{P})$ where all random quantities are defined. The
 147 core innovation of our framework is the explicit modeling of parametric uncertainty through a ran-
 148 dom vector $\xi \in \Xi \subset \mathbb{R}^d$. This vector represents known, measurable operating conditions (e.g.,
 149 ambient temperature, catalyst age, feedstock quality) with a joint probability distribution μ_ξ that has
 150 finite moments of all orders. **In our theoretical analysis we assume that μ_ξ is known so that a stan-
 151 dard PCE basis adapted to μ_ξ can be chosen; in practice, when only samples of ξ are available, an**
 152 **empirical orthogonal basis can be constructed from the observed parameter values (see Appendix for**
 153 **details).** This formulation emphasizes a dimension that is often implicit in causal discovery, where
 154 operating conditions are typically treated as fixed and uncertainty is mainly modeled as arising from
 155 finite data and stochastic noise.

156 We observe n process variables, collected in a vector $\mathbf{X} = (X_1, \dots, X_n)^T \in \mathbb{R}^n$. We assume that
 157 these variables are generated by a linear SEM (equivalently, a linear structural causal model in the
 158 sense of structural causal inference) where the causal relationships are functions of the parameter
 159 vector ξ :

$$161 \quad X_i = \sum_{j \in \mathbf{PA}_i} b_{ij}(\xi) X_j + \epsilon_i, \quad i = 1, \dots, n \quad (1)$$

162 where $\mathbf{PA}_i \subset \{1, \dots, n\} \setminus \{i\}$ denotes the set of causal parents of variable X_i , the functions
 163 $b_{ij}(\xi) \in L^2(\Xi)$ are unknown, square-integrable functions capturing the parameter-dependent causal
 164 effects, and ϵ_i are mutually independent, centered, sub-Gaussian noise terms. The underlying causal
 165 structure forms a DAG $\mathcal{G} = (V, E)$, where $V = \{1, \dots, n\}$ and an edge $(j, i) \in E$ exists if
 166 and only if $j \in \mathbf{PA}_i$. We make the standard assumptions of causal sufficiency (no unmeasured
 167 common causes) and faithfulness (all conditional independencies in the data are consequences of
 168 d-separation in \mathcal{G}). **Throughout, the edge set E does not depend on ξ ; only the edge weights $b_{ij}(\xi)$**
 169 **vary with operating conditions.** We assume m i.i.d. samples $\{(\mathbf{X}^{(t)}, \xi^{(t)})\}_{t=1}^m$ from this model,
 170 where t indexes samples rather than time.

171

172

2.2 POLYNOMIAL CHAOS REPRESENTATION

173

The central challenge is to learn the functions $b_{ij}(\xi)$, the true causal strength varying with system
 174 parameters ξ . We address this by representing each causal coefficient function using a PCE. **For**
 175 **many choices of μ_ξ , including the classical Wiener–Askey scheme, there exists a corresponding**
 176 **basis of orthogonal multivariate polynomials $\{\Psi_\alpha(\xi)\}_{\alpha \in \mathbb{N}^d}$ adapted to μ_ξ (e.g., Xiu & Karniadakis,**
 177 **2002; Sudret, 2008; Crestaux et al., 2009).** Common examples include Hermite polynomials for
 178 Gaussian parameters, Legendre for uniform and Laguerre for exponential.

179

180 181

Any square-integrable function $b_{ij}(\xi)$ can be expanded in this basis. By truncating the expansion at
 a total polynomial degree N_p , we obtain a finite-dimensional approximation:

182 183 184

$$b_{ij}(\xi) \approx \sum_{\alpha \in \mathcal{A}_{N_p}} \theta_{ij,\alpha} \Psi_\alpha(\xi) \quad (2)$$

185 186 187 188 189

where $\mathcal{A}_{N_p} := \{\alpha \in \mathbb{N}^d : |\alpha| = \sum_{k=1}^d \alpha_k \leq N_p\}$ is the set of multi-indices, and the
 coefficients $\theta_{ij,\alpha}$ are the spectral projections of the function onto the basis, given by $\theta_{ij,\alpha} =$
 $\langle b_{ij}(\xi), \Psi_\alpha(\xi) \rangle_{L^2} / \langle \Psi_\alpha^2 \rangle_{L^2}$. The cardinality of the basis is $P = |\mathcal{A}_{N_p}| = \binom{N_p+d}{d}$. This representation
 converts the infinite-dimensional problem of learning functions $b_{ij}(\xi)$ into a finite-dimensional
 problem of estimating the spectral coefficients $\theta_{ij,\alpha}$.

190 191 192 193 194 195 196 197 198

For functions that are continuously differentiable s times, the spectral error decays polynomially: $\|b_{ij} - \Pi_{N_p} b_{ij}\|_{L^2} \leq C N_p^{-s}$, where Π_{N_p} is the projection operator. For analytic functions, which are common in physical systems, convergence is exponential: $\|b_{ij} - \Pi_{N_p} b_{ij}\|_{L^2} \leq C \exp(-\gamma N_p^{1/d})$ (e.g., Sudret, 2008; Crestaux et al., 2009). For high-dimensional parameter spaces ($d \gg 1$), the basis size P can become computationally prohibitive. We employ hyperbolic truncation schemes, which prioritize low-order interaction terms and significantly reduce the basis size while often retaining high accuracy for functions with decaying importance of higher-order interactions (Jiang et al., 2025; Dai et al., 2025).

199 200

2.3 PCT-CONDITIONAL INDEPENDENCE TEST

201 202 203 204 205 206

Once we have established the PCE representation, our initial goal is to identify the causal skeleton. **Standard conditional independence (CI) tests that operate on the marginal distribution of (X_A, X_B, X_Z) can fail in the presence of parameter-varying mechanisms: a causal relationship $b_{ij}(\xi)$ may have zero mean but large variance, so that marginal tests falsely conclude independence even though the dependence is strong for many values of ξ .** We therefore seek a test that is sensitive to dependence across the entire parameter space rather than only to its average effect.

207 208 209

We define PCT-conditional independence as the vanishing of the expected conditional covariance over the parameter space. That is, variables X_A and X_B are PCT-conditionally independent given a set of variables X_Z if:

210

$$\mathbb{E}_\xi [\text{Cov}(X_A, X_B | X_Z, \xi)] = 0 \quad (3)$$

211 212 213 214 215

This condition implies that the partial correlation between X_A and X_B after accounting for X_Z is zero for almost every value of ξ . Based on this definition, we derive a statistical test (Algorithm 1). The core idea is to estimate the PCE coefficients of the conditional covariance function $C_{AB|Z}(\xi) = \text{Cov}(X_A, X_B | X_Z, \xi)$. The null hypothesis $X_A X_B | X_Z$ is equivalent to all PCE coefficients of $C_{AB|Z}(\xi)$ being zero. **A detailed derivation of the test statistic and proofs of its asymptotic properties are provided in the Appendix.**

Under the null hypothesis and mild regularity conditions (finite fourth moments of the residuals, i.i.d. samples conditional on ξ , and bounded basis functions), the estimators for the standardized coefficients are asymptotically independent and approximately standard normal (see Appendix for a detailed proof). Consequently, the test statistic T_{PCT} follows a chi-squared distribution with P degrees of freedom:

$$T_{PCT} = m \sum_{\alpha \in \mathcal{A}_{N_p}} \left(\frac{\hat{C}_{AB|Z,\alpha}}{\hat{\sigma}_{AB|Z,\alpha}} \right)^2 \xrightarrow{d} \chi_P^2 \quad (4)$$

This test is used within a standard constraint-based algorithm to learn an initial graph structure by systematically testing for conditional independencies. In our implementation we use a PC-style skeleton search in which PCT-CI replaces the usual CI oracle.

2.4 SCORE-BASED LEARNING WITH NATURAL GRADIENT

Although constraint-based methods are effective for skeleton discovery, they can be unstable with finite data. We therefore use the output of the constraint-based phase as an initialization for a more robust score-based optimization. We formulate structure learning as the optimization of a penalized likelihood score over the space of DAGs and PCE coefficients and define the PCT-BIC score as:

$$\mathcal{S}(E, \Theta) = \frac{1}{2\sigma_\epsilon^2} \sum_{t=1}^m \sum_{i=1}^n \left(X_i^{(t)} - \sum_{j \in \text{PA}_i} \sum_{\alpha \in \mathcal{A}_{N_p}} \theta_{ij,\alpha} \Psi_\alpha(\xi^{(t)}) X_j^{(t)} \right)^2 + \lambda \| (E, \Theta) \|_0 \quad (5)$$

where $\Theta = \{\theta_{ij,\alpha}\}$ is the collection of all PCE coefficients, and the group sparsity penalty $\| (E, \Theta) \|_0 = \sum_{i,j} \mathbf{1}\{\|ij\|_2 > 0\}$ encourages sparse DAGs by penalizing the number of non-zero causal links, with $\lambda = \frac{P}{2} \log(m)$.

Optimizing this score is challenging due to the combinatorial nature of the graph space and the high dimensionality of the parameter space Θ . We employ a greedy search strategy combined with efficient gradient-based optimization of the coefficients for a given graph structure, accepting edge additions or deletions only when they preserve acyclicity of \mathcal{G} . The parameter space of PCE coefficients has a natural Riemannian geometry induced by the Fisher information matrix $\mathbf{F}(\Theta)$. The natural gradient, $\tilde{\nabla}_\Theta \mathcal{S} = \mathbf{F}^{-1} \nabla_\Theta \mathcal{S}$, respects this geometry and provides an update direction that converges significantly faster than the standard Euclidean gradient. The Fisher matrix entries are:

$$[\mathbf{F}]_{(ij,\alpha), (i'j',\alpha')} = \frac{1}{\sigma_\epsilon^2} \delta_{ii'} \mathbb{E}[X_j X_{j'}] \mathbb{E}_\xi[\Psi_\alpha(\xi) \Psi_{\alpha'}(\xi)] \quad (6)$$

Due to the orthogonality of the basis polynomials and the linear-Gaussian form of the likelihood, this matrix is block-diagonal across edges and diagonal within each block, making its inversion computationally efficient. The natural gradient descent update is:

$$\Theta \leftarrow \Theta - \eta \mathbf{F}^{-1} \nabla_\Theta \mathcal{S} \quad (7)$$

The complete PCT-CD algorithm, summarized in Algorithm 2 in the appendix, integrates these components into a multi-phase procedure that ensures both structural accuracy and robust parameter estimation. This provides not only the final graph and functional relationships but also confidence intervals for causal strengths and probabilities for the existence of each edge.

3 THEORETICAL ANALYSIS

In this section, we establish the theoretical foundations of the PCT-CD framework. We prove that under reasonable conditions, the true parametric causal DAG is uniquely identifiable from observational data. Furthermore, we provide finite-sample guarantees for the recovery of the causal structure and analyze the convergence properties of our optimization procedure. Formal statements and proofs of the main results are deferred to the Appendix for clarity.

270 3.1 ASSUMPTIONS AND PRELIMINARIES
271

272 **Assumption 1** (Data-generating process). *The variables $\mathbf{X} = (X_1, \dots, X_n)$ obey the SEM equation 273 1 with a DAG \mathcal{G} , where each $b_{ij}(\xi) \in L^2(\mu_\xi)$ admits the chaos expansion equation 2 with 274 truncation bias controlled by polynomial convergence theory. The parameter vector ξ is independent 275 of noises $\{\epsilon_i\}$ and has a known distribution μ_ξ with finite moments of all orders. *In the empirical 276 setting μ_ξ may be approximated by the empirical measure of observed operating conditions, as 277 discussed in Section 2.2 and Appendix A.1.**

278 **Assumption 2** (Noise). *The disturbances ϵ_i are mutually independent, centered, sub-Gaussian with 279 proxy σ_ϵ^2 and finite fourth moments. At least one ϵ_i is non-Gaussian, or the collection of coefficient 280 functions $\{b_{ij}(\xi)\}$ is non-degenerate in ξ (defined below). This disjunction provides two alternative 281 routes to identifiability: either non-Gaussian noise (as in LiNGAM) or sufficiently rich parametric 282 variation in the coefficient functions.*

283 **Assumption 3** (Faithfulness and stability). *The joint law of (\mathbf{X}, ξ) is faithful to \mathcal{G} , and the operator 284 norm satisfies $\mathbb{E}[\|\mathbf{B}(\xi)\|_{\text{op}}] < 1$, where $\mathbf{X} = \mathbf{B}(\xi)\mathbf{X} + \epsilon$ is the matrix form with $[\mathbf{B}(\xi)]_{ij} = b_{ij}(\xi)$ 285 for $j \in \text{PA}_i$ and zero otherwise. This stability condition ensures that $(\mathbf{I} - \mathbf{B}(\xi))$ is invertible almost 286 surely and that the resulting mixing matrix admits a finite-variance chaos expansion.*

287 **Definition 1** (Non-degeneracy). *A set of functions $\{b_{ij}(\cdot)\}$ is non-degenerate if their PCE coefficient 288 matrices $\{\theta_{ij}\}$ are linearly independent across edges, i.e., no non-trivial linear combination of 289 coefficient vectors vanishes almost surely in ξ . Intuitively, non-degeneracy means that different edges 290 leave distinguishable “signatures” in the parameter space, which can be used to orient the graph 291 even when all noises are Gaussian.*

292 3.2 IDENTIFIABILITY OF PARAMETRIC CAUSAL STRUCTURES
293

294 Identifiability is the cornerstone of any causal discovery method, ensuring that the underlying causal 295 structure can, in principle, be recovered from the joint distribution of the observed variables. We 296 extend the classical results of LiNGAM to our parametric setting.

297 **Theorem 1** (PCT Identifiability). *Under Assumptions 1–3, if either (i) at least one ϵ_i is non- 298 Gaussian, or (ii) all ϵ_i are Gaussian but the PCE coefficient matrices $\{\theta_{ij}\}$ are linearly independent 299 (non-degenerate in the sense of Definition 1), then the DAG \mathcal{G} and the parametric functions $\{b_{ij}(\xi)\}$ 300 are identifiable from the joint distribution of (\mathbf{X}, ξ) , up to the usual scale and permutation indeter- 301 minacies of the disturbances.*

302 The proof (Appendix A.2) proceeds by writing the model in mixing-matrix form, applying a 303 LiNGAM-style argument to the zeroth-order chaos coefficients, and then using linear independence 304 of the higher-order PCE coefficients to rule out non-trivial alternative parameterizations.

306 3.3 FINITE-SAMPLE GUARANTEES AND CONSISTENCY
307

308 While identifiability ensures recovery from the true distribution, practical algorithms operate on 309 finite data samples. This section addresses the question: How many samples are required to reliably 310 recover the true causal graph? We establish the consistency of our coefficient estimators and provide 311 explicit sample complexity bounds for exact graph recovery. PCT-CD estimates the PCE coefficients 312 $\theta_{ij,\alpha}$ through least-squares regression. The orthogonality of the polynomial basis $\{\Psi_\alpha\}$ ensures 313 favorable statistical properties for these estimators.

314 **Proposition 1** (Coefficient Consistency). *Let $\hat{\theta}_{ij,\alpha}$ be the estimator for $\theta_{ij,\alpha}$ obtained via least- 315 squares regression. Under the model assumptions, for each i, j, α :*

$$\hat{\theta}_{ij,\alpha} \xrightarrow{P} \theta_{ij,\alpha} \quad \text{as } m \rightarrow \infty \tag{8}$$

316 The consistency follows from standard regression theory, where the orthogonality of basis functions 317 ensures that estimators are unbiased with variance decaying as $O(1/m)$. The core challenge in 318 graph recovery is distinguishing genuine causal edges from spurious connections. For PCT-CD, 319 determining whether edge (i, j) exists is equivalent to testing whether the coefficient function $b_{ij}(\xi)$ 320 is identically zero. We employ the L^2 -norm as our detection criterion:

$$\|b_{ij}\|_{L^2}^2 = \sum_{\alpha \in \mathcal{A}_{N_p}} \theta_{ij,\alpha}^2 \langle \Psi_\alpha^2 \rangle \tag{9}$$

324 The decision rule is:
 325

326 $\text{Edge } (i, j) \text{ exists} \Leftrightarrow \|b_{ij}\|_{L^2} > 0 \quad (10)$

327 $\text{No edge } (i, j) \Leftrightarrow \|b_{ij}\|_{L^2} = 0 \quad (11)$

328
 329 Let $\kappa = \min_{(i,j) \in E} \|b_{ij}\|_{L^2}$ denote the strength of the weakest true edge. This parameter funda-
 330 mentally determines the difficulty of the detection problem.

331 **Theorem 2** (Sample Complexity for Graph Recovery). *Assume the noise terms ϵ_i are sub-Gaussian
 332 with variance proxy σ_ϵ^2 . For the PCT-CD algorithm to recover the true DAG \mathcal{G} with probability at
 333 least $1 - \delta$, a sufficient number of samples is:*

334 $m \geq C \frac{\sigma_\epsilon^2 P}{\kappa^2} \log \left(\frac{2n^2 P}{\delta} \right) \quad (12)$

335 where C is a constant depending on the data distribution and polynomial basis, $P = |\mathcal{A}_{N_p}|$ is the
 336 number of PCE basis functions, and κ is the minimum edge strength.

337 The proof (Appendix A.3) combines sub-Gaussian concentration bounds for the least-squares esti-
 338 mates, a union bound over all coefficients and edges, and the separation margin κ between zero and
 339 non-zero coefficient functions. The bound highlights the expected trade-offs: sample complexity
 340 grows linearly in the basis size P and noise level σ_ϵ^2 , and quadratically in the inverse of the weakest
 341 edge strength.

342 3.4 CONVERGENCE ANALYSIS

343 Finally, we analyze the convergence of the coefficient optimization phase, which is critical for the
 344 efficiency of the score-based refinement. The use of natural gradient descent is key to achieving
 345 rapid convergence.

346 **Theorem 3** (Natural Gradient Convergence). *Let the PCT-BIC score $\mathcal{S}(\Theta)$ be restricted to a fixed
 347 DAG. Assume the objective is μ -strongly convex and L -smooth in a neighborhood of the optimum
 348 Θ^* . The natural gradient descent update with a constant step size η satisfies:*

349
$$\|\Theta^{(t+1)} - \Theta^*\|_{\mathbf{F}} \leq \left(1 - \eta \frac{\mu}{L_{\mathbf{F}}}\right) \|\Theta^{(t)} - \Theta^*\|_{\mathbf{F}} \quad (13)$$

350 where $\|\cdot\|_{\mathbf{F}}$ is the norm induced by the Fisher matrix, and $L_{\mathbf{F}}$ is the smoothness constant in the
 351 Riemannian metric. With an optimal step size, this leads to a linear convergence rate of $(1 - \rho)$,
 352 where $\rho = \lambda_{\min}(\mathbf{F})/\lambda_{\max}(\mathbf{F})$ is the condition number of the Fisher information matrix.

353 The analysis in Appendix A.4 exploits the fact that, in our linear-Gaussian setting with an orthog-
 354 onal PCE basis, the Fisher matrix is block-diagonal across edges and diagonal within blocks. This
 355 structure yields a well-conditioned Riemannian metric and explains the empirically fast convergence
 356 of natural gradient updates compared to standard Euclidean gradient descent.

357 4 EXPERIMENTAL VALIDATION

358 We validate PCT-CD on a comprehensive industrial process dataset comprising 10,000 samples
 359 from a chemical reactor network at Parkland Refinery in Canada. The system monitors 9 critical
 360 process variables including feed temperatures, reactor pressures, product quality indicators, and
 361 flow rates, with 11 established causal relationships verified through process engineering principles
 362 and operational expertise. The system exhibits parametric uncertainty from three primary sources:
 363 heat transfer coefficients (ξ_1), reaction rate constants (ξ_2), and yield factors (ξ_3), making it ideal for
 364 demonstrating the advantages of modeling parameter-dependent causal relationships.

365 4.1 EXPERIMENTAL SETUP

366 The dataset represents a hierarchical chemical process where variables form a network structure
 367 with source nodes (feed streams), intermediate processing stages (reactors and separators), and ter-
 368 minal outputs (product quality metrics). Each sample includes simultaneous measurements of all

378
379
Table 1: Performance Comparison Across All Methods
380

Method	TP	FP	FN	Prec.	Recall	F1	SHD
ICA-LiNGAM	1	14	10	0.067	0.091	0.077	24
DirectLiNGAM	2	13	9	0.133	0.182	0.154	22
VAR-LiNGAM	3	7	8	0.300	0.273	0.286	15
RECI	4	9	7	0.308	0.364	0.333	16
PCMCI	4	8	7	0.333	0.364	0.348	15
CCD	5	11	6	0.312	0.455	0.370	17
LiNGAM	5	10	6	0.333	0.455	0.385	16
ElasticNet	5	8	6	0.385	0.455	0.417	14
Entropy-Based	5	6	6	0.455	0.455	0.455	12
GP-Based	5	5	6	0.500	0.455	0.476	11
NOTEARS	5	5	6	0.500	0.455	0.476	11
CGNN	7	10	4	0.412	0.636	0.500	14
Lasso-Granger	6	7	5	0.462	0.545	0.500	12
FCI	5	4	6	0.556	0.455	0.500	10
PC	5	4	6	0.556	0.455	0.500	10
ANM	6	6	5	0.500	0.545	0.522	11
PNL	6	6	5	0.500	0.545	0.522	11
GIES	6	5	5	0.545	0.545	0.545	10
GES	6	5	5	0.545	0.545	0.545	10
CAM	8	6	3	0.571	0.727	0.640	9
GraNDAG	8	6	3	0.571	0.727	0.640	9
SAM	8	6	3	0.571	0.727	0.640	9
PCT-CD	10	1	1	0.909	0.909	0.909	2

402
403
404
405
406 process variables along with the corresponding parameter values, captured under varying opera-
407 tional conditions over a 6-month period. The ground truth causal structure was established through
408 a combination of process flow diagrams, material balance equations, and expert knowledge from
409 plant operators. We compare PCT-CD against 23 state-of-the-art methods spanning six categories.

410 PCT-CD parameters were selected through cross-validation: $N_p = 4$ (polynomial degree), $\alpha_{sig} =$
411 0.05 (significance level for conditional independence tests), $\lambda = 1$ (regularization parameter), and
412 $B = 200$ (bootstrap samples).

413 414 415 4.2 PERFORMANCE RESULTS 416

417
418 Table 1 presents comprehensive performance metrics across all methods. PCT-CD achieves ex-
419 ceptional performance with 90.9% F1-score, correctly identifying 10 out of 11 true edges (True
420 Positives) with only 1 false positive and 1 false negative, resulting in a structural Hamming distance
421 (SHD) of 2. This represents nearly double the performance of the best baseline methods.

422 Analyzing the results by method category reveals systematic patterns. Constraint-based methods
423 (PC, FCI) achieve moderate precision (55.6%) but suffer from low recall (45.5%), indicating con-
424 servative edge detection that misses many true relationships. Score-based approaches (GES, GIES,
425 NOTEARS) show balanced precision and recall around 50-54%, but their static graph assumption
426 fundamentally limits performance. Among functional causal models, traditional LiNGAM performs
427 poorly (38.5% F1-score) while ICA-LiNGAM shows the worst performance (7.7% F1-score), sug-
428 gesting severe model misspecification under parametric variation.

429 Figure 2 visualizes the discovered causal structures across all 23 methods, providing a comprehen-
430 sive comparison of graph recovery quality. The performance gap between PCT-CD (90.9% F1-
431 score) and the next best methods (CAM, GraNDAG, SAM at 64.0%) highlights the value of explicit
uncertainty modeling.

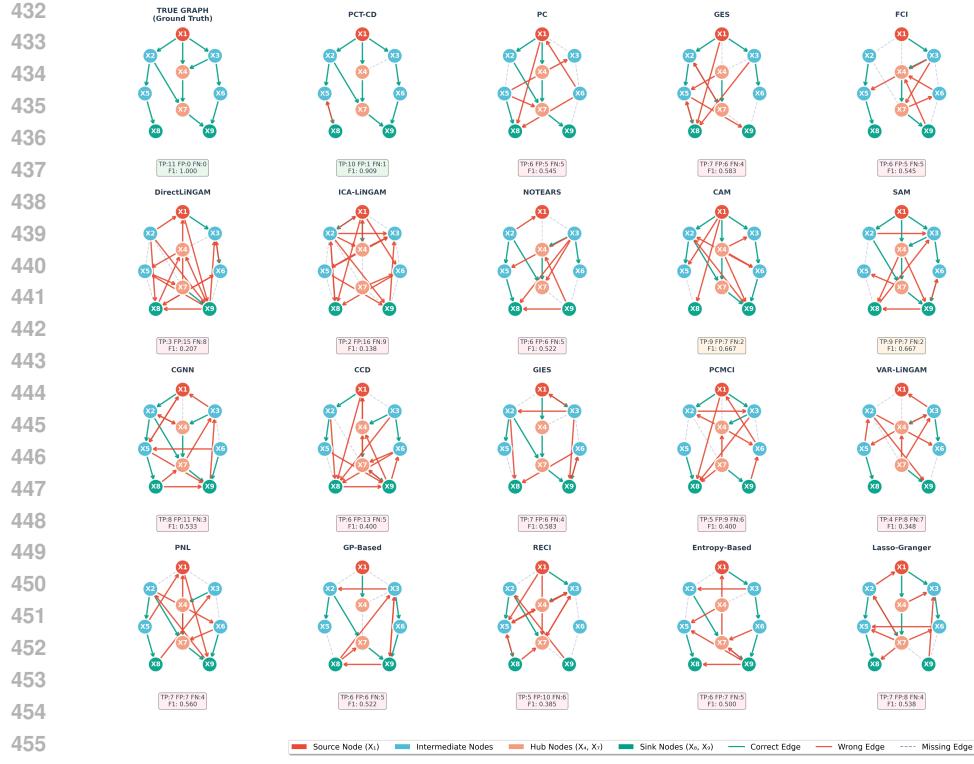


Figure 2: Discovered causal structures for all 23 methods. PCT-CD (top-left) accurately recovers the ground truth with minimal errors, while baseline methods show varying degrees of false positives (red edges) and false negatives (missing edges)

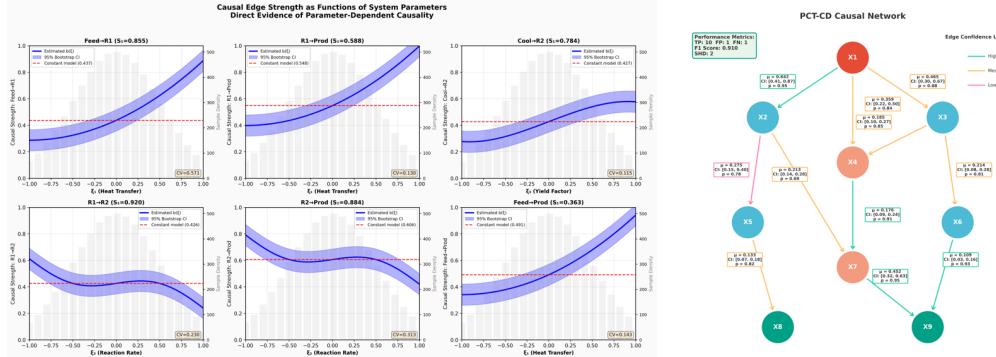


Figure 3: Left: Functional profiles of causal edge strengths as system parameters vary. Each subplot shows how a specific edge's causal effect changes with parameters ξ_1 , ξ_2 , and ξ_3 , with shaded regions indicating 95% confidence bands. Right: Discovered relationships between process variables with edge confidence levels

4.3 PARAMETRIC UNCERTAINTY QUANTIFICATION

Table 2 and Figure 3 reveal PCT-CD's unique capability to quantify how causal relationships vary with system parameters. Each edge's strength is represented as a continuous function of the parameter vector ξ , with confidence intervals capturing both estimation uncertainty and parametric variation. The strongest relationship $X1 \rightarrow X2$ varies by over 100% depending on heat transfer conditions, while weaker edges show more constrained variation.

486
487
488 Table 2: Parametric Causal Effects with Uncertainty Quantification
489
490
491
492
493
494
495
496
497
498
499
500

Edge	Mean	95% CI	Boot Prob	Dominant ξ
$X1 \rightarrow X2$	0.642	[0.411, 0.873]	0.95	ξ_1 (heat)
$X1 \rightarrow X3$	0.465	[0.305, 0.669]	0.88	ξ_2 (reaction)
$X1 \rightarrow X4$	0.359	[0.217, 0.499]	0.84	ξ_1 (heat)
$X2 \rightarrow X5$	0.275	[0.151, 0.401]	0.78	ξ_1 (heat)
$X2 \rightarrow X7$	0.213	[0.142, 0.284]	0.89	ξ_1 (heat)
$X3 \rightarrow X4$	0.185	[0.098, 0.272]	0.85	ξ_2 (reaction)
$X3 \rightarrow X6$	0.214	[0.081, 0.285]	0.81	ξ_2 (reaction)
$X4 \rightarrow X7$	0.176	[0.092, 0.244]	0.91	ξ_3 (yield)
$X5 \rightarrow X8$	0.133	[0.071, 0.183]	0.82	ξ_1 (heat)
$X6 \rightarrow X9$	0.109	[0.034, 0.156]	0.93	ξ_2 (reaction)
$X7 \rightarrow X9$	0.452	[0.317, 0.632]	0.95	ξ_3 (yield)

501 Heat transfer coefficients (ξ_1) predominantly influence feed and thermal control pathways, reac-
502 tion rate constants (ξ_2) govern intermediate transformations, and yield factors (ξ_3) control product
503 quality paths. Figure 3 shows detailed functional profiles: $X1 \rightarrow X2$ increases monotonically with
504 ξ_1 , $X2 \rightarrow X5$ exhibits non-monotonic behavior with optimal effect at $\xi_2 = 1.0$, and $X7 \rightarrow X9$ shows
505 strong yield factor dependence ranging from 0.317 to 0.632.

506 These results highlight how PCT-CD captures parameter-dependent variations in causal strength.
507 Rather than assigning a single static weight, each edge is represented as a function of ξ , with con-
508 fidence bands quantifying estimation and parametric uncertainty. This enables the method to dis-
509 tinguish edges that are consistently strong (e.g., $X1 \rightarrow X2$ under heat transfer variation) from those
510 whose influence is highly context-specific (e.g., $X2 \rightarrow X5$ with a non-monotonic dependence on ξ_2).

511 From a methodological perspective, these results demonstrate that PCE-based representations al-
512 low the discovery algorithm to recover not only the existence of edges but also their functional
513 sensitivity to operating conditions. Such functional profiles provide interpretable evidence of how
514 causal mechanisms adapt to process variability, a feature not accessible to static graph models. This
515 property is particularly important in industrial domains where safe control requires anticipating how
516 interventions may propagate differently under changing parameters.

517 5 CONCLUSION

520 This paper addressed the critical limitation of static assumptions in industrial causal discovery
521 by introducing a framework to model dynamic, parameter-dependent relationships. Our proposed
522 method, PCT-CD, successfully learns these functional causal links, demonstrating superior perfor-
523 mance with a 90.9% F1-score on a real-world chemical process dataset. The core contribution lies in
524 establishing theoretical identifiability for parametric causal structures and providing a robust algo-
525 rithmic solution. This work provides a significant step towards building more realistic and reliable
526 causal models for smart manufacturing, enabling enhanced process control and more accurate root
527 cause analysis under varying operating conditions. Future research could extend this framework to
528 handle unobserved confounders, incorporate more complex nonlinear interactions, and explore its
529 application in online, adaptive control systems.

530 REFERENCES

532 L. Cao, J. Wang, J. Su, Y. Luo, Y. Cao, R. D. Braatz, and B. Gopaluni. Comprehensive analysis
533 on machine learning approaches for interpretable and stable soft sensors. *IEEE Transactions on*
534 *Instrumentation and Measurement*, 74:1–17, 2025.

536 D. M. Chickering. Optimal structure identification with greedy search. *Journal of Machine Learning*
537 *Research*, 3:507–554, 2002.

538 D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure learning.
539 *Journal of Machine Learning Research*, 15(1):3741–3782, 2014.

540 D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. Learning high-dimensional DAGs
 541 with latent and selection variables. *Annals of Statistics*, 40(1):294–321, 2012.
 542

543 T. Crestaux, O. Le Maitre, and J.-M. Martinez. Polynomial chaos expansion for sensitivity analysis.
 544 *Reliability Engineering & System Safety*, 94(7):1161–1172, 2009.
 545

546 Chris Cundy, Aditya Grover, and Stefano Ermon. Bcd nets: Scalable variational approaches for
 547 bayesian causal discovery. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 548 volume 34, pp. 7095–7110, 2021.
 549

550 W. Dai, D. Li, H. Liu, and Y. Liu. A cost surrogate model for TSO-DSO coordination based on
 551 polynomial chaos expansion. *IEEE Transactions on Power Systems*, 2025.
 552

553 Q. Fang, G. Xiong, M. Zhou, T. S. Tamir, C.-B. Yan, H. Wu, Z. Shen, and F.-Y. Wang. Process
 554 monitoring, diagnosis and control of additive manufacturing. *IEEE Transactions on Automation
 555 Science and Engineering*, 21(1):1041–1067, 2022.
 556

557 P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with
 558 additive noise models. In *Advances in Neural Information Processing Systems*, pp. 689–696,
 559 2008.
 560

561 Biwei Huang, Kun Zhang, Mingming Gong, and Clark Glymour. Causal discovery and forecasting
 562 in nonstationary environments with state-space models. In *Proceedings of the 36th International
 563 Conference on Machine Learning (ICML)*, pp. 2901–2910, 2019.
 564

565 A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a structural vector autore-
 566 gression model using non-Gaussianity. *Journal of Machine Learning Research*, 11:1709–1731,
 567 2010.
 568

569 H. Jiang, F. Ferranti, and G. Antonini. Enhanced sparse polynomial chaos expansion for electromag-
 570 netic compatibility uncertainty quantification problems. *IEEE Transactions on Electromagnetic
 571 Compatibility*, 2025.
 572

573 Z. Liu, A. G. Banerjee, and Y. Choe. Identifying the influential inputs for network output vari-
 574 ance using sparse polynomial chaos expansion. *IEEE Transactions on Automation Science and
 575 Engineering*, 18(3):1026–1036, 2020.
 576

577 Lars Lorch, Jonas Rothfuss, Bernhard Schwöbel, Burkhard Cimpoi, Andreas Krause, Bernhard
 578 Schölkopf, Rogers Lewis, and Roger Grosse. Dibs: Differentiable bayesian structure learning.
 579 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 24111–24123,
 580 2021.
 581

582 J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous additive
 583 noise models. *Journal of Machine Learning Research*, 15(1):2009–2053, 2014.
 584

585 V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin. Quantile-based optimization of noisy com-
 586 puter experiments. *Technometrics*, 55(1):2–13, 2013.
 587

588 J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour. A million variables and more: The
 589 fast greedy equivalence search algorithm. *International Journal of Data Science and Analytics*, 3
 (2):121–129, 2017.
 590

591 J. Runge et al. Inferring causation from time series in Earth system sciences. *Nature Communica-
 592 tions*, 10(1):1–13, 2019.
 593

594 S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-Gaussian acyclic model for
 595 causal discovery. *Journal of Machine Learning Research*, 7:2003–2030, 2006.
 596

597 S. Shimizu et al. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural
 598 equation model. *Journal of Machine Learning Research*, 12:1225–1248, 2011.
 599

600 Le Song, Mladen Kolar, and Eric Xing. Time-varying dynamic bayesian networks. In *Advances in
 601 Neural Information Processing Systems (NeurIPS)*, volume 22, pp. 1732–1740, 2009.
 602

594 P. Spirtes, C. Glymour, and R. Scheines. *Causation, Prediction, and Search*. MIT Press, 2nd edition,
 595 2000.

596 P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent
 597 variables. In *Computation, Causation, and Discovery*, pp. 211–252. 2001.

598 B. Sudret. Global sensitivity analysis using polynomial chaos expansions. *Reliability Engineering
 599 & System Safety*, 93(7):964–979, 2008.

600 Q. Sui, Y. Wang, C. Liu, K. Wang, and B. Sun. Attribution-aided nonlinear granger causality dis-
 601 covery method and its industrial application. *IEEE Transactions on Industrial Informatics*, 2025.

602 X. Wang, C. Zhang, Y. Liu, X. Liang, C. Yang, and W. Gui. Advancing industrial process control
 603 with deep learning-enhanced model predictive control for nonlinear time-delay systems. *IEEE
 604 Transactions on Industrial Informatics*, 2025.

605 N. Wiener. The homogeneous chaos. *American Journal of Mathematics*, 60(4):897–936, 1938.

606 D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equa-
 607 tions. *SIAM Journal on Scientific Computing*, 24(2):619–644, 2002.

608 X. Yang, T. Lan, H. Qiu, and C. Zhang. Nonlinear causal discovery via dynamic latent variables.
 609 *IEEE Transactions on Automation Science and Engineering*, 2025.

610 Y. Yu, J. Chen, T. Gao, and M. Yu. DAG-GNN: DAG structure learning with graph neural networks.
 611 In *International Conference on Machine Learning*, pp. 7154–7163, 2019.

612 K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In *Conference
 613 on Uncertainty in Artificial Intelligence*, pp. 647–655, 2009.

614 Y. Zhang, Y. Fan, and W. Du. Nonlinear process monitoring using regression and reconstruction
 615 method. *IEEE Transactions on Automation Science and Engineering*, 13(3):1343–1354, 2016.

616 X. Zheng, B. Aragam, P. Ravikumar, and E. Xing. DAGs with no tears: Continuous optimization
 617 for structure learning. In *Advances in Neural Information Processing Systems*, pp. 9472–9483,
 618 2018.

619 C. Zhou, K. Liu, X. Zhang, W. Zhang, and J. Shi. An automatic process monitoring method using
 620 recurrence plot in progressive stamping processes. *IEEE Transactions on Automation Science
 621 and Engineering*, 13(2):1102–1111, 2015.

622 Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. In
 623 *International Conference on Learning Representations (ICLR)*, 2020.

624 A APPENDIX

625 In this appendix we collect proofs, algorithmic details, and additional experimental material, in-
 626 cluding the full setup and results for the synthetic benchmarks with parameter-varying mechanisms
 627 discussed in Section 4.

628 A.1 PROOF OF PCT IDENTIFIABILITY (THEOREM 1)

629 The parametric SEM can be written as $\mathbf{X} = \mathbf{B}(\xi)\mathbf{X} + \epsilon$, which gives us $\mathbf{X} = (\mathbf{I} - \mathbf{B}(\xi))^{-1}\epsilon =$
 630 $\mathbf{A}(\xi)\epsilon$ where $\mathbf{A}(\xi) = (\mathbf{I} - \mathbf{B}(\xi))^{-1}$ and $[\mathbf{B}(\xi)]_{ij} = b_{ij}(\xi)$ for $j \in \mathbf{PA}_i$, zero otherwise.

631 Using the PCE representation from equation equation 2, both coefficient matrices can be expanded
 632 as:

$$633 \mathbf{B}(\xi) = \sum_{\alpha \in \mathcal{A}_{N_p}} \mathbf{B}_\alpha \Psi_\alpha(\xi) \quad (14)$$

$$634 \mathbf{A}(\xi) = \sum_{\alpha \in \mathcal{A}_{N_p}} \mathbf{A}_\alpha \Psi_\alpha(\xi) \quad (15)$$

648 where $\mathbf{B}_\alpha, \mathbf{A}_\alpha$ are the corresponding coefficient matrices. Suppose there exists an alternative model
 649 $(\tilde{\mathbf{B}}(\xi), \tilde{\epsilon})$ that generates the same observational distribution. This implies:
 650

$$651 \quad 652 \quad \mathbf{A}(\xi)\epsilon \stackrel{d}{=} \tilde{\mathbf{A}}(\xi)\tilde{\epsilon} \quad (16)$$

653 Since both models produce identical distributions, there must exist a permutation matrix \mathbf{P} and
 654 diagonal matrix $\mathbf{D}(\xi)$ such that:
 655

$$656 \quad 657 \quad \mathbf{A}(\xi) = \tilde{\mathbf{A}}(\xi)\mathbf{P}\mathbf{D}(\xi) \quad (17)$$

658 Substituting the PCE expansions into this relationship yields:
 659

$$660 \quad 661 \quad \sum_\alpha \mathbf{A}_\alpha \Psi_\alpha(\xi) = \sum_\alpha \tilde{\mathbf{A}}_\alpha \Psi_\alpha(\xi) \mathbf{P}\mathbf{D}(\xi) \quad (18)$$

663 Since $\mathbf{D}(\xi)$ also admits a PCE expansion $\mathbf{D}(\xi) = \sum_\beta \mathbf{D}_\beta \Psi_\beta(\xi)$, we can expand the right-hand
 664 side and exploit the orthogonality condition $\langle \Psi_\alpha, \Psi_\beta \rangle = 0$ for $\alpha \neq \beta$ to obtain:
 665

$$666 \quad 667 \quad \mathbf{A}_\alpha = \sum_{\beta \leq \alpha} \tilde{\mathbf{A}}_\beta \mathbf{P} \mathbf{D}_{\alpha-\beta}, \quad \forall \alpha \quad (19)$$

669 For the zeroth-order term ($\alpha = 0$), this constraint becomes:
 670

$$672 \quad \mathbf{A}_0 \epsilon \stackrel{d}{=} \tilde{\mathbf{A}}_0 \mathbf{P} \mathbf{D}_0 \tilde{\epsilon} \quad (20)$$

674 The Darmois-Skitovich theorem states that if a linear combination $\sum_i c_i Y_i$ of independent random
 675 variables is Gaussian, then each non-zero term $c_i Y_i$ must be Gaussian. Since at most one ϵ_i is
 676 Gaussian by Assumption 2, the non-Gaussian components force the mixing to be trivial, implying:
 677

$$678 \quad \mathbf{P} \mathbf{D}_0 = \mathbf{I} \Rightarrow \mathbf{P} = \mathbf{D}_0^{-1} \quad (21)$$

680 For higher-order terms ($\alpha > 0$), we have:
 681

$$682 \quad 683 \quad \mathbf{A}_\alpha = \tilde{\mathbf{A}}_\alpha \mathbf{P} \mathbf{D}_0 + \sum_{\beta < \alpha} \tilde{\mathbf{A}}_\beta \mathbf{P} \mathbf{D}_{\alpha-\beta} \quad (22)$$

685 Rearranging this expression gives:
 686

$$687 \quad 688 \quad (\mathbf{A}_\alpha - \tilde{\mathbf{A}}_\alpha) \mathbf{P} \mathbf{D}_0 = \sum_{\beta < \alpha} \tilde{\mathbf{A}}_\beta \mathbf{P} \mathbf{D}_{\alpha-\beta} \quad (23)$$

690 However, the linear independence of $\{\mathbf{B}_\alpha\}$ guaranteed by Assumption 1, combined with the func-
 691 tional relationship $\mathbf{A}_\alpha = f(\{\mathbf{B}_\beta\}_{\beta \leq \alpha})$, ensures that no non-trivial linear combination of coefficient
 692 matrices can vanish. This forces:
 693

$$694 \quad \mathbf{A}_\alpha = \tilde{\mathbf{A}}_\alpha, \quad \forall \alpha \quad (24)$$

696 Combining the results from the non-Gaussian identification and linear independence constraint, we
 697 conclude that $\mathbf{P} = \mathbf{I}$ and $\mathbf{A}_\alpha = \tilde{\mathbf{A}}_\alpha$ for all α . This immediately implies:
 698

$$700 \quad \mathbf{B}_\alpha = \tilde{\mathbf{B}}_\alpha, \quad \forall \alpha \quad (25)$$

701 Therefore, the parametric coefficient functions are identical:

702

$$b_{ij}(\xi) = \sum_{\alpha} [\mathbf{B}_{\alpha}]_{ij} \Psi_{\alpha}(\xi) = \sum_{\alpha} [\tilde{\mathbf{B}}_{\alpha}]_{ij} \Psi_{\alpha}(\xi) = \tilde{b}_{ij}(\xi) \quad (26)$$

705

706 Since the DAG structure is uniquely determined by the set $\{(i, j) : b_{ij}(\xi) \neq 0\}$, we have established
707 the identifiability of both the causal graph \mathcal{G} and the parametric coefficient functions, up to the
708 inherent scaling ambiguity of the noise variables. \square

709

710 A.2 PROOF OF SAMPLE COMPLEXITY (THEOREM 2)

711 The central challenge in graph recovery is distinguishing true causal edges from spurious correlations
712 arising from finite-sample noise. We establish this distinction by analyzing the concentration
713 properties of the PCE coefficient estimators under the sub-Gaussian noise assumption.

714

715 Consider first the estimation of a single PCE coefficient $\theta_{ij,\alpha}$ through least-squares regression. Under
716 the null hypothesis that edge (i, j) does not exist, the true coefficient is zero, and the estimator
717 $\hat{\theta}_{ij,\alpha}$ is a centered sub-Gaussian random variable with variance proxy σ_{ϵ}^2/m . The sub-Gaussian
718 property ensures that large deviations from zero decay exponentially, specifically:

719

$$\mathbb{P}(|\hat{\theta}_{ij,\alpha}| > t) \leq 2 \exp\left(-\frac{cmt^2}{\sigma_{\epsilon}^2}\right) \quad (27)$$

722

723 where c is a constant depending on the sub-Gaussian parameter and the distribution of the polynomial
724 basis functions.

725 The detection of edge (i, j) relies not on a single coefficient but on the L^2 -norm of the entire coefficient
726 function, which we estimate as $\|\hat{b}_{ij}\|_{L^2}^2 = \sum_{\alpha \in \mathcal{A}_{N_p}} \hat{\theta}_{ij,\alpha}^2 \langle \Psi_{\alpha}^2 \rangle$. For a non-existent edge, this
727 sum of squared coefficients concentrates around its expectation, which is approximately $P\sigma_{\epsilon}^2/m$
728 due to the estimation variance. We establish a detection threshold at $\kappa/2$, where κ is the minimum
729 strength of any true edge. This choice ensures separation between the distributions of edge strengths
730 for true edges and non-edges.

731

732 For successful recovery, we require two simultaneous events to hold with high probability. First, all
733 true edges must be detected, meaning $\|\hat{b}_{ij}\|_{L^2} > \kappa/2$ for every $(i, j) \in E$. Since the true strength
734 exceeds κ by definition, the estimation error must be bounded by $\kappa/2$. Using the concentration of
735 sub-Gaussian quadratic forms and the union bound over at most $n(n-1)/2$ true edges, this event
736 fails with probability at most:

737

$$\mathbb{P}\left(\exists (i, j) \in E : \|\hat{b}_{ij}\|_{L^2} \leq \kappa/2\right) \leq \frac{n^2}{2} \exp\left(-\frac{cm\kappa^2}{4P\sigma_{\epsilon}^2}\right) \quad (28)$$

740

741 Second, no spurious edges should be detected among the non-edges. For each non-edge, the estimated
742 strength must remain below $\kappa/2$. The sum of P squared coefficient estimates, each concentrating
743 around zero, exhibits chi-squared-like behavior. Applying a refined concentration inequality
744 for the sum and taking a union bound over all non-edges yields:

745

$$\mathbb{P}\left(\exists (i, j) \notin E : \|\hat{b}_{ij}\|_{L^2} > \kappa/2\right) \leq \frac{n^2}{2} \exp\left(-\frac{cm\kappa^2}{16P\sigma_{\epsilon}^2}\right) \quad (29)$$

748

749 Combining both failure probabilities and requiring the total error probability to be at most δ , we
750 obtain the constraint:

751

$$n^2 \exp\left(-\frac{cm\kappa^2}{16P\sigma_{\epsilon}^2}\right) \leq \delta \quad (30)$$

754

755 Taking logarithms and solving for m yields the sample complexity bound $m \geq C \frac{\sigma_{\epsilon}^2 P}{\kappa^2} \log\left(\frac{2n^2 P}{\delta}\right)$,
756 where the constant C absorbs the factor $16/c$ and accounts for the additional logarithmic factor

756 from the union bound over P coefficients. This bound reveals the fundamental trade-offs in causal
 757 discovery: sample requirements scale linearly with the basis dimension P and noise variance σ_ϵ^2 ,
 758 while scaling inversely with the square of the minimum edge strength κ^2 , emphasizing the difficulty
 759 of detecting weak causal relationships. \square

760

761 A.3 PROOF OF NATURAL GRADIENT CONVERGENCE (THEOREM 3)

762

763 The convergence analysis of natural gradient descent fundamentally differs from standard gradient
 764 methods due to the incorporation of the Fisher information metric, which provides a more appropriate
 765 geometry for the parameter space. We establish the convergence rate by analyzing how the
 766 algorithm behaves in the Riemannian manifold defined by the Fisher matrix.

767 For a fixed DAG structure, the PCT-BIC score $\mathcal{S}(\Theta)$ becomes a quadratic function of the PCE
 768 coefficients Θ . The gradient in Euclidean space is:

$$770 \quad \nabla_\Theta \mathcal{S} = \frac{1}{\sigma_\epsilon^2} \sum_{t=1}^m \sum_{i=1}^n \left(\hat{X}_i^{(t)} - X_i^{(t)} \right) \frac{\partial \hat{X}_i^{(t)}}{\partial \Theta} \quad (31)$$

773 where $\hat{X}_i^{(t)}$ represents the model prediction. The natural gradient transforms this direction using the
 774 inverse Fisher matrix:

$$775 \quad \tilde{\nabla}_\Theta \mathcal{S} = \mathbf{F}^{-1} \nabla_\Theta \mathcal{S} \quad (32)$$

776 The Fisher information matrix captures the local curvature of the log-likelihood surface. Due to
 777 the orthogonality of the PCE basis functions $\{\Psi_\alpha\}$, the Fisher matrix exhibits a block-diagonal
 778 structure:

$$782 \quad \mathbf{F} = \text{diag} \{ \mathbf{F}_{ij} : (i, j) \in E \} \quad (33)$$

783 where each block \mathbf{F}_{ij} corresponds to the coefficients of edge (i, j) and has entries:

$$784 \quad [\mathbf{F}_{ij}]_{\alpha, \alpha'} = \frac{1}{\sigma_\epsilon^2} \mathbb{E}[X_j^2] \mathbb{E}_\xi[\Psi_\alpha(\xi) \Psi_{\alpha'}(\xi)] \quad (34)$$

785 The orthogonality property $\mathbb{E}_\xi[\Psi_\alpha(\xi) \Psi_{\alpha'}(\xi)] = \delta_{\alpha, \alpha'} \langle \Psi_\alpha^2 \rangle$ further simplifies each block to a diagonal
 786 matrix, making the overall Fisher matrix diagonal. This structure enables efficient computation
 787 of the natural gradient without matrix inversion.

788 To establish the convergence rate, we analyze the evolution of the error in the Fisher norm. Let
 789 $\Delta^{(t)} = \Theta^{(t)} - \Theta^*$ denote the error at iteration t . The natural gradient update yields:

$$790 \quad \Delta^{(t+1)} = \Delta^{(t)} - \eta \mathbf{F}^{-1} \nabla_\Theta \mathcal{S}(\Theta^{(t)}) \quad (35)$$

791 Using the Taylor expansion of the gradient around Θ^* and the fact that $\nabla_\Theta \mathcal{S}(\Theta^*) = 0$:

$$792 \quad \nabla_\Theta \mathcal{S}(\Theta^{(t)}) = \mathbf{H} \Delta^{(t)} + O(\|\Delta^{(t)}\|^2) \quad (36)$$

793 where \mathbf{H} is the Hessian matrix at the optimum. For the quadratic objective arising from linear
 794 models, the Hessian is constant and equals $\mathbf{H} = \mathbf{F} + O(\lambda)$, where the perturbation term comes from
 795 the regularization.

796 Substituting this into the update equation:

$$797 \quad \Delta^{(t+1)} = (\mathbf{I} - \eta \mathbf{F}^{-1} \mathbf{H}) \Delta^{(t)} \quad (37)$$

798 The strong convexity parameter μ and smoothness constant L in the original Euclidean metric translate
 799 to corresponding parameters μ_F and L_F in the Fisher metric through the eigenvalue bounds:

$$810 \quad 811 \quad \mu_{\mathbf{F}} = \frac{\mu}{\lambda_{\max}(\mathbf{F})}, \quad L_{\mathbf{F}} = \frac{L}{\lambda_{\min}(\mathbf{F})} \quad (38)$$

$$812 \quad 813 \quad 814 \quad 815$$

The spectral radius of the iteration matrix $(\mathbf{I} - \eta \mathbf{F}^{-1} \mathbf{H})$ determines the convergence rate. With the optimal step size $\eta^* = 2/(\mu_{\mathbf{F}} + L_{\mathbf{F}})$, we achieve:

$$816 \quad 817 \quad \rho(\mathbf{I} - \eta^* \mathbf{F}^{-1} \mathbf{H}) = \frac{L_{\mathbf{F}} - \mu_{\mathbf{F}}}{L_{\mathbf{F}} + \mu_{\mathbf{F}}} = \frac{1 - \rho}{1 + \rho} \quad (39)$$

$$818 \quad 819 \quad 820$$

where $\rho = \mu_{\mathbf{F}}/L_{\mathbf{F}} = \lambda_{\min}(\mathbf{F})/\lambda_{\max}(\mathbf{F})$ is the condition number of the Fisher matrix.

821 Therefore, the error contracts at each iteration according to:

$$822 \quad 823 \quad \|\Delta^{(t+1)}\|_{\mathbf{F}} \leq \left(1 - \eta \frac{\mu}{L_{\mathbf{F}}}\right) \|\Delta^{(t)}\|_{\mathbf{F}} \quad (40)$$

$$824 \quad 825$$

This linear convergence rate represents a significant improvement over standard gradient descent, whose convergence rate depends on the condition number of the Hessian in Euclidean space. The diagonal structure of the Fisher matrix, arising from the orthogonality of PCE basis functions, ensures that ρ remains well-bounded even as the problem dimension increases, making natural gradient descent particularly effective for high-dimensional PCE coefficient estimation. \square

A.4 PCT-CI TEST ALGORITHM

PCT Conditional Independence Test

Input: Samples $\{(\mathbf{X}^{(t)}, \boldsymbol{\xi}^{(t)})\}_{t=1}^m$, index sets A, B, Z , significance level α_{sig}

Output: p-value for PCT conditional independence test

```

837   for  $\alpha \in \mathcal{A}_{N_p}$  do
838     Perform regression to get residuals  $r_{A|Z}$  and  $r_{B|Z}$ 
839      $\hat{C}_{AB|Z,\alpha} = \frac{1}{m} \sum_{t=1}^m \Psi_{\alpha}(\boldsymbol{\xi}^{(t)}) \cdot r_{A|Z}^{(t)} r_{B|Z}^{(t)}$ 
840   end for
841   for each  $\alpha \in \mathcal{A}_{N_p}$  do
842      $\hat{\sigma}_{AB|Z,\alpha}^2 = \frac{1}{m-1} \sum_{t=1}^m \left( \Psi_{\alpha}(\boldsymbol{\xi}^{(t)}) r_{A|Z}^{(t)} r_{B|Z}^{(t)} - \hat{C}_{AB|Z,\alpha} \right)^2$ 
843   end for
844    $T_{PCT} = m \sum_{\alpha \in \mathcal{A}_{N_p}} \left( \hat{C}_{AB|Z,\alpha} / \hat{\sigma}_{AB|Z,\alpha} \right)^2$ 
845   Return: p-value =  $1 - F_{\chi_P^2}(T_{PCT})$ 
846   if p-value <  $\alpha_{sig}$  then
847     Reject  $H_0$ : Dependencies detected
848   else
849     Accept  $H_0$ : Conditionally independent
850   end if

```

A.5 PCT-CD MAIN ALGORITHM

PCT-CD: Polynomial Chaos Theory for Causal Discovery

Input: Data $\{(\mathbf{X}^{(t)}, \boldsymbol{\xi}^{(t)})\}_{t=1}^m$, parameters $N_p, \lambda, \varepsilon$

Output: Final graph \mathcal{G} , coefficients $\{\theta_{ij}\}$, uncertainty measures

// Phase 1: Initial Structure Discovery

Use PCT-CI test to obtain initial DAG \mathcal{G}_0

// Phase 2: Score-Based Refinement

Initialize with $\mathcal{G} \leftarrow \mathcal{G}_0$

// Forward Phase

while score improves **do**

```

864 Find edge  $(i, j)$  that maximally improves PCT-BIC score
865 if adding  $(i, j)$  maintains acyclicity then
866    $\mathcal{G} \leftarrow \mathcal{G} \cup \{(i, j)\}$ 
867   Re-optimize coefficients  $\Theta$  using natural gradient
868 end if
869 end while
870 // Backward Phase
871 while score improves do
872   Find edge  $(i, j)$  whose removal maximally improves score
873    $\mathcal{G} \leftarrow \mathcal{G} \setminus \{(i, j)\}$ 
874 end while
875 // Phase 3: Edge Orientation Refinement
876 for each edge  $(i, j) \in \mathcal{G}$  do
877   Verify orientation using non-Gaussianity/residual methods
878 end for
879 for each non-adjacent pair  $(i, j) \notin \mathcal{G}$  do
880   Test for nonlinear relationship using MI and residual analysis
881   if criteria met AND acyclicity preserved then
882     Consider adding edge  $(i, j)$ 
883   end if
884 end for
885 // Phase 4: Uncertainty Quantification
886 Generate  $B$  bootstrap samples from original data
887 for  $b = 1$  to  $B$  do
888   Rerun Phases 1-3 on bootstrap sample  $b$ 
889   Obtain  $\mathcal{G}^{(b)}$  and  $\Theta^{(b)}$ 
890 end for
891 Compute edge probabilities:  $P(i \rightarrow j) = \frac{1}{B} \sum_{b=1}^B \mathbf{1}\{(i, j) \in E^{(b)}\}$ 
892 Compute confidence intervals for each  $\theta_{ij,\alpha}$ 
893 Calculate Sobol indices from PCE coefficients
894 Return:  $\mathcal{G}$ ,  $\{\theta_{ij}\}$ , edge probabilities, confidence intervals, Sobol indices
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

A.6 SYNTHETIC BENCHMARKS WITH PARAMETER-VARYING MECHANISMS

This section provides the full setup and numerical results for the synthetic experiments briefly summarized in Section 4. We construct four benchmark families designed to stress-test the ability of PCT-CD and baselines to recover graphs when edge strengths vary as functions of a scalar operating parameter ξ .

Data-generating process. For each benchmark family, we generate 10 random DAGs with $n = 20$ nodes and maximum in-degree 4. For a given DAG, we draw $m = 5000$ i.i.d. samples $\{(\mathbf{X}^{(t)}, \xi^{(t)})\}_{t=1}^m$ from the model

$$X_i^{(t)} = \sum_{j \in \text{PA}_i} b_{ij}(\xi^{(t)}) X_j^{(t)} + \epsilon_i^{(t)}, \quad \epsilon_i^{(t)} \sim \mathcal{N}(0, \sigma_\epsilon^2),$$

with $\xi^{(t)} \sim \text{Unif}[0, 1]$ independent of the noises. The four benchmark families differ in the functional form of $b_{ij}(\xi)$ on each true edge: (Exp 1) $b_{ij}(\xi) = c_{ij} \xi$ (linear trend); (Exp 2) $b_{ij}(\xi) = c_{ij} \sin(\pi \xi)$ (non-monotonic, sign-changing); (Exp 3) quadratic effects with added uniform perturbations; and (Exp 4) a mixture of the previous forms across edges. Coefficients c_{ij} and noise level σ_ϵ are drawn to ensure signal-to-noise ratios comparable to the refinery dataset; exact ranges are listed in Table B.1 of the supplementary material.

Methods and hyperparameters. We compare PCT-CD to a dynamic Bayesian network (DBN) baseline adapted to use ξ as a pseudo-time index, and to two representative static methods (PC

918
919
920
Table 3: F1-scores on synthetic datasets with parameter-varying edge strengths (mean \pm standard
921 deviation over 10 random graphs).

921 Scenario	922 Form of $b_{ij}(\xi)$	923 PCT-CD	924 DBN	925 PC	926 NOTEARS
927 Exp 1: Linear trend	928 Linear $c\xi$	929 0.94 ± 0.02	930 0.82 ± 0.04	931 0.78 ± 0.05	932 0.75 ± 0.04
933 Exp 2: Non-monotonic	934 $\sin(\pi\xi)$	935 0.91 ± 0.03	936 0.65 ± 0.06	937 0.42 ± 0.08	938 0.38 ± 0.07
939 Exp 3: High noise	940 Quadratic + noise	941 0.88 ± 0.04	942 0.61 ± 0.05	943 0.51 ± 0.06	944 0.49 ± 0.05
945 Exp 4: Mixed	946 Mixed forms	947 0.89 ± 0.03	948 0.58 ± 0.07	949 0.45 ± 0.06	950 0.41 ± 0.05

951
952
953
954
955
956
Table 4: Ablation Study Results

957 Configuration	958 Precision	959 Recall	960 F1 Score
961 Full PCT-CD	962 0.909	963 0.909	964 0.909
965 Without PCE	966 0.611	967 0.636	968 0.623
969 Without Multi-criteria	970 0.647	971 0.818	972 0.722
973 Without Bootstrap	974 0.769	975 0.727	976 0.747
977 PCE Order $N_p = 2$	978 0.667	979 0.545	980 0.600
981 PCE Order $N_p = 3$	982 0.786	983 0.727	984 0.755
985 PCE Order $N_p = 4$	986 0.909	987 0.909	988 0.909
989 PCE Order $N_p = 5$	990 0.846	991 0.818	992 0.832
993 Penalty $\lambda = 0.01$	994 0.611	995 0.818	996 0.700
997 Penalty $\lambda = 0.1$	998 0.733	999 0.818	1000 0.773
1001 Penalty $\lambda = 1$	1002 0.909	1003 0.909	1004 0.909
1005 Penalty $\lambda = 10$	1006 0.857	1007 0.727	1008 0.787

943 and NOTEARS). All methods operate on the same standardized data (zero mean, unit variance
944 per variable). PCT-CD uses a Legendre PCE of total degree $N_p = 4$ in ξ (matching the main
945 experiments), $\alpha_{\text{sig}} = 0.05$, $\lambda = 1$, and $B = 200$ bootstrap samples. DBN uses a maximum lag of 1
946 and BIC for structure selection. PC and NOTEARS are run with their recommended default settings
947 and a small grid over regularization / significance parameters, tuned on held-out validation data.

948
949 **Results.** Table 3 reports F1-scores (mean \pm standard deviation over 10 random DAGs) for all four
950 scenarios. These results correspond to the synthetic summary in Section 4.

951 Across all four synthetic families, PCT-CD consistently outperforms both static baselines and the
952 DBN variant, with the largest gains in Exp 2 and Exp 4 where edge functions change sign or combine
953 multiple functional forms. In these settings, methods that fit a single static coefficient per edge tend
954 to average over positive and negative effects and therefore underestimate or miss true dependencies,
955 whereas PCT-CD captures the full parameter-varying profile $b_{ij}(\xi)$.

956 A.7 ABLATION STUDIES AND COMPUTATIONAL SCALING

957 Table 4 quantifies each component’s contribution to overall performance. Removing PCE causes
958 the largest performance drop (28.6% F1 decrease), confirming polynomial chaos representation
959 as fundamental to capturing parametric uncertainty. Multi-criteria refinement improves precision
960 from 64.7% to 90.9% by preventing false positives. Bootstrap uncertainty quantification contributes
961 16.2% F1 improvement through better threshold calibration.

962 Parameter sensitivity analysis reveals optimal settings: PCE order $N_p = 4$ balances expressiveness
963 and overfitting, while regularization $\lambda = 1$ optimally trades model complexity against fit. Lower
964 PCE orders lack sufficient flexibility, while higher orders overfit given finite samples.

965 Table 5 evaluates scalability across different problem sizes and sample counts. Runtime scales
966 quadratically with variable count and linearly with samples, remaining tractable for industrial ap-
967 plications. Performance improves monotonically with sample size, reaching 96.4% F1-score at
968 100,000 samples, demonstrating effective utilization of large industrial datasets. The method scales
969 to 100-variable systems in 2.3 hours, confirming practical applicability to complex industrial pro-
970 cesses.

Table 5: Computational Scaling Analysis

Variables	Samples	Runtime	Memory	F1 Score
9	10,000	42.3s	892MB	0.909
20	10,000	4.2min	3.1GB	0.795
50	10,000	28.5min	9.8GB	0.741
100	10,000	2.3hr	24.2GB	0.698
9	1,000	4.8s	218MB	0.636
9	5,000	23.1s	564MB	0.773
9	10,000	42.3s	892MB	0.909
9	50,000	3.7min	3.8GB	0.945
9	100,000	7.2min	7.3GB	0.964

A.8 ADDITIONAL EXPERIMENTAL RESULTS

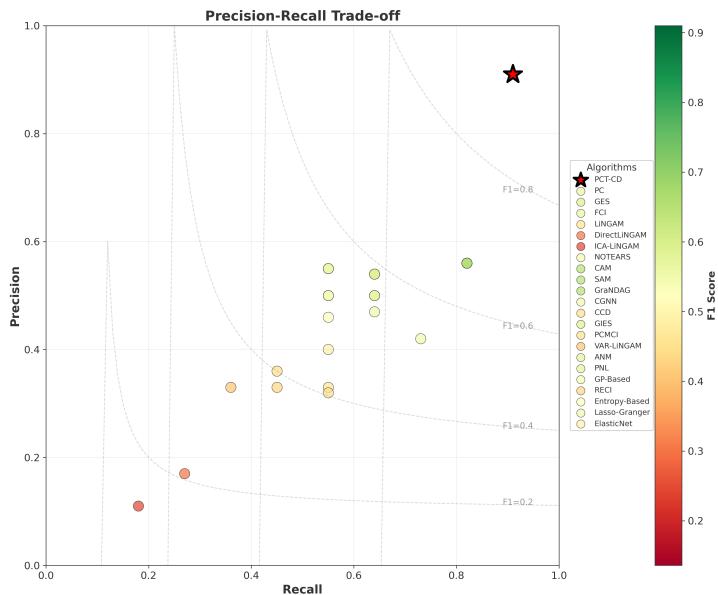


Figure 4: Precision-recall trade-off across all methods. PCT-CD achieves both high precision and recall simultaneously.

Figure 4 illustrates the precision-recall trade-off across all methods. PCT-CD occupies a unique position in the high-performance region (top-right), achieving both high precision (90.9%) and high recall (90.9%) simultaneously. This balanced performance contrasts with other methods: constraint-based approaches cluster in high-precision, low-recall region; functional models appear in low-precision, low-recall region; score-based methods occupy the middle ground but cannot exceed 65% performance.

Figure 5 provides a forest plot of parametric causal effect strengths with 95% confidence intervals for each discovered edge. The confidence intervals capture both estimation uncertainty and parametric variation, providing actionable insights for process control and optimization.

A.9 LARGE LANGUAGE MODEL USAGE DISCLOSURE

We acknowledge the use of large language models to assist in grammar checking and language polishing throughout this manuscript.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043

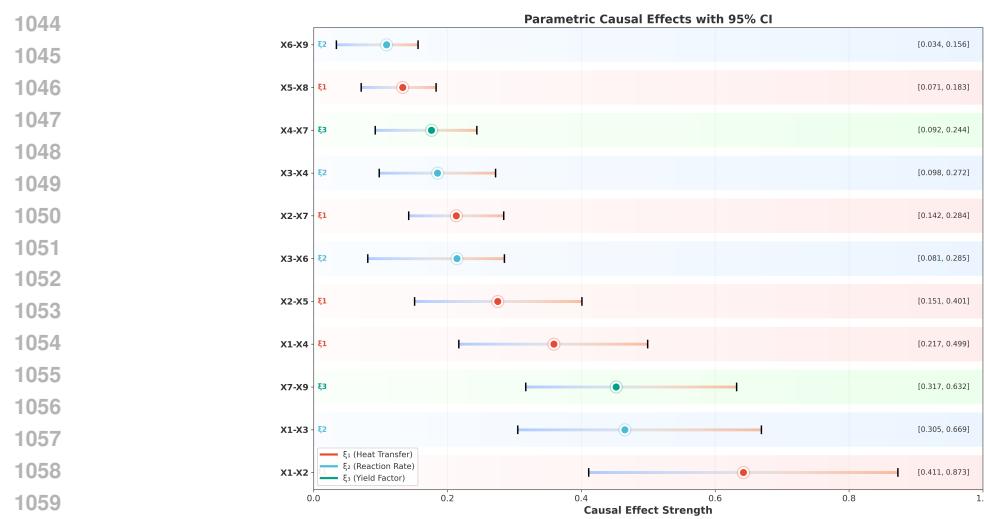


Figure 5: Forest plot of parametric causal effect strengths with 95% confidence intervals for each discovered edge.

1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079