

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING TRAINING-FREE COMPOSED IMAGE RE- TRIEVAL WITH TOOLS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Composed Image Retrieval (CIR) retrieves a target image that preserves the ref-
012 erence image’s content while applying user-specified textual edits. Training-free
013 zero-shot CIR (ZS-CIR) has progressed by casting the task as text-to-image re-
014 trieval with pretrained vision-language models, prompting multimodal LLMs to
015 produce target captions. However, these approaches are hindered by frozen pri-
016 ors and a mismatch between free-form text and the retriever’s embedding space.
017 In this work, we introduce TaCIR, a training-free, tool-augmented agent for ZS-
018 CIR that jointly reasons over the reference image and manipulation text, option-
019 ally consults external tools, and instantiates the inferred edit as a visual proxy.
020 This proxy grounds implicit intent and reduces text-based retrieval misalignment
021 by enabling also image-to-image image comparisons in the retriever. A single,
022 tool-aware, chain-of-thought prompt emits both an initial target description and
023 an executable tool call; when a tool is invoked, the synthesized evidence is fed
024 back to refine the description and guide retrieval. TaCIR requires no task-specific
025 training and remains inference-efficient. Across four benchmarks and three CLIP
026 backbones, TaCIR yields consistent improvements over strong training-free base-
027 lines, with average gains of 2.20% to 4.16%, establishing a new state of the art for
028 training-free ZS-CIR while providing interpretable intermediate visualizations.

1 INTRODUCTION

031 Composed Image Retrieval (CIR) Vo et al. (2019) aims to retrieve a target image that remains vi-
032 sually similar to a reference image while incorporating modifications specified by user-provided
033 manipulation text. Unlike traditional image retrieval Datta et al. (2008), which relies solely on uni-
034 modal features, CIR leverages both visual and textual cues to better capture the user intent. This
035 multimodal formulation enables users to specify desired changes to reference images, clarifying in-
036 tent and improving retrieval accuracy. Consequently, CIR has attracted increasing interest in internet
037 search and e-commerce Chen et al. (2020); Saito et al. (2023), where it supports tasks such as scene
038 image search with object manipulation and product recommendations with attribute modification.

039 To avoid costly annotation procedure and potential generalization issues caused by training, zero-
040 shot CIR is emerging as the leading paradigm for CIR Saito et al. (2023); Baldrati et al. (2023);
041 Tang et al. (2024). Recent approaches Karthik et al. (2024); Tang et al. (2025b) in this setting ex-
042 ploit the representation capabilities of pretrained multimodal large language models (MLLMs) and
043 contrastive vision language models (VLMs) to convert CIR into a text-to-image retrieval problem.
044 Specifically, they use an MLLM (*e.g.*, GPT-4o OpenAI (2022), Qwen2.5-VL Wang et al. (2024))
045 to produce an explicit description of the target image from the reference image and the manipu-
046 lation text. This target description is then used for performing text-to-image retrieval within the
047 VLMs (*e.g.*, CLIP Radford et al. (2021)) shared semantic space. This line of approaches is not only
048 effective, but allows to tackle CIR without training, with the costs and biases derived from the latter.

049 While effective, training-free methods for CIR rely on two key assumptions. The first is that
050 MLLM’s domain knowledge and priors suffice to model the user intent. This implies that MLLMs
051 can fully capture detailed information within the user query, such as fine-grained attributes and
052 compatibility rules. This is often not true in practice, as MLLMs struggle with compositional under-
053 standing Ma et al. (2023); Li et al. (2024a); Kil et al. (2024); Mitra et al. (2024). The second is that
the target caption produced by the MLLM can be easily processed by the retriever, *i.e.*, CLIP. This

054 assumption is also brittle as MLLMs’ output might be verbose, prompt-sensitive, and not calibrated
 055 to the retriever’s text encoder capabilities.
 056

057 To address these challenges, we introduce a **Tool-augmented agent** for training-free **Composed**
 058 **Image Retrieval (TaCIR)**. To overcome the potential limited domain knowledge, TaCIR enables
 059 MLLMs to go beyond their frozen priors by consulting external resources. Specifically, the agent
 060 has access to tools (*i.e.*, web search, generative models) that can instantiate visual examples to more
 061 precisely infer the user intent for ambiguous queries. The presence of visual examples also allows
 062 us to overcome potential misalignment between MLLMs and retrievers. In fact, these examples act
 063 as explicit visual proxies for the target and can be used to compute image-to-image retrieval scores.
 064 By integrating extra-model knowledge and rendering user intent in pixels, TaCIR improves both
 065 the faithfulness of retrieval and interpretability through intermediate visualizations.
 066

067 **Contributions.** To summarize: (1) We propose a training-free agent for CIR that jointly pro-
 068 cesses the reference image and manipulation text, acquires specialized extra-model knowledge when
 069 needed, and converts the inferred target edits into a synthesized visual proxy; (2) we use the vi-
 070 sual proxy and target description to make the implicit manipulation cues explicit, allowing for both
 071 text-to-image and image-to-image matching, thereby reducing text-retrieval mismatch.(3) On four
 072 CIR benchmarks, TaCIR achieves consistent gains over MLLM-based training-free methods while
 073 maintaining inference efficiency, establishing a new state of the art for zero-shot CIR.
 074

075 2 RELATED WORKS

076 **Composed Image Retrieval (CIR)** retrieves an image that reflect textual edits to a reference one Vo
 077 et al. (2019). While supervised methods have been proposed to tackle this task Liu et al. (2021);
 078 Baldrati et al. (2022), they rely on annotated triplets (*i.e.*, reference image, manipulation text, target
 079 image) to train task-specific models performing late fusion. Zero-Shot CIR Saito et al. (2023);
 080 Baldrati et al. (2023); Tang et al. (2024)has emerged as a solution to sidestep the annotation cost,
 081 with early approaches using textual inversion Baldrati et al. (2023); Tang et al. (2024) to convert
 082 images into text for later CLIP-based retrieval. However, this image-to-text mapping may miss fine-
 083 grained attributes essential for the task. More recent diffusion-based variants Gu et al. (2023); Wang
 084 et al. (2025); Li et al. (2025) address this by generating a visual proxy for every query, but conse-
 085 quently incurring in high computational cost. Differently, training free approaches use (M)LLMs
 086 to infer edits from the reference and text (*e.g.*, CIReVL Karthik et al. (2024), OSrCIR Tang et al.
 087 (2025b)). Despite these progresses, these models can still miss important target details or yield
 088 captions misaligned with the retriever. We adopt a training-free, tool-augmented agent that uses an
 089 MLLM to choose which tool to call and whether to generate a visual proxy, producing proxies only
 090 when needed and allowing multi-step use of different tools across iterations. This flexible design
 091 remains efficient while improving faithfulness and retrieval accuracy compared with ensembles and
 092 diffusion-based methods (*e.g.*, Li et al. (2025); Gu et al. (2023)).
 093

094 **Vision and Language Pre-training Models.** Vision–language pretraining (VLP) models such as
 095 CLIP Radford et al. (2021) align images and text from large image–text corpora, enabling broad
 096 zero-shot transfer Zhou et al. (2022); Song et al. (2022); Li et al. (2022); Alayrac et al. (2022);
 097 Li et al. (2023); Shi et al. (2023; 2024); Hummel et al. (2024). Multimodal LLMs, includ-
 098 ing LLaVA Liu et al. (2023) and GPT-4 family OpenAI (2024a;b), integrate visual inputs within
 099 LLM architectures and offer stronger multimodal reasoning. Retrieval-oriented variants (*e.g.*, Com-
 100 CLIP Jiang et al. (2024); Chen et al. (2023); Li et al. (2024b); Sun et al. (2021)) further improve
 101 cross-modal matching. Recent training-free CIR shows that an MLLM coupled with a retriever can
 102 already be effective (*e.g.*, CIReVL Karthik et al. (2024), OSrCIR Tang et al. (2025b)), while per-
 103 formance is bounded by frozen model knowledge and caption–retriever mismatch. We instead use
 104 an augmented MLLM that issues targeted queries to external resources to ground intent and create
 105 visual proxies, enabling effective CIR without additional training.
 106

107 **Tool-based Agent for LLMs and MLLMs.** Recent studies highlight that relying solely on the
 108 parametric knowledge of (M)LLMs and VLMs is insufficient for complex multimodal tasks, moti-
 109 vating a shift toward tool-augmented reasoning and retrieval. For instance, AVIS Hu et al. lever-
 110 ages LLMs as planners that dynamically call web and image search for knowledge-intensive VQA;
 111 Dyn-VQA/OmniSearch Li et al. and mR²AG Zhang et al. (a) integrate retrieval and reflection to
 112 mitigate hallucinations; and Vision Search Assistant Zhang et al. (b) explicitly frames MLLMs as

108 multimodal search engines. Similar ideas extend to agentic tasks(*i.e.*, SeeAct Zheng et al. and
 109 VisualWebArena Koh et al.), which showcase iterative tool use in open web environments. From a
 110 training perspective, T3-Agent (a.k.a. “MMAT”) Gao et al. further enhances MLLMs’ tool-selection
 111 ability through trajectory tuning. Collectively, these works establish retrieval-augmented tool use as
 112 a paradigm for advancing MLLMs reasoning. Building on this line, our work introduces a spe-
 113 cific tool-augmented reasoning pipeline into composed image retrieval, enabling more accurate and
 114 robust multimodal retrieval under compositional queries.

115

116 3 METHODOLOGY

117

118 3.1 PRELIMINARIES

119

120 Given a reference image $I_r \in \mathcal{I}$, and a manipulation text T_m in the textual space \mathcal{T} , that specifies
 121 hypothetical semantic changes to the reference, zero-shot CIR (ZS-CIR) aims to retrieve images
 122 from a database \mathcal{D} that are visually similar to I_r while also reflecting the modifications described
 123 in T_m . To achieve this without training, such methods employ a pretrained VLM (*e.g.* CLIP) as a
 124 retriever. The VLM is composed of an image encoder $\Psi_I : \mathcal{I} \rightarrow \mathcal{Z}$ and a text encoder $\Psi_T : \mathcal{T} \rightarrow \mathcal{Z}$
 125 mapping images and text, respectively, into the shared space d -dimensional $\mathcal{Z} \in \mathbb{R}^d$. Moreover,
 126 they assume the presence of an MLLM Ψ_M mapping multimodal inputs into textual output.

127

128 To perform zero-shot CIR in a training-free manner, standard approaches (*e.g.*, Karthik et al. (2024);
 129 Tang et al. (2025b) directly generate a target image description from the reference image and ma-
 130 nipulation text. Specifically, let us denote with $F : \mathcal{I} \times \mathcal{T} \rightarrow \mathcal{T}$ a generic function that produces the
 131 target image description T_t from the query image and modification, *i.e.*, $T_t = F(I_r, T_m)$. In prac-
 132 tice, F is usually instantiated via Ψ_M . Standard text-to-image retrieval then scores each candidate
 133 image in \mathcal{D} using cosine similarity with T_t in the shared representation space, returning in output
 134 the image with the maximum similarity, *i.e.*:

$$135 I_t = \arg \max_{I \in \mathcal{D}} \frac{\Psi_I(I)^\top \Psi_T(T_t)}{\|\Psi_I(I)\| \|\Psi_T(T_t)\|}. \quad (1)$$

136

137 Performing CIR via Eq. equation 1 assumes that the function F has full domain knowledge and can
 138 easily capture the user intent. However, directly generating T_t from (I_r, T_m) with F (and its con-
 139 stituent frozen MLLM) can be challenging as (i) under-specified or *implicit* cues and domain-specific
 140 constraints may not be resolved by language alone; (ii) the generated target image description can be
 141 verbose or poorly calibrated for the text encoder of the retriever Ψ_T , as the MLLM has no prior on
 142 the input expected by the latter. To address this, we propose an adaptive framework that allows the
 143 MLLM to *optionally* consult external tools to enhance reasoning. As shown in Figure 1, the MLLM
 144 first processes the reference image I_r and manipulation text T_m and decides whether to invoke an
 145 external tool to obtain a **tool-generated image** that serves as a visual proxy. The final target de-
 146 scription T_t is then obtained by a refinement step from the original inputs together with this proxy.
 147 We name our approach TaCIR. In the following, we describe the component of our framework.

148

149 3.2 TOOL-AUGMENTED AGENT: TOOL POOL AND SELECTION

150

151 To inject domain priors into the model, we give F access to external tools, using directly Ψ_M
 152 as F . The latter contribute to creating visual proxies for the given query, visualizing potential
 153 outcomes of the user intended modification. To achieve this, we instantiate two type of tools: web-
 154 search of exemplars (i) knowledge acquisition (via web search exemplars) In particular, external
 155 tools contribute (i) knowledge acquisition (via web search exemplars) to clarify ambiguous intent
 156 and (ii) pixel-level hypotheses (via image editing model) to instantiate requested modifications.
 157 These tools create visual exemplars which disambiguate queries and improve subsequent retrieval.
 158 In the following, we first describe the tools and how they are selected and applied in our framework.

159

160 **Set of tools.** We consider the set of tools $\{\text{search}, \text{edit}, \text{none}\}$ with details described in Ap-
 161 pendix A.1. Concretely, `search` issues a context-preserving query to a Web Search API to obtain a
 162 high-quality exemplar, while `edit` uses an image-editing model to generate a hypothesized target-
 163 like variant of I_r guided by T_m . Both return a *tool-generated image* I_{tool} that acts as a visual proxy.
 164 The option `none`, instead, considers the target caption as descriptive enough to be used as input for
 165 the retrieval module.

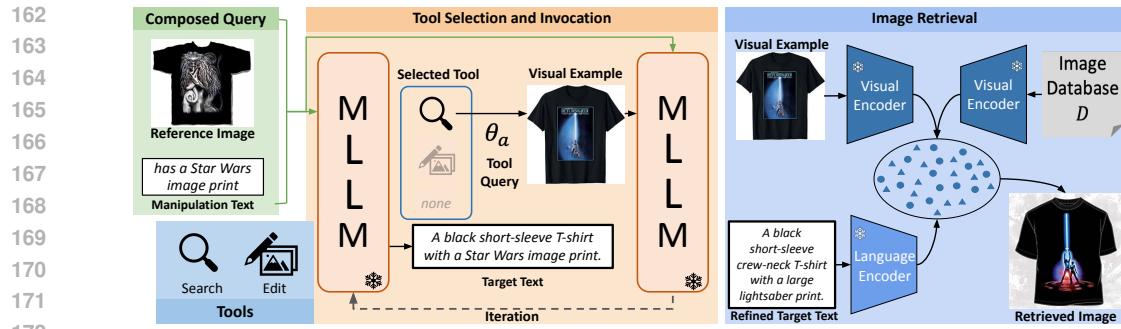


Figure 1: An overview of our model. An MLLM processes the reference image and the manipulation text with a tool-augmented reflective CoT to generate a target image description (and, when needed, a tool decision). The selected tool produces a visual proxy that refines the description, and a vision–language model performs image retrieval to obtain the final output.

Selection via reflective CoT. Given (I_r, T_m) , a tool-augmented chain-of-thought prompt jointly proposes an initial target image description $T_t^{(0)}$, a tool decision $a \in A$, and the tool instruction θ_a as follows:

$$(T_t^{(0)}, a, \theta_a) = \Psi_M(p_{\text{tool}} \circ I_r \circ T_m), \quad a \in \{\text{edit, search, none}\}, \quad (2)$$

where p_{tool} is the selection prompt. For search, θ_a is a normalized, context-preserving query that retains the stable object/attributes from the reference image while adding only the requested modification from T_m (e.g., ‘‘black crew-neck T-shirt with a large lightsaber print’’ in Figure 1). For edit, θ_a is a concise edit query that explicitly states actions and explicit preservation constraints, while T_m is a concise, executable instruction that differs from $T_t^{(0)}$ because the editor requires explicit operations and explicit preservation constraints rather than a brief, reference-dependent request (e.g., ‘‘Change the front graphic to lightsaber, preserve black color and crew neckline’’). If $a = \text{none}$, no external guidance is required and $T_t^{(0)}$ is used for target retrieval (Eq. 9).

Tool use. When $a \neq \text{none}$, the chosen tool $\Phi_{\text{tool}}^{(a)}$ produces a proxy image:

$$I_{\text{tool}} = \Phi_{\text{tool}}^{(a)}(I_r, T_m; \theta_a). \quad (3)$$

Details on the execution can be found in the appendix, with both tools following Algorithm 1 with specialized routines (Algorithms 2, 3). We adopt a cache-based design to reduce the computational cost (please refer to Appendix A.3 for more details). The output of this stage is $T_t^{(0)}$ and the optional I_{tool} with the associated metadata in case of web search.

3.3 REFINEMENT, ITERATION, AND REVISED SCORING

Given $\{I_r, T_m\}$ and I_{tool} , our goal is to produce a target description that is faithful to the intended edit while leveraging the proxy as a visual prior for retrieval. In the following, we detail how the description is refined, how this can be iterated, and how the final score uses the visual proxy.

Target description refinement. In case $a \neq \text{none}$, a refinement prompt p_{ref} is used to instruct Ψ_M for reflective chain-of-thought over the original reference image I_r , applying the modifications in T_m (‘‘Manipulation Text’’) while selectively incorporating evidence from I_{tool} (‘‘Tool Visual Proxy’’). The refined target description T_t is obtained as

$$T_t = T_t^{(1)} = \Psi_M(p_{\text{ref}} \circ I_r \circ T_m \circ I_{\text{tool}}), \quad (4)$$

falling back to $T_t^{(1)} = T_t^{(0)}$ when $a = \text{none}$. The prompt enforces an extraction policy that enumerates preserved content (e.g., category, shape, color, material), lists edits with attribute-level explicit values, and ignores proxy-specific distractors (e.g., logos, extra patterns, lighting, or background) based on editing intention from T_m . For additional details, please refer to Appendix A.4.

Note that, while we set $T_t = T_t^{(1)}$, the model can use the collected evidence to re-iterate the selection and refinement process for multiple steps $k = 0, \dots, K$, where in each step it updates the visual

proxy and target image description. We set $K=2$ by default to preserve efficiency (details in Section 4.3), but we show results for multiple iterations in Figure 4.

Composed Image Retrieval. Given the final target image description T_t and the optional tool-generated image I_{tool} , we perform retrieval from the database \mathcal{D} using frozen CLIP encoders Ψ_I and Ψ_T . The retrieved target image I_t is obtained by maximizing a composite similarity score:

$$I_t = \arg \max_{I \in \mathcal{D}} \left(\frac{\Psi_I(I)^\top \Psi_T(T_t)}{\|\Psi_I(I)\| \|\Psi_T(T_t)\|} + \mathbb{I}_{\text{tool}} \frac{\Psi_I(I)^\top \Psi_I(I_{\text{tool}})}{\|\Psi_I(I)\| \|\Psi_I(I_{\text{tool}})\|} \right) \quad (5)$$

where \mathbb{I}_{tool} is an indicator function that is 1 if a tool-generated visual proxy I_{tool} is used and 0 otherwise. When no tool is invoked ($\mathbb{I}_{\text{tool}} = 0$), this equation simplifies to a direct text-to-image retrieval based on T_t , as in Eq. equation 1.

Note that the whole pipeline is fully modular and both Ψ_M and the retriever can be replaced without affecting each other. Moreover, additional tools could be included to widen the expressivity of the model. Finally, the design of TaCIR is human-interpretable as all reasoning steps and target captions are expressed via language and, optionally visual examples.

4 EXPERIMENTS

Datasets and metrics. We evaluate on four standard CIR benchmarks: CIRR Liu et al. (2021) (*i.e.*, natural images; known false negatives), CIRCO Baldrati et al. (2023) (*i.e.*, multiple ground truths per query to mitigate false negatives), FashionIQ Wu et al. (2021) (*i.e.*, fine-grained fashion attribute edits), and GeneCIS Vaze et al. (2023) (*i.e.*, compositional retrieval over object/attribute variants built from MS-COCO Lin et al. (2014b) and VAW Pham et al. (2021)). We follow each benchmark’s official protocol: report Recall@k (R@k) for CIRR, GeneCIS, and FashionIQ; mean average precision (mAP@k) for CIRCO due to multiple ground truths; and additionally Recall_{Subset}@k for CIRR to assess reasoning within the constrained candidate set. Further dataset statistics and evaluation details are provided in the Appendix A.8.

Baselines. We compare TaCIR against a range of widely benchmarked ZS-CIR methods, grouped into textual inversion (training-dependent) and training-free approaches. Among textual inversion baselines, we include: (1) **Pic2Word** Saito et al. (2023), which maps reference image features to pseudo-word tokens; (2) **SEARLE** Baldrati et al. (2023), which augments pseudo-word tokens with GPT-generated captions Brown et al. (2020); (3) **Context-I2W** Tang et al. (2024), which selectively maps text-relevant visual information from the reference image; (4) **LinCIR** Gu et al. (2024), which employs subject-masking in caption space to boost training efficiency; (5) **IP-CIR** Li et al. (2025)¹ and **CIG** Wang et al. (2025) use diffusion models to synthesize visual proxies for CIR: we report their published numbers when applied on LinCIR; and (6) **PrediCIR** Tang et al. (2025a), which predict the target image feature by a world model during inference.

For training-free baselines, we evaluate: (1) **CIReVL** Karthik et al. (2024), a two-stage framework where a pre-trained image captioner first generates a reference image caption, followed by an LLM that composes a target description; (2) **OSrCIR** Tang et al. (2025b), the first one-stage reflective CoT reasoning method for ZS-CIR, and (3) **OSrCIR***, which adapts OSrCIR by using the same MLLM as TaCIR, isolating the impact of model architecture.

To ensure fair comparison, we exclude ensemble methods such as LDRE Yang et al. (2024) as these introduce substantial computational overhead during inference for each query. All methods are benchmarked across three backbone architectures (ViT-B/32, ViT-L/14, ViT-G/14) Radford et al. (2021); Ilharco et al. but focus primarily on ViT-L/14 for baseline comparisons, as widely adopted in the literature Saito et al. (2023); Tang et al. (2024; 2025b;a).

Implementation Details. The default MLLM used in TaCIR is GPT-4.1 Achiam et al. (2023), while we also perform ablations with GPT-4o, O3, Gemini-2.5 and open-source MLLMs including LLaVA Liu et al. (2024) and Qwen2.5-VL Wang et al. (2024). GPT APIs are used with a temperature setting of 0, while all other parameters remain at their default values. The retrieval module performs all computations on a single NVIDIA H100 GPU. For the CLIP-based ViT variants Dosovitskiy (2020), we adopt weights from the official CLIP implementation Radford et al. (2021) while using

¹IP-CIR does not report GeneCIS or ViT-L results on CIRCO/CIRR; where unavailable, we include CIG.

270 **Table 1: Comparison on CIRCO and CIRR Test Data.** On CIRCO, TaCIR significantly out-
 271 performs even adaptive methods across retrieval models, while it achieves competitive results on
 272 CIRR despite the noise in the benchmark. Grey lines represent the training-free ZS-CIR methods.
 273 OSrCIR* uses the GPT4.1. **Bold** and ‘_’ denote the best and second-best result, respectively.

CIRCO + CIRR →		CIRCO				CIRR							
Arch	Metric	k=5	k=10	k=25	k=50	k=1	Recall@k	k=5	k=10	k=1	k=2	RecallSubset@k	k=3
ViT-B/32	SEARLE	9.35	9.94	11.13	11.84	24.00	53.42	66.82	54.89	76.60	88.19		
	CIReVL	14.94	15.42	17.00	17.82	23.94	52.51	66.00	60.17	80.05	90.19		
	OSrCIR	18.04	19.17	20.94	21.85	25.42	54.54	68.19	62.31	80.86	91.13		
	OSrCIR*	18.49	19.71	21.56	22.33	25.91	55.02	68.73	62.78	81.25	91.48		
	TaCIR	21.02	22.35	24.71	25.60	28.93	58.19	71.12	65.27	83.74	93.58		
ViT-L/14	Pic2Word	8.72	9.51	10.64	11.29	23.90	51.70	65.30	-	-	-		
	SEARLE	11.68	12.73	14.33	15.12	24.24	52.48	66.29	53.76	75.01	88.19		
	LinCIR	12.59	13.58	15.00	15.85	25.04	53.25	66.68	57.11	77.37	88.89		
	+CIG	12.84	13.77	15.25	16.12	26.17	54.94	67.64	58.00	77.86	89.34		
	Context-I2W	13.04	14.62	16.14	17.16	25.60	55.10	68.50	-	-	-		
	PrediCIR	15.70	17.10	18.60	19.30	27.20	57.00	70.20	-	-	-		
	CIReVL	18.57	19.01	20.89	21.80	24.55	52.31	64.92	59.54	79.88	89.69		
	OSrCIR	23.87	25.33	27.84	28.97	29.45	57.68	69.86	62.12	81.92	91.10		
ViT-G/14	OSrCIR*	24.36	25.98	28.62	29.81	29.93	58.22	70.41	62.66	82.43	91.47		
	TaCIR	27.38	28.96	31.62	32.71	33.04	61.38	73.72	65.61	85.50	93.85		
	LinCIR	19.71	21.01	23.13	24.18	35.25	64.72	76.05	63.35	82.22	91.98		
	+CIG	20.64	21.90	24.04	25.20	36.05	66.31	76.96	64.94	83.18	91.93		
	+IP-CIR	25.70	26.64	29.09	30.13	35.37	64.70	76.15	62.58	81.74	91.35		
ViT-G/14	PrediCIR	23.70	24.60	25.40	26.00	37.00	66.10	77.90	-	-	-		
	CIReVL	26.77	27.59	29.96	31.03	34.65	64.29	75.06	67.95	84.87	93.21		
	OSrCIR	30.47	31.14	35.03	36.59	37.26	67.25	77.33	69.22	85.28	93.55		
	OSrCIR*	31.05	31.82	35.88	37.41	37.82	67.91	78.02	69.79	85.71	93.78		
	TaCIR	34.28	35.22	39.41	40.68	40.72	71.06	80.95	72.06	87.89	95.04		

294 OpenCLIP Ilharco et al. for ViT-G/14. Performance metrics are averaged across three trials to ensure
 295 reliability. For tools, we use Google’s Programmable Search API as the default search backend and
 296 OpenAI’s `gpt-image-1` as the default image editor.

298 4.1 QUANTITATIVE AND QUALITATIVE RESULTS

300 Our main quantitative experimental results are presented in Tables 1, 2, and 3, while Figures 2 and
 301 3 show qualitative comparisons between our model and the baseline OSrCIR.

302 In Table 1, we show the comparison results for the CIRCO and CIRR datasets, which evaluate our
 303 model’s capability in foreground and background differentiation as well as fine-grained image editing
 304 through object and scene manipulation tasks. Performances are evaluated on the hidden test sets
 305 of CIRCO and CIRR, accessible via the submission servers Baldrati et al. (2023); Saito et al. (2023).
 306 For all different CLIP-based ViT variants for retrieval, our approach significantly outperforms existing
 307 methods, including both training-free and textual inversion. For instance, on the default ViT-L/14
 308 in CIRCO, which contains clean annotations of manipulation text with multiple target images, our
 309 method achieves a mAP5 of 27.38%, notably surpassing the 24.36% obtained by the best training-
 310 free baseline (OSrCIR*) and far above the 12.49% achieved by the SoTA textual inversion method
 311 (PrediCIR). The average performance rises to 30.17% versus 27.19% for OSrCIR*. Furthermore, in
 312 CIRR, where the manipulation text is less explicit and noisier, our method shows a 3.19% average
 313 improvement over OSrCIR* on ViT-L/14, with similar gains across other backbones and consistent
 314 improvements on the subset metric, indicating that optional tool consultation with a visual proxy
 315 enables the model to resolve implicit intent that is difficult for text-only target descriptions.

316 Qualitatively, as illustrated in Figure 2, TaCIR generates visual proxies that explicitly include
 317 intention-relevant attributes and context, so the retriever matches targets sharing those cues (e.g.,
 318 rendering a brown dog with a chain-link fence) guides the match to that background. Compared
 319 with OSrCIR, our TaCIR retain the “fence” (Row 1), the “vegetation” (Row 2), and the “puppy
 320 cupped in hands” interaction (Row 3), preserving fine-grained details crucial for alignment.

321 We further evaluate our model’s capability on object and attribute composition using the GeneCIS
 322 dataset, with the results detailed in Table 2. Unlike CIRCO and CIRR, GeneCIS uses single-word
 323 manipulation texts with varied interpretations depending on the task, such as focusing on or changing
 324 a specific attribute or object. Consequently, user intent is often abstract and ambiguous, requiring

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Results on **GeneCIS** averaged over “Focus Attribute”, “Change Attribute”, “Focus Object”, and “Change Object”. Full table in Appendix A.5.

Backbones	Methods	R1	R2	R3
ViT-B/32	SEARLE	14.4	25.3	35.4
	CIReVL	15.8	26.8	36.8
	OSrCIR	17.4	29.1	39.0
	OSrCIR*	17.9	29.6	39.6
ViT-L/14	TaCIR	19.9	32.0	42.2
	SEARLE	14.4	25.3	34.9
	LinCIR	12.2	22.8	32.4
	+CIG	13.6	24.4	33.6
	PrediCIR	16.6	26.7	35.8
ViT-G/14	CIReVL	15.8	27.1	36.3
	OSrCIR	17.9	29.0	38.7
	OSrCIR*	18.3	29.5	39.3
	TaCIR	20.5	32.0	42.0
	LinCIR	13.7	24.7	33.6
ViT-G/14	PrediCIR	17.7	28.9	38.6
	CIReVL	17.4	29.8	39.5
	OSrCIR	19.6	32.2	42.5
	OSrCIR*	20.1	32.8	43.2
	TaCIR	22.1	35.4	45.9

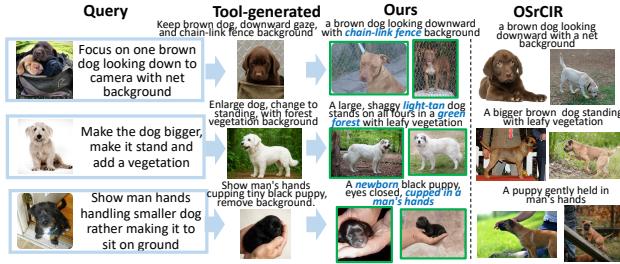


Figure 2: Object manipulation on CIRR.

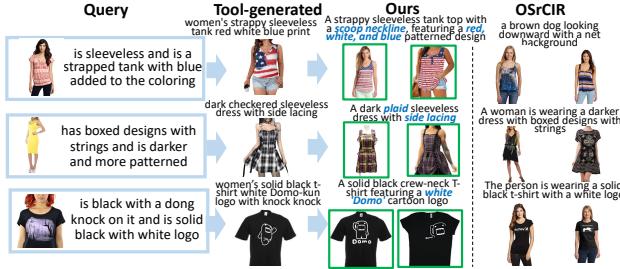


Figure 3: Attribute manipulation on FashionIQ.

models to interpret intent precisely based on the reference image. For a fair comparison, we adopt the same output format as recent training-free work: for the “Focus” tasks, the MLLM is directed to retain the specified attribute or object, while for the “Change” tasks, it replaces the corresponding element. For the ViT-L/14 retrieval backbone, our method achieves an average R1 of 20.5%, improving over the best training-free baseline (OSrCIR*) by 2.20% and exceeding the leading textual inversion method by 5.13%. Similar improvements are observed for the other backbones: with ViT-B/32, the average R1 rises to 19.9% compared to 17.9% for OSrCIR*, and with ViT-G/14 it reaches 22.1% versus 20.1% for OSrCIR*. These results underscore the effectiveness of our tool-aware refinement in accurately resolving underspecified instructions on GeneCIS.

Lastly, Table 3 presents our model’s performance on attribute manipulation tasks using the FashionIQ validation set, which requires accurate localization of specific fashion attributes (*e.g.*, style, color, pattern). The results show that TaCIR surpasses existing ZS-CIR models with the ViT-B/32 and ViT-L/14 backbones. For instance, on ViT-L/14, our method improves the average performance to 48.53%, exceeding the best training-free baseline OSrCIR* by 4.19% and the leading textual inversion method PrediCIR by 7.34%.

On ViT-G/14, our method achieves a notable 5.40% improvement over the best training-free baseline OSrCIR*, yet still trails the strongest textual inversion approach PrediCIR, whose training procedure is closely aligned with the CLIP retriever. This discrepancy likely reflects the advantage of retrieval-aligned supervision in the fashion domain, where CLIP’s domain-specific semantics can be limited and fine-grained attribute manipulation intentions are harder to understand without such alignment. By contrast, in settings like CIRCO, where descriptions are more readily mapped into CLIP space, our training-free design brings larger gains. Thus, a promising future direction is to further enhance the alignment between the reasoning module and the retriever.

Qualitative comparison results of our method and the baseline method OSrCIR are presented in Figure 3. TaCIR, accurately localizes and edits attribute-relevant details of “a red–white–blue” strappy tank (Row 1), a “dark plaid sleeveless dress” with “side lacing” (Row 2), and a solid black “crew-neck tee” with a white “Domo” logo (Row 3).

4.2 ABLATION STUDY AND PERFORMANCE ANALYSIS

Similar to Karthik et al. (2024); Yang et al. (2024); Gu et al. (2024), we examine the contributions of core components in TaCIR on CIRCO and Fashion-IQ (Table 4). (1) **Models ‘2-6’ assess the significance of key modules in TaCIR**. Removing all tool invocations (model ‘2’) yields a 3.16% average drop compared to the full model (model ‘1’), underscoring the centrality of external augmentation. Disabling only web search (model ‘3’) gives a 1.67% drop, highlighting the value of

378 Table 3: **Comparison on FashionIQ Validation Data.** TaCIR is able to significantly outperform
 379 adaptive methods across all sub-benchmarks, with its inherent modularity allowing for further sim-
 380 ple scaling to achieve additional large gains. Grey lines represent the training-free ZS-CIR methods.
 381 OSrCIR* uses the GPT4.1. **Bold** and ‘_’ denotes the best and second-best result, respectively.

Fashion-IQ →		Shirt			Dress		Toptee		Average	
Backbone	Method	R@10	R@50	R@10	R@50	R@10	R@50	R@10	R@50	
ViT-B/32	SEARLE	24.44	41.61	18.54	39.51	25.70	46.46	22.89	42.53	
	CIReVL	28.36	47.84	25.29	46.36	31.21	53.85	28.29	49.35	
	OSrCIR	31.16	51.13	29.35	50.37	36.51	58.71	32.34	53.40	
	OSrCIR*	31.62	51.68	29.81	50.92	37.02	59.19	32.82	53.93	
	TaCIR	34.92	55.22	33.14	54.12	40.37	62.42	36.14	57.25	
ViT-L/14	Pic2Word	26.20	43.60	20.00	40.20	27.90	47.40	24.70	43.70	
	SEARLE	26.89	45.58	20.48	43.13	29.32	49.97	25.56	46.23	
	LinCIR	29.10	46.81	20.92	42.44	28.81	50.18	26.28	46.49	
	+ CIG	28.66	47.20	21.27	43.98	29.83	50.28	26.59	47.15	
	Context-I2W	29.70	48.60	23.10	45.30	30.60	52.90	27.80	48.90	
	PrediCIR	31.80	52.00	25.40	49.50	33.10	55.40	30.10	52.30	
	CIReVL	29.49	47.40	24.79	44.76	31.36	53.65	28.55	48.57	
	OSrCIR	33.17	52.03	29.70	51.81	36.92	59.27	33.26	54.37	
	OSrCIR*	33.71	52.61	30.12	52.36	37.41	59.85	33.75	54.94	
	TaCIR	37.25	56.98	34.06	56.02	42.50	64.39	37.94	59.13	
ViT-G/14	LinCIR	46.76	65.11	38.08	60.88	50.48	71.09	45.11	65.69	
	+ CIG	47.35	66.68	39.71	60.93	50.69	71.39	45.92	66.34	
	+ IP-CIR	48.04	66.68	39.02	61.03	50.18	71.14	45.74	66.28	
	PrediCIR	48.20	67.40	39.70	62.40	53.70	73.60	47.20	67.80	
	CIReVL	33.71	51.42	27.07	49.53	35.80	56.14	32.19	52.36	
	OSrCIR	38.65	54.71	33.02	54.78	41.04	61.83	37.57	57.11	
	OSrCIR*	39.21	55.39	33.58	55.36	41.59	62.49	38.13	57.75	
	TaCIR	44.18	60.41	39.62	61.76	46.77	67.28	43.52	63.15	

404 extra-model knowledge for implicit intent. Removing image editing (model ‘4’) forces text-only
 405 retrieval and gives a 1.46% drop, confirming the utility of the visual proxy. Skipping refinement
 406 (Model 5) or replacing the image-to-image term with the text prompt at retrieval (model ‘6’) re-
 407 sults in 1.17% and 1.36% drops, respectively, supporting both structured intent resolution and direct
 408 image-to-image matching. **(2) In models ‘7-8’, we evaluate alternative solutions for key mod-
 409 ules.** Replacing the default image generator (*i.e.*, gpt-image-1) with SDXL-Turbo Sauer et al. (2024)
 410 (model ‘7’), a highly efficient diffusion model requiring only \sim 100ms per generation, causes only a
 411 minor 0.82% performance dip. This shows that TaCIR can be configured for high-speed inference
 412 with a minimal accuracy trade-off. An alternative retrieval strategy using combination of visual and
 413 textual features (model ‘8’) instead of their independent scores results in a 1.39% performance drop,
 414 validating our design of using the synthesized image as an holistic query. **(3) In models ‘9-13’, we**
 415 **analyze the impact of the choice of MLLM.** Open-source models, such as Qwen2.5-VL (model
 416 ‘10’) and LLaVA (model ‘9’), achieve competitive results, but there remains an average performance
 417 gap of 1.46% and 0.97% compared to our full model with GPT-4.1 (model ‘1’). Notably, other API-
 418 based models like GPT-4o (model ‘12’) perform comparably well, with only a 0.83% decline. The
 419 slightly larger drop for o3 (model ‘13’) is attributed to its lower frequency of tool invocation for
 420 reasoning. Please refer to the Appendix A.7 for more ablation studies.

4.3 ANALYSIS

424 **Analysis of iterative tool-Use.** While our model invokes tools only once by default (*i.e.*, $K = 1$ in
 425 Sec. 3.3), we can allow multiple iterations over our tool selection and target description refinement
 426 pipeline. In Figure 4, we study the effect of increasing the number of iterations K . As the figure
 427 shows, performance increases *monotonically* w.r.t. the iterations, with diminishing returns. The
 428 largest jump is from $K = 1 \rightarrow 2$, while latency rises steadily. We therefore adopt $K = 2$ (one
 429 select&invoke followed by one refine) as the default, balancing performance and efficiency.

430 **Analysis of the Impact of Tool Calls.** Figure 5 isolates the impact of tool calls: relative to not using
 431 any tool (*No Tool*), allowing for a maximum of 1 select and invoke call (*Max 1 Call*) with early exit
 432 yields an average absolute gain of +3.3%. Always using tools, for any sample (*Always Use Tool*)

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
Table 4: Ablation study on CIRCO and FashionIQ.
449

Methods	CIRCO			Fashion-IQ	
	k=5	k=10	k=25	k=10	k=50
1. Full model (GPT-4.1)	27.38	28.96	31.62	37.94	59.13
Significance of key modules of TaCIR					
2. w/o tool invocation	25.06	26.13	29.03	33.86	55.17
3. w/o searching	26.47	27.92	30.39	35.39	56.49
4. w/o editing	25.74	27.11	29.68	37.12	58.10
5. w/o target refinement	26.24	27.73	30.18	37.01	58.03
6. w/o tool-generated image	26.83	28.29	30.86	35.43	56.79
Alternative solutions for key modules					
7. SDXL Turbo	26.97	28.38	30.97	36.61	58.02
8. feature combination	26.23	27.68	30.11	36.13	57.95
Impact of different MLLMs					
9. LLaVA	26.09	27.37	30.37	36.35	57.54
10. Qwen2.5-VL	26.41	27.99	30.65	36.97	58.16
11. Gemini-2.5	26.25	27.83	30.49	36.81	58.08
12. gpt-4o	26.55	28.13	30.79	37.11	58.30
13. o3	26.08	27.66	30.32	36.64	57.83

achieves 4.16% average improvement confirming that using tools improve accuracy. Nevertheless, a selective single-call policy captures most of the benefit at modest cost.

Analysis of Failure Cases. To gain insights into failure cases of TaCIR, we analyzed 300 FashionIQ validation failures (ViT-G/14). As shown in Figure 6, we identify two main issues: (1) *Missing discriminative reference attributes* (67%). Prompts or tool text omit key cues from the reference (e.g., color, silhouette, style), so the retriever prefers common but wrong variants. For example, dropping the *gray* tone and pocket type returns a red plaid shirt; adding “*gray* plaid flannel, *two front chest flap pockets*” fixes it (Row 1). (2) *Silhouette under-specification* (26%). Edits like “*more lace*” ignore shape constraints, resulting discouraged results. Making shape explicit(e.g., “*bodycon* with *short sleeves* and a *smooth hem*”) keeps the original silhouette and improves retrieval (Row 2).

Efficiency Analysis. Our approach improves over the best training-free baseline OSrCIR* by 2.20% to 4.16% across four CIR tasks while remaining interactive at ~ 0.95 s per query, which contributes to our lightweight caching strategy. This latency is $\sim 1.6 \times$ OSrCIR (~ 0.6 s) yet slightly below CIReVL (~ 1.0 s), and is achieved without task-specific training. Notably, even a one-iteration setting outperforms OSrCIR* by $\sim 2.41\%$ on average at comparable cost (i.e., ~ 0.75 s). Compared to textual-inversion methods, our performance surpasses them without training, but inference remains $\sim 48 \times$ slower. As API calls account for 95% of inference time, faster APIs or improved tool selection could further reduce latency. For further details, please refer to our Appendix A.6.

5 CONCLUSION

In this paper, we present TaCIR, a tool-augmented, reflective reasoning agent for training-free ZSCIR that jointly processes visual and textual inputs and consults external tools to resolve implicit manipulation intent. By acquiring external knowledge when needed and instantiating edits as a synthesized visual proxy, our approach reduces information loss common to text-only two-stage pipelines and aligns better with image–image retrieval. Across four diverse CIR benchmarks, TaCIR generalizes well and consistently outperforms prior training-free and textual-inversion methods, while maintaining competitive inference latency, with a two-iteration design further provides a favorable accuracy–efficiency trade-off. These findings show how an agentic system can provide advantages in compositional image retrieval. The pipeline is modular and future works may further improve the latter by using newer MLLMs, VLMs, and expanding the set of tools.

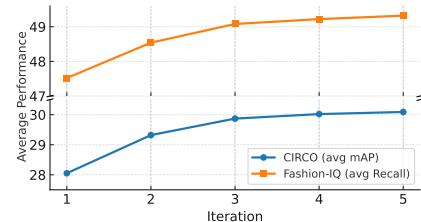


Figure 4: Improvement with iterations.

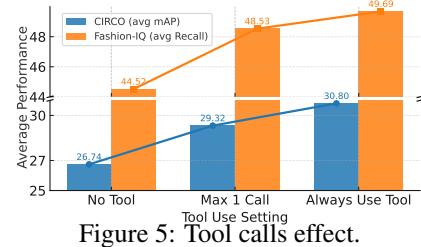


Figure 5: Tool calls effect.

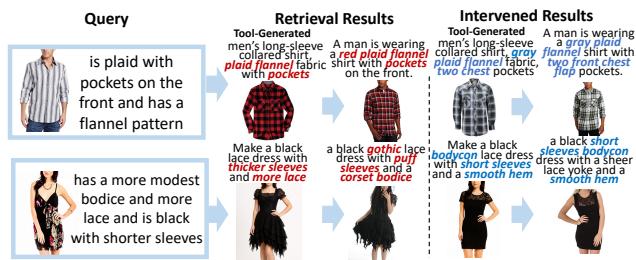


Figure 6: Visualization of common failure cases in the FashionIQ (top-2 retrieved results).

486 REPRODUCIBILITY STATEMENT
487

488 We took several steps to ensure our results can be independently reproduced. The full
489 method—selection, tool invocation, refinement, and fused retrieval, which is specified in Sec. 3, with
490 algorithmic procedures and prompt templates provided verbatim in the appendix (tool pool, cache
491 policy, and pseudocode for search/edit backends). Implementation details covering model/backbone
492 choices (CLIP variants), tool backends (Google Search API, gpt-image-1), decoding parameters,
493 seeds, and hardware are reported in Sec. 4 and expanded in the appendix (including ablation pro-
494 tocols and sensitivity analyses). Dataset usage follows official benchmarks, with splits, preprocess-
495 ing, and evaluation metrics summarized in Sec. 4 and detailed in the appendix. An anonymized
496 repository in the supplementary materials includes environment specifications, configuration files,
497 inference/evaluation scripts, and a minimal working example with sample data; cached artifacts
498 and provenance metadata are provided to stabilize runs involving external tools. Large language
499 models were used both as a module of our method and to aid writing; roles and configurations are
500 documented in Sec. 4 and the appendix.

501 REFERENCES
502

503 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
504 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
505 report. *arXiv preprint arXiv:2303.08774*, 2023.

506

507 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
508 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
509 Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L Menick,
510 Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikołaj Bińkowski,
511 Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
512 language model for few-shot learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
513 K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp.
514 23716–23736, 2022.

515 Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Effective conditioned
516 and composed image retrieval combining clip-based features. In *Proceedings of the IEEE/CVF*
517 *Conference on Computer Vision and Pattern Recognition*, pp. 21466–21474, June 2022.

518

519 Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed
520 image retrieval with textual inversion. *arXiv:2303.15247*, 2023.

521

522 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
523 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
524 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
525 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
526 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
527 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
528 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
529 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
530 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

531

532 Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi, Peng Li, Maosong Sun, and Yang Liu. Position-
533 enhanced visual instruction tuning for multimodal large language models, 2023. URL <https://arxiv.org/abs/2308.13437>.

534

535 Yanbei Chen, Shaogang Gong, and Loris Bazzani. Image search with text feedback by visiolinguistic
536 attention learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
537 *Recognition*, pp. 3001–3011, 2020.

538

539 Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval: Ideas, influences, and
trends of the new age. *ACM Computing Surveys*, 40(2):1–60, 2008.

540 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 541 hierarchical image database. In *Computer Vision and Pattern Recognition*, pp. 248–255, 2009.

542

543 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 544 *arXiv preprint arXiv:2010.11929*, 2020.

545

546 Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-
 547 Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a VLM-driven agent for efficient
 548 tool usage. URL <http://arxiv.org/abs/2412.15606>.

549

550 Geonmo Gu, Sanghyuk Chun, Wonjae Kim, HeeJae Jun, Yoohoon Kang, and Sangdoo
 551 Yun. Compodiff: Versatile composed image retrieval with latent diffusion. *arXiv preprint*
 552 *arXiv:2303.11916*, 2023.

553

554 Geonmo Gu, Sanghyuk Chun, Wonjae Kim, , Yoohoon Kang, and Sangdoo Yun. Language-only
 555 efficient training of zero-shot composed image retrieval. In *Conference on Computer Vision and*
 556 *Pattern Recognition*, 2024.

557

558 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 559 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 560 770–778, 2016.

561

562 Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David A. Ross, Cordelia Schmid,
 563 and Alireza Fathi. AVIS: Autonomous visual information seeking with large language model
 564 agent. URL <http://arxiv.org/abs/2306.08129>.

565

566 Thomas Hummel, Shyamgopal Karthik, Mariana-Iuliana Georgescu, and Zeynep Akata. Egocvr:
 567 An egocentric benchmark for fine-grained composed video retrieval. *arXiv preprint*
 568 *arXiv:2407.16658*, 2024.

569

570 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 571 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 572 Farhadi, and Ludwig Schmidt. Openclip. URL <https://doi.org/10.5281/zenodo.5143773>.

571

572 Kenan Jiang, Xuehai He, Ruize Xu, and Xin Wang. ComCLIP: Training-free compositional im-
 573 age and text matching. In *Proceedings of the 2024 Conference of the North American Chapter*
 574 *of the Association for Computational Linguistics: Human Language Technologies (Volume 1:*
575 Long Papers), pp. 6639–6659, Mexico City, Mexico, June 2024. Association for Computational
 576 Linguistics. doi: 10.18653/v1/2024.naacl-long.370. URL <https://aclanthology.org/2024.naacl-long.370>.

577

578 Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. Vision-by-language
 579 for training-free compositional image retrieval. In *ICLR*, 2024.

580

581 Jihyung Kil, Zheda Mai, Justin Lee, Arpita Chowdhury, Zihe Wang, Kerrie Cheng, Lemeng Wang,
 582 Ye Liu, and Wei-Lun Harry Chao. Mllm-compbench: A comparative reasoning benchmark for
 583 multimodal llms. *Advances in Neural Information Processing Systems*, 37:28798–28827, 2024.

584

585 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 586 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
 587 multimodal agents on realistic visual web tasks. URL <http://arxiv.org/abs/2401.13649>.

588

589 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 590 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
 591 Visual genome: Connecting language and vision using crowdsourced dense image annotations.
592 International Journal of Computer Vision, pp. 32–73, 2017. ISSN 0920-5691.

593

594 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 595 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF*
596 Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13299–13308, June 2024a.

594 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image pre-
 595 training for unified vision-language understanding and generation. In *Proceedings of the 39th*
 596 *International Conference on Machine Learning*, pp. 12888–12900, 2022.

597 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 598 pre-training with frozen image encoders and large language models, 2023.

600 Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinran Zheng, Hui Wang, Hai-
 601 Tao Zheng, Philip S. Yu, Fei Huang, and Jingren Zhou. Benchmarking multimodal retrieval
 602 augmented generation with dynamic VQA dataset and self-adaptive planning agent. URL <http://arxiv.org/abs/2411.02937>.

604 Yongqi Li, Wenjie Wang, Leigang Qu, Liqiang Nie, Wenjie Li, and Tat-Seng Chua. Generative
 605 cross-modal retrieval: Memorizing images in multimodal language models for retrieval and be-
 606 yond. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 607 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 608 pp. 11851–11861, Bangkok, Thailand, August 2024b. Association for Computational Linguis-
 609 tics. doi: 10.18653/v1/2024.acl-long.639. URL <https://aclanthology.org/2024.acl-long.639>.

611 You Li, Fan Ma, and Yi Yang. Imagine and seek: Improving composed image retrieval with an
 612 imagined proxy. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 613 3984–3993, 2025.

615 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 616 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 617 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *European Conference on Computer*
 618 *Vision*, pp. 740–755, 2014a.

619 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 620 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014b.

622 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 623 A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in*
 624 *Neural Information Processing Systems*, volume 36, pp. 34892–34916. Curran Associates, Inc.,
 625 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf.

627 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 628 *in neural information processing systems*, 36, 2024.

629 Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image retrieval on
 630 real-life images with pre-trained vision-and-language models. In *Proceedings of the IEEE/CVF*
 631 *International Conference on Computer Vision*, pp. 2125–2134, October 2021.

633 Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna.
 634 Crepe: Can vision-language foundation models reason compositionally? In *Proceedings of the*
 635 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10910–10921, 2023.

636 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
 637 thought prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference*
 638 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 14420–14431, June 2024.

639 OpenAI. Chatgpt. GitHub Repository, 2022. URL <https://github.com/openai/chatgpt>.

642 OpenAI. Gpt-4v. <https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4>, 2024a. Accessed: 2024-11-10.

644 OpenAI. Gpt-4o. <https://platform.openai.com/docs/models/gpt-4o>, 2024b. Ac-
 645 cessed: 2024-11-10.

647 Khoi Pham, Kushal Kafle, Zhe Lin, Zhihong Ding, Scott Cohen, Quan Tran, and Abhinav Shrivastava.
 648 Learning to predict visual attributes in the wild. In *CVPR*, 2021.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 649 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 650 Sutskever. Learning transferable visual models from natural language supervision. In *Proceed-
 651 ings of the International Conference on Machine Learning*, pp. 8748–8763, 2021.

652

653 Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and Tomas
 654 Pfister. Pic2word: Mapping pictures to words for zero-shot composed image retrieval. In *Pro-
 655 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19305–
 656 19314, 2023.

657 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 658 tillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.

659

660 Jiangming Shi, Yachao Zhang, Xiangbo Yin, Yuan Xie, Zhizhong Zhang, Jianping Fan, Zhongchao
 661 Shi, and Yanyun Qu. Dual pseudo-labels interactive self-training for semi-supervised visible-
 662 infrared person re-identification. In *Proceedings of the IEEE/CVF International Conference on
 663 Computer Vision (ICCV)*, pp. 11218–11228, October 2023.

664 Jiangming Shi, Xiangbo Yin, Yeyun Chen, Yachao Zhang, Zhizhong Zhang, Yuan Xie, and Yanyun
 665 Qu. Multi-memory matching for unsupervised visible-infrared person re-identification. In *Com-
 666 puter Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4,
 667 2024, Proceedings, Part XVIII*, volume 15076, pp. 456–474, 2024.

668

669 Haoyu Song, Li Dong, Wei-Nan Zhang, Ting Liu, and Furu Wei. Clip models are few-shot learners:
 670 Empirical studies on vqa and visual entailment, 2022.

671

672 Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
 673 reasoning about natural language grounded in photographs. *arXiv preprint arXiv:1811.00491*,
 674 2018.

675

676 Siqi Sun, Yen-Chun Chen, Linjie Li, Shuohang Wang, Yuwei Fang, and Jingjing Liu. Lightning-
 677 DOT: Pre-training visual-semantic embeddings for real-time image-text retrieval. In *Proceed-
 678 ings of the 2021 Conference of the North American Chapter of the Association for Compu-
 679 tational Linguistics: Human Language Technologies*, pp. 982–997, Online, June 2021. Asso-
 680 ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.77. URL <https://aclanthology.org/2021.naacl-main.77>.

681

682 Yuanmin Tang, Jing Yu, Keke Gai, Jiamin Zhuang, Gang Xiong, Yue Hu, and Qi Wu. Context-i2w:
 683 Mapping images to context-dependent words for accurate zero-shot composed image retrieval. In
 684 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5180–5188, 2024.

685

686 Yuanmin Tang, Jing Yu, Keke Gai, Jiamin Zhuang, Gang Xiong, Gaopeng Gou, and Qi Wu. Missing
 687 target-relevant information prediction with world model for accurate zero-shot composed image
 688 retrieval, 2025a. URL <https://arxiv.org/abs/2503.17109>.

689

690 Yuanmin Tang, Jue Zhang, Xiaoting Qin, Jing Yu, Gaopeng Gou, Gang Xiong, Qingwei Lin,
 691 Saravan Rajmohan, Dongmei Zhang, and Qi Wu. Reason-before-retrieve: One-stage reflective
 692 chain-of-thoughts for training-free zero-shot composed image retrieval. In *Proceedings of the
 693 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14400–14410,
 694 June 2025b.

695

696 Sagar Vaze, Nicolas Carion, and Ishan Misra. Genecis: A benchmark for general conditional image
 697 similarity. In *CVPR*, 2023.

698

699 Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing text
 700 and image for image retrieval - an empirical odyssey. In *Proceedings of the IEEE/CVF Conference
 701 on Computer Vision and Pattern Recognition*, pp. 6439–6448, 2019.

702

703 Lan Wang, Wei Ao, Vishnu Naresh Boddeti, and Ser-Nam Lim. Generative zero-shot composed
 704 image retrieval. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 705 29690–29700, 2025.

702 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 703 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 704 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

705 Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Roge-
 706 rio Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback.
 707 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 708 11307–11317, 2021.

710 Zhenyu Yang, Dizhan Xue, Shengsheng Qian, Weiming Dong, and Changsheng Xu. Ldm-
 711 based divergent reasoning and ensemble for zero-shot composed image retrieval. In *Proceedings*
 712 *of the 47th International ACM SIGIR Conference on Research and Development in Information*
 713 *Retrieval*, pp. 80–90, 2024.

714 Tao Zhang, Ziqi Zhang, Zongyang Ma, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li,
 715 Junfu Pu, Yuxuan Zhao, Zehua Xie, Jin Ma, Ying Shan, and Weiming Hu. mR\$^2\$AG: Mul-
 716 timodal retrieval-reflection-augmented generation for knowledge-based VQA, a. URL <http://arxiv.org/abs/2411.15041>.

717 Zhixin Zhang, Yiyuan Zhang, Xiaohan Ding, and Xiangyu Yue. Vision search assistant: Empower
 718 vision-language models as multimodal search engines, b. URL <http://arxiv.org/abs/2410.21220>.

719 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4v(ision) is a generalist web
 720 agent, if grounded. URL <http://arxiv.org/abs/2401.01614>.

721 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 722 vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 723 *Pattern Recognition*, pp. 16816–16825, 2022.

724 Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang, Liangjie
 725 Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural
 726 network in sponsored search. In *Proceedings of the Web Conference*, pp. 2848–2857, 2021.

731 732 A APPENDIX

733 A.1 TOOL POOL

734 We expose a compact tool pool to the *tool-augmented CoT prompt* so that the MLLM can select
 735 external assistance only when beneficial. The pool comprises (i) a **Search API** that returns a set of
 736 context-preserving visual exemplars (online images with titles) for clarifying specialized terminol-
 737 ogy or comparative modifiers, and (ii) an **Image Editing** operator that synthesizes a *tool-generated*
 738 *image* as a concrete visual proxy when the intended transformation is too intricate to specify reliably
 739 in text. A **No-Tool** option (none) is retained for simple, unambiguous edits, preserving efficiency
 740 and avoiding unnecessary calls.

741 A.2 DETAILS OF TOOL SELECTION PROMPT

742 Given a reference image I_r and manipulation text T_m , zero-shot CIR (ZS-CIR) requires disam-
 743 biguating user intent that may be ambiguous, comparative, or domain-specific and beyond the frozen
 744 knowledge of the MLLM. To address this, we design a *tool-augmented chain-of-thought (CoT)*
 745 *prompt* p_{tool} that guides the MLLM to: (i) generate an initial target image description $T_t^{(0)}$, (ii)
 746 decide whether an external tool is needed, and (iii) if so, emit a minimal, executable instruction θ_a
 747 for tool invocation. The tool choice variable $a \in \{\text{search, edit, none}\}$ determines whether to
 748 call a Search API, invoke an image editing tool, or proceed without tool use, respectively.

749 While conventional MLLM-based, training-free ZS-CIR methods directly generate a target image
 750 description from the reference image and manipulation text, they are constrained by the frozen
 751 knowledge of the MLLM and often struggle with implicit intent or domain-specific details. To
 752 address this, we propose an adaptive framework that allows the MLLM to *optionally* consult external

756 tools to enhance reasoning. As shown in Figure 1, the MLLM first processes the reference image I_r
 757 and manipulation text T_m and decides whether to invoke an external tool to obtain a **tool-generated**
 758 **image** that serves as a visual proxy. The final target description T_t is then reasoned from the original
 759 inputs together with this proxy.

760 Formally, given an MLLM Ψ_M , the *tool-augmented CoT prompt* jointly emits a preliminary target
 761 description and a tool decision:

$$763 \quad (T_t^{(0)}, a, \theta_a) = \Psi_M(p_{\text{tool}} \circ I_r \circ T_m), \quad a \in \{\text{edit, search, none}\}, \quad (6)$$

764 where p_{tool} is a chain-of-thought prompt and θ_a denotes the minimal *tool instruction* (e.g., a search
 765 query or an edit instruction) to be executed if $a \neq \text{none}$. If $a = \text{none}$, no external guidance is
 766 required. We directly use the initial target image description for retrieval as:

$$767 \quad T_t = T_t^{(0)} = \Psi_M(p_{\text{tool}} \circ I_r \circ T_m). \quad (7)$$

769 Otherwise, we invoke the chosen tool $\Phi_{\text{tool}}^{(a)}$ to produce a tool-generated image I_{tool} as follows:

$$771 \quad I_{\text{tool}} = \Phi_{\text{tool}}^{(a)}(I_r, T_m; \theta_a). \quad (8)$$

772 This visual proxy supplies extra-model knowledge and concrete visual evidence, serving as additional
 773 context for Ψ_M . We then refine the target description with a concise refinement prompt p_{ref} :

$$775 \quad T_t = T_t^{(1)} = \Psi_M(p_{\text{ref}} \circ I_r \circ T_m \circ I_{\text{tool}}). \quad (9)$$

776 In practice, prompts follow a task-agnostic structure: I_r is introduced as “Original Image
 777 Context”, T_m as “Manipulation Text”, and the tool-generated image I_{tool} as “Tool
 778 Visual Proxy”. This design foregrounds the advantage of tool use: I_{tool} injects extra-model
 779 knowledge and provides a concrete visual anchor that disambiguates implicit intent and encodes
 780 domain-specific constraints, thereby improving the faithfulness of T_t and its alignment with re-
 781 trieval. When Ψ_M predicts $a \neq \text{none}$, it *also supplies the executable tool instruction* θ_a , which
 782 directs the generation of I_{tool} prior to the final refinement step.

783 **Tool Selection.** The tool-selected reflective chain-of-thought (CoT) prompt p_{tool} unifies intent un-
 784 derstanding and tool selection in one stage. Given a reference image I_r and manipulation text T_m ,
 785 the MLLM first summarizes intent-relevant attributes from I_r , then reasons through the manipula-
 786 tion described in T_m , articulating how each modification is interpreted and prioritized.

787 Critically, the model then reflects on whether ambiguity, implicit intent, or domain-specific gaps
 788 remain unresolved. If further evidence is needed, it selects a tool ($a \in \{\text{search, edit, none}\}$),
 789 justifying its choice in context. For $a \neq \text{none}$, the model emits a minimal, executable instruc-
 790 tion, either a context-preserving search query or an image edit script—explicitly formatted for the
 791 invocation module.

792 If no tool is required, the initial target description $T_t^{(0)}$ is used for retrieval; otherwise, the selected
 793 tool and instruction guide the generation of a visual proxy for downstream augmentation. This
 794 approach injects external knowledge or visual evidence only when necessary, improving robustness
 795 to ambiguity and domain specificity, while preserving efficiency and interpretability. Specifically:

797 Prompt Structure and Reasoning Process.

- 799 **Original Image Description:** The MLLM first generates a detailed, intent-relevant sum-
 800 mary of I_r , explicitly capturing all key objects, attributes, colors, styles, and scene ele-
 801 ments while omitting irrelevant background content. This provides the contextual basis for
 802 all subsequent reasoning.
- 803 **Thoughts:** The model then articulates its internal reasoning about the manipulation intent,
 804 detailing how each modification was interpreted and prioritized, which semantic cues in
 805 T_m were most relevant, and how these influenced the generated description.
- 806 **Reflections and Tool Decision:** The MLLM reflects on whether the manipulation can be
 807 adequately addressed using its current knowledge. If ambiguity, specialized terminology,
 808 or complex visual edits are present, it evaluates whether to invoke the *search* tool (for
 809 context-preserving exemplars) or the *edit* tool (for intricate visual transformations). The
 rationale for tool selection is made explicit, and if no tool is needed, $a = \text{none}$ is selected.

810
 811 You are an image description expert. You are provided with an original image and a manipulation text. Note
 812 that manipulation text with multiple intents describes changes from the original image to a target image. Your
 813 goal is to generate a concise, precise, and clear target image description that reflects the manipulation intents
 814 while preserving as much of the original image content as possible.
 815
 816 **## Available Tools:**
 817 - You can use the following tools when encountering ambiguities or limited knowledge:
 818
 819 **### Search API**
 820 - Leverages Google API to provide actual images with titles for visual reference
 821 - Call when you need visual examples or domain-specific clarification
 822 - Input: Query that includes original context + modification
 823 - Output: Actual Google images with titles that match both original style and modification
 824
 825 **### Image Editing Tool**
 826 - Call when transformation is too visually complex for text description
 827 - Input: Reference image and detailed edit instruction
 828 - Output: Edited image preserving original style elements
 829
 830 **## Guidelines on generating the Original Image Description**
 831 - Ensure the original image description is thorough, capturing all visible objects, attributes, and elements.
 832 - The original image description should be as accurate as possible, reflecting the content of the image.
 833
 834 **## Guidelines on generating the Thoughts**
 835 - In your Thoughts, explain your understanding of the manipulation intents and how you formulated the
 836 target image description.
 837 - Provide insight into how you interpreted the manipulation intent in detail in the manipulation text.
 838 - Discuss how the manipulation intent influenced which elements of the original image you focused.
 839
 840 **## Guidelines on generating the Reflections**
 841 - State your interpretation of the manipulation
 842 - Decide if tools needed (Yes/No and why)
 843 - If comparative terms → do you need visual reference?
 844 - If complex visuals → do you need editing tool?
 845
 846 **#### Guidelines on generating Tool Usage**
 847 Clearly specify the tool(s) called, including the rationale behind calling each tool.
 848 - Clearly state your queries in the following format for each tool:
 849 - Searching API query: <search>your query here</search>
 850 - Image editing tool query: <edit>your edit instruction here</edit>
 851 - If no tools are necessary, explicitly state "None".
 852
 853 **## Guidelines on generating Target Image Description**
 854 - The target image description you generate should be complete and can cover various semantic aspects.
 855 - The target image description only contains the target image content and needs to be as simple as possible.
 856 Minimize aesthetic descriptions as much as possible.
 857
 858 **## On the input format:**
 859 ...

853
 854 Figure 7: The complete template of our tool-selection reflective Chain-of-Thought process for
 855 Training-free ZS-CIR.

856
 857
 858

- 859 • **Executable Tool Instruction (θ_a):** When a tool is chosen, the model emits a minimal
 860 instruction: for `search`, this is a context-preserving query string combining the original
 861 item's context with the requested modification (e.g., "formal evening dress darker than
 862 navy"); for `edit`, a concise script describing the required transformation relative to I_r
 863 (e.g., "add bell sleeves; keep color and silhouette unchanged"). The instruction is designed
 for direct use by the tool-invocation module.

864 • **Target Image Description:** Finally, the MLLM produces an initial target description $T_t^{(0)}$
 865 that reflects all manipulation intents from T_m while retaining unedited content from I_r .
 866 The output is required to be concise, explicit, and directly interpretable by a downstream re-
 867 trieval model, with careful handling of comparative expressions and precise attribute terms.
 868
 869

870 **Guidelines for Tool Usage.** The prompt encourages use of the Search API for clarification of am-
 871 biguous, comparative, or domain-specific terms, and use of Image Editing for transformations that
 872 are visually complex or hard to express textually. The `none` option is reserved for simple, unam-
 873 biguous edits. The overall design enables the MLLM to self-assess its limitations, invoke external
 874 tools only when beneficial, and produce precise, retrieval-compatible target descriptions. When no
 875 tool is required, the system reverts to the efficient baseline path, but adaptively injects extra-model
 876 knowledge or visual grounding when needed, thereby ensuring both accuracy and flexibility in ZS-
 877 CIR.
 878
 879

880 A.3 DETAILS OF TOOL INVOCATION PROCESS

881 Given the selection output $(T_t^{(0)}, a, \theta_a)$, the invocation module executes the chosen action and pre-
 882 pares the signal for refinement (Algorithm 1). When $a = \text{search}$, the module issues a context-
 883 preserving query using a *cache-first* policy (Algorithm 2): queries are deterministically hashed;
 884 cache hits return a local visual exemplar and metadata with zero network I/O, while misses fetch the
 885 *top* result, verify integrity, optionally resize, and persist the artifact and index. When $a = \text{edit}$, the
 886 module similarly applies a *cache-first* edit path keyed by a content-instruction hash (Algorithm 3);
 887 cache hits return the edited image immediately, otherwise the API output is decoded, verified, and
 888 stored with provenance. The resulting visual proxy (*e.g.*, search exemplar or edited image) is then
 889 fed back to the MLLM in a refinement prompt p_{ref} to produce the final T_t . By prioritizing cached
 890 artifacts and indexing all successful calls, the module substantially reduces latency and external calls
 891 while preserving the gains of tool-augmented reasoning.
 892

893 **Tool Invocation.** After the tool-selection stage outputs $(T_t^{(0)}, a, \theta_a)$, the invocation module ex-
 894 ecutes the chosen action and prepares the signal for the subsequent refinement round (Algo-
 895 rithm 1). The module first robustly decodes the MLLM payload by stripping wrapper tags (*e.g.*,
 896 `<Response>...</Response>`, fenced code blocks) and parsing JSON fields for *Thoughts*,
 897 *Reflections*, *Tool Usage*, and the *Target Image Description*. It records the first-pass description and
 898 reasoning $(T_t^{(0)}, \mathcal{H}, \mathcal{R})$ for analysis. If no tool is requested ($a = \text{none}$) or the iteration budget K is
 899 reached, the module immediately returns $T_t^{(0)}$ for retrieval.

900 When $a = \text{search}$, the module extracts a context-preserving query θ_a (sanitizing
 901 `<search>...</search>`) and invokes a cache-first visual search (Algorithm 2). Queries are
 902 deterministically hashed; a cache hit returns the local visual exemplar and metadata (title, source,
 903 domain) with *zero* network cost. On a miss, the system issues a single top-result request, downloads
 904 the image, verifies integrity, optionally resizes to a bounded resolution, and persists both the image
 905 and metadata into a structured index. The result is formatted as a compact “Visual Reference” (text
 906 header plus local image path) and fed back to the MLLM in the refinement prompt.
 907

908 When $a = \text{edit}$, the module sanitizes the edit script θ_a (removing `<edit>...</edit>`), veri-
 909 fies the availability of a local source image, and consults an edit cache keyed by a content-instruction
 910 hash (Algorithm 3). A cache hit returns the previously produced edited image. Otherwise, the mod-
 911 ule submits the request to the image-editing API, decodes the base64 response, verifies the image,
 912 and persists it along with provenance (original image, manipulation text, optional ground truth). The
 913 edited image serves as a tool-generated visual proxy and is passed to the MLLM during refinement.
 914

915 For reliability and throughput, both search and edit paths use operation-level locks to prevent du-
 916 plicate requests for the same query or edit instruction (Algorithms 2–3). The invocation interface
 917 returns the refined target description together with lightweight metadata (original/refined descrip-
 918 tions, thoughts, selected tool, and the emitted tool instruction) for inspection. Empirically, the
 919 cache substantially reduces latency and external calls—especially for repeated or semantically sim-
 920 ilar queries—thereby improving efficiency while preserving the quality gains of tool-augmented
 921 reasoning.
 922

918 **Algorithm 1** Tool Invocation for Tool-Augmented ZS-CIR

919
920 **Input:** initial triplet from tool selection $(T_t^{(0)}, a, \theta_a)$, reference image path I_r , manipulation text
921 T_m , optional target path I_{gt} , max iterations K , tools pool Φ_{pool}
922 **Parameters:** search cache \mathcal{C}_{search} , edit cache \mathcal{C}_{edit} , operation locks $\mathcal{L}_{search}, \mathcal{L}_{edit}$
923 **Output:** final target description T_t , thoughts \mathcal{H} , reflections \mathcal{R} , tool usage record
924 \mathcal{U}
925 1: $t \leftarrow 0$; $used \leftarrow \text{False}$; $I_{curr} \leftarrow I_r$
926 2: Initialize $\mathcal{H}, \mathcal{R}, \mathcal{U} \leftarrow \emptyset$; $T_t^{\text{orig}} \leftarrow \emptyset$
927 3: **while** $t \leq K$ **do**
928 4: **if** $t = 0$ **then** // parse first MLLM response (already produced by selection)
929 5: $T_t^{\text{resp}} \leftarrow T_t^{(0)}$; $a^{\text{resp}} \leftarrow a$; $\theta^{\text{resp}} \leftarrow \theta_a$
930 6: **else** // refinement round after tool execution
931 7: $(T_t^{\text{resp}}, a^{\text{resp}}, \theta^{\text{resp}}) \leftarrow \Psi_M(p_{\text{ref}} \circ I_r \circ T_m \circ I_{curr})$
932 8: Extract and store *Thoughts* \mathcal{H}_t , *Reflections* \mathcal{R}_t , *Tool Usage* \mathcal{U}_t from the JSON payload
933 9: **if** $t = 0$ **then** $T_t^{\text{orig}} \leftarrow T_t^{\text{resp}}$; $\mathcal{H} \leftarrow \mathcal{H}_t$; $\mathcal{R} \leftarrow \mathcal{R}_t$
934 10: **if** $used = \text{True}$ **and** $t > 0$ **then return** $T_t^{\text{resp}}, (\mathcal{H} \cup \mathcal{H}_t), (\mathcal{R} \cup \mathcal{R}_t), \mathcal{U}$
935 11: **if** $(a^{\text{resp}} = \text{none}) \text{ or } (t = K)$ **then return** $T_t^{\text{resp}}, \mathcal{H}, \mathcal{R}, \mathcal{U}$ // no tool or budget exhausted
936 12: // execute exactly one tool based on a^{resp} and minimal instruction θ^{resp}
937 13: **if** $a^{\text{resp}} = \text{search}$ **then**
938 14: $I_{\text{ref}} \leftarrow \text{SEARCHINVOKE}(\theta^{\text{resp}}, \Phi_{pool}, \mathcal{C}_{search}, \mathcal{L}_{search})$
939 15: **if** $I_{\text{ref}} \neq \emptyset$ **then**
940 16: $I_{curr} \leftarrow I_{\text{ref}}$; $used \leftarrow \text{True}$; $\mathcal{U} \leftarrow \mathcal{U}_t$
941 17: **end if**
942 18: **else if** $a^{\text{resp}} = \text{edit}$ **then**
943 19: $I_{\text{edit}} \leftarrow \text{EDITINVOKE}(I_{curr}, \theta^{\text{resp}}, \Phi_{pool}, \mathcal{C}_{edit}, \mathcal{L}_{edit}, I_{gt}, T_m)$
944 20: **if** $I_{\text{edit}} \neq \emptyset$ **then**
945 21: $I_{curr} \leftarrow I_{\text{edit}}$; $used \leftarrow \text{True}$; $\mathcal{U} \leftarrow \mathcal{U}_t$
946 22: **end if**
947 23: **end if**
948 24: $t \leftarrow t + 1$
949 25: **end while**
950 26: **return** $T_t^{\text{orig}}, \mathcal{H}, \mathcal{R}, \mathcal{U}$

950 **Algorithm 2** SEARCHINVOKE: cache-first visual search with formatting

951 **Input:** context-preserving query θ , tools pool Φ_{pool} , search cache \mathcal{C}_{search} , lock \mathcal{L}_{search}
952 **Output:** local path to visual reference I_{ref} (or \emptyset)
953 1: $h \leftarrow \text{HASH}(\theta)$
954 2: **if** $\mathcal{C}_{search}[h]$ exists **then return** $\mathcal{C}_{search}[h].\text{image_path}$ // cache hit: zero network cost
955 3: Acquire \mathcal{L}_{search} ; **defer** release
956 4: $R \leftarrow \Phi_{pool}.\text{SEARCH_IMAGES_WITH_DOWNLOAD}(\theta, 1)$
957 5: **if** $R \neq \emptyset$ **and** $R[0].\text{image_available} = \text{True}$ **then**
958 6: $I_{\text{ref}} \leftarrow R[0].\text{local_image_path}$; $\text{UPDATECACHE}(\mathcal{C}_{search}, h, R[0])$
959 7: **return** I_{ref}
960 8: **else**
961 9: **return** \emptyset
962 10: **end if**

963 **A.4 DETAILS OF TARGET IMAGE DESCRIPTION REFINEMENT PROMPT**
964

965 Given a reference image I_r , manipulation text T_m , and a tool-generated reference image I_{tool} (from
966 visual search or image editing), we design a refinement prompt p_{ref} to synthesize the final target
967 image description T_t . The prompt treats I_{tool} strictly as auxiliary evidence to clarify the specific
968 modification requested in T_m ; it is not the target and must not introduce unrelated content or style
969 drift. The objective is a concise, precise description that remains grounded in I_r while applying only
970 the necessary change indicated by T_m .
971

Algorithm 3 EDITINVOKE: cached image editing/generation

Input: current image path I_{curr} , edit script θ , tools pool Φ_{pool} , edit cache $\mathcal{C}_{\text{edit}}$, lock $\mathcal{L}_{\text{edit}}$, optional I_{gt} , T_m

Output: local path to edited image I_{edit} (or \emptyset)

- 1: $h \leftarrow \text{HASH}(I_{\text{curr}}, \theta)$
- 2: **if** $\mathcal{C}_{\text{edit}}[h]$ exists **then return** $\mathcal{C}_{\text{edit}}[h].\text{output_path}$ *// cache hit*
- 3: **if** $\neg \text{EXISTS}(I_{\text{curr}})$ **then return** \emptyset
- 4: Acquire $\mathcal{L}_{\text{edit}}$; **defer** release
- 5: $P \leftarrow \Phi_{\text{pool}}.\text{EDIT_IMAGE}(I_{\text{curr}}, \theta, \text{output_dir} = \emptyset, \text{original_manipulation} = T_m, \text{target_image_path} = I_{\text{gt}})$
- 6: **if** $P \neq \emptyset$ **then**
- 7: $\text{UPDATACHE}(\mathcal{C}_{\text{edit}}, h, P)$; $I_{\text{edit}} \leftarrow P$
- 8: **return** I_{edit}
- 9: **else**
- 10: **return** \emptyset
- 11: **end if**

Prompt Structure and Reasoning Process.

- **Original Image Description:** The MLLM first produces an intent-focused description of I_r , capturing salient objects, attributes, colors, styles, and scene elements while omitting irrelevant background content. This establishes the grounding context for refinement.
- **Tool-Generated Visual Evidence Description:** The model then describes I_{tool} (search exemplar with title or edited variant) under a *strict extraction policy*: extract only the attribute relevant to T_m ; explicitly ignore unrelated styles, patterns, logos, backgrounds, or accessories. For search exemplars, the title is quoted and non-essential differences are listed as ignored; for edited images, unintended artifacts are identified and ignored.
- **Thoughts:** The model (i) parses the manipulation intent from T_m ; (ii) inventories elements from I_r and marks them as [PRESERVE] or [MODIFY]; (iii) specifies exactly what is extracted from I_{tool} and what is ignored; and (iv) explains the combination strategy that applies the minimal necessary change while preserving all other content.
- **Reflections:** A brief, three-part reflection is required: state the single extracted modification; enumerate ignored elements from I_{tool} ; confirm preservation of unmodified content from I_r . This format enforces transparency and supports auditing.
- **Tool Invocation (if applicable).** If the selection stage outputs (a, θ_a) with $a \neq \text{none}$, the refinement prompt begins by *invoking* the chosen tool $\Phi_{\text{tool}}^{(a)}$ using θ_a (cf. Eq. 8). Invocation follows a cache-first policy. If invocation fails or the artifact is rejected, the prompt sets $a \leftarrow \text{none}$ and proceeds without a proxy. The prompt receives *only* the proxy and its minimal provenance tokens, never raw HTML or executable code.
- **Target Image Description:** The final description integrates the preserved content of I_r with only the single modification clarified by I_{tool} . The output is concise and self-contained, using explicit comparative phrasing and precise domain terms suitable for a downstream retrieval model.

Context Selection Principle. The manipulation text T_m is the authoritative signal for what changes; attributes not explicitly requested must be preserved. The tool-generated reference I_{tool} serves only to *disambiguate* the requested change and must not introduce additional modifications.

The refinement prompt p_{ref} delivers a controlled synthesis: I_r provides grounding, I_{tool} supplies narrowly scoped evidence for the requested modification, and T_m governs what may change. This yields faithful, precise, and retriever-compatible target descriptions while avoiding over-transfer from tool evidence.

A.5 THE FULL TABLE OF GENECIS

In Table 5, we report the full table of GeneCIS results.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

You are an image description expert. You are provided with an original image, a manipulation text, and a single tool-generated reference image (either a search result with title or an edited image) that demonstrates the intended changes. Note that manipulation text with multiple intents describes changes from the original image to a target image. Your goal is to generate a concise, precise, and clear target image description by intelligently selecting and combining context from both the original image and the tool-generated reference image, guided by the manipulation intent.

Guidelines on generating the Original Image Description

- Ensure the original image description is thorough, capturing all visible objects, attributes, and elements.
- The original image description should be as accurate as possible, reflecting the content of the image.

Guidelines on generating Tool-Generated Visual Evidence Description

- The Tool-Generated Visual Evidence description should accurately capture what you observe in the tool result image, similar in detail to the original image description:

Guidelines on generating the Thoughts

In your Thoughts, follow this systematic analysis based on the manipulation text:

1. Parse Manipulation Intent (first sentence):
 - Quote the manipulation text and identify the specific change requested
 - Explicitly state: "This requests ONLY changing [X] while preserving EVERYTHING else"
2. Inventory Original Elements (second part):
 - List ALL elements from the original image
 - Mark each as [PRESERVE] or [MODIFY] based on manipulation text
3. Extract Tool Evidence WITH WARNINGS (third part):
 - State what ONE thing the tool provides for modification
4. Combination Strategy*(final part):
 - Explain: "I will take ONLY [one modification] from tool and preserve EVERYTHING else from original"

Guidelines on generating the Reflections

- Structure your reflection in exactly three components:

- Component 1: State the SINGLE modification extracted
- Component 2: List what you IGNORED from tool (most of it)
- Component 3: Confirm all preserved elements

Guidelines on generating Tool Usage

Clearly specify the tool(s) called, including the rationale behind calling each tool.

- Searching API query: '<search>your query here</search>'
- Image editing tool instruction: '<edit>your edit instruction here</edit>'
- If no tools are necessary, explicitly state: 'None'.

Guidelines on generating Target Image Description

- The target image description should be complete and cover various semantic aspects
- Ensure the description is clear even without knowledge of the original image
- Keep the description concise and simple, minimizing aesthetic details

On the input format:

...

Figure 8: The complete template of our tool-refinement reflective Chain-of-Thought process for Training-free ZS-CIR.

A.6 MORE ANALYSIS ON EFFECTIVENESS AND EFFICIENCY

Our approach improves over the best training-free baseline OSrCIR* by 2.20% to 4.16% across four CIR tasks while remaining interactive at ~ 0.95 s per query, which contributes to our lightweight

Table 5: **Comparison on GeneCIS Test Data.** TaCIR is able to significantly outperform adaptive methods across all GeneCIS sub-benchmarks, with its inherent modularity allowing for further simple scaling to achieve additional large gains. Grey lines represent the training-free ZS-CIR methods. OSrCIR* uses the GPT4.1. **Bold** and ‘_’ denotes the best and second-best result, respectively.

GeneCIS →		Focus Attribute			Change Attribute			Focus Object			Change Object			Average
Backbone	Method	R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3	R@1
ViT-B/32	SEARLE	18.9	30.6	41.2	13.0	23.8	33.7	12.2	23.0	33.3	13.6	23.8	33.3	14.4
	CIREVL	17.9	29.4	40.4	14.8	25.8	35.8	14.6	24.3	33.3	16.1	27.8	37.6	15.9
	OSrCIR	19.4	32.7	42.8	16.4	27.7	38.1	15.7	25.7	35.8	18.2	30.1	39.4	17.4
	OSrCIR*	<u>19.8</u>	<u>33.2</u>	<u>43.3</u>	<u>16.9</u>	<u>28.1</u>	<u>38.7</u>	<u>16.1</u>	<u>26.3</u>	<u>36.2</u>	<u>18.7</u>	<u>30.7</u>	<u>40.1</u>	<u>17.9</u>
	TaCIR	22.0	36.0	46.1	18.7	30.2	41.0	17.9	28.4	38.5	20.9	33.2	43.1	19.9
ViT-L/14	SEARLE	17.1	29.6	40.7	16.3	25.2	34.2	12.0	22.2	30.9	12.0	24.1	33.9	14.4
	LinCIR	16.9	30.0	41.5	16.2	28.0	36.8	8.3	17.4	26.2	7.4	15.7	25.0	12.2
	Context-I2W	17.2	30.5	41.7	<u>16.4</u>	<u>28.3</u>	<u>37.1</u>	8.7	17.9	26.9	7.7	16.0	25.4	12.7
	PrediCIR	18.2	31.9	42.6	18.7	30.4	35.4	12.7	19.0	31.2	16.9	25.5	34.1	16.6
	CIREVL	19.5	31.8	42.0	14.4	26.0	35.2	12.3	21.8	30.5	17.2	28.9	37.6	15.9
	OSrCIR	20.9	33.1	44.5	17.2	28.5	37.9	15.0	23.6	34.2	18.4	30.6	38.3	17.9
	OSrCIR*	<u>21.3</u>	<u>33.6</u>	<u>45.1</u>	<u>17.6</u>	<u>29.1</u>	<u>38.5</u>	<u>15.4</u>	<u>24.1</u>	<u>34.8</u>	<u>18.9</u>	<u>31.2</u>	<u>39.0</u>	<u>18.3</u>
	TaCIR	23.6	35.9	47.4	19.6	31.6	41.3	17.6	26.6	37.6	21.0	33.7	41.8	20.5
ViT-G/14	LinCIR	19.1	33.0	42.3	<u>17.6</u>	<u>30.2</u>	<u>38.1</u>	10.1	19.1	28.1	7.9	16.3	25.7	13.7
	PrediCIR	19.3	33.2	42.7	19.9	30.7	38.9	12.8	19.4	32.3	18.9	32.2	40.6	18.7
	CIREVL	20.5	34.0	44.5	16.1	28.6	39.4	14.7	25.2	33.0	18.1	31.2	41.0	17.4
	OSrCIR	22.7	36.4	47.0	17.9	30.8	42.0	16.9	28.4	36.7	21.0	33.4	44.2	19.6
	OSrCIR*	<u>23.2</u>	<u>36.9</u>	<u>47.7</u>	<u>18.4</u>	<u>31.4</u>	<u>42.7</u>	<u>17.3</u>	<u>29.0</u>	<u>37.3</u>	<u>21.5</u>	<u>34.0</u>	<u>45.0</u>	<u>20.1</u>
	TaCIR	25.4	39.7	50.6	20.4	34.0	45.0	19.3	31.2	40.1	23.4	36.8	47.8	22.1

Table 6: Comparison of Computational Cost.

Model	LLM	Latency	GPU Memory	API Cost	Performance
Context-I2W	*	~ 0.02s	16 GB	\$0	22.94
CIREVL	GPT-3.5	~ 1s	40 GB	~ \$0.001	26.23
OSrCIR	GPT-4o	~ 0.7 ± 0.08s	16 GB	~ \$0.004	32.27
TaCIR	GPT-4o	~ 0.83 ± 0.08s	16 GB	~ \$0.011	36.18
TaCIR(w/o cache)	GPT-4.1	~ 1.38 ± 0.08s	16 GB	~ \$0.007	37.01
TaCIR	GPT-4.1	~ 0.95 ± 0.05s	16 GB	~ \$0.007	37.01

caching strategy. As shown in Table 6 This latency is ~ 1.6× OSrCIR (~ 0.6s) yet slightly below CIREVL (~ 1.0s), and is achieved without task-specific training. Notably, even a one-iteration setting outperforms OSrCIR* by ~ 2.41% on average at comparable cost (*i.e.*, ~0.75s). Compared to textual-inversion methods, our performance surpasses them without training, but inference remains ~ 48× slower. As API calls account for 95% of inference time, faster APIs or improved tool selection could further reduce latency.

A.7 MORE ABLATION STUDY OF TOOL-USE POLICY

In Table 7, we enforcing a rigid policy to always search or always edit yields consistent gains over disabling that capability entirely, but still falls short of the selective strategy used by the full model. We observe dataset-dependent effects: tasks with more implicit or long-tail intent (*e.g.*, nuanced semantics) benefit more from an “always search” bias, while fine-grained, appearance-driven benchmarks favor “always edit,” where a visual proxy tightens the match to subtle attributes. However, compulsory invocation introduces unnecessary calls in easy or well-specified cases, adding noise and latency without commensurate accuracy benefits. These findings reinforce our design choice: dynamic, context-aware gating with early-exit, invoking search when intent is under-specified and editing when visual grounding is needed—achieves a better accuracy–efficiency trade-off than any single fixed policy.

A.8 EVALUATION DATASETS DETAILS

We evaluate our approach on four widely adopted CIR benchmarks: CIRR Liu et al. (2021), CIRCO Baldrati et al. (2023), FashionIQ Wu et al. (2021), and GeneCIS Vaze et al. (2023). CIRR is the first natural image dataset for CIR, but it suffers from the presence of false negatives Baldrati et al. (2023), where multiple plausible ground-truth images may exist but remain unlabeled. CIRCO addresses this limitation by providing multiple annotated ground truths per query, significantly re-

1134 Table 7: Tool-use policy ablation on CIRCO and Fashion-IQ. Policies force the agent to *always*
 1135 invoke the corresponding tool when available.

1136

1137 1138 1139 1140 1141 1142 1143 1144 1145	Methods	CIRCO			Fashion-IQ	
		k=5	k=10	k=25	k=10	k=50
1. Full model (GPT-4.1)	27.38	28.96	31.62	37.94	59.13	
Tool-use policy (appendix ablation)						
2. Always search	27.05	28.02	31.12	36.78	58.02	
3. Always edit	26.41	27.95	30.66	37.13	58.35	
<i>Reference (from main ablation in Table 4)</i>						
w/o searching	26.47	27.92	30.39	35.39	56.49	
w/o editing	25.74	27.11	29.68	37.12	58.10	

1146

1147

1148

1149 ducing the prevalence of false negatives. GeneCIS, constructed from MS-COCO Lin et al. (2014b)
 1150 and Visual Attributes in the Wild Pham et al. (2021), supports four task variants, facilitating both
 1151 object- and attribute-centric retrieval or modification around specific visual concepts. FashionIQ is
 1152 focused on fine-grained, fashion-oriented retrieval driven by attribute manipulations. These datasets
 1153 collectively span distinct CIR sub-tasks: CIRR and CIRCO focus on object-centric or background
 1154 manipulations, GeneCIS enables compositional retrieval based on object and attribute queries, and
 1155 FashionIQ emphasizes attribute-level modifications described via natural language. For evaluation,
 1156 we follow the protocols established in the original benchmarks. Specifically, we report Recall@k
 1157 (R@k) for CIRR, GeneCIS, and FashionIQ, and mean average precision (mAP@k) for CIRCO,
 1158 to accommodate the presence of multiple ground truths. Additionally, for CIRR, we include the
 1159 Recall_{Subset}@k metric, which measures retrieval accuracy within a restricted subset of images relevant
 1160 to each query, providing a more precise assessment of compositional reasoning.

1161

1162

1163 **FashionIQ Wu et al. (2021)** is a dataset of fashion-related images across three categories: Shirt,
 1164 Dress, and Toptee, comprising 30,134 triplets from 77,684 images. The dataset was curated by
 1165 collecting image attributes and then tasking human annotators to write captions describing highly
 1166 related images based on those attributes. FashionIQ simulates realistic user interactions, as captions
 1167 were generated via a chat-based visual interface to mimic online shopping queries. The dataset is
 1168 divided into training (60%), validation (20%), and test (20%) splits. For zero-shot CIR, we use only
 1169 the validation split, as the test set annotations are not publicly available.

1170

1171

1172 **CIRR Liu et al. (2021)** contains 21,552 real-world images sourced from NLVR² Suhr et al.
 1173 (2018). The dataset includes training, validation, and test splits, with the latter evaluated via a
 1174 remote server. Our analysis focuses on the validation split for model selection. Unlike FashionIQ,
 1175 which targets fashion-specific queries, CIRR encompasses diverse domains with complex descriptions.
 1176 The dataset was built by identifying visually similar images using ResNet-152 He et al. (2016)
 1177 pretrained on ImageNet Deng et al. (2009) and employing human annotators to describe differences
 1178 between paired images. However, CIRR suffers from two key issues: (1) image pairs identified
 1179 by ResNet often lack true visual similarity, as they were not verified by human annotators; and (2)
 1180 captions are often unrealistic or ambiguous, including unnecessary details. These limitations reduce
 1181 CIRR’s practical relevance compared to FashionIQ. Additionally, CIRR uses a small subset retrieval
 1182 task (e.g., five items) to mitigate noise, but this approach is problematic, as the target image often
 1183 relates only to the text condition rather than the reference image. Previous studies Baldarati et al.
 1184 (2023); Saito et al. (2023); Gu et al. (2024), have noted the prevalence of false negatives (FNs)
 1185 in CIRR, complicating evaluation accuracy, as seen in other cross-modal retrieval tasks Zhu et al.
 1186 (2021); Datta et al. (2008).

1187

1188

1189 Notably, both FashionIQ and CIRR face challenges from FN instances. While each query has a
 1190 single labeled positive, multiple valid matches may exist in the dataset. FashionIQ mitigates this by
 1191 reporting Recall@K with larger K values (e.g., 10 or 50), whereas CIRR employs subset retrieval.
 1192 However, these approaches fail to fundamentally resolve the FN issue, particularly for CIRR’s noisy
 1193 annotations.

1188 **CIRCO Baldrati et al. (2023)** builds on the COCO dataset Lin et al. (2014a), addressing the FN
 1189 problem by including an average of 4.53 ground truths per query. This design enables more reliable
 1190 evaluation using metrics like mAP. CIRCO contains no training split and provides validation (220
 1191 queries) and test (800 queries) splits, with the latter evaluated remotely.
 1192

1193 **GeneCIS Vaze et al. (2023)** defines conditional retrieval tasks focusing on attributes (*e.g.*, “focus
 1194 on an attribute”, “change an attribute”) and objects (*e.g.*, “focus on an object”, “change an object”).
 1195 Attribute tasks use VisualGenome Krishna et al. (2017) and VAW Pham et al. (2021), while object
 1196 tasks are based on COCO Lin et al. (2014a). Each task comprises around 2,000 queries with a small
 1197 gallery size (*e.g.*, 15 images, 10 for “focus on an attribute”) to limit FNs. Text queries correspond to
 1198 attributes or objects (*e.g.*, “color”, “backpack”).
 1199

Table 8: The number of images used for evaluation in each dataset.

Dataset	Query images	Candidate images
CIRR (Test)	4,148	2,315
CIRCO (Test)	800	123,403
Fashion (Dress)	2,017	3,817
Fashion (Shirt)	2,038	6,346
Fashion (TopTee)	1,961	5,373
GeneCIS (Focus Attribute)	2000	10
GeneCIS (Change Attribute)	2112	15
GeneCIS (Focus Object)	1960	15
GeneCIS (Change Object)	1960	15

A.9 EVALUATION TASKS DETAILS

1212 **(1) Object/Attribute composition.** We evaluate the GeneCIS Vaze et al. (2023) test split and the
 1213 validation split (5000 images) of COCO Lin et al. (2014a), which dataset contains images with
 1214 corresponding lists of object classes and instance mask of query images. Following Pic2Word, we
 1215 randomly crop one object and mask its background using its instance mask to create a query for
 1216 each image. The list of object classes is used as text specification. Similarly, the GeneCIS dataset
 1217 introduces four task variations, such as changing a specific attribute or object.

1218 **(2) Object/scene manipulation by text description.** In this setup, a reference image is provided
 1219 alongside a text description containing instructions for manipulating either an object or the back-
 1220 ground scene depicted in the reference image. This composition of the reference image and text
 1221 description enables the retrieval of manipulated images. We evaluate the test split of CIRR Liu et al.
 1222 (2021) and CIRCO Baldrati et al. (2023) using the standard evaluation protocol.

1223 **(3) Attribute manipulation.** We employ Fashion-IQ Wu et al. (2021), which includes various
 1224 modification texts related to image attributes. These attribute manipulations are given as a sentence.
 1225 In evaluation, we employ the validation set, following previous works Baldrati et al. (2022); Saito
 1226 et al. (2023); Baldrati et al. (2023); Tang et al. (2024).

A.10 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1228 We disclose two forms of LLM use. First, an MLLM is a core module of our method (Sec. 3): it
 1229 performs selection, optional tool invocation, and refinement; model choices, prompts, decoding set-
 1230 tings (*e.g.*, temperature 0), seeds, and hardware are reported in Sec. 4 and detailed in the appendix
 1231 (algorithms, prompt templates, and ablation protocols). Second, LLMs were used to aid writing
 1232 by polishing language and formatting only; they did not originate research ideas, experimental de-
 1233 signs, or claims, and all content was authored, verified, and curated by the authors. We provide
 1234 verbatim prompt templates and configuration files in the supplementary anonymized code to sup-
 1235 port reproducibility. LLMs are not authors and are ineligible for authorship; any errors remain the
 1236 responsibility of the authors. We took care to avoid plagiarism or fabrication by cross-checking
 1237 all generated text against sources and our results, and by recording model names/versions for all
 1238 experiments and writing assistance.
 1239