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ABSTRACT

We propose a convolutional neural network (CNN) architecture that is tailored to
2D images of “things” with irregular boundaries, such as: cells, inhomogenous
materials, and flatlanders (Abbott, 1884). The CNN is equivariant to E(2), i.e.,
(continuous) translations, rotations, and reflections in 2D Euclidean space, thus,
having features and filters that represent different geometric tensors (i.e., not only
scalars, but also quantities related to gradients, elongation, “pointiness”, etc.).
Each pixel is additionally given a “type”, either interior or exterior, and retain
this knowledge throughout the convolution layers. Separate convolution filters
are learned for passing information within the interior, within the exterior, and in
both directions across the interface. To the best of our knowledge, such a fully-
equivariant treatment of the boundary of images is new. Moreover, whereas CNNs
equivariant to E(2) have already been studied (Weiler & Cesa, 2019; Kondor &
Trivedi, 2018), they often not employed in practical situations of relevance, e.g.,
even in “state-of-the-art” analysis of cell images (e.g., Lafarge et al. (2021); Moen
et al. (2019); Ashdown et al. (2020)). We hope that, by describing these ideas in a
didactic (and somewhat whimsical) manner, this short format paper can convince
more people to use them.

1 A (NOT SO) “CONVOLUTED” ANALOGY (INTRODUCTION)

The remarkable performance of convolutional neural networks for image classification is largely
due to the massive reduction in parameters resulting from the use of local convolutional filters.
The justification of this “architecturally enforced” assumption stems from two salient properties of
natural images:

1. Images are (approximately) translation-invariant.
As such, we want to treat each region of the image as “the same”.
This motivates the use of convolutional filters.

2. Images are (approximately) local.
Thus, the interpretation of a region should depend on its “neighbors”.
This motivates the use of filters that are sparse,
as they can be zero when far from the pixel in question.

Thus, judicious assumptions about the structure of images motivate highly efficient architectures for
analyzing images.

2 OUR MAIN CONTRIBUTIONS

1. We have developed a neural architecture that is well-adapted for the analysis of biological
images. This is achieved by combining general rotational equivariance (an idea that has
been described before, but that should be used more often) with a new idea for the treatment
of image boundaries.

2. We aim to explain it in a way that is enjoyable to read, and easy to understand, so as to
make it fun and accessible to a broader audience.
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3. We will perform an “apples-to-apples” comparison (i.e., similar number of parameters and
training) of this network with currently-used standard CNNs.

4. We will release the code upon acceptance.

2.1 THE (INCOMPLETE) ELEPHANT IN THE ROOM

Unfortunately, we were unable to provide the code and experimental results for our proposed ar-
chitecture in time for this submission. Also, the text is clearly rushed. However, we commit to,
upon acceptance to the workshop, providing the code for the architecture, and to study and compare
its performance with other (properly matched) CNNs models1 in, at least, the following real-world
dataset of practical importance:

• Leukemia dataset (Gupta & Gupta, 2019): Distinguishing between images of normal and
cancer cells, which only have subtle morphological differences. The cancers cells are from
acute lymphoblastic leukemia – the most common type of childhood cancer (Gupta et al.,
2022).

We also commit to making the text in this paper flow much smoother, and include basic examples
for understanding the architecture.

3 RELATED WORK

CNNs that are equivariant to E(2), i.e., (continuous) translations, rotations, and reflections in 2D
Euclidean space, have been studied in depth by Weiler & Cesa (2019). Moreover, they compared
several other approaches that approximately conserved this symmetry, and proposed network archi-
tectures that allow for incremental symmetry break along the network.

While there is ever increasing interest in the use of deep neural network architectures to analyse
biological images (Kan, 2017; Moen et al., 2019), most of these works do not take fully incorporate
the symmetries present in the images in their models, opting instead for pretrained object recognition
models (such as “InceptionV3”) (Ashdown et al., 2020; Dong et al., 2020; Ramaneswaran et al.,
2021).

4 THE CELLNN LAYER (OUR PROPOSED ARCHITECTURE)

There are many cases in which biological data are naturally encoded as 2D images. Often, such im-
ages can be considered as having no preferred origin; it could be a small part of a much larger tissue
or culture of cells, or the microscope might not have been properly centered around the object of
interest. Thus, the well-known architecture of CNNs are an appropriate starting point for analyzing
such data. A basic version of such an architecture can be constructed by interleaving convolutional
layers with pointwise nonlinearities and pooling/coarsening operations.

4.1 ROTATION EQUIVARIANCE (THE KNOWN IDEA THAT SHOULD BE USED MORE)

In contrast to the images that typically impinge upon our eyes, such microscopic images are less
likely to be gravitationally constrained to a preferred orientation. The lack of a preferred orientation
calls for an additional symmetry to be incorporated into the architecture — that of 2D rotations.
The combination2 of the 2D translations and 2D rotations is sometimes referred to as E(2), the
isometries3 of 2D Euclidean space.

Without rotational symmetry, standard CNNs have layers which can only assign some number of
scalar “features” to each pixel inputed to that layer. To incorporate rotational symmetry,

1We deeply believe on the importance of “apples to apples” comparisons; one of the reasons is that such
comparisons provide insights even in cases where the theoretical idea does not fulfill the expectations in prac-
tice.

2semi-direct product
3Isometries are maps that preserve the notion of distance.
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the analogous features of rotation-equivariant CNNs must be classified by their order.4 Addition-
ally, the analogous filters of rotation-equivariant CNNs must be classified in the same way. Where
standard CNNs simply multiply input features with parameterized filters, rotation-equivariant CNNs
must also combine their corresponding representations.5

4.2 DOMAIN AWARENESS (THE NEW IDEA THAT SHOULD BE USED FOR CELLS)

When using a standard CNN for rectangular images, pixels near the boundary can often “sense” their
position based on how the convolution is performed (e.g., padding with repeated or reflected pixels,
periodic boundary conditions, etc.). For objects with irregular boundaries, the typical method is to
place it within a bounding box containing constant values for the background. Say, for example, one
pads the image with zeros, giving a black background. Then the convolutions will initially consider
dark regions in the interior as similar to the background, despite their obvious semantic differences.

In analogy with the fact that physical processes are typically different in different domains (e.g.,
inside the cytoplasm vs. in the extracellular matrix), the information passed by our convolutions
will likewise be domain dependent. To this end, at each layer we premultiply our features with two
masks, one highlighting each domain. Different weights are learned for the convolutions applied to
each. After convolution, these two masks are applied again to the output, giving a total of four sets
of convolutional filters to learn, allowing for separate modelling of signals within and across domain
boundaries.

4.3 PARAMETERIZATION FOR THE ROTATION-EQUIVARIANT LAYER

Underlying our “cubist” coarse-graining, one could envision a “platonic” portrait — a continuous
function over the 2D plane.As such, we must come to terms with the fact that most rotations do
not preserve the orientation of the square grid. Thus, we must settle for an approximate notion of
continuous rotational symmetry.

We want our filters to be “steerable”. That is, instead of considering nearby pixels in the filter as
being “North, South, East, or West” of the center pixel (as in the original (i, j) representation of
the images), we want to consider neighboring pixels in the filter as being “Inwards, Outwards, or
Sideways”. We illustrate how this can be done using the Hermite functions Park et al. (2009) over
two variables x1 and x2 as an example. These functions are indexed by ordered pairs of nonnegative
integers p1 and p2, and have rotational orders P = p1 + p2. There are six Hermite functions of
order at most P = 2 (Fig. 1):

f00(x1, x2) ∝ e−
1
2 (x

2
1+x2

2) (1)
f10 ∝ x1f00 (2)
f01 ∝ x2f00 (3)
f11 ∝ x1x2f00 (4)

f20 ∝
(
2x2

1 − 1
)
f00 (5)

f02 ∝
(
2x2

2 − 1
)
f00 (6)

Loosely, these functions can be thought of as weighted estimates of derivatives with respect to x1
and x2,6 where the weight is a centered Gaussian with unit variance.
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Figure 1: The 2D Hermite functions of at most second order.
The first row shows the single zeroth-order Hermite function, a 2D spherical Gaussian. The second
row shows the two first-order Hermite functions, and the third row shows the three second-order
ones. In all figures, contours denote changes of 0.1, where the white interval is centered around 0
(pink indicates positive, and purple negative). The grid lines denote the pixel boundaries of our
5× 5 example filter.
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A APPENDIX (THE TELOMERES)

A.1 HERMITE FUNCTIONS

Evaluating the Hermite functions at the neighboring vertices appears to produce vectors that remain
nearly orthonormal (Fig. 2). If one truly needs orthonormal basis vectors, the Gram-Schmidt or-
thonormalization procedure would not significantly disturb their interpretability. By the same token,
such a step is not likely to be necessary in practice.
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Figure 2: Discretized Hermite functions are nearly orthonormal.
We parameterize our rotation-equivariant convolution filters using the Hermite functions. While
the (continuous) Hermite functions are orthonormal over R2, their evaluation at the neighboring
(2S − 1)2 points may not be. Here, we test how close these vectors are to orthonormal. Even with
a (seemingly coarse) 5 × 5 grid, the left figure shows that the resulting vectors remain nearly unit
length. Moreover, the right figure shows that these vectors also remain nearly orthogonal.
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