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Abstract

In computer vision, the vision transformer (ViT) has increasingly superseded the convolutional
neural network (CNN) for improved accuracy and robustness. However, ViT’s large model
sizes and high sample complexity make it difficult to train on resource-constrained edge
devices. Split learning (SL) emerges as a viable solution, leveraging server-side resources
to train ViTs while utilizing private data from distributed devices. However, SL requires
additional information exchange for weight updates between the device and the server,
which can be exposed to various attacks on private training data. To mitigate the risk of
data breaches in classification tasks, inspired from the CutMix regularization, we propose
a novel privacy-preserving SL framework that injects Gaussian noise into smashed data
and mixes randomly chosen patches of smashed data across clients, coined DP-CutMixSL.
Our analysis demonstrates that DP-CutMixSL is a differentially private (DP) mechanism
that strengthens privacy protection against membership inference attacks during forward
propagation. Through simulations, we show that DP-CutMixSL improves privacy protection
against membership inference attacks, reconstruction attacks, and label inference attacks,
while also improving accuracy compared to DP-SL and DP-MixSL.
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Figure 1: Schematic illustration of DP-CutMixSL with 2 clients.

1 Introduction

Transformer architecture has originally been developed in the domain of natural language processing (NLP)
(Vaswani et al., 2017), and its application has recently been extended to various domains including speech
recognition (Karita et al., 2019) and computer vision (CV) (Dosovitskiy et al., 2020b). In particular, the vision
transformer (ViT) has recently been the new standard architecture in CV, succeeded to the convolutional
neural network (CNN) architecture. ViT operations are summarized in two steps: 1) the first step to dividing
image data into multiple image patches, and 2) the second step to learning the relationship between the
patches under the encoder of the transformer. The latter step, dubbed the self-attention mechanism, helps to
achieve high performance on large datasets, but causes performance degradation on small datasets. Hence,
securing large-scale datasets in ViT is essential yet challenging, especially in distributed learning scenarios
where huge data is dispersed to multiple clients with limited computing capability (Khan et al., 2021; Han
et al., 2022). Federated learning (FL) is a promising solution in terms of enjoying these scattered data and
computing resources (Li et al., 2020; Kairouz et al., 2021). In FL, each client trains a local model to be
uploaded to the server with their own dataset, while the server yields the global model by taking the weighted
average of the local models, leading to data diversity gain without direct data exchange. However, FL, which
requires training the entire model on the client, is not suitable for ViT, which has a heavy computational
burden and requires large memory due to its large model size.

To address this, split learning (SL) can be an alternative solution (Gupta and Raskar, 2018; Vepakomma
et al., 2018). In this approach, an arbitrary single layer of the entire ViT model is defined as a cut-layer.
The entire ViT model is then divided into a lower model segment and an upper model segment based on this
cut-layer, with each segment stored on the client and server, respectively. During training in this model-split
architecture, the client uploads the output from the cut-layer, referred to as smashed data, during forward
propagation and downloads the corresponding gradient during back propagation. However, this exchange of
information between the client and server can lead to privacy leakage. Unfortunately, the privacy leakage of
ViT, to be shown in Figure 2a, is expected to be more severe than that of CNN, due to the absence of a
pooling layer in ViT.

To this end, we propose a novel distributed learning framework for ViT, coined DP-CutMixSL, that is
differentially private (DP) under the Parallel SL architecture. As depicted in Figure 1, each client of DP-
CutMixSL uploads a portion of the smashed data according to the CutMix regularization (Yun et al., 2019),
with additive Gaussian noise. Then, a novel entity, the mixer, combines these CutMixed noisy smashed data
to generate the DP-CutMixSL’s smashed data and propagates it to the server. By doing so, DP-CutMixSL
gains in terms of robustness against various privacy attacks compared to uploading the smashed data itself.
Specifically, we prove the effectiveness of DP-CutMixSL in protecting privacy against membership inference
attack (Shokri et al., 2017; Rahman et al., 2018) and model inversion attack or reconstruction attack (He
et al., 2019) in forward propagation, both theoretically and experimentally. In addition, we experimentally
show the privacy guarantee for label inference attack (Li et al., 2021; Yang et al., 2022) in back propagation
and demonstrate that high accuracy is also achieved thanks to the regularization effect of CutMix.
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Contributions. The key contributions of this article are summarized as follows1:

• Inspired by CutMix, we propose a new SL-based architecture named DP-CutMixSL aiming to improve
privacy guarantee of ViT. In this process, we introduce an entity called mixer on a network consisting
of client-server, and outline its specific operations.

• We theoretically derive the privacy guarantee of DP-CutMixSL against membership inference attacks
through DP analysis and experimentally demonstrate it. Through experiments, we verify that
DP-CutMixSL is robust against reconstruction attack and label inference attack.

• In addition, we show that DP-CutMixSL outperforms baselines such as Parallel SL in terms of
accuracy via numerical evaluation.

2 Related Works

Vision Transformers. The transformer architecture is first used in the NLP field (Vaswani et al., 2017),
where its core operation is rooted on self-attention mechanism as well as encoder structure with multi-layer
perceptron (MLP) and residual connection. In NLP, such transformer-based architecture is extended from
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018), Generative Pre-
trained Transformer (GPT) (Radford et al., 2018) to GPT-2 Radford et al. (2019), GPT-3 (Brown et al.,
2020). This paradigm shift from CNN to transformer has reached out to the CV field. ViT, proposed
in Dosovitskiy et al. (2020a), is the first of its kind to apply the transformer architecture to the CV field. ViT
transforms an input image into a series of image patches, just as a transformer embeds words in text, and
learns relationships between image patches, thereby a large-scale dataset is indispensible. This ViT operation
enables to extract global spatial information, leading to its robustness against information loss such as patch
drop and image shuffling compared to CNN (Naseer et al., 2021).

If most of the ViT works are based on the centralized method (Carion et al., 2020; Zheng et al., 2021;
Chen et al., 2021), several studies have conducted research on distributed implementation of transformer
or ViT (Hong et al., 2021; Park et al., 2021b; Qu et al., 2021). Hong et al. (2021) has designed FL-based
transformer structure targeting text to speech task, while Qu et al. (2021) has explored the performance of
FL in ViT when data are heterogeneous. To diagnose COVID-19, Park et al. (2021b) proposed SL-based
architecture in ViT, benefiting from its robustness on task-agnostic training.

Federated & Split Learning. The key element of the distributed learning framework is to utilize raw
data and computing resources spread across the sheer amount of Internet-of-Things (IoT) devices or clients.
As the first kind of this, FL enables to acquire data diversity gain through exchanging model parameters (Li
et al., 2020; Kairouz et al., 2021). FL’s model parameter aggregation does not induce data privacy leakage,
and what is more, it ensures scalability in terms of increasing accuracy with the number of participating
clients (Konečnỳ et al., 2015; Park et al., 2021a). Nevertheless, FL has a trouble in running a large-size model,
constrained by its limited client-side computation and communication resources, highlighting the need for
alternative solutions (Konečnỳ et al., 2016; Singh et al., 2019). To this end, SL has appeared as a enabler for
large model operation by splitting the entire model into two partitions (Gupta and Raskar, 2018; Vepakomma
et al., 2018; Gao et al., 2020). The initial implementation of SL, which is based on sequential method, used
to result in large latency especially with many clients, giving rise to the research on Parallel SL free from this
problem. SFL, a combination of FL and SL, is the first form of Parallel SL, allowing simultaneous access
by multiple clients (Thapa et al., 2020a;b; Gao et al., 2021). One step further, Pal et al. (2021), Oh et al.
(2022b), and Oh et al. (2023) try to address the low accuracy, communication efficiency, and scalability of
SFL.

Privacy Attacks & Differential Privacy. As machine learning develops rapidly, several types of
privacy attacks have emerged whose goal is to extract information about training data, labels or the model

1This work is an extended version of both our previous workshop papers (Baek et al., 2022; Oh et al., 2022a), with the
addition of extensive experiments involving label inference attacks and an analysis of the subsampled mechanism.
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itself. In particular, regarding the privacy attack on distributed learning, Nasr et al. (2018) shows the
membership inference attack of an adversary with some auxiliary information on the training data. He et al.
(2019) investigates the reconstruction attack occurring on the inference phase of vanilla SL under white-box
and black-box settings, while Oh et al. (2022b) measures it emprically on the Parallel SL structure. In
addition, for label inference attacks in vanilla SL, Li et al. (2021) handles norm-based and direction-based
attacks under black-box setting, and Yang et al. (2022) deals with white-box attacks and GradPerturb as a
solution for them.

Accordingly, many studies have been conducted to protect information from various privacy attacks. One line
of works first introduced the application of DP analysis technique to deep learning models (Dwork, 2008;
Abadi et al., 2016). PixelDP, designed for SFL, is proposed as a DP-based defence to adversarial examples,
providing certified robustness to AI/ML models, while Wu et al. (2022) applies the concept of DP to FL.
Furthermore, Lowy and Razaviyayn (2021) defined record-level DP for practical use in cross-silo FL and
inverstigated privacy protection between silos and the server. Meanwhile, Reńyi DP (RDP) is presented
to facilitate the composition between heterogeneous mechanisms while providing tight bounds with fewer
computations (Mironov, 2017).

Such differential privacy (DP) or Rényi differential privacy (RDP) bounds can be tightened via subsam-
pling (Balle et al., 2018) and shuffling (Erlingsson et al., 2019). In particular, Yao et al. (2022) and Xu et al.
(2024) provide experimental and theoretical studies on privacy-preserving split learning via patch shuffling
on transformer structures. However, both studies are limited to single-client scenarios and do not address
multi-client parallel computation or accuracy improvement in data-limited environments. Another method
for privacy amplification is Mixup (Zhang et al., 2017; Verma et al., 2019), which leverages its inherent
distortion property (Koda et al., 2021; Borgnia et al., 2021; Lee et al., 2019). In this context, our research
exploits techniques for multi-user ViT by utilizing DP and CutMix, which inherently involve the concept of
subsampling and present potential challenges when combined with shuffling.

3 Motivation: Privacy-Preserving Parallel SL in ViT

Consider a network with a set of clients C = {1, 2, · · · , n} and a single server. Here, let i be the subscript
for the client. The dataset of the i-th client is consisting of multiple tuples of input data xi and its one-hot
encoded ground-truth label yi. We denote the i-th entire network as wi = [wc,i, ws]T, where wc,i, ws,
and (·)T represent the i-th lower model segment, the upper model segment, and the transpose function,
respectively.

Under the above setting, this section first revisits the Parallel SL operation on ViT. For the sake of convenience,
we assume that the cut-layer is located between the embedding layer and the transformer in the ViT structure.
This allows each i-th client to transform xi into si consisting of multiple patches via wc,i. Then for all i, the
i-th client sends si, which is referred to as smashed data, to the server, followed by FP through ws at the
server, resulting in loss Li. During the BP phase of Parallel SL, the server updates ws based on aggregated
losses

∑
i∈C Li and sends cut-layer gradients to clients, who then update their respective wc,i.

By doing so, Parallel SL enables the client to efficiently offload the upper segment of the ViT to the server,
which can be computationally expensive to run in its entirety, while still benefiting from exploring distributed
data. However, Parallel SL with ViT has the following fundamental characteristics compared to it with CNN,
as organized in Figure 2, which ultimately requires a solution considering these differences.

1) Absence of Pooling Layer : While CNNs typically include a pooling layer, ViTs often omit pooling layers,
except in variants like the pooling-based ViT (PiT) (Heo et al., 2021b). Conversely, dropout layers in ViTs
can impact the smashed data, whereas in CNNs, dropout layers usually affect the dense layers, leaving the
earlier feature maps unchanged. When considering both pooling and dropout layers, the size of the smashed
data changes significantly. For instance, using a 28 × 28 image, a 2 × 2 pooling layer with a stride of 2
reduces the data size to 25% of the original, whereas a dropout layer with a rate of 0.1 retains 90% of the
data size without changing the spatial dimensions. This comparison highlights the difference in distortion
levels between CNNs and ViTs, implying significant privacy leakage in ViTs. On the bright side, this makes
regularization on hidden representations more fruitful, just like regularization on input data.
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(a) Effect of pooling layer.

(b) Size of receptive field. (c) Pixel-wise and patch-wise process.

Figure 2: Comparison of CNN and ViT operation from various perspectives.

2) Large Receptive Field Size: A CNN with a convolutional layer is specialized in catching local spatial
information of an image, in other words, its receptive field size is small. Conversely, the receptive field of ViT
is large enough to learn global spatial information, with the help of its self-attention mechanism. Because of
this, ViT is more suitable for producing generalized models compared to CNN, but large-scale datasets are
required to unleash the full potential of ViT due to its low inductive bias (Baxter, 2000). Data regularization
can address this large-scale dataset requirement (Steiner et al., 2021).

3) Patch-Wise Processing: Due to the large receptive field of ViTs, as described in 2), they exhibit robustness
against significant noise applied to parts of the image, such as patch drops or image shuffling (Naseer et al.,
2021). Leveraging this inherent property, several studies (Yao et al., 2022; Xu et al., 2024) have attempted to
design privacy-preserving frameworks for ViTs using patch-wise permutation and shuffling. Consequently, we
intuitively infer that patch-wise operations may be more efficient for ViTs than pixel-wise operations in terms
of both accuracy and privacy.

As highlighted in 1), smashed data in Parallel SL with ViT is vulnerable to privacy leakage. However, ViT’s
resilience to substantial noise in parts of the image, as observed in 2), paves the way for privacy-enhancing
methods. In this context, CutMix regularization (Yun et al., 2019) emerges as a viable strategy where the
client shares only a portion of their image while the accuracy can be guaranteed. The only thing to address
is modifying CutMix to work patch-wise, as suggested in 3), which is covered in the next section. This
patch-wise adaptation of CutMix, therefore, presents an integrated solution that aligns with the considerations
from 1) to 3), exploiting ViT’s structural traits while maintaining data privacy.

4 Proposed: Split Learning With Random CutMix for ViT

In this section, we first propose a Patch-Wise Random and Noisy CutMix (Random CutMix), aiming to
improve ViT’s privacy guarantee while still ensuring its accuracy. The key idea of Random Cutmix is that
each client uploads a patch-wise fraction of the smashed data with additive Gaussian noise on top of the FP
process in Parallel SL. Before getting into the details, we assume a network of client-mixer-server wherein the
server is honest-but-curious with a privacy attack on data and labels and the mixer is a trusted third party.
The mixer can be implemented through homomorphic encryption (Rivest et al., 1978; Pereteanu et al., 2022)
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Figure 3: Structural comparison of (c) DP-CutMixSL with (a) Parallel SL (PSL) and (b) split federated
learning (SFL) (Thapa et al., 2020b). (1) In DP-CutMixSL, the mixer first calculates the i-th mixing ratio λi

following the symmetric dirichlet distribution (Bishop et al., 2007) with mask distribution αM . Depending on
λi, the mixer creates the i-th mask Mi, randomizing ⌈λi · N⌉ out of a total of N patches. (2) The i-th client
after the client-side FP punches the smashed data based on Mi and add Gaussian noise, which is then sent
to the mixer. (3) The mixer consolidates the patch-wise randomly selected and noise-augmented smashed
data received from clients, producing the smashed data of DP-CutMixSL with all patches intact. This is then
transmitted to the server for the remaining SL operations including server-side forward propagation process.

that enables encrypted computation on the server side or analog communication as in Koda et al. (2021).
Specifically, with homomorphic encryption, computation can be processed while preserving privacy. The
client transmits homomorphically encrypted smashed data to the server, which then processes the data and
produces encrypted output as a mixer.

Consider a network with a client number n of 2. First, the mixer generates a patch-wise mask Mi with the
given mask distribution αM and sends it to the i-th client (i ∈ {1, 2}). After finishing the forward propagation
process on the i-th lower model segment of SL with ViT, each client punches the smashed data si based on
the mask and adds random noise with Gaussian distribution to it. The label of this is determined by the
ratio λi of the number of patches in the smashed data punched by Mi to the total number N of patches.
Accordingly, the i-th client sends the following (s̄i, ȳi) pair to the server:

s̄i = Mi ⊙ (si + ns,i), ȳi = λi · (yi + ny,i), (1)

where ns,i and ny,i are matrices for the random noise added to the smashed data and label, whose elements
follow a zero-mean Gaussian distribution with variances σ2

s and σ2
y, respectively, and ⊙ is an pixel-wise multipli-

cation operator. Then, mixer aggregates (s̄i, ȳi) to generate the output of Random CutMix (s̃{1,2} = s̄1 + s̄2,

ỹ{1,2} = ȳ1 + ȳ2) and sends it to server, yielding a loss L̃{1,2} via server-side FP.

In the back propagation phase, when the mixer receives cut-layer gradient ∇s̃{1,2}L̃{1,2} from the server, the
mixer divides the gradient by client as shown in the following formula and sends it to each client:

∇s̃{1,2}L̃{1,2} = M1 ⊙ ∇s̃{1,2}L̃{1,2} + M2 ⊙ ∇s̃{1,2}L̃{1,2} (2)
= ∇s̃{1,2}(M1 ⊙ L̃{1,2})︸ ︷︷ ︸

gradient for client 1

+ ∇s̃{1,2}(M2 ⊙ L̃{1,2})︸ ︷︷ ︸
gradient for client 2

. (3)

For a given gradient, each client and server updates the weights wc,i, ws of the lower model segment
and the upper model segment, completing a single round of differential private SL with Random CutMix
(DP-CutMixSL).

As shown in Equation 1, in DP-CutMixSL’s forward propagation, each client’s smashed data is randomly
disclosed on a patch-by-patch basis with noise added to ensure the privacy guarantee for smashed data,
and its back propagation similarly ensures the privacy guarantee for labels through the process shown in
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Equation 3. Furthermore, when defining the number of clients performing Random CutMix, so-called mixing
group size k ≤ n, the aforementioned DP-CutMixSL can be considered as a case where n = k = 2, and
observations on the performance of DP-CutMixSL for general k can be found in Appendix A. Moreover, the
detailed operation of Random CutMix and DP-CutMixSL is organized in Figure 3 and the pseudocode in
Appendix C, respectively.

5 Differential Privacy Analysis on Smashed Data

In this section, we theoretically analyze the differential privacy (DP) bound of DP-CutMixSL and validate its
effectiveness for privacy guarantees. Unlike existing DP works that focus on the privacy guarantees of samples
and labels, we conduct DP analysis from the perspective of smashed data, which is highly correlated with
the sample particularly in ViT, and its labels. This is in the same context as analyzing the privacy leakage
of model parameters or gradient in FL. Note that in DP-CutMixSL, the component designed to safeguard
against privacy breaches by leveraging a trusted intermediary known as the mixer, and the component that
introduces Gaussian noise, both adhere to the Central and Gaussian Differential Privacy configurations,
respectively. the definition of Central DP (CDP) (Dwork et al., 2006) is organized as follows:
Definition 1 ((ε,δ)-CDP). For ε ≥ 0 and δ > 0, we say that a randomized mechanism M : D → R is
(ε, δ)-CDP if it satisfies the following inequality for any adjacent D, D′ ∈ D and U ⊂ R:

Pr[M(D) ∈ U ] ≤ eε · Pr[M(D′)] ∈ U ] + δ. (4)

At this point, a small ε indicates a high privacy level implying that one cannot distinguish whether D or
D′ is used to produce an outcome of mechanism. Although CDP is widely used when analyzing Gaussian
mechanisms, we also use the Reńyi DP (RDP) (Mironov, 2017), defined below, given the tractable interpretation
of its composition rule:
Definition 2 ((α, ϵ)-RDP). A randomized mechanism M : D → R is said to have ϵ-RDP of order α, or
(α, ϵ)-RDP for short, if for any adjacent D, D′ ∈ D it holds that:

Dα(M(D)||M(D′)) ≤ ϵ. (5)

In addition, Mironov (2017) proves that every RDP mechanism is also (ε, δ)-CDP. Especially in Mironov
(2017), when the mechanism is (α, ϵ)-RDP, then it is (ϵ + log(1/δ)

α−1 , δ)-CDP for 0 < δ < 1.

We consider a scenario where each i-th client has one smashed data-label pair. Then, given the ViT’s patch
size of P , the full dataset on the client side consists of n clients’ pairs of smashed data si ∈ RP 2×N×C = RDs

and the corresponding label yi ∈ RL = RDy is a one-hot vector of size L, where N and C denote the number
of patches and channels, respectively (D = {(s1, y1), .., (sn, yn)}). For ease of analysis, we assume that si

and yi are normalized so that si ∈ [0, ∆]Ds and yi ∈ [0, 1]Dy , respectively. Based on the above premise, we
first perform the RDP analysis on a single epoch.

Table 1: Comparison of mechanism output and RDP bounds for DP-CutMixSL, DP-MixSL and DP-SL.

Smashed Data Label
Output RDP Bounds Output RDP Bounds

DP-CutMixSL
∑k

i=1 (Mi ⊙ si + ns,i) λmax · ϵ1,s(α)
∑k

i=1 (λi · yi + ny,i) λmax
2 · ϵ1,y(α)

DP-MixSL
∑k

i=1 (λi · si + ns,i) λmax
2 · ϵ1,s(α)

∑k
i=1 (λi · yi + ny,i) λmax

2 · ϵ1,y(α)
DP-SL si + ns,i ϵ1,s(α) yi + ny,i ϵ1,y(α)

As a comparison group for DP-CutMixSL, we use DP-SL, which applies the Gaussian mechanism to the
existing SL, and DP-MixSL, which utilizes Mixup instead of CutMix in DP-CutMixSL. Table 1 shows the
smashed data and labels of DP-CutMixSL compared to those of DP-MixSL or DP-SL. We also refer to the
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differentially private mechanisms DP-SL, DP-MixSL, and DP-CutMixSL as M1, M2, and M3, respectively.
Then, we can compare the RDP bound of DP-CutMixSL to those of DP-SL and DP-MixSL as follows:

Theorem 1. For a given order α ≥ 2, the RDP privacy budgets ϵ1(α), ϵ2(α), and ϵ3(α) of DP-SL, DP-MixSL
and DP-CutMixSL satisfy the following inequality if and only if its equalities hold when λmax = 1/n:

ϵ2(α) ≤ ϵ3(α) ≤ ϵ1(α), (6)

where

ϵ1(α) = ϵ1,s(α) + ϵ1,y(α), (7)
ϵ2(α) = λmax

2(ϵ1,s(α) + ϵ1,y(α)), (8)
ϵ3(α) = λmax(ϵ1,s(α) + λmax · ϵ1,y(α)), (9)

in which ϵ1,s(α) = α∆2Ds

2σ2
s

, ϵ1,y(α) = αDy

2σ2
y

, and λmax = maxi∈C λi.

Proof. Combining Propositions 1 through 3 in Appendix E completes the proof. ■

Theorem 1 provides the following 4 observations about DP-CutMixSL.

Privacy-Accuracy Trade-Offs (k = n). There are two privacy-accuracy trade-offs identified in Theorem
1. First, DP-CutMixSL provides a lower RDP guarantee than DP-MixSL but achieves higher accuracy, as
to be demonstrated in Section 6. The Mixup technique of DP-MixSL results in a superposition of images,
where each pixel corresponds to multiple overlapping images. As the number of superimposed images, or
equivalently the number of clients, increases, it becomes more challenging to identify each individual image
by observing a single pixel. In contrast, the CutMix technique of DP-CutMixSL aggregates non-overlapping
masked images. Due to the masking, this aggregation certainly leaks less privacy compared to the unmasked
noisy images in DP-SL. Nevertheless, each pixel in this masked image aggregation corresponds to a specific
image, making it easier to identify and thus achieving higher accuracy while leaking more privacy than the
superimposed images in DP-MixSL. Another trade-off is associated with λmax ∈ [1/n, 1]. When λmax reaches
1/n (i.e., |C| increases or αM goes to ∞), the privacy guarantee is maximized and the equality constraint for
Theorem 1’s inequalities is satisfied, but the accuracy decreases as shown in Figure 10b and Figure 10c of
Appendix A, leading to the privacy-accuracy trade-off.

RDP-CDP Conversion. Leveraging the compositional benefits of the RDP framework, the outcome
of Theorem 1, initially derived from an analysis of a single epoch, can be straightforwardly generalized to
scenarios involving multiple epochs. This extension is possible by simply applying the RDP sequential rule,
but results in RDP bounds that worsen linearly with the number of epoch (Mironov, 2017; Feldman et al.,
2018). Some recent work (Ye and Shokri, 2022; Altschuler and Talwar, 2022) attempts to derive tighter RDP
bounds with multi epochs, but this is beyond our scope and we refer this as future work.

We can also measure the CDP guarantee of DP-CutMixSL by applying the aforementioned RDP-to-CDP
conversion to Theorem 1, which is based on the RDP guarantee. Additionally, the effect of the mixing group
size can be reflected by using the CDP bound formula of the subsampled mechanism in Wang et al. (2019),
whereas Theorem 1 implicitly assumes that the mixing group size is equal to n. Thereby, for k < n, we
can derive the CDP guarantee of DP-CutMixSL with subsampling (M3 ◦ subsample) as below, whose key
operation consists of 1) a subsampling mechanism that randomly selects k out of a total of n datapoints
(reflecting the mixing group size), and 2) operation of M3 as depicted in Figure 4.

Corollary 1. For all integer α ≥ 2 and 0 < δ < 1, the DP privacy budgets ε′
1(δ), ε′

2(δ), and ε′
3(δ) of

M1 ◦ subsample, M2 ◦ subsample and M3 ◦ subsample satisfy the following inequality:

ε′
2(δ) ≤ ε′

3(δ) ≤ ε′
1(δ), (10)
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Figure 4: An illustration of DP-CutMixSL with subsampling when n = 4 and k = 3.

where

ε′
1(δ) = log (1 + k

n
(eϵ1(α)+εo(δ) − 1)), (11)

ε′
2(δ) = log (1 + k

n
(eϵ2(α)+εo(δ) − 1)), (12)

ε′
3(δ) = log (1 + k

n
(eϵ3(α)+εo(δ) − 1)), (13)

in which k∗
2 =

√
ϵ1,s(α)+ϵ1,y(α)

εo(δ) and k∗
3 =

√
ϵ1,y(α)
εo(δ) minimize ε′

2(δ) and ε′
3(δ) under the assumption that

λi = 1/k ∀i, respectively, and εo(δ) = log(1/δ)
α−1 .

Sketch of Proof. Recall Theorem 1, and apply it to the DP bound formula of the subsampled mechanism of Wang
et al. (2019) (if M is (ε, δ)-DP, then the subsampled mechanism M ◦ subsample is (log(1 + γ(eε − 1)), γδ)-
DP where γ denotes sampling ratio). This yields Equation 10.

Assuming maxi∈C λi = 1/k, for ϵ3(α) + εo(δ)<<1, ε′
3(δ) = log (1 + k

n (eϵ3(α)+εo(δ) − 1)) is approximated
by log (1 + k

n (ϵ3(α) + εo(δ))). Since the log function is a monotone increasing function and n is fixed,
k · (ϵ3(α) + εo(δ)) should be minimized for the minimum ε′

3(δ). Regarding k · (ϵ3(α) + εo(δ)), since it is a
convex function for k > 0, we can find k∗

3 which becomes 0 when differentiated. k∗
2 can also be calculated in a

similar manner. This completes the proof. ■

Revisiting Privacy-Accuracy Trade-Off (k < n). First, privacy-accuracy trade-off between DP-
MixSL and DP-CutMixSL occurs in Corollary 1 as in Theorem 1 where n = k. The existence of an optimal
mixing group size is rooted in subsampling. In the existing Mixup or Random CutMix, the privacy guarantee
improves when the number of samples increases, but counterintuitively, with subsampling, the randomness of
which client among all clients a specific sample belongs to decreases, resulting in a trade-off.

Limitations on DP Analysis. There are 2 major limitations on our DP analysis. Firstly, in existing
DP analysis, it fundamentally measures how sensitively the output changes compared to the input, and
at this time, the output is in-practice bounded (for example, classification). However, since SL inherently
lacks in quantifying the change of smashed data versus input, we indirectly analyze the privacy guarantee of
smashed data versus output. To complement this, we experimentally measure the attack success rate for
membership inference attacks and assess robustness against reconstruction attacks in Section 6 to ensure
privacy guarantees between input and smashed data.

Secondly, DP analysis cannot differentiate between Random CutMix and Vanilla CutMix because it focuses
on the quantity rather than the randomness or pattern of the mechanism. Through the robustness of the
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reconstruction attack in Section 6 mentioned above, we bypass the privacy guarantee between CutMix, which
is theoretically indistinguishable.

6 Numerical Evaluation

While Section 5 theoretically demonstrates the privacy guarantee of DP-CutMixSL, this section experimentally
analyzes its privacy guarantee and accuracy compared to Parallel SL, SFL (Thapa et al., 2020b), and etc.
For the experiment, we use the CIFAR-10 dataset (Krizhevsky, 2009) with a batch size of 128, and Table 4
additionally uses the Fashion-MNIST dataset (Xiao et al., 2017). As an optimizer, Adam with decoupled
weight decay (AdamW) (Loshchilov and Hutter, 2017) is used with a learning rate of 0.001, and a total of 10
clients each have 5,000 images. Except for Table 4, we use the ViT-tiny model (Touvron et al., 2020), and the
entire model is split so that the client and server each have an embedding layer and a transformer. Regarding
the injection of noise into the one-hot encoded label, we use a clamp function to bound the values between 0
and 1 after the noise is added. Additionally, in Figure 5, for the case of n = 10 and k > 2, the mixer clusters
a set of n clients into subsets of size k at each epoch (constructing each subset from the remaining clients)
before determining the mixing ratio and masks within each subset. Furthermore, for the purpose of training
the model, we employ an environment consisting of 64 patches, each measuring 2 × 2, and conduct training
over a span of 600 epochs. Other parameters for DP measurement are in Table 2.

Table 2: Parameters for DP measurement.

Parameter Annotation Value
Number of clients n 10
Dimension of smashed data Ds 10
Dimension of label Dy = L 2
Pixel-wise upper bound of smashed data ∆ 0.15
Mixing ratio λi ∀i 1/k (uniform)
RDP parameter α 2
DP parameter δ 0.0002

To measure the robustness of DP-CutMixSL against privacy attacks, we first consider the following three
types of privacy attacks: membership inference attack, reconstruction attack, and label inference attack.
Among them, membership inference attack and reconstruction attack are privacy attacks that occur in the
forward propagation process of DP-CutMixSL and label inference attack in its back propagation process,
respectively. Specifically, an honest but curious server in a membership inference attack attempts to determine
whether a particular client’s data is used for training, via the uploaded DP-CutMix’s smashed data and label
generated by the mixer in Equation 1. Similarly, in a reconstruction attack, the server aims to restore the
input data of the client through the auxiliary network with the uploaded smashed data of DP-CutMixSL.

Furthermore, in the label inference attack, a honest-but-curious client tries to infer the label of input data
used by another client through the cut-layer gradient. For example, assuming that the cut-layer gradient
∇s̃{1,2}L̃{1,2} in Equation 3 is sent to clients 1 and 2, the 2-th client can try to infer the label of the 1-th
client by performing a classification with the 1-th client’s gradient ∇s̃{1,2}(M1 ⊙ L̃{1,2}) as input, which is
included in the entire cut-layer gradient.

Privacy Against Membership Inference Attacks. Here we assume the worst case that the server
knows the smashed data of all client. Given this premise, the DP analysis in Section 5 enables a theoretical
evaluation of privacy protection against membership inference attacks, thus leading to the measurement of
the CDP bound.

Figure 5a shows the accuracy of each method as a function of the CDP guarantee (ε). For the same ε,
DP-CutMixSL achieves higher accuracy than both DP-SL and DP-MixSL, except when ε = 1. Appendix B
presents the noise variance required for each method to guarantee privacy for each ε in Figure 5a. Here, the
noise variance increases in the order of DP-SL, DP-CutMixSL, and DP-MixSL, implying that the accuracy

10



Published in Transactions on Machine Learning Research (08/2024)

(a) Acc w.r.t ε. (b) Attack success rate w.r.t k. (c) Acc w.r.t k. (d) ε w.r.t k.

Figure 5: Accuracy, attack success rate, and ε under the CIFAR-10 dataset: (a) accuracy of DP-CutMixSL,
DP-MixSL, and DP-SL according to ε; (b) attack success rate of membership inference attacks against
DP-CutMixSL, DP-MixSL, and DP-SL according to k; (c) accuracy of DP-CutMixSL, DP-SL, and DP-MixSL
according to k; (d) ε of DP-CutMixSL, DP-SL, and DP-MixSL according to k.

drop at ε = 1 in Figure 5a is attributed to the injection of large-scale noise. In fact, Figure 11a in Appendix
D demonstrates that DP-CutMixSL outperforms DP-SL and DP-MixSL in terms of accuracy for all given
noise variances. Additionally, Figure 11b illustrates the superiority of DP-CutMixSL as a privacy amplifier
with an improved ε compared to DP-SL.

Figure 5b, Figure 5c, and Figure 5d compare the impact of mixing group size on attack success rate, accuracy,
and ε for membership inference attacks, respectively. In particular, Figure 5b is measured using a neural
network-based attacker model with three fully connected layers pretrained on the CIFAR-10 dataset. Both
Figure 5b and Figure 5d show that DP-CutMixSL provides improved privacy guarantees against membership
inference attacks compared to DP-SL. Factors that improve the DP guarantee of DP-CutMixSL include 1)
noise injected by Gaussian mechanism and 2) DP guarantee amplification through Random CutMix, and
such gap in privacy guarantee between DP-SL and DP-CutMixSL indicates that the latter is more critical to
privacy. Comparing DP-CutMixSL and DP-MixSL, Figure 5b demonstrates the superiority of DP-CutMixSL,
while Figure 5d shows the opposite. This highlights the aforementioned limitations of DP analysis and the
experimental superiority of DP-CutMixSL.

In Figure 5c, DP-CutMixSL achieves higher accuracy compared to both DP-MixSL and DP-SL, regardless of
the mixing group size. In Figure 5c and Figure 5d, both accuracy and ε of DP-CutMixSL and DP-MixSL
decrease as the mixing group size increases, while those of DP-SL tend to be reversed. This is because in the
trade-off of privacy guarantee between subsampling and CutMix or Mixup, the privacy guarantee gain of
CutMix or Mixup as k increased is greater than the loss of privacy guarantee due to subsampling, resulting
in a "Hiding in the crowd" effect (Jeong et al., 2020). It can also be explained by how large the optimal
mixing group size is (convex function with respect to k), and large k∗

2 as well as k∗
3 for given parameters

validate it (k∗
2 = 28.55, k∗

3 = 27.07). On the other hand, DP-SL lacks CutMix or Mixup, so a small k leads
to a strong privacy guarantee due to subsampling. Moving forward, to more effectively utilize CutMix’s
privacy protection capabilities without introducing noise, we assess performance in noiseless environments.
Consequently, we are updating our naming conventions: DP-CutMixSL will now be referred to as CutMixSL,
and DP-MixSL will be known as PSL with Mixup, among others.

Privacy Against Reconstruction Attacks. For the reconstruction attack, an auxiliary network is
utilized, which takes the smashed data as input and produces restored data through two convolutional layers
followed by interpolation. The auxiliary network is trained using the CIFAR-10 dataset by minimizing
the mean-squared-error (MSE) loss between the restored data and the original input data. Regarding the
hyperparameters, we adjust the dataset size for training the auxiliary network, mask distribution, and mixing
group size.

Table 3 shows the reconstruction loss of SL-based methods according to various hyperparameters. When
comparing SL-based techniques, the reconstruction loss of the proposed CutMixSL is the largest, in other
words, CutMixSL outperforms in terms of privacy guarantee for reconstruction attack in most cases, followed
by PSL w. Mixup. In particular, when comparing CutMixSL (Random CutMix) and PSL w. vanilla CutMix,
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Figure 6: Example images of raw, smashed, and restored data for Random CutMix, Vanilla CutMix, and
Mixup.

Table 3: Reconstruction loss (MSE) of SL-based techniques according to mixing group size, train dataset size,
and mask distribution.

Training Dataset (10%) Training Dataset (100%)
Mask Distribution (αM ) 2 6 2 6
Mixing group size (k) 2 4 2 4 2 4 2 4
PSL 0.403 0.425 0.326 1.425 0.116 0.308 0.138 0.398
PSL w. Mixup 0.665 0.383 0.379 1.923 0.172 0.396 0.215 0.292
PSL w. Vanilla CutMix 0.382 0.426 0.429 1.316 0.180 0.403 0.219 0.417
CutMixSL (proposed) 0.425 0.466 0.441 1.561 0.187 0.312 0.221 0.435

the robustness of CutMixSL is superior for most hyperparameter settings. This is due to the difference in
randomness between Vanilla and Random CutMix, which is previously indistinguishable by DP analysis.
Since adjacent box-shaped pixels are replaced, Vanilla CutMix has a relatively high correlation between
pixels, while the correlation between pixels in a Random CutMix that is randomly replaced patch-wise is
bounded in patch units, straightforwardly leading to a strong privacy guarantee.

With respect to the overall tendency for hyperparameters, the larger the training dataset size, the smaller
the mask distribution, and the smaller the mixing group size, the more advantageous the auxiliary network
is to learn the restored data, leading to a small reconstruction loss. Finally, Figure 6 presents examples
from the CelebA dataset, showcasing the original data, the smashed data, and the corresponding restored
data generated by the auxiliary network. This comparison highlights the superiority of the Random CutMix
technique.

Privacy Against Label Inference Attacks. For label inference attacks, there are white-box attacks
in Yang et al. (2022), black-box attacks in Li et al. (2021), and other minor variations. We consider a
white-box attack among them, since black-box attacks include the bold assumption that clients know the
upper model segment weight of the server. Unlike Li et al. (2021), which is based on Vanilla SL, we consider
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(a) SFL. (b) CutMixSL.

Figure 7: Norm distribution of gradients accord-
ing to mask distribution.

(a) SFL. (b) CutMixSL.

Figure 8: Cosine similarity distribution of gradi-
ents according to mask distribution.

(a) ROC curve of norm leak. (b) ROC curve of cosine leak. (c) AUC of norm and cosine leak.

Figure 9: Privacy guarantee measurement for label inference attack of CutMixSL and SFL.

the following worst case of CutMixSL to enable powerful white-box attacks in parallelized form of SL: 1)
the first assumption of weight averaging as in SFL to share the weight of the lower model segment among
clients, 2) the second assumption that the gradient in the cut-layer is averaged as in Pal et al. (2021) before
broadcasting to clients, 3) the third assumption that label inference leakage occurs between clients within
the same mixing group size for CutMixSL with k = 2. Also, we refer to CutMixSL as its best case when
not with the above assumptions. Then, a honest-but-curious client aims to infer its label by measuring the
norm (norm leak) or cosine similarity (cosine leak) of the averaged cut-layer gradient as well as the gradient
propagate to the lower model segment.

For measurement, we compute the area under the ROC curve (AUC) over the distribution of the norm or
cosine similarity. The ROC curve means the curve of the true positive rate (TPR) and false positive rate
(FPR) as the decision boundary moves from −∞ to ∞ in a binary classification scenario, and if its base area,
AUC, is close to 1, it means that the classification of the two distributions becomes clear under accurate data
labeling. Thus, in our scenario, an AUC close to 0.5 implies a high privacy guarantee against label inference
attacks. As an experimental setting, we utilize the LeNet-5 model (LeCun et al., 2015), where the cut-layer is
located after the second convolutional layer, and allocate 1,000 samples each corresponding to the two labels
0 and 4 of MNIST dataset to two clients. As a comparator, we use SFL with cut-layer gradient averaging.

Figure 7 and 8 visualize the distribution of norm and cosine similarity according to the mask distribution
of CutMixSL and SFL, respectively. where the orange and blue regions each represent that the labels are
positive and negative. We can visually confirm that, as the mask distribution increases, CutMixSL does not
change significantly, whereas in SFL, the variance of the distribution increases, making it easier to distinguish.
Based on these, the ROC curves for norm leak and cosine leak are shown in Figure 9a and 9b.
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Table 4: Top-1 accuracy of methods for various datasets and models.

Method Models w/ CIFAR-10 Models w/ Fashion-MNIST
ViT-Tiny PiT-Tiny VGG-16 ViT-Tiny PiT-Tiny VGG-16

Standalone 48.84 47.77 54.97 77.65 78.21 80.12
PSL 57.21 52.28 62.62 85.68 82.35 84.39
SFL 67.88 55.63 63.98 89.17 84.27 87.34
PSL w. Mixup 69.23 64.89 68.20 88.21 87.62 88.53
PSL w. Random Cutout 53.86 50.28 56.65 88.46 86.48 88.17
PSL w. Vanilla CutMix 71.78 58.21 33.50 87.86 86.31 89.01
CutMixSL (proposed) 73.77 71.26 67.53 89.75 89.25 89.45

Further, Figure 9c measures AUC per epoch of SFL and CutMixSL (its worst case as well as its best case)
for norm and cosine leaks. The first thing to note is the strong privacy guarantee for norm and cosine leak
of CutMixSL for both cases, maintaining an AUC close to 0.5 for all epochs, thanks to parallelization and
Random CutMix’s masking effect on gradient of Equation 3. The baseline SFL reaches AUCs up to 0.75 and
0.68 for norm and cosine leak, respectively, roughly alleviated by parallelization alone. In addition, regarding
the impact of norm and cosine leak according to epoch, the variance of norm leak AUC is larger at the
beginning of learning, but becomes weaker as epoch progresses, and instead, the variance of cosine leak AUC
becomes large, showing the potential complementary threats of the two privacy attacks.

Accuracy under IID Dataset. In Table 4, we additionally measure the accuracy for PiT-tiny Heo
et al. (2021a) and VGG-16 Simonyan and Zisserman (2014) except for ViT-tiny. Here, VGG-16 is for CNN in
addition to ViT, and PiT is a model between ViT and CNN and is a transformer architecture equipped with
a pooling layer. For an extensive comparison of results, we consider PSL with Random Cutout, which is
equivalent to the single client case of Random CutMix.

Table 4 shows the top-1 accuracy on the CIFAR-10 and Fashion-MNIST datasets of various SL-based
techniques, including CutMixSL. First, the accuracy of CutMixSL is the highest in all cases except for the
case where VGG-16 and CIFAR-10 are used. With VGG-16 and CIFAR-10, PSL w. Mixup achieves the
highest accuracy. This is because, as mentioned earlier, CNN focuses on locality when learning spatial
information, while ViT focuses on globality. Also, it is consistent with Naseer et al. (2021), indicating
that ViT has robustness of accuracy against patch drop or image shuffling compared to CNN. For that
reason, CNN and ViT are better suited for superposition type regularization (i.e., Mixup) and masking type
regularization (i.e., Cutout, CutMix), respectively Harris et al. (2020). Compared to PSL w. Vanilla CutMix,
CutMixSL demonstrates superior accuracy, validating our intuition about the efficacy of the patch-wise
designed regularizer in ViT. From the perspective of dropout Srivastava et al. (2014), it can be also seen that
the increased randomness in CutMixSL results in higher accuracy. Furthermore, as in Appendix F, Random
CutMix achieves the highest accuracy even when applied at the input layer. Straightforwardly, Random
CutMix applied to the input layer, however, is more vulnerable to data privacy leakage than that applied to
the cut-layer, resulting in an accuracy-privacy trade-off.

7 Conclusion

In this study, we designed DP-CutMixSL with the goal of developing a privacy preserving distributed ML
algorithm for ViT. Thanks to the randomness and masking effect of Random CutMix, we theoretically and
experimentally demonstrated that the proposed DP-CutMixSL has robustness against three types of privacy
attacks, while not compromising accuracy. While this work focuses on an SL-based algorithm that enables
privacy-preserving and accurate parallel computation in multi-user ViTs, it also shows promise in relation to
existing techniques for privacy-preserving SL in single-user ViTs. Notably, we briefly examined the scalability
and privacy-accuracy trade-offs of patch-wise shuffling (Yao et al., 2022; Xu et al., 2024) and its application to
DP-CutMixSL in Tables 7 and 8 of Appendix G, which are worthy of further exploration in future research.
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Although DP guarantee for smashed data was theoretically derived in FP, but our study lacks it in BP.
Combined with GradPerturb in Yang et al. (2022), exploring the DP guarantee at BP could be an interesting
topic for future work. Furthermore, while controlling the mixing group size only in this work, it is possible to
increase the number of FP flows by combinatorily setting the mixing group several times during single FP as
in Oh et al. (2022b), focusing on its augmentation properties. This can be a solution to the low inductive
bias of ViT, which is deferred to future research.

Broader Impact Statement

In this paper, we introduce a novel parallel training method for transformer structures designed to enhance
privacy guarantees while improving accuracy for multi-client environments, leveraging memory-efficient
structures based on split learning. We believe our work can significantly contribute to privacy-preserving
training schemes for memory-constrained devices, offering robust protection against membership inference
attacks, model inversion attacks, and label inference attacks. However, real-world implementation can be
challenging, particularly regarding the implementation of a mixer. Although homomorphic encryption and
AirComp can be adopted without additional deployment costs, factors such as encryption/decryption speed
especially for large deep learning models and time synchronization must be carefully considered for each.
Therefore, we recommend a rigorous approach to implementing our framework in real-world scenarios, taking
into account deployment costs, latency requirements, and other relevant factors.
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Appendices

A Observations on Random CutMix

(a) Impact of mixing methods. (b) Impact of mixing group size. (c) Impact of mask distributions (αM ).

Figure 10: Top-1 accuracy of multi-client scenario: (a) accuracy of Random CutMix, Vanilla CutMix, and
Mixup w.r.t the number of clients; (b) accuracy of Random CutMix w.r.t the mixing group size; (c) accuracy
of Random CutMix w.r.t the mask distribution αM .

In this subsection, the design elements of Random CutMix are explored, along with its optimal hyperparameter
settings, especially with respect to its accuracy.

Random CutMix vs. Vanilla CutMix and Mixup. While the proposed Random CutMix is a patch-wise
partial regularization scheme rooted in masking, a Mixup (Zhang et al., 2017; Verma et al., 2019) that superpositions
the full image can be considered as an alternative. Another alternative is Vanilla CutMix, a masking type regularization
equal to Random CutMix. Figure 10a shows the comparison of accuracy between these regularization schemes according
to the number of clients n. The top-1 accuracy is high in the order of Random CutMix, Vanilla CutMix, and Mixup
regardless of the number of clients, showing superiority of Random CutMix in ViT. Also, in all three regularization
schemes, accuracy increases as the number of clients increases, that is, scalability is guaranteed up to 10 clients.

Impacts of Mixing Group Size and Mask Distributions. In Figure 10b, the accuracy of the Random
CutMix as the mixing group size varies is shown for mask distribution αM . Note here that the infinite divergence of
αM implies that the mixing ratio follows a uniform distribution. Without cases where k is 4 with αM of 2 or 6, the
top-1 accuracy tends to be inversely proportional to the mixing group size, especially its decline is greatest when k
changes from 2 to 3. Interpreting this from the perspective of each client, as the mixing group size k increases, large
noise that may lead to performance degradation is applied in the remaining areas except for 1

k
of the entire image,

under the assumption of a uniform mixing ratio. For similar reasons regarding distortion level, Figure 10c includes a
tendency for accuracy to decrease as αM increases.

B Noise Variance Settings in Figure 5a

Noise variance (σ2
s , σ2

y)
ε 1 1.5 2 2.5 3 3.5 4 4.5 5

DP-SL 246/255 164/255 123/255 98.5/255 80/255 70.5/255 61/255 55/255 49/255
DP-CutMixSL 66/255 47/255 36/255 29/255 25/255 21/255 19/255 17/255 15/255

DP-MixSL 60/255 43/255 33/255 27/255 23/255 20/255 17/255 15/255 14/255

Table 5: Noise variances for DP-SL, DP-MixSL, and DP-CutMixSL for various values of ε.
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C DP-CutMixSL’s Pseudocode

Algorithm 1 Operation of DP-CutMixSL with n = k = 2.
Input: mask distribution αM

/*Execute in mixer*/
function 1. Pseudorandom Sequence Generation

Sample {λ1, λ2} ∼ Dir(αM )
Generate binary masks {M1, M2} according to {λ1, λ2}
Return Mi to i-th client for all i ∈ {1, 2}

function 2. Random CutMix
Generate {s̃{1,2}, ỹ{1,2}} through s̃{1,2} = s̄1 + s̄2, ỹ{1,2} = ȳ1 + ȳ2
Return {s̃{1,2}, ỹ{1,2}} to server

function 3. Cut-layer Gradient Splitting
Split ∇s̃{1,2}L̃{1,2} into ∇s̃{1,2}M1 ⊙ L̃{1,2} and ∇s̃{1,2}M2 ⊙ L̃{1,2} through Equation 3
Return ∇s̃{1,2}Mi ⊙ L̃{1,2} to i-th client

while wi not converged do
Pseudorandom Sequence Generation
/*Execute in client i*/
Generate si by passing xi through wc,i

Generate (s̄i, ȳi) as in Equation 1 based on Mi and Gaussian mechanism
Send (s̄i, ȳi) to mixer
Random CutMix
/*Execute in server*/
Generate loss L̃{1,2} through server-side FP via ws

Send ∇s̃{1,2}L̃{1,2} to mixer & Update ws

Cut-layer Gradient Splitting
/*Execute in client i*/
Update wc,i

end while

D Performance of DP-CutMixSL on Noise Variance

(a) Acc w.r.t noise variance. (b) ε w.r.t noise variance.

Figure 11: Accuracy and ε of DP-CutMixSL, DP-MixSL, and DP-SL w.r.t noise variance.
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E Proof of Theorem 1

DP-SL Analysis. We first demonstrate the RDP guarantee of DP-SL as follows:
Proposition 1. For all integer α ≥ 2, M1 is (α, ϵ1(α))-RDP, where

ϵ1(α) = α∆2Ds

2σ2
s

+ αDy

2σ2
y

. (14)

Proof. Starting from the Definition 2 and the Rényi divergence formula with multi-variate Gaussian distributions (Gil
et al., 2013), the RDP bound of M1, denoted by ϵ1(α), can be expressed as:

ϵ1(α) = sup
D,D′

Dα(M1(D)||M1(D′)) = sup
D,D′

α · ||µD
s − µD′

s ||2

2σ2
s︸ ︷︷ ︸

=ϵ1,s(α)

+
α · ||µD

y − µD′
y ||2

2σ2
y︸ ︷︷ ︸

=ϵ1,y(α)

, (15)

since s̄i ∼ N (µD
s , σ2

sIDs ) and ȳi ∼ N (µD
y , σ2

yIDy ), where µD
s and µD

y indicate the average of smashed data and that
of label, belonging to dataset D. It is noteworthy that ϵ1(α) is represented as the sum of RDP bound for smashed
data ϵ1,s(α) and RDP bound for label ϵ1,y(α) via the sequential composition rule, aiming to induce smashed data-label
pairwise RDP bound.

Here, by using assumptions about the pixel-wise upper bound of the smashed data and labels (si ∈ [0, ∆]Ds and
yi ∈ [0, 1]Dy ), we have:

||µD
s − µD′

s ||
2

≤ ∆2 · Ds, ||µD
y − µD′

y ||
2

≤ 12 · Dy = Dy. (16)

Combining Equation 15 and Equation 16 concludes the proof. ■

DP-MixSL Analysis. We also can present the privacy guarantee of DP-MixSL as belows:
Proposition 2. For all integer α ≥ 2, M2 is (α, ϵ2(α))-RDP, where

ϵ2(α) = (max
i∈C

λi)2(α∆2Ds

2σ2
s

+ αDy

2σ2
y

). (17)

Proof. Consider the output of DP-MixSL where n smashed data and labels are mixed up, and their pixel-wise upper
bound and dimension. Then, for two adjacent datasets D and D′ (i.e., only i′-th elements are different, 1 ≤ i′ ≤ n),
we have:

||µD
s − µD′

s ||
2

≤ (λi′ ∆)2Ds, ||µD
y − µD′

y ||
2

≤ λ2
i′ Dy. (18)

Here, Equation 18 is maximized when λi′ is the maximum value of λi for all i. Expressing this is as follows:
(λi′ ∆)2Ds ≤ (max

i∈C
λi · ∆)2Ds, λ2

i′ Dy ≤ (max
i∈C

λi)2Dy. (19)

Recalling the Rényi divergence formula and combining it with Equation 19 completes the proof. ■

DP-CutMixSL Analysis. Lastly, the following privacy guarantee of DP-CutMixSL is induced:
Proposition 3. For all integer α ≥ 2, M3 is (δ, ϵ3(α))-RDP, where

ϵ3(α) = (max
i∈C

λi) · (α∆2Ds

2σ2
s

+ (max
i∈C

λi)
αDy

2σ2
y

). (20)

Proof. If we consider the mean of s̃ for two adjacent datasets D and D′, where only the i′-th element is different,
Ni′ P 2C pixels among the total Ds pixels are different and the rest are identical. At this time, considering the upper
bound of the pixel-level, the following inequality is established:

||µD
s − µD′

s ||
2

≤ (Ni′ P 2C)∆2 = (λi′ NP 2C)∆2 = λi′ ∆2Ds. (21)

When λi′ = maxi∈C λi, that is to say, Ni′ = maxi∈C Ni, Equation 21 is maximized as follows:

||µD
s − µD′

s ||
2

≤ (max
i∈C

λi)∆2Ds (22)

= (max
i∈C

Ni)P 2C∆2. (23)

Recall the Rényi divergence formula, and substitute Equation 23 to obtain a privacy guarantee for DP-CutMix smashed
data. Since M3 is identical to M2 in terms of labels, the proof is completed by applying this to the RDP sequential
composition rule together with M2’s label privacy guarantee. ■
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F Accuracy comparison of regularizations applied to the input layer

Table 6: Top-1 accuracy of SL-based methods for various datasets and models.

Method Models w/ CIFAR-10 Models w/ Fashion-MNIST
ViT-Tiny PiT-Tiny VGG-16 ViT-Tiny PiT-Tiny VGG-16

PSL w. Mixup 74.36 37.21 66.08 89.86 87.62 89.70
PSL w. Random Cutout 22.03 45.19 66.32 88.65 88.51 89.62
PSL w. Vanilla CutMix 73.02 33.54 47.69 88.72 88.37 90.02
CutMixSL (proposed) 75.06 53.93 67.43 89.91 89.53 90.32

G Impact of Shuffling

Method ViT-Tiny PiT-Tiny VGG-16
PSL 57.05 52.28 62.62
PSL w. Shuffling 54.47 45.67 49.82
PSL w. Mixup 71.02 65.92 74.43
PSL w. Random Cutout 65.03 60.87 67.06
PSL w. Random CutMix 75.55 73.19 72.23
PSL w. Random CutMix & Shuffling 72.78 57.59 33.50

Table 7: Impact of patch-wise shuffling on model accuracy.

Method Train Dataset(10%) Train Dataset(100%)
PSL 0.0091 0.0056
PSL w. Shuffling 0.0672 0.0595
PSL w. Mixup 0.0402 0.0351
PSL w. Random Cutout 0.0920 0.0829
PSL w. Random CutMix 0.0458 0.0434
PSL w. Random CutMix & Shuffling 0.1233 0.1250

Table 8: Impact of patch-wise shuffling on reconstruction MSE loss.
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