
Preventing Model Collapse in Gaussian Process Latent Variable Models

Ying Li * 1 Zhidi Lin * 2 Feng Yin 2 Michael Minyi Zhang 1

Abstract
Gaussian process latent variable models
(GPLVMs) are a versatile family of unsuper-
vised learning models commonly used for
dimensionality reduction. However, common
challenges in modeling data with GPLVMs
include inadequate kernel flexibility and improper
selection of the projection noise, leading to a
type of model collapse characterized by vague
latent representations that do not reflect the
underlying data structure. This paper addresses
these issues by, first, theoretically examining the
impact of projection variance on model collapse
through the lens of a linear GPLVM. Second, we
tackle model collapse due to inadequate kernel
flexibility by integrating the spectral mixture
(SM) kernel and a differentiable random Fourier
feature (RFF) kernel approximation, which
ensures computational scalability and efficiency
through off-the-shelf automatic differentiation
tools for learning the kernel hyperparameters,
projection variance, and latent representations
within the variational inference framework. The
proposed GPLVM, named advised RFLVM, is
evaluated across diverse datasets and consistently
outperforms various salient competing models,
including state-of-the-art variational autoencoders
(VAEs) and other GPLVM variants, in terms of
informative latent representations and missing
data imputation.

1. Introduction
A latent variable model (LVM) represents each observed
datum yi ∈ RM using a low-dimensional latent variable

*Equal contribution. The authors are ordered alphabetically.
1Department of Statistics & Actuarial Science, The University of
Hong Kong, Hong Kong, China 2School of Science & Engineering,
The Chinese University of Hong Kong, Shenzhen, China. Corre-
spondence to: Feng Yin <yinfeng@cuhk.edu.cn>, Michael Minyi
Zhang <mzhang18@hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

xi ∈ RQ, where Q ≪ M . As a classic tool in statistical
analysis, LVMs unveil hidden structures within the data,
providing valuable insights into intricate systems across
various domains (Bishop, 2006), such as signal processing
(Zarzoso et al., 2010) and economics (Aigner et al., 1984).

One of the critical aspects of LVM is the choice of mapping
function from the latent variables to the observed variables.
A series of early works assumed that the mapping is linear,
as seen in factor analysis (Kim & Mueller, 1978), princi-
pal component analysis (PCA) (Pearson, 1901; Tipping &
Bishop, 1999), and canonical correlation analysis (CCA)
(Hotelling, 1936), among others. However, the linearity
assumption limits the capacity of these models to capture
complex, nonlinear patterns in the data, rendering them inca-
pable of providing an optimal latent representation for com-
plex data sets. To tackle this issue, more advanced methods
like the variational autoencoder (VAE) (Kingma & Welling,
2019; 2013) utilizes neural networks, while the Gaussian
process latent variable model (GPLVM) (Lawrence, 2005;
Titsias & Lawrence, 2010) employs the Gaussian process
(GP) (Rasmussen & Williams, 2006), as the nonlinear map-
ping modules in LVM, providing enhanced capacity in cap-
turing nonlinear relationships.

GPLVMs benefit from the incorporation of the GP, which
offers enhanced interpretability through explicit uncertainty
calibration and the interpretable kernel functions (Theodor-
idis, 2020; Cheng et al., 2022). Additionally, the implicit
regularization imposed by the GP prior prevents GPLVMs
from severe overfitting (Lotfi et al., 2022; Wilson & Iz-
mailov, 2020). Consequently, GPLVMs often achieve supe-
rior performance in practice, even with small sample sizes.
Due to these favorable and unique properties, GPLVM has
been applied to various applications, such as intrusion detec-
tion (Abolhasanzadeh, 2015), image recognition (Eleftheri-
adis et al., 2013; Li et al., 2017), human pose estimation (Ek
et al., 2008), and image-text retrieval (Song et al., 2015).

Despite the popularity of GPLVM and the recent efforts
dedicated to enhancing its learning and inference capabil-
ities (Titsias & Lawrence, 2010; Gundersen et al., 2021;
Ramchandran et al., 2021; de Souza et al., 2021; Lalchand
et al., 2022; Zhang et al., 2023), the existing work still
lacks an in-depth understanding of how to optimally learn
a compact and informative latent representation using the

Preventing Model Collapse in Gaussian Process Latent Variable Models 2

GPLVM. This ambiguity hinders our ability to overcome
“model collapse” (see Definition 2.1), which is character-
ized by learning vague latent representations with practical
implementations. This paper elucidates the two key factors
that lead to model collapse–the improper selection of model
projection noise and inadequate kernel flexibility. To this
end, we propose a new GPLVM that is immune to model
collapse. Our contributions are:

• We provide a theoretical investigation of the impact that
projection variance has on encouraging model collapse
through the lens of linear GPLVMs. Our empirical
validation further demonstrates the relevance of these
analyses to general GPLVMs. These findings collec-
tively emphasize the importance of learning the model
projection variance.

• We propose a novel GPLVM that integrates a spectral
mixture (SM) kernel (Wilson & Adams, 2013), capable
of approximating arbitrary stationary kernels, to over-
come model collapse arising from inadequate kernel
flexibility. To reduce computational complexity and
avoid introducing additional parameters like those in in-
ducing point-based sparse GP methods (Titsias, 2009;
Hensman et al., 2013), we leverage a differentiable
random Fourier feature (RFF) approximation for the
SM kernel (Jung et al., 2022; Lopez-Paz et al., 2014).
This deliberate introduction of differentiability in the
RFF approximation allows us to readily use modern
off-the-shelf automatic differentiation tools (Paszke
et al., 2019) to efficiently and scalably learn the kernel
hyperparameters, projection variance, and latent repre-
sentations of the proposed GPLVM within a variational
inference framework (Bishop, 2006).

• Our proposed GPLVM is subjected to rigorous eval-
uation across diverse datasets, consistently outper-
forming various models, including the state-of-the-art
(SOTA) VAEs and some representative GPLVM vari-
ants. Specifically, it excels in learning compact and
informative latent representations, addressing the is-
sues of model collapse in existing GPLVMs.

2. Preliminaries
Gaussian Process. The GP is a generalization of the Gaus-
sian distribution defined across infinite index sets (Ras-
mussen & Williams, 2006), thereby enabling the specifi-
cation of distribution over functions f : RQ 7→R. A GP is
fully characterized by its mean function µ(x), frequently set
as zero, and its covariance function, a.k.a. kernel function,
k(x,x′;θgp), where θgp is a set of hyperparameters that
needs to be tuned for model selection. According to the
definition of GP, the function values f={f(xi)}Ni=1 at any
finite set of points X = {xi}Ni=1 follow a joint Gaussian

distribution, i.e.,

f | X = N (f | 0,K), (1)

where K denotes the covariance matrix evaluated on the
finite input X with [K]i,j=k(xi,xj). Given the observed
function values f at the input X, the GP prediction distribu-
tion, p(f(x∗)|x∗, f ,X), at any new input x∗, is Gaussian,
fully characterized by the posterior mean ξ and the posterior
variance Ξ. Concretely,

ξ(x∗) = Kx∗,XK−1f , (2a)

Ξ(x∗) = k(x∗,x∗)−Kx∗,XK−1K⊤
x∗,X, (2b)

where Kx∗,X is the cross covariance matrix evaluated on
the new input x∗ and the observed input X.

Spectral Mixture Kernel. The behavior of a GP-distributed
function is generally defined by the choice of the kernel func-
tion. However, subjectively selecting an appropriate kernel
for complex applications is considerably challenging. By re-
sorting to the fact that, according to Bochner’s theorem, any
stationary kernel and its spectral density are Fourier duals,
we know that one type of popular kernel learning methods is
to approximate the spectral density of the underlying station-
ary kernel (Bochner, 1934). In the spectral mixture (SM)
kernel (Wilson & Adams, 2013), the underlying spectral
density is approximated using a Gaussian mixture:

si(w)=
N (w|µi,diag(σ

2
i))+N (−w|µi,diag(σ

2
i))

2
,

psm(w) =

m∑
i=1

αisi(w),
(3)

where αi is the mixture weight, µi∈RQ and σ2
i ∈RQ are

the mean and variance of the i-th Gaussian density, m is the
number of mixture components. Taking the inverse Fourier
transform, we readily get the SM kernel, ksm(x,x′) =
m∑
i=1

αi exp
(
−2π2∥σ⊤

i (x− x′)∥2
)
cos
(
2πµ⊤

i (x− x′)
)
,

where θsm={αi,µi,σ
2
i }mi=1 is the set of hyperparameters.

Given that Gaussian mixture is dense, the SM kernel is
guaranteed to be able to approximate any stationary kernel
arbitrarily well (Wilson & Adams, 2013).

Gaussian Process Latent Variable Models. The GPLVM
is a generative model where each observed datum yi∈RM

is generated through a noisy Gaussian process from a latent
variable xi∈RQ (Lawrence, 2005):

yi = f(xi) + vi, vi ∼ N (0, σ2IM), (4)

where f(·) follows a zero-mean GP prior, and σ2 is the
projection variance, which can be interpreted as information
lost in dimensionality reduction. A standard normal density
is conventionally assigned as the prior to the latent vari-
able, xi∼N (0, IQ). In the case of having N observations

Preventing Model Collapse in Gaussian Process Latent Variable Models 3

Y∈RN×M from the GPLVM, the marginal likelihood after
integrating out the latent GP, is expressed as:

p(Y | X) =

M∏
j=1

N (y:,j | 0, K+ σ2IN) (5)

where y:,j ∈ RN denotes the j-th column of Y. Conse-
quently, the maximum likelihood estimate (MLE) of the
latent variables X can be obtained by solving the following
optimization problem,

X̂ = max
X

L(X) = max
X

log p(Y | X), (6)

using e.g. gradient-based methods (Kingma & Ba, 2014).

In the context of GPLVM, the primary objective is to obtain
a compact and informative latent representation of the ob-
served data. Unlike the general definition of model collapse
in machine learning models, which is primarily character-
ized by a gradual shift toward homogeneous output and
increased deviations from accurate predictions (Bau et al.,
2019), model collapse in GPLVM is closely tied to the ef-
fectiveness of latent variable inference, as outlined below:

Definition 2.1 (Model Collapse). When the latent variables
in GPLVMs become more homogeneous and/or their crucial
feature details are sacrificed or distorted, we identify this
phenomenon as model collapse.

Definition 2.1 posits that two distinct manifestations of
model collapse can be identified: distortion and homogene-
ity. Distortion occurs when the latent manifold, representing
the underlying data structure, is warped or twisted, failing
to accurately describe the underlying data structures. Ho-
mogeneity, on the other hand, manifests as a reduction in
diversity among latent variables, resulting in a loss of crucial
data features.

3. Causes of Model Collapse
In this section, we will elucidate that the distortion and
homogeneity in the latent manifold are attributed to two
crucial factors: improper selection of projection variance
and inadequate kernel function flexibility. To further illus-
trate these concepts, Figs. 1b and 1c depict examples where
the learned latent manifolds are distorted and homogeneous,
respectively.

3.1. Projection Variance Matters

This subsection investigates the impact of projection vari-
ance on encouraging model collapse. To achieve this, we
scrutinize the stationary points with respect to the latent
variables X, and establish their connection to the projection
variance. However, the computation of the stationary points
is intractable due to the non-convex and nonlinear nature
of GPLVMs in general. In light of this, we alternatively

0 100 200 300 400 500

4

2

0

2

fj() estimation

true
RBF kernel
SM kernel

1 0 1

1

0

1

0
25

0 25

(a) Normal

1 0 1

1

0

1

0
20

0 25

(b) Distortion

1 0 1

1

0

1

0
20

0 25

(c) Homogeneity

Figure 1: Top: Latent function estimation using GPLVM with
preliminary (—) or advanced/flexible kernels (—). Bottom: (a): 2-
D S-shape latent manifold learned by the proposed advised RFLVM.
(b): 2-D S-shape latent manifold learned by using a preliminary
(RBF) kernel. (c): 2-D S-shape latent manifold learned without
optimizing projection variance. (a)–(c) also show histograms in
different dimensions of the learned latent manifold.

seek the lens of the linear GPLVM by assuming that the
kernel function used in the GPLVM is the inner product ker-
nel, i.e., k(x,x′)=x⊤x′. This simplified GPLVM is also
known as the dual probabilistic principal component analy-
sis (DPPCA) model (Lawrence, 2005). See more details in
App. A.1. The main analyses are outlined below.

Theorem 3.1. Given the maximization problem in Eq. (6),
the stationary points, X̂, in the case of the linear GPLVM
is:

X̂ = UQ

(
ΛQ − σ2IQ

)1/2
R, (7)

where UQ ≜ [u1, . . . ,uQ] ∈ RN×Q represents arbitrary
eigenvectors of 1

MYY⊤, R ∈ RQ×Q is an arbitrary or-
thogonal matrix, and ΛQ ∈ RQ×Q is a diagonal matrix
with:

[ΛQ]i,i=

{
λi, the corresponding eigenvalue to ui, or

σ2.

Proof. See App. A.2 or App. A in (Lawrence, 2005).

Theorem 3.1 reveals that the stationary point, X̂, depends
on the projection variance σ2 and eigenvalues of 1

MYY⊤.
However, it remains unclear which specific value of σ2 may
trigger the model collapse. Our findings, succinctly sum-
marized in the following propositions, provide additional
insight into the impact of the σ2 on the type of the stationary
point and the cause of the model collapse.

Proposition 3.2. In the case that σ2 equals to its MLE
estimator, σ̂2:

σ2 = σ̂2 =
1

N −Q′

N∑
j=Q′+1

λj , (8)

Preventing Model Collapse in Gaussian Process Latent Variable Models 4

where Q′ is the number of eigenvalues retained in ΛQ from
1
MYY⊤, then the only stable maximum1 is the global opti-
mum.

Proof. See App. A.3.

Proposition 3.2 suggests that adhering to the principle σ2=
σ̂2 during the optimization of the log marginal likelihood
(see Eq. (6) or Eq. (22)), it is expected to yield the global
optimum, thereby mitigating the risk of the model collapse.

Proposition 3.3. If σ2 ∈ (λo
Q−q+1, λ

o
Q−q), q=1, . . . , Q−1,

where λo
q denotes the q-th largest eigenvalues of 1

MYY⊤,
then the only stable maximum is the local optimum, with
the maximizer X̂ having q zero columns. In addition, when
q = Q, σ2 > λo

1, the only stable maximum occurs when
X̂ = 0 (i.e., homogeneity).

If σ2<λo
N , the stationary points comprise a cluster of local

minimum points, accompanied by the emergence of zero
columns in the X̂.

Proof. See App. A.4.

Proposition 3.3 implies that an improper choice of σ2 can
hinder the optimization process, preventing it from reaching
the optimum and leading to a loss of information (homo-
geneity) in X̂, i.e., the undesirable model collapse.

The aforementioned findings in the linear GPLVM under-
score the importance of learning the projection variance σ2

and demonstrate how this learning can help mitigate the
risk of model collapse. While it is challenging to gener-
alize these results to the broader GPLVM framework due
to the model’s non-convexity and nonlinearity, they still
offer valuable insights into the role of projection variance
in preventing model collapse within general GPLVMs (see
§ 6.1).

3.2. Kernel Function Flexibility Matters

The occurrence of model collapse is closely linked to the
choice of kernel function as well, as the kernel plays a key
role in learning the underlying mapping f(x) in GPLVMs.
In particular, if the learned mapping function characterized
by the GP posterior diverges from the underlying one, there
is a significant possibility that the estimated latent mani-
fold will become distorted or lose crucial feature details,
resulting in the model collapse.

This phenomenon is depicted in Fig. 1, where it is evident
that the limited flexibility of the preliminary kernels prevents
them from adequately exploring the corresponding repro-
ducing kernel Hilbert space (RKHS) to capture the struc-
ture of the underlying function f(x) (Theodoridis, 2020).

1In this case, the stationary points comprise only saddle points
and the global optimum; no local optimum exists.

Consequently, using the preliminary (RBF) kernel can only
roughly fit the underlying function, leading to learning a
distorted latent manifold–refer to the top of Fig. 1 and the
associated latent manifold estimation in Fig. 1b, where we
can see the struggle to fit the model that exhibits short-term
irregularities.

Conversely, employing a flexible kernel capable of approxi-
mating arbitrary kernels allows for thorough exploration of
the kernel space, enabling the automatic discovery of the
most suitable kernel to capture hidden and possibly com-
plex data patterns and structures, such as periodicity and
long tails (Wilson & Adams, 2013; Duvenaud, 2014). This
enhances the capacity to effectively learn the underlying
mapping functions and estimate an accurate latent manifold,
as evidenced by the learned function using a flexible (SM)
kernel in Fig. 1 (top sub-figure) and the latent manifold
estimate in Fig. 1a.

In summary, Fig. 1 demonstrates the importance of ker-
nel flexibility in GPLVMs for mitigating model collapse
(distortion) in practice. In this paper, we will employ a ker-
nel capable of approximating arbitrary stationary kernels,
namely the SM kernel (Wilson & Adams, 2013). In the next
section, we detail our proposed GPLVM that incorporates
the SM kernel while learning projection variance to prevent
model collapse.

4. Preventing Model Collapse
Integrating general GPLVM with the SM kernel poses two
distinct challenges: 1) high computational costs and 2)
intractable model learning (de Souza et al., 2021; Jung
et al., 2022; Chang et al., 2023). Specifically, the com-
putational complexity of training the GPLVM with the SM
kernel scales as O(N3) with N data points (Rasmussen &
Williams, 2006), rendering it prohibitive in the context of
big data. To tackle the scalability issue of GPLVM, one
representative variational method presented by Titsias &
Lawrence (2010) involves utilizing sparse GPs based on
inducing points (Titsias, 2009). However, this variational
method is computationally tractable only for limited pre-
liminary kernel functions, such as the RBF kernel. Recent
work has tried to enhance the scalability and flexibility of
the GPLVM by using the stochastic variational inference ap-
proach proposed by Hensman et al. (2013) (Lalchand et al.,
2022; de Souza et al., 2021; Ramchandran et al., 2021) .
Despite these endeavors, the need to optimize additional in-
ducing points still leads to increased computational burden
and the risk of getting stuck in suboptimal solutions. Thus,
despite the enhanced model capability, these models often
face challenges in achieving their theoretical potential to
address model collapse (see § 6).

To address the aforementioned issues, we resort to the varia-

Preventing Model Collapse in Gaussian Process Latent Variable Models 5

tional inference technique (Jordan et al., 1999) and a random
Fourier features (RFF) approximation (Jung et al., 2022;
Rahimi & Recht, 2007), which will enable us to efficiently
and scalably learn the SM kernel-embedded GPLVM with-
out introducing extra parameters (inducing points) as re-
quired in sparse GP-based methods (Titsias & Lawrence,
2010; Lalchand et al., 2022). The vanilla RFF approximates
any stationary kernel k(x,x′) using Monte Carlo integration
(Rahimi & Recht, 2007), i.e.,

k(x,x′) ≈ φ(x)⊤φ(x′), φ(x) ≜

√
2

L

[
sin
(
2πw⊤

1 x
)
,

(9)

cos
(
2πw⊤

1 x
)
, . . . , sin

(
2πw⊤

L
2
x
)
, cos

(
2πw⊤

L
2
x
)]

where {wl}L/2
l=1 are L/2 i.i.d. spectral points drawn from

the density function p(w) of the associated kernel function
k(x,x′), where L is an positive, even, integer.

Leveraging the RFF approximation, we can obtain the fol-
lowing SM kernel-embedded GPLVM:

y:,j ∼ N (0, φ(X)φ(X)⊤ + σ2IN), j=1, . . . ,M, (10a)
wl ∼ psm(w), l = 1, . . . , L/2, (10b)
xi ∼ N (0, IQ), i = 1, . . . , N, (10c)

ensuring both computational scalability and modeling flexi-
bility2. The following subsections will further detail our pro-
posed variational inference algorithm to manage the learning
tractability and efficacy in addressing the model collapse.

4.1. Approximate Bayesian Inference

Given the SM kernel-embedded GPLVM defined in Eq. (10),
we utilize the variational inference technique (Theodoridis,
2020) to learn the model hyperparameters θ=[θsm, σ

2], aim-
ing to mitigate the risk of model collapse. Specifically, we
can immediately obtain the joint distribution of the GPLVM
in Eq. (10) as

p(Y,X,W) = p(X)p(W)p(Y|X,W)

= p(W)

N∏
i=1

p(xi)

M∏
j=1

p(y:,j |X,W),
(11)

where p(W) =
∏L/2

l=1 psm(w) is the joint distribution of
the spectral points. The variational inference method in-
volves constructing a variational lower bound L of the log
marginal likelihood that has the Kullback–Leibler (KL) di-
vergence from approximating the underlying posterior as
its slack: log p(Y)−L=KL[q(X,W)∥p(X,W|Y)]. By
maximizing L w.r.t. q(·), we improve the quality of the
approximation (Cao et al., 2023; Cheng et al., 2022).

2Similar to Gundersen et al. (2021), we consider W as part of
the data-generating process. We then constrain its prior p(W) to
be Gaussian mixtures, thereby defining SM kernels. For a detailed
interpretation of W, see App. B.2.

For this purpose, we introduce the following variational
distribution to approximate the posterior over all the latent
variables, {W,X}:

q(X,W) ≜ p(W)q(X) = p(W)

N∏
i=1

q(xi), (12)

where q(X) =
∏N

i=1 N (xi|µi,Si), and µi ∈ RQ,Si ∈
RQ×Q are the associated free variational parameters. The
variational distribution q(W) is constrained to be the prior
distribution, which is essentially equivalent to explicitly
assuming that q(W) is Gaussian mixtures. See App. B.2
for detailed discussions on this equivalence and other more
complex variational distributions of W. Consequently, the
variational lower bound for simultaneous learning and infer-
ence is ready to be derived and summarized in the following
theorem.

Theorem 4.1. With the model joint distribution in
Eq. (11) and the assumed variational distribution in
Eq. (12), the evidence lower bound (ELBO), L =
Eq(X,W) [log p(Y,X,W)− log q(X,W)], for the joint
learning and inference is

L=Eq(X,W)

[
log

p(W)
∏N

i=1 p(xi)
∏M

j=1 p(y:,j |X,W)

p(W)
∏N

i=1 q(xi)

]

=

M∑
j=1

Eq(X,W) [log p(y:,j |X,W)]︸ ︷︷ ︸
Term 1: data reconstruction

−
N∑
i=1

KL(q(xi)∥p(xi))︸ ︷︷ ︸
Term 2: regularization

.

Here, the first term corresponds to the data reconstruction
error, which encourages any latent variables X and W sam-
pled from the variational distribution, q(X,W), to accu-
rately reconstruct the observations/likelihood. The second
term represents a regularization for q(X), which discour-
ages significant deviations of q(X) from the prior p(X).

For the evaluation of L, the second term can be evaluated
analytically due to the Gaussian nature of the distributions.
The first term needs to be handled numerically with Monte
Carlo estimation, i.e.,

Term 1 =

M∑
j=1

Eq(X,W) [log p(y:,j |X,W)] (13a)

≈
M∑
j=1

1

I

I∑
i=1

logN (y:,j |0, K̂(i)
sm + σ2IN), (13b)

where I denotes the number of Monte Carlo samples drawn
from q(X) and p(W), and K̂sm is the SM kernel matrix
approximation constructed by the feature map φ(·). See
App. B.1 for more computational details.

Note that in Eq. (10b), we need to sample wl from a
Gaussian mixture, involving that first generates an in-
dex i from the discrete probability distribution, P (i) =

Preventing Model Collapse in Gaussian Process Latent Variable Models 6

αi/
∑m

j=1 αj , i = 1, . . . ,m, and then draws sample wl

from si(w). However, due to the difficulty of reparameter-
izing the discrete distribution over mixture weights (Graves,
2016), maximizing the ELBO w.r.t. the weights αi using
modern off-the-shelf automatic differentiation tools (e.g.,
PyTorch (Paszke et al., 2019)) becomes challenging. To this
end, we similarly leverage a differentiable RFF feature map
construction approach developed for GP regression models
by Jung et al. (2022) to ensure inherent differentiability w.r.t.
the mixture weights.

4.2. Differentiable RFF Approximation for SM Kernel

Rather than directly sampling from the Gaussian mixture,
we first apply the vanilla RFF to get the corresponding
feature map φi(x)≜

√
αi · φ(x; {w(i)

l }L/2
l=1), i=1, . . . ,m,

for each mixture component, where the reparametrization
trick (Kingma & Welling, 2019) is employed to sample
w

(i)
l from si(w). Subsequently, the stacking of m feature

maps yields the ultimate new RFF approximation for the
SM kernel, denoted as ϕ(x), i.e.,

ϕ (x)=
[
φ1(x)

⊤, φ2(x)
⊤, . . . , φm(x)⊤

]⊤∈RmL×1. (14)

It can be shown that ϕ (x)
⊤
ϕ (x) is an unbiased estimator of

the SM kernel characterized by the hyperparameters θsm=
{αi,µi,σ

2
i }mi=1. The result is succinctly encapsulated in

the following proposition (Lopez-Paz et al., 2014).

Proposition 4.2. Let W = {w(i)
1 ,w

(i)
2 , . . . ,w

(i)
L/2}

m
i=1

be the spectral points sampled from the distribution
p(W) =

∏m
i=1

∏L/2
l=1 si(w) using the reparameterization

trick (Kingma & Welling, 2019). With the RFF feature
map constructed in Eq. (14), given any inputs x and x′,
ϕ (x)

⊤
ϕ (x′) is an unbiased estimator of ksm (x,x′) with

the hyperparameters θsm, i.e.,

Ep(W)

[
ϕ (x)

⊤
ϕ (x′)

]
= ksm(x,x

′;θsm) (15)

Proof. See App. C.1

In fact, given inputs X and the new feature map defined in
Eq. (14), we can further characterize the approximation error
bound for the constructed SM kernel matrix approximation,
K̂sm=Φsm(X)Φsm(X)⊤, where the random feature matrix
Φsm(X) = [ϕ (x1) , . . . , ϕ (xN)]

⊤ ∈ RN×mL (Jung et al.,
2022; Lopez-Paz et al., 2014).

Theorem 4.3. For all small ϵ > 0, the approximation error
between the underlying SM kernel matrix Ksm and its RFF
approximation K̂sm is characterized by

P
(∥∥∥K̂sm −Ksm

∥∥∥
2
≥ ϵ
)
≤

N exp

(
−3ϵ2L

2Na (6 ∥Ksm∥2 + 3Na
√
m+ 8ϵ)

)
,

(16)

where a =
√∑m

i=1 α
2
i and ∥·∥2 denotes the matrix spectral

norm.

Algorithm 1: advised RFLVM: Auto-Differentiable
Variational Inference for SM-Embedded RFLVMs
Input: Dataset Y; Initialized model hyperparameters θ

and variational parameters ζ.
1 while iterations not terminated do
2 Sample X from q(X) =

∏N
i=1 N (xi|µi,Si) using

the reparameterization trick
3 Sample W from p(W) =

∏m
i=1

∏L/2
l=1 si(w) using

the reparameterization trick
4 Construct Φsm(X) using the sampled X and W
5 Evaluate Term 1 of L through Eq. (13)
6 Evaluate Term 2 of L analytically
7 Maximize L and update θ, ζ using Adam

Output: θ, ζ.

Proof. See App. C.2

Beyond the theoretical guarantees of the approximation, the
new feature map in Eq. (14) offers a crucial advantage–it
renders the variational lower bound L differentiable w.r.t.
mixture weights αi, leading to the straightforward applica-
bility of the automatic differentiation tools for hyperparam-
eter optimization. Leveraging the new feature map, we can
apply gradient-based methods (e.g., Adam (Kingma & Ba,
2014)) to maximize L w.r.t. model hyperparamters θ and the
variational parameters ζ = {µi,Si}Ni=1. The pseudocode
summarized in Algorithm 1 outlines the implementation of
the proposed method, called auto-differentiable variational
inference for SM-embedded RFF-LVM, abbreviated as ad-
vised RFLVM. It is noteworthy that for scenarios where
N ≫ mL, the computational complexity per iteration of
advised RFLVM scales as O(N(mL)2), as elaborated in
App. B.1. Notably, this computational complexity aligns
with that of the inducing point-based sparse GP method
(Titsias & Lawrence, 2010). However, advised RFLVM en-
hances the capacity of the GPLVM and mitigates the need
for optimizing the inducing points, resulting in a lightweight
optimization problem while alleviating the model collapse.

5. Related Work
We have already described the main differences between our
method and inducing points-based methods throughout the
paper, e.g., in § 4. Below we briefly introduce other related
work on latent variable modeling and refer the reader to
App. D for more details.

VAEs. Variational autoencoders (VAEs) (Kingma &
Welling, 2013) skillfully integrate LVMs typically mod-
eled by neural networks with variational inference (Bishop,
2006), empowering the model to generate novel data. Unfor-
tunately, despite the considerable success demonstrated by
VAEs in generative tasks (Kingma & Welling, 2013; Zhao

Preventing Model Collapse in Gaussian Process Latent Variable Models 7

et al., 2020; Nakagawa et al., 2023; Tran et al., 2023), they
struggle to capture the underlying compact and informative
latent representations of the observed data, resulting in the
well-known posterior collapse issue (Menon et al., 2022;
Wang & Liu, 2022; Lucas et al., 2019; Razavi et al., 2019),
a facet of model collapse (see App. D). This phenomenon is
partially attributed to the overfitting, stemming from opti-
mizing a large number of parameters in the encoder of VAE,
leading to homogeneous latent spaces (Bowman et al., 2016;
Sønderby et al., 2016; Zhu et al., 2023).

RFLVMs. In addition to inducing points-based GPLVMs,
the random feature latent variable model (RFLVM) adopts
the RFF approximation of the kernel function as a variant
of the GPLVM and leverages a Dirichlet process (DP) mix-
ture of Gaussians to learn the associated spectral density
of the kernel function (Rahimi & Recht, 2007; Oliva et al.,
2016; Gundersen et al., 2021; Zhang et al., 2023). Despite
the capacity to approximate arbitrary stationary kernels, the
effectiveness in addressing model collapse in the RFLVM
might be compromised by the “rich-get-richer” property
inherent in the DP mixture prior (Gundersen et al., 2021),
which places a strong assumption regarding the data genera-
tion process (Poux-Médard et al., 2023). A comprehensive
comparison between our advised RFLVM and the SOTA
models can be found in Table 3, App. D.

6. Experiments
We showcase the impact of the projection variance and ker-
nel flexibility on model collapse in § 6.1 and § 6.2. In § 6.3
and § 6.4, we further corroborate the superior performance
of advised RFLVM in latent representation learning on var-
ious real-world datasets. More experimental details can
be found in App. E, and the code is publicly available at
https://github.com/zhidilin/advisedGPLVM.

6.1. Projection Variance Matters

To evaluate the impact of the projection variance in gen-
eral GPLVM, we apply the advised RFLVM on the MNIST
dataset (LeCun, 1998). We quantify the degree of model
collapse under two configurations of σ2: learned and fixed.
The degree of the model collapse is evaluated by counting
the number of zero-columns in the learned latent variable X̂
and measuring its K-nearest neighbors (KNN) classification
accuracy. Detailed results are depicted in Fig. 2.

On the left-hand side of Fig. 2, it is observed that, when σ2

is fixed, the latent variable learned by the advised RFLVM
rapidly collapses to zero as the value of σ2 increases. This
observation aligns with the findings in the linear GPLVM
(see Proposition 3.3). Additionally, the inferior performance
of the KNN accuracy depicted on the right-hand side of
Fig. 2 illustrates that, without learning σ2, the proposed
advised RFLVM tends to recover a vague and uninformative

Figure 2: Left: The number of zero-columns (short as Num-ZC) in
the latent variable X versus the initialization value of σ2 (defined
as Init-σ2). Right: KNN classification accuracy against Init-σ2.
Standard deviation is calculated over five experiments.

latent representation. In stark contrast, advised RFLVM
with a learned σ2 effectively mitigates the risk of model
collapse, irrespective of the initialization value of σ2 or the
metric employed. This supports our hypothesis regarding
the importance of learning σ2 to prevent model collapse in
general GPLVMs.

6.2. S-shaped Latent Manifold Learning

Next, we demonstrate the importance of kernel flexibility in
preventing model collapse, utilizing two synthetic datasets,
each consisting of N=500 observations with M=100 di-
mensions. Both datasets are generated from a GPLVM with
a two-dimensional (2-D) latent S-shaped manifold, but em-
ploying distinct kernel configurations. One employs a basic
RBF kernel, while the other utilizes a more complex combi-
nation of an RBF kernel and a periodic kernel (Rasmussen
& Williams, 2006). We compare our advised RFLVM with
three GPLVM variants: BGPLVM (Titsias & Lawrence,
2010), GPLVM-SVI (Lalchand et al., 2022), and RFLVM
(Zhang et al., 2023; Gundersen et al., 2021). In the case of
BGPLVM and GPLVM-SVI, the default setting (see App. E)
is used except that the number of inducing points is selected
from the set {6, 10, 20, 30, 60, 120}, which yields the best
inference performance.

Figure 3 reports the results for the S-shaped manifold
learning, where the coefficient of determination (R2 score)
(Chicco et al., 2021) is used to quantify the “closeness”
between the inferred manifold (after post-affine transforma-
tion) and the ground truth manifold. The results indicate
that advised RFLVM and RFLVM consistently outperform
BGPLVM and GPLVM-SVI in both synthetic datasets. It is
obvious that GPLVM-SVI exhibits the worst performance,
and BGPLVM shows fluctuated performance, although, in
some realizations, they can reasonably estimate the shape
of X (see the left illustration in Fig. 3). The fluctuated
performance of BGPLVM and GPLVM-SVI suggests that
optimizing the additional inducing points (variational pa-
rameters) can complicate the learning process and incur
such instability.

https://github.com/zhidilin/advisedGPLVM

Preventing Model Collapse in Gaussian Process Latent Variable Models 8

RFLVM
advisedRFLVM

BGPLVM

GPVLM-SVI

Ground truth

Ground truth

RFLVM

advisedRFLVM

BGPLVM

GPVLM-SVI

Figure 3: Left: Learned latent manifold in “RBF+periodic” dataset. Right: R2 score performance over different models in two datasets.

Table 1: Classification accuracy evaluated by fitting a KNN classifier (k = 1) with five-fold cross-validation. Mean and standard deviation
are computed over five experiments, and the top performance is in bold.

DATASET PCA LDA Isomap HPF BGPLVM GPLVM-SVI

BRIDGES 0.841 ± 0.007 0.668 ± 0.053 0.797 ± 0.025 0.544 ± 0.109 0.818 ± 0.037 0.796 ± 0.019
CIFAR-10 0.267 ± 0.002 0.227 ± 0.006 0.272 ± 0.006 0.208 ± 0.006 0.271 ± 0.014 0.251 ± 0.012

MNIST 0.365 ± 0.012 0.233 ± 0.026 0.444 ± 0.021 0.314 ± 0.040 0.567 ± 0.033 0.344 ± 0.054
MONTREAL 0.678 ± 0.013 0.602 ± 0.028 0.709 ± 0.005 0.618 ± 0.001 0.725 ± 0.012 0.676 ± 0.010

NEWSGROUPS 0.392 ± 0.005 0.391 ± 0.018 0.397 ± 0.010 0.334 ± 0.019 0.385 ± 0.010 0.378 ± 0.018
YALE 0.543 ± 0.008 0.338 ± 0.023 0.588 ± 0.017 0.511 ± 0.019 0.553 ± 0.036 0.521 ± 0.015

DATASET VAE NBVAE DCA CVQ-VAE RFLVM advisedRFLVM

BRIDGES 0.751 ± 0.016 0.758 ± 0.038 0.702 ± 0.036 0.688 ± 0.013 0.846 ± 0.039 0.846 ± 0.015
CIFAR-10 0.266 ± 0.002 0.259 ± 0.005 0.255 ± 0.019 0.224 ± 0.012 0.284 ± 0.103 0.290 ± 0.006

MNIST 0.643 ± 0.021 0.281 ± 0.012 0.171 ± 0.075 0.128 ± 0.005 0.602 ± 0.055 0.795 ± 0.015
MONTREAL 0.668 ± 0.012 0.716 ± 0.009 0.685 ± 0.716 0.646 ± 0.003 0.769 ± 0.010 0.789 ± 0.013

NEWSGROUPS 0.385 ± 0.002 0.398 ± 0.010 0.399 ± 0.034 0.356 ± 0.019 0.413 ± 0.009 0.418 ± 0.007
YALE 0.611 ± 0.020 0.456 ± 0.046 0.284 ± 0.054 0.338 ± 0.002 0.653 ± 0.067 0.765 ± 0.010

The performance gain of the advised RFLVM and RFLVM
can be attributed to the kernel flexibility, which is particu-
larly evident when the dataset is generated from the underly-
ing GPLVM with a hybrid of RBF kernel and periodic kernel.
This validates the crucial role of kernel function flexibility in
preventing model collapse. Nevertheless, advised RFLVM
consistently outperforms the RFLVM, although RFLVM
theoretically is capable of approximating arbitrary station-
ary kernels as well. This discrepancy may stem from the
biased assumption of DP priors for the spectral densities in
RFLVM (Zhang et al., 2023). Such bias can lead to unfair
exposure for the density weights, resulting in only a few ef-
fective densities and a degenerated approximation capacity
(Gundersen et al., 2021). Moreover, the RFLVM is based
on MCMC sampling which may be inferior in this setting
to the advised RFLVM, which optimizes the ELBO in terms
of inference efficiency.

6.3. Real Dataset Evaluation

This subsection further demonstrates the ability of ad-
vised RFLVM to capture the latent space on multiple real-
world datasets (see Table 1), where the dataset sizes of
MNIST and CIFAR are reduced for accommodating the

high complexity of RFLVM (see App. E.1 for further de-
tails). For each dataset, we hold the labels and employ them
to evaluate the estimated latent space using KNN classifier
with five-fold cross-validation. In addition to the GPLVM
variants used in § 6.2, we also encompass various recent
VAEs (Kingma & Welling, 2019; Zhao et al., 2020; Eraslan
et al., 2019; Zheng & Vedaldi, 2023) and classic dimension-
ality reduction methods. The KNN classification accuracy
results for all the competing methods are presented in Ta-
ble 1.

The results demonstrate that advised RFLVM consistently
achieves the highest KNN accuracy across all datasets.
This suggests that the latent variables estimated by ad-
vised RFLVM are more informative compared to the other
methods. The four classic methods, PCA (Wold et al.,
1987; Pearson, 1901), hierarchical Poisson factorization
(HPF) (Gopalan et al., 2015), latent Dirichlet allocation
(LDA) (Blei et al., 2003), and Isomap (Balasubramanian &
Schwartz, 2002) showing inferior performance, are primary
attributed to their limited model flexibility.

For the VAE models, despite their impressive approxima-
tion capabilities through neural network-based decoders and

Preventing Model Collapse in Gaussian Process Latent Variable Models 9

Table 2: Missing data imputation on the MNIST and BRENDAN datasets.

DATASET METRIC
VAE BGPLVM RFLVM advised RFLVM

0% 10% 30% 60% 0% 10% 30% 60% 0% 10% 30% 60% 0% 10% 30% 60%

MNIST
KNN ACC (↑) 0.715 0.689 0.660 0.585 0.603 0.598 0.541 0.476 0.602 0.391 0.345 0.273 0.806 0.802 0.777 0.636

TEST MSE (↓) 0.035 0.038 0.045 0.068 0.048 0.040 0.057 0.098 0.066 0.067 0.070 0.120 0.025 0.028 0.039 0.068

BRENDAN TEST MSE (↓) 0.005 0.009 0.043 0.150 0.006 0.041 0.087 0.197 0.010 0.015 0.049 0.153 0.003 0.009 0.045 0.152

encoders (Kingma & Welling, 2019), they often fall short
in their latent space learning performance. This is because
optimizing numerous neural network parameters can result
in overfitting, rendering these deterministic neural networks
directed toward wrong latent spaces. In contrast, GPLVM
variants prevent the need for neural network parameter op-
timization. More importantly, the inherent regularization
imposed by the GP prior mitigates overfitting and thus en-
hances the generalization capability for latent space learning
(Wilson & Izmailov, 2020). These lead to GPLVM-based
models being expected to attain higher KNN accuracy. Nev-
ertheless, the results in Table 1 show that BGPLVM and
GPLVM-SVI can only attain comparable performance com-
pared to the PCA. This mainly attributed to the inherently
inadequate kernel flexibility and the additional optimiza-
tion burden of the variational parameters. RFLVM consis-
tently exhibits a slightly inferior performance compared to
advised RFLVM, primarily due to the unfair exposure of
density weights and the inefficient and unscalable MCMC
inference algorithm mentioned in § 6.2 and § 5. We also con-
ducted additional simulations on larger datasets. The results,
presented in Appendix E.4.4, emphasize the superiority of
advised RFLVM over state-of-the-art variants regardless of
the dataset size.

6.4. Missing Data Imputation

This subsection further evaluates the performance of ad-
vised RFLVM in the task of imputing missing data on two
image datasets, namely MNIST and BRENDAN (Roweis
& Saul, 2000). Specifically, we randomly hold out a cer-
tain proportion (0%, 10%, 30%, and 60%) of the elements
in the observed data matrix, Y, and subsequently we uti-
lize advised RFLVM to estimate latent variables X from
the incomplete dataset (denoted as Yobs). We then im-
pute the missing values Ymiss by their posterior mean
Ŷmiss = E[Ymiss | X,Yobs,−]. The imputation perfor-
mance is evaluated through the mean square error (MSE)
between Ŷmiss and the ground-truth Ymiss. Addition-
ally, KNN classification accuracy is reported for the MNIST
dataset to illustrate the latent representation learning results.
Table 2 presents the performance of the advised RFLVM
against competing methods. The results indicate that ad-
vised RFLVM outperforms most competitors in reconstruct-
ing observations and recovering latent representations, re-
gardless of the proportion of missing data. Despite VAE

exhibiting reconstruction capabilities comparable to ad-
vised RFLVM, it still lags behind in recovering informative
latent variables due to its potential overfiting and inherent
posterior collapse issues (Wang & Liu, 2022). More details
about the reconstruction performance of advised RFLVM
are provided in App. E.4.2, showing its superior ability to
restore missing pixels.

7. Conclusions
We have introduced our novel advised RFLVM to address
model collapse due to inadequate kernel flexibility and in-
appropriate projection variance selection in GPLVMs. By
integrating the SM kernel and the differentiable RFF ap-
proximation, our advised RFLVM not only enhances model
flexibility but also enables the use of modern automatic
differentiation tools for optimizing essential parameters,
including the projection variance within the variational in-
ference framework. Empirical results across diverse datasets
corroborate the superiority of our advised RFLVM in learn-
ing compact and informative latent representations, high-
lighting the importance of learning projection variance and
kernel flexibility in mitigating model collapse. Furthermore,
our model outperforms various state-of-the-art latent vari-
able models, including VAEs and other GPLVM variants.
In future work, we are focusing on how to further enhance
the variational inference algorithm presented in this paper.
We hope that, through our endeavors, we may scale up our
LVM for scenarios with massive data sets as an efficient
alternative to the resource-intensive deep learning models.

Acknowledgements
The authors would like to thank the anonymous referees
for their valuable comments that improved the quality of
the paper. The work of Feng Yin was supported by the
NSFC under Grant No. 62271433, and in part by the Shen-
zhen Science and Technology Program under Grant No.
JCYJ20220530143806016. The work of Michael Minyi
Zhang was supported by the HKU-URC Seed Fund for Ba-
sic Research for New Staff.

Impact Statement
This work introduces a novel probabilistic latent variable
model tailored to effectively capture the underlying struc-

Preventing Model Collapse in Gaussian Process Latent Variable Models 10

tures of the observed data, which allows us to provide infor-
mative but concise foundational knowledge for analyzing
highly complex tasks, such as the analysis of social issues,
research on human behavior, and exploration of cognitive
mechanisms. Technically, this work, conducting theoretical
analyses on the impact of the projection variance on model
collapse, will strengthen the understanding of broader re-
searchers and engineers on the “default” learning of the
projection variance. We also carefully examine the impact
of kernel flexibility, and all these rigorous examinations
of the potential reasons for model collapse enhance model
interpretability, which is crucial for safety-critical systems
such as autonomous driving and intelligent healthcare.

Limitations and future works. Our model faces limita-
tions in handling out-of-distribution data, which requires
explicitly learning an encoding function from observable
data points into a latent representation. One potential solu-
tion to address this is to assume a Y-dependent parametric
variational distribution of latent variables, q(X|Y), where
the parameters of the distribution are modeled by an encoder
network that takes the observation Y as input. Consequently,
upon completion of the training process, the encoder net-
work can be employed to infer the latent variables of the
out-of-distribution data. Another limitation is that despite
the reduction in the complexities (linear with N), the prac-
tical training time of our method may not be endurable for
massive datasets.

References
Abolhasanzadeh, B. Gaussian process latent variable model

for dimensionality reduction in intrusion detection. In
2015 23rd Iranian Conference on Electrical Engineering,
pp. 674–678. IEEE, 2015.

Aigner, D. J., Hsiao, C., Kapteyn, A., and Wansbeek, T.
Latent variable models in econometrics. Handbook of
econometrics, 2:1321–1393, 1984.

Balasubramanian, M. and Schwartz, E. L. The Isomap
algorithm and topological stability. Science, 295(5552):
7–7, 2002.

Bau, D., Zhu, J.-Y., Wulff, J., Peebles, W., Strobelt, H.,
Zhou, B., and Torralba, A. Seeing what a GAN cannot
generate. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4502–4511, 2019.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, 2006.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3
(Jan):993–1022, 2003.

Bochner, S. A theorem on Fourier-Stieltjes integrals. Bul-
letin of the American Mathematical Society, 40(4):271–
276, 1934.

Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R.,
and Bengio, S. Generating sentences from a continuous
space. In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, pp. 10–21,
2016.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pp. 108–122, 2013.

Cao, J., Kang, M., Jimenez, F., Sang, H., Schaefer, F. T.,
and Katzfuss, M. Variational sparse inverse Cholesky
approximation for latent Gaussian processes via double
Kullback-Leibler minimization. In International Con-
ference on Machine Learning, pp. 3559–3576. PMLR,
2023.

Chang, P. E., Verma, P., John, S., Solin, A., and Khan, M. E.
Memory-based dual Gaussian processes for sequential
learning. In International Conference on Machine Learn-
ing, pp. 4035–4054. PMLR, 2023.

Cheng, L., Yin, F., Theodoridis, S., Chatzis, S., and Chang,
T.-H. Rethinking Bayesian learning for data analysis:
The art of prior and inference in sparsity-aware modeling.
IEEE Signal Processing Magazine, 39(6):18–52, 2022.

Chicco, D., Warrens, M. J., and Jurman, G. The coeffi-
cient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in regres-
sion analysis evaluation. PeerJ Computer Science, 7:
e623, 2021.

de Souza, D., Mesquita, D., Gomes, J. P., and Mattos, C. L.
Learning GPLVM with arbitrary kernels using the un-
scented transformation. In International Conference on
Artificial Intelligence and Statistics, pp. 451–459. PMLR,
2021.

Duvenaud, D. Automatic model construction with Gaussian
processes. PhD thesis, University of Cambridge, 2014.

Ek, C. H., Torr, P. H. S., and Lawrence, N. D. Gaussian
process latent variable models for human pose estimation.
In Machine Learning for Multimodal Interaction, pp. 132–
143. Springer, 2008.

Eleftheriadis, S., Rudovic, O., and Pantic, M. Shared Gaus-
sian process latent variable model for multi-view facial
expression recognition. In International Symposium on
Visual Computing, pp. 527–538. Springer, 2013.

Preventing Model Collapse in Gaussian Process Latent Variable Models 11

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., and
Theis, F. J. Single-cell RNA-seq denoising using a deep
count autoencoder. Nature communications, 10(1):390,
2019.

Gopalan, P., Hofman, J. M., and Blei, D. M. Scalable
recommendation with hierarchical Poisson factorization.
In Conference on Uncertainty in Artificial Intelligence,
pp. 326–335, 2015.

Graves, A. Stochastic backpropagation through mixture
density distributions. arXiv preprint arXiv:1607.05690,
2016.

Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin,
F., Vazquez, D., and Courville, A. PixelVAE: A latent
variable model for natural images. In International Con-
ference on Learning Representations, 2016.

Gundersen, G., Zhang, M., and Engelhardt, B. Latent vari-
able modeling with random features. In International
Conference on Artificial Intelligence and Statistics, pp.
1333–1341. PMLR, 2021.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. In Conference on Uncertainty in
Artificial Intelligence, pp. 282–290, Arlington, Virginia,
USA, 2013.

Hotelling, H. Relations between two sets of variates.
Biometrika, 1936.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional Conference on Machine Learning, pp. 1724–1732.
PMLR, 2017.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine Learning, 37:183–233, 1999.

Jung, Y., Song, K., and Park, J. Efficient approximate in-
ference for stationary kernel on frequency domain. In In-
ternational Conference on Machine Learning, pp. 10502–
10538. PMLR, 2022.

Kim, J.-O. and Mueller, C. W. Factor analysis: Statistical
Methods and Practical Issues, volume 14. sage, 1978.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P. and Welling, M. An introduction to varia-
tional autoencoders. Foundations and Trends® in Ma-
chine Learning, 12(4):307–392, 2019.

Lalchand, V., Ravuri, A., and Lawrence, N. D. Generalised
GPLVM with stochastic variational inference. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 7841–7864. PMLR, 2022.

Lawrence, N. Probabilistic non-linear principal component
analysis with Gaussian process latent variable models.
Journal of Machine Learning Research, 6(60):1783–1816,
2005.

LeCun, Y. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Li, J., Zhang, B., and Zhang, D. Shared autoencoder Gaus-
sian process latent variable model for visual classification.
IEEE Transactions on Neural Networks and Learning
Systems, 29(9):4272–4286, 2017.

Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., and
Schölkopf, B. Randomized nonlinear component analysis.
In International Conference on Machine Learning, pp.
1359–1367. PMLR, 2014.

Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., and Wil-
son, A. G. Bayesian model selection, the marginal likeli-
hood, and generalization. In International Conference on
Machine Learning, pp. 14223–14247. PMLR, 2022.

Lucas, J., Tucker, G., Grosse, R. B., and Norouzi, M. Don’t
blame the ELBO! A linear VAE perspective on posterior
collapse. Advances in Neural Information Processing
Systems, 32, 2019.

Menon, S., Blei, D., and Vondrick, C. Forget-me-not! Con-
trastive critics for mitigating posterior collapse. In Con-
ference on Uncertainty in Artificial Intelligence, pp. 1360–
1370. PMLR, 2022.

Nakagawa, N., Togo, R., Ogawa, T., and Haseyama, M.
Gromov-Wasserstein autoencoders. In Proceedings of
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=sbS10BCtc7.

Oliva, J. B., Dubey, A., Wilson, A. G., Póczos, B., Schnei-
der, J., and Xing, E. P. Bayesian nonparametric kernel-
learning. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1078–1086. PMLR, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural iInformation
Processing Systems, 32, 2019.

Pearson, K. LIII. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 2(11):
559–572, 1901.

https://openreview.net/forum?id=sbS10BCtc7
https://openreview.net/forum?id=sbS10BCtc7

Preventing Model Collapse in Gaussian Process Latent Variable Models 12

Poux-Médard, G., Velcin, J., and Loudcher, S. Pow-
ered Dirichlet process-controlling the “rich-get-richer”
assumption in bayesian clustering. In Joint European
Conference on Machine Learning and Knowledge Dis-
covery in Databases, pp. 611–626. Springer, 2023.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177–1184, 2007.

Ramchandran, S., Koskinen, M., and Lähdesmäki, H. Latent
Gaussian process with composite likelihoods and numeri-
cal quadrature. In International Conference on Artificial
Intelligence and Statistics, pp. 3718–3726. PMLR, 2021.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. MIT Press, 2006.

Razavi, A., Oord, A. v. d., Poole, B., and Vinyals, O.
Preventing posterior collapse with delta-VAEs. arXiv
preprint arXiv:1901.03416, 2019.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality re-
duction by locally linear embedding. science, 290(5500):
2323–2326, 2000.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and
Winther, O. Ladder variational autoencoders. Advances
in Neural Information Processing Systems, 29, 2016.

Song, G., Wang, S., Huang, Q., and Tian, Q. Similarity
Gaussian process latent variable model for multi-modal
data analysis. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 4050–4058, 2015.

Theodoridis, S. Machine Learning: A Bayesian and Opti-
mization Perspective. Academic Press, 2nd edition, 2020.

Tipping, M. E. and Bishop, C. M. Probabilistic principal
component analysis. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 61(3):611–622,
1999.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In International Conference
on Artificial Intelligence and Statistics, pp. 567–574.
PMLR, 2009.

Titsias, M. and Lawrence, N. D. Bayesian Gaussian process
latent variable model. In International Conference on
Artificial Intelligence and Statistics, pp. 844–851. PMLR,
2010.

Tran, B.-H., Shahbaba, B., Mandt, S., and Filippone, M.
Fully Bayesian autoencoders with latent sparse Gaus-
sian processes. In International Conference on Machine
Learning, pp. 34409–34430. PMLR, 23–29 Jul 2023.

Tropp, J. A. An introduction to matrix concentration inequal-
ities. Foundations and Trends® in Machine Learning, 8
(1-2):1–230, 2015.

Wang, Y., Blei, D., and Cunningham, J. P. Posterior collapse
and latent variable non-identifiability. Advances in Neural
Information Processing Systems, 34:5443–5455, 2021.

Wang, Z. and Liu, Z. Posterior collapse of a linear latent
variable model. In Advances in Neural Information Pro-
cessing Systems, 2022.

Wilson, A. and Adams, R. Gaussian process kernels for
pattern discovery and extrapolation. In International Con-
ference on Machine Learning, pp. 1067–1075. PMLR,
2013.

Wilson, A. G. and Izmailov, P. Bayesian deep learning
and a probabilistic perspective of generalization. In Pro-
ceedings of the 34th International Conference on Neural
Information Processing Systems, pp. 4697–4708, 2020.

Wold, S., Esbensen, K., and Geladi, P. Principal compo-
nent analysis. Chemometrics and intelligent laboratory
systems, 2(1-3):37–52, 1987.

Yang, Z., Hu, Z., Salakhutdinov, R., and Berg-Kirkpatrick,
T. Improved variational autoencoders for text modeling
using dilated convolutions. In International conference
on machine learning, pp. 3881–3890. PMLR, 2017.

Zarzoso, V., Moreau, E., Gribonval, R., and Vincent, E.
Latent Variable Analysis and Signal Separation. Springer,
2010.

Zhang, M. M., Gundersen, G. W., and Engelhardt, B. E.
Bayesian non-linear latent variable modeling via random
fourier features. arXiv preprint arXiv:2306.08352, 2023.

Zhao, H., Rai, P., Du, L., Buntine, W., Phung, D., and Zhou,
M. Variational autoencoders for sparse and overdispersed
discrete data. In International Conference on Artificial
Intelligence and Statistics, pp. 1684–1694. PMLR, 2020.

Zheng, C. and Vedaldi, A. Online clustered codebook. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 22798–22807, 2023.

Zhu, H., Balsells-Rodas, C., and Li, Y. Markovian Gaussian
process variational autoencoders. In International Con-
ference on Machine Learning, pp. 42938–42961. PMLR,
2023.

Preventing Model Collapse in Gaussian Process Latent Variable Models 13

APPENDICES

A Model Collapse Mechanism Revelation 13

A.1 Special Case of GPLVM: Dual Probabilistic Principal Analysis (DPPCA) 14

A.2 Proof of Theorem 3.1 . 14

A.3 Proof of Proposition 3.2 . 15

A.3.1 Auxiliary Theorem . 15

A.3.2 Proof of Proposition 3.2 . 17

A.4 Proof of Proposition 3.3 . 18

B Modeling and Variational Approximation 19

B.1 ELBO Derivation and Evaluation . 19

B.2 Interpretation of Modeling and Variational Distribution . 20

C Auto-differentiable SM Kernel using RFF Approximation 21

C.1 Proof of Proposition 4.2 . 21

C.2 Proof of Theorem 4.3 . 21

D Extended Related Work 24

E Experiment Details 25

E.1 Data Descriptions and Preprocessing . 25

E.2 Benchmark Methods Descriptions . 26

E.3 Default Hyperparameter Configurations . 27

E.4 Additional Results . 27

E.4.1 S-shaped Latent Manifold Estimation . 27

E.4.2 Missing Data Imputation . 27

E.4.3 KNN Classification Accuracy with Varying K . 31

E.4.4 Larger Datasets Extension . 31

A. Model Collapse Mechanism Revelation
In § A.1, we provide a detailed introduction to dual probabilistic principal analysis (DPPCA) (Lawrence, 2005) and establish
its connection with the linear GPLVM. Building upon this connection, a detailed derivation of Theorem 3.1 is provided,
delineating the forms of stationary points. Through further exploration of the optimization landscapes around stationary
points, we provide detailed proofs for Proposition 3.2 and Proposition 3.3, located in § A.3 and §. A.4, respectively.

Preventing Model Collapse in Gaussian Process Latent Variable Models 14

A.1. Special Case of GPLVM: Dual Probabilistic Principal Analysis (DPPCA)

In DPPCA (Lawrence, 2005), each observed data point yi ∈ RM is generated from a latent variable xi ∈ RQ through a
linear transformation A ∈ RM×Q, i.e.,

yi ∼ N
(
Axi, σ

2IM
)
, (17a)

p(A) ∼
M∏

N (0, IQ) , (17b)

where σ2 represents the projection variance, representing the uncertainty. For N observed data points in DPPCA, denoted
as Y ∈ RN×M , the marginal likelihood, obtained by marginalizing the transformation matrix A, can be represented as
follows:

y:,j |X ∼ N
(
0,XX⊤ + σ2IN

)
, j = 1, . . . ,M, (18)

where y:,j denotes j-th column in the observed data Y. Consequently, the maximum likelihood estimate (MLE) for the
latent variable, denoted as X̂DPPCA, can be derived by maximizing the logarithm of Eq. (18) through, e.g., gradient-based
methods, i.e.,

X̂DPPCA = max
X

log
M∏
j=1

N
(
y:,j | 0,XX⊤ + σ2IN

)
. (19)

Building upon Eq. (19) and the optimization problem given in Eq. (6), a connection between GPLVM and DPPCA can be
established (Lawrence, 2005), encapsulated in the following corollary:

Corollary A.1. Assuming the kernel function in GPLVM is defined as the inner product kernel with k(x,x′) = x⊤x′, the
stationary points for the linear GPLVM, as expressed in Eq. (6), are identical to the stationary points of DPPCA, X̂DPPCA.

Proof. If the kernel function is the inner product kernel, i.e., k(x,x′) = x⊤x′, the marginal likelihood of the linear GPLVM
can be reformulated as,

p(Y|X) =

M∏
j=1

N
(
y:,j |0,XX⊤ + σ2IN

)
. (20)

Then, the stationary points of the linear GPLVM, X̂, is given by

X̂ = max
X

log p(Y|X) = max
X

M

{
−N

2
log 2π − 1

2
log
∣∣XX⊤ + σ2IN

∣∣}− 1

2
tr
((

XX⊤ + σ2IN
)−1

YY⊤
)
. (21)

The stationary points of DPPCA, X̂DPPCA, given in Eq. (19), can be reformulated as

X̂DPPCA = max
X

M

{
−N

2
log 2π − 1

2
log
∣∣XX⊤ + σ2IN

∣∣}− 1

2
tr
((

XX⊤ + σ2IN
)−1

YY⊤
)
. (22)

It is evident that the stationary points of the linear GPLVM is identical to the stationary points of DPPCA.

A.2. Proof of Theorem 3.1

This subsection conducts a comprehensive derivation, elucidating the stationary points of the linear GPLVM. Our derivation
generally adheres to the one in (Lawrence, 2005), albeit with subtle distinctions.

Proof. Recall that, the log marginal likelihood can be expressed as

L ≜ M

{
−N

2
log 2π − 1

2
log |XX⊤ + σ2IN |

}
− 1

2
tr
((

XX⊤ + σ2IN
)−1

YY⊤
)
. (23)

Define K ≜ XX⊤ + σ2IN , Eq. (23) could be reformulated as

L = M

{
−N

2
log 2π − 1

2
log |K|

}
− 1

2
tr(K−1YY⊤). (24)

Preventing Model Collapse in Gaussian Process Latent Variable Models 15

Taking the gradient of Eq. (24) with respect to X, we have

∂L

∂X
= K−1YY⊤K−1X−MK−1X. (25)

Setting this gradient to zero, the stationary points of Eq. (24) should satisfy

1

M
YY⊤K−1X = X. (26)

According to Lemma B.2, we have

K−1X =
[
XX⊤ + σ2IN

]−1
X = X

[
X⊤X+ σ2IQ

]−1
. (27)

We conduct singular value decomposition (SVD) to X, and get X = ULV⊤, where U ∈ RN×Q, L = diag(l1, l2, . . . , lQ) ∈
RQ×Q is a diagonal matrix, and V ∈ RQ×Q. Together with Eq. (27) and Eq. (26), we have

1

M
YY⊤UL

[
L2 + σ2IQ

]−1
V⊤ = ULV⊤, (28a)

⇒ 1

M
YY⊤UL

[
L2 + σ2IQ

]−1
= UL, (28b)

⇒ 1

M
YY⊤UL = U(σ2IQ + L2)L. (28c)

Then, we have:

• If li ̸= 0, it indicates that 1
MYY⊤ui = ui(σ

2 + l2i), implying ui is an eigenvector of 1
MYY⊤ corresponding to the

eigenvalue λi = σ2 + l2i .

• If li = 0, the vector ui is arbitrary. We can set it to be an eigenvector of 1
MYY⊤ for consistency.

Consequently, all potential stationary solutions for X can be written as

X̂ = UQ

(
ΛQ − σ2IQ

)1/2
R, (29)

where UQ ∈ RN×Q is a matrix whose columns are eigenvectors of 1
MYY⊤, R ∈ RQ×Q is an arbitrary orthogonal matrix

and ΛQ ∈ RQ×Q is a diagonal matrix with:

[ΛQ]i,i =

{
λi, the corresponding eigenvalue to ui, or ,

σ2.
(30)

A.3. Proof of Proposition 3.2

A.3.1. AUXILIARY THEOREM

Before delving into the proof, we first proceed to characterize the stationary point of σ2 in the linear GPLVM, which is
summarized in the following theorem.

Theorem A.2. Given X̂, stationary points of the projection variance, denoted as σ̂2, could be obtained by solving the
following optimization problem

max
σ2

logP (Y | X̂). (31)

It turns out that σ̂2 takes the following form:

σ̂2 =
1

N −Q′

N∑
j=Q′+1

λj , (32)

where Q′ is the number of eigenvalues retained in ΛQ.

Preventing Model Collapse in Gaussian Process Latent Variable Models 16

Proof. To obtain the stationary point for σ2, we substitute the stationary point for X, defined in Eq. (7), into the log marginal
likelihood function Eq. (24) to give

L = −M

2

N log 2π +

Q′∑
j=1

log(λj) + (N −Q′) lnσ2 +
1

σ2

N∑
j=Q′+1

λj +Q′

 , (33)

where Q′ represents the number of [ΛQ]i,i, i ∈ 1, ..., Q that are not equal to σ2, see Eq. (30). Consequently, λ1, ..., λQ′

denote the eigenvalues associated with the eigenvectors “retained” in X, while λQ′+1, ..., λN refer to the eigenvalues that
are “discarded”.

By taking the gradient of Eq. (33) with respect to σ2 and setting it to zero, we obtain:

σ̂2 =
1

N −Q′

N∑
j=Q′+1

λj .

Remark A.3. Note that the eigenvalues {λQ′+1, . . . λN} can be interpreted as the discarded/lost information in the inverse
projection process (Y → X), and the corresponding eigenvectors are treated as discarded vectors.

In addition, with Theorem A.2, we can immediately get the following corollary.

Corollary A.4. If ΛQ contains the first Q principal eigenvalues of 1
MYY⊤, then the corresponding stationary point

becomes the global maximum, which could be represented as:

σ2⋆ =
1

N −Q

N∑
j=Q+1

λo
j , (34a)

X⋆ = U⋆
Q

(
Λ⋆

Q − (σ2)⋆IQ
)1/2

R, (34b)

where [λo
1, ..., λ

o
N] representing the eigenvalues of 1

MYY⊤ with λo
1 ≥ λo

2, ...,≥ λo
N . Additionally, U⋆

Q ∈ RN×Q are
the first Q principal eigenvectors of 1

MYY⊤, with the associated eigenvalues Λ⋆
Q = diag(λo

1, λ
o
2, . . . , λ

o
Q). The optimal

projection variance, σ2⋆, represents the average variance lost in the projection process.

Proof. With the stationary point of σ2 given in Eq.(32), the log marginal likelihood, given in Eq. (24), becomes

L = −M

2

Q′∑
j=1

log(λj) + (N −Q′) log

 1

N −Q′

N∑
j=Q′+1

λj

+N log(2π) +N

 . (35)

Because of the constancy of the sum of all eigenvalues λj (given the data Y), maximizing Eq. (35) is equivalently to
minimize the following quantity

E = log

 1

N −Q′

N∑
i=Q′+1

λi

− 1

N −Q′

N∑
i=Q′+1

log(λi), (36)

which solely relies on the discarded eigenvalues and remains non-negative (indeed due to Jensen’s inequality). Remarkably,
the minimization of E necessitates only that the discarded λj values are contiguous within the spectrum of the ordered
eigenvalues of matrix 1

MYY⊤. However, in addition to this, Eq. (29) imposes the condition that λj > σ2 for all i in the set
{1, 2, . . . , Q′}. Consequently, based on Eq. (32), it can be inferred that the smallest eigenvalue must be among the discarded
ones. This deduction is sufficient to establish that E is minimized when λQ′+1, . . . , λN represent the smallest N − Q′

eigenvalues. As a result, the likelihood L is maximized when λ1, . . . , λQ′ are the largest eigenvalues of matrix 1
MYY⊤. It

is worth noting that the maximization of L concerning Q′ is achieved when there are the fewest terms in the sums outlined
in Eq. (36). This occurs when Q′ = Q, ensuring that none of the li, i ∈ 1, ..., Q terms are zero.

Preventing Model Collapse in Gaussian Process Latent Variable Models 17

A.3.2. PROOF OF PROPOSITION 3.2

1) Outline of Proof.

Without loss of generality, we assume the rotation matrix R = IQ in Eq. (7), Theorem 3.1, resulting in the stationary points
of the latent variable

X̂ = UQ

(
ΛQ − σ̂2IQ

)1/2
. (37)

Based upon this form, we seek to explore the structure of the optimization landscape around X̂ by examining the variation
trend of the log marginal likelihood L at X̂ in the spanned space of discarded vectors, denoted as Span(UD), where

UD ≜ [uQ′+1, ...,uN] .

Intuitively, if the evaluation of L at a stationary point consistently decreases for all axes in Span(UD), then we can consider
the corresponding stationary point as a local optimum or global optimum, and vice versa; If the evaluation of L at a
stationary point consistently increases along any axis and decreases along any others within Span(UD), the corresponding
stationary point can be recognized as a saddle point.

2) Quantitative Analysis.

To quantitatively analyze the variation in L at X̂ within Span(UD), we introduce a small perturbation to the i-th column of
X̂ in the form of ϵuj , resulting in the perturbed stationary point X̂ϵ with

[X̂ϵ]:,i = x̂i + ϵuj , i = 1, 2, . . . , Q, (38)

where x̂i denotes the i-th column of X̂ϵ, with a bit abuse of notation, and ϵ is an arbitrarily small positive constant and
uj , j ∈ Q′+1, ..., N represents a principal axis in Span(UD). The variation trends from L(X̂) to L(X̂ϵ) can be determined
by examining the sign of the dot product of the perturbation uj with the gradient at x̂i + ϵuj . More precisely, when the sign
is positive, the evaluation of L at X̂ will ascend as x̂i shifts towards the direction of uj , and vice versa. For clarity, let us
denote the sign of the dot product as sgn(Dij), where Dij denotes the dot product and is expressed as

Dij = u⊤
j

{
K−1YY⊤K−1 (x̂i + ϵuj)−MK−1 (x̂i + ϵuj)

}
, (39)

with K = X̂ϵX̂ϵ⊤ + σ̂2IN .

According to Lemma B.2 and Eq. (37), we have

K−1X̂ϵ = X̂ϵ
[
(X̂ϵ)⊤X̂ϵ + σ̂2IQ

]−1

,

= X̂ϵ
[
Λϵ

Q

]−1
,

(40)

where Λϵ
Q is a diagonal matrix with:

[Λϵ
Q]k,k =

{
[ΛQ]k,k, ∀k ̸= i,

[ΛQ]i,i + ϵ2, otherwise.
(41)

Checking the i-th column of the matrices on both sides of Eq. (40), we find that

K−1 (x̂i + ϵuj) =
x̂i + ϵuj

[ΛQ]i,i + ϵ2
. (42)

Substituting K−1 (x̂i + ϵuj) =
(x̂i+ϵuj)
[ΛQ]i,i+ϵ2 into the first term of Eq. (39) yields

Dij = Mu⊤
j K

−1

{
1

M
YY⊤ x̂i + ϵuj

[ΛQ]i,i + ϵ2
− (x̂i + ϵuj)

}
,

= Mu⊤
j K

−1

{
1

M
YY⊤ 1

[ΛQ]i,i + ϵ2
− IN

}
x̂i +Mu⊤

j K
−1

{
1

M
YY⊤ 1

[ΛQ]i,i + ϵ2
− IN

}
ϵuj , (43)

≈ Mu⊤
j K

−1

{
1

M
YY⊤ 1

[ΛQ]i,i
− IN

}
x̂i + ϵMu⊤

j K
−1

{
1

M
YY⊤ 1

[ΛQ]i,i
− IN

}
uj . (44)

Preventing Model Collapse in Gaussian Process Latent Variable Models 18

According to Eq. (26), we have

1

M
YY⊤ x̂i

[ΛQ]i,i
= x̂i. (45)

Therefore, Eq. (44) can be rewritten as

Dij = ϵM

(
λj

[ΛQ]i,i
− 1

)
u⊤
j K

−1uj , (46)

where λj represents the eigenvalues corresponding to uj .

Due to the positive definite property of K−1, sgn(Dij), see Eq. (46), relies solely on

sgn

(
λj

[ΛQ]i,i
− 1

)
, (47)

implying that the type of stationary points is dictated by the discarded and retained eigenvalues. Specifically,

(i) For x̂i,∀i = 1, ..., Q, if [ΛQ]i,i > λj ,∀j ∈ Q′+1, ..., N , then the corresponding stationary point should be recognized
as a local or global optimum point;

(ii) For x̂i,∀i = 1, ..., Q, if [ΛQ]i,i < λj ,∀j ∈ Q′+1, ..., N , then the corresponding stationary point should be recognized
as a local minimum point;

(iii) For x̂i, i = 1, ..., Q, if [ΛQ]i,i > λj , [ΛQ]i,i < λk, ∃j, k ∈ Q′ + 1, ..., N, then the corresponding stationary point
should be identified as a saddle point.

3) Final Results.

If [ΛQ]i,i = λi,∀i ∈ 1, ..., Q, the stationary point represents a global optimum when

λi > λj ,∀i ∈ 1, ..., Q, and ∀j ∈ Q′ + 1, ..., N.

However, if there exists a λi < λj , these stationary points correspond to saddle points. Additionally, when ∃i ∈
1, ..., Q, [ΛQ]i,i = σ̂2, the associated stationary points are deemed saddle points due to the existence of cases where

σ̂2 < λj , j ∈ Q′ + 1, ..., N,

considering that σ̂2 is the average of the discarded eigenvalues. Because the saddle points could be escaped efficiently, they
are generally regarded as unstable stationary points (Jin et al., 2017). Therefore, during the optimization process, when we
set σ2 = σ̂2, the only stable maximum point is the global optimum point.
Remark A.5. The analysis does not account for the equality of eigenvalues. This is because: (1) Equality among the first Q
principal eigenvalues does not influence the presented analysis; (2) The equality of all discarded eigenvalues is trivial.

A.4. Proof of Proposition 3.3

Proof. Suppose the projection variance σ2 takes a value within the range (λo
Q, λ

o
Q−1), where λo

Q and λo
Q−1 represent the

Q-th and (Q−1)-th principal eigenvalues of 1
MYY⊤, respectively. In this scenario, the eigenvectors with associated

eigenvalues less than λo
Q are unambiguously discarded. Furthermore, in such a case, the only stable local optimum point3

comprises the following ΛQ,

[ΛQ]i,i =

{
λo
i , for i ∈ 1, ..., Q− 1, or ,

σ2.

It is evident that, for either [ΛQ]i,i = σ2 or λo
i , [ΛQ]i,i > λo

j for all i ∈ 1, ..., Q and for all j ∈ Q− 1, ..., N , leading to the
corresponding stationary points being the local optimum point, with one zero-column in X̂.

3Other stationary points, manifested as saddle points, are unstable as discussed in App. A.3.

Preventing Model Collapse in Gaussian Process Latent Variable Models 19

If the projection variance falls within the range (λo
Q−1, λ

o
Q−2), the only stable local optimum point comprises the following

ΛQ,

[ΛQ]i,i =

{
λo
i , for i ∈ 1, ..., Q− 2, or ,

σ2,

with two zero-columns in X. By deduction, when σ2 > λo
1, the only stable local optimum point comprises the ΛQ with

[ΛQ]i,i = σ2 for all i ∈ 1, ..., Q with X = 0.

It is worth noting that we deliberately avoid considering the equality of any of the Q principal eigenvalues to streamline the
quantitative analysis, as introducing such equality might exacerbate the complexity and hasten the occurrence of model
collapse. For instance, when the projection variance falls within the range (λo

Q, λ
o
Q−1) and there exist two eigenvectors with

eigenvalues equal to λo
Q, the stable local optimum point entails two zero-columns.

Suppose σ2 < λN , then, there exist a set of local minima point characterized by the following ΛQ,

[ΛQ]i,i =

{
λo
i , for i ∈ N −Q+ k, ..., N, or ,

σ2,

where k represents the last k principal eigenvalues that are selected. It is also noteworthy that these local minima point4 will
feature k zero-columns in X.

B. Modeling and Variational Approximation
B.1. ELBO Derivation and Evaluation

L = Eq(X,W)

[
p(Y,X,W)

q(X,W)

]
= Eq(X,W)

[
log

p(W)
∏N

i=1 p(xi)
∏M

j=1 p(y:,j |X,W)

p(W)
∏N

i=1 q(xi)

]

=

M∑
j=1

Eq(X,W) [log p(y:,j |X,W)]︸ ︷︷ ︸
Term 1: data reconstruction

−
N∑
i=1

KL(q(xi)∥p(xi))︸ ︷︷ ︸
Term 2: regularization

≈
M∑
j=1

1

I

I∑
i=1

logN (y:,j |0, K̂(i)
sm + σ2IN)− 1

2

N∑
i=1

[
tr(Si) + µ⊤

i µi − log |Si| −Q
]

≈
M∑
j=1

1

I

I∑
i=1

{
−N

2
log 2π − 1

2
log
∣∣∣K̂(i)

sm + σ2IN

∣∣∣− 1

2
y⊤
:,j

(
K̂(i)

sm + σ2IN

)−1

y:,j

}

− 1

2

N∑
i=1

[
tr(Si) + µ⊤

i µi − log |Si| −Q
]

where Si is typically assumed to be a diagonal matrix. Note that K̂
(i)
sm = Φsm(X

(i);W)Φsm(X
(i);W)⊤, where

Φsm(X
(i);W) ∈ RN×mL.

Lemma B.1. Suppose A is an invertible n-by-n matrix and U,V are n-by-m matrices. Then the following determinant
equality holds. ∣∣A+UV⊤∣∣ = ∣∣Im +V⊤A−1U

∣∣ |A|
4Equality among the last Q principal eigenvalues does not impact the analysis presented.

Preventing Model Collapse in Gaussian Process Latent Variable Models 20

Lemma B.2 (Woodbury matrix identity). Suppose A is an invertible n-by-n matrix and U,V are n-by-m matrices. Then(
A+UV⊤)−1

= A−1 −A−1U(Im +V⊤U)−1V⊤

According to the above two lemmas (Rasmussen & Williams, 2006), in the case that N ≫ mL, we can compute the
determinant and inversion of K̂(i)

sm +σ2IN , reducing the computational complexity of the ELBO evaluation from the original
O(N3) to O(N(mL)2).∣∣∣K̂(i)

sm + σ2IN

∣∣∣ = ∣∣∣∣ImL +
1

σ2
Φ⊤

smΦsm

∣∣∣∣ ∣∣σ2IN
∣∣ = σ2N

∣∣∣∣ImL +
1

σ2
Φ⊤

smΦsm

∣∣∣∣ , (48)(
K̂(i)

sm + σ2IN

)−1

=
1

σ2

[
IN − Φsm(ImL +Φ⊤

smΦsm)
−1Φ⊤

sm

]
. (49)

B.2. Interpretation of Modeling and Variational Distribution

In Eqs. (10) and (11), we have modeled the spectral points W as a part of the data generation process. However, this might
cause some confusion, which is clarified as follows.

• If we have selected the kernel function, the probability model for the data, i.e., Eqs. (10) and (11), can be interpreted as
independent of p(W), as it is inherent to the kernel function.

• In this paper, we provide another interpretation perspective: Following the setting from RFLVM by Gundersen et al.
(2021), we consider the data-generating process for observations Y as outlined in Eq. (10) or (11), which is dependent
on W. Subsequently, we constrain its prior p(W) to be Gaussian mixtures, defining the prior SM kernels functions.
This alternative perspective is explained as follows:

– Let us explicitly assume a parametric variational distribution qη(W), assuming it to be another Gaussian mixture
(thus still defines an SM kernel) with parameters denoted as η to approximate p(W|Y). In this case, Eq. (12)
becomes:

q(X,W) = qη(W)q(X).

Combining the joint distribution in Eq. (11), we derive the following ELBO:

L = Eq(X,W)

[
log

p(X)pθ(W)pσ(Y|X,W)

q(X)qη(W)

]
= Eq(X,W) [log pσ(Y|X,W)]−KL(q(X)∥p(X))−KL(qη(W)∥pθ(W)).

(50)

In this ELBO, prior distribution pθ(W) is only related to the last KL divergence term. When maximizing the
ELBO, we will obtain that θ = η, ensuring that the last KL divergence term becomes 0. Ultimately, this aligns
with the optimization objective in our paper.

• More complicated p(W|Y) approximations. It is possible to consider assuming the variational distribution of
spectral points is Y-dependent q(W|Y), such as a parametric Gaussian mixture and other distributions.

– Gaussian mixture: Suppose we use a parametric variational distribution qη(W|Y), in the form of

qη(W|Y) =

L/2∏
l=1

m∑
i=1

αiNηi(µi, σ
2
i), (51)

where (αi, µi, σ
2
i) in each mixture component is modeled by an encoder parametrized by ηi with Y as input.

Similarly, we can get the ELBO:

L = Eq(X,W|Y)

[
log

p(X)pθ(W)pσ(Y|X,W)

q(X)qη(W|Y)

]
= Eq(X,W|Y) [log pσ(Y|X,W)]−KL(q(X)∥p(X))−KL(qη(W|Y)∥pθ(W)).

(52)

When maximizing the ELBO, the last KL divergence term will also be 0. The difference between the remaining
terms and our objective function lies in the first term, where W includes information learnt from Y. This
potentially enhances the kernel selection process and contributes to preventing model collapse, though coming at
the cost of increased computational complexity from the encoder evaluation.

Preventing Model Collapse in Gaussian Process Latent Variable Models 21

– Other distribution forms: In this case, the variational inference algorithm heavily depends on the specific form
of q(W|Y). While this variational distribution can be more general, such an assumption generally introduces
greater intractability, making the evaluation of the ELBO more challenging. Employing Monte Carlo sampling to
approximate the ELBO in such scenarios could result in larger approximation variances compared to the case
where q(W) = p(W), thus potentially leading to less robust model performance.

C. Auto-differentiable SM Kernel using RFF Approximation
C.1. Proof of Proposition 4.2

Proof. With the RFF feature map defined in Eq. (14), we can write down the inner product of the feature maps

ϕ (x;W)
⊤
ϕ (x′;W) =

m∑
i=1

αi

L
2∑

l=1

2

L
cos
(
2πw

(i)⊤
l (x− x′)

)
(53)

where W ≜ {w(i)
1 ,w

(i)
2 , . . . ,w

(i)
L/2}

m
i=1, and each w

(i)
l are i.i.d. sampled from the symmetric distribution

si(w) =
N (w|µi,diag(σ

2
i)) +N (−w|µi,diag(σ

2
i))

2

using reparameterization trick (Kingma & Welling, 2019). Taking the expectation w.r.t. p (W) =
∏m

i=1

∏L/2
l=1 si(w), we

can get

Ep(W)

[
ϕ (x;W)

⊤
ϕ (x′;W)

]
= Ep(W)

 m∑
i=1

αi

L/2∑
l=1

2

L
cos
(
2πw

(i)⊤
l (x− x′)

)
=

m∑
i=1

αiEp
(
w

(i)

1:L/2

)
L/2∑

l=1

2

L
cos
(
2πw

(i)⊤
l (x− x′)

) (linearity of expectation) (54a)

=

m∑
i=1

αiEsi(w)

[
cos
(
2πw

(i)⊤
1 (x− x′)

)]
(i.i.d. of w(i)

l) (54b)

=

m∑
i=1

αiEsi(w)

exp
(
2πjw

(i)⊤
1 (x− x′)

)
+ exp

(
−2πjw

(i)⊤
1 (x− x′)

)
2

 (Euler’s identity) (54c)

=

m∑
i=1

αiki(x,x
′;µi,σ

2
i) (symmetrity of si(w)) (54d)

= ksm(x,x
′; {αi,µi,σ

2
i }mi=1) (SM kernel definition) (54e)

Hence concludes that ϕ (x;W)
⊤
ϕ (x;W) is an unbiased estimator of the SM kernel characterized by parameter

{αi,µi,σ
2
i }mi=1.

C.2. Proof of Theorem 4.3

Proof. Similar theorem has been proven in the Gaussian process regression model; see Proposition 3.1 in (Jung et al., 2022),
and Theorem 3 in (Lopez-Paz et al., 2014). For ease of reference, we follow the existing results and show the proof as
follows.

• To prove Theorem 4.3, we first introduce the following Lemma for Matrix Bernstein inequality (Tropp, 2015).

Preventing Model Collapse in Gaussian Process Latent Variable Models 22

Lemma C.1 (Matrix Bernstein Inequality). Consider a finite sequence {Xi} of independent, random, Hermitian matrices
with dimension N . Assume that

E[Xi] = 0 and ∥Xi∥2 ≤ H for each index i,

where ∥ · ∥2 denotes the matrix spectral norm. Introduce the random matrix Y =
∑

i Xi, and let v(Y) be the matrix
variance statistic of the sum:

v(Y) =
∥∥E[Y 2]

∥∥ =

∥∥∥∥∥∑
i

E[X2
i]

∥∥∥∥∥ .
Then we have

E [∥Y ∥2] ≤
√
2v(Y) logN +

1

3
L logN. (55)

Furthermore, for all ϵ ≥ 0.

P {∥Y ∥2 ≥ ϵ} ≤ N · exp
(

−ϵ2/2

v(Y) +Hϵ/3

)
. (56)

Proof. The proof of Lemma C.1 can be found in Theorem 6.6.1, § 6.6, (Tropp, 2015).

• Next, we show how to apply Lemma C.1 to prove Theorem. 4.3.

1). Factorization of Approximation Error Matrix. With the constructed SM kernel matrix approximation, K̂sm =

Φsm(X)Φsm(X)⊤, where the random feature matrix Φsm(X)=[ϕ (x1) , . . . , ϕ (xN)]
⊤∈RN×mL, we have the following

approximation error matrix:
E = K̂sm −Ksm. (57)

We are going to show that E can be factorized as

E =

m∑
i=1

L/2∑
l=1

E
(i)
l (58)

where E
(i)
l is a sequence of independent, random, Hermitian matrices with dimension N .

Specifically, we define Z
(i)
l as

Z
(i)
l =

[
exp
(
2πjw

(i)⊤
l x1

)
, . . . , exp

(
2πjw

(i)⊤
l xN

)]⊤
∈ RN×1, where w

(i)
l ∼ si(w), (59)

and we can show that

[K̂sm]h,g =

m∑
i=1

2αi

L

L/2∑
l=1

cos
(
2πw

(i)⊤
l (xh − xg)

)

=

m∑
i=1

L/2∑
l=1

2αi

L
Re
(
exp
(
2πjw

(i)⊤
l (xh − xg)

))

=

m∑
i=1

L/2∑
l=1

2αi

L
Re

([
Z

(i)
l Z

(i)∗
l

]
h,g

)
(60)

where Z
(i)∗
l is the conjugate transpose of Z(i)

l . Thus, we have K̂sm =
∑m

i=1

∑L/2
l=1

2αi

L Re(Z
(i)
l Z

(i)∗
l). Based on this

factorization and Eq. (54) in Proposition 4.2, we have that

Ksm =

m∑
i=1

L/2∑
l=1

2αi

L
E[Re(Z(i)

l Z
(i)∗
l)].

Preventing Model Collapse in Gaussian Process Latent Variable Models 23

Therefore, the approximation error matrix E can be factorized as E =
∑m

i=1

∑L/2
l=1 E

(i)
l where

E
(i)
l =

2αi

L

(
Re(Z

(i)
l Z

(i)∗
l)− E[Re(Z(i)

l Z
(i)∗
l)]

)
(61)

is a sequence of independent, random, Hermitian matrices with dimension N that satisfy the condition of E[E(i)
l] = 0.

We next find the upper bound for ∥E(i)
l ∥2.

2). Upper Bound for ∥E(i)
l ∥2.

∥El,i∥2 =
2αi

L

∥∥∥Re(Z(i)
l Z

(i)∗
l

)
− E

[
Re
(
Z

(i)
l Z

(i)∗
l

)]∥∥∥
2

(62a)

≤ 2αi

L

(∥∥∥Re(Z(i)
l Z

(i)∗
l

)∥∥∥
2
+
∥∥∥E [Re(Z(i)

l Z
(i)∗
l

)]∥∥∥
2

)
(triangle inequality) (62b)

≤ 2αi

L

(∥∥∥Re(Z(i)
l Z

(i)∗
l

)∥∥∥
2
+ E

[∥∥∥Re(Z(i)
l Z

(i)∗
l

)∥∥∥
2

])
(Jensen’s inequality) (62c)

≤ 2a

L
(2N + 2N) (62d)

=
2a

L
4N (62e)

where a =
√∑m

i=1 α
2
i and

c
(i)
l =

[
cos
(
2πw

(i)⊤
l x1

)
, . . . , cos

(
2πw

(i)⊤
l xN

)]⊤
∈ RN×1, (63a)

s
(i)
l =

[
sin
(
2πw

(i)⊤
l x1

)
, . . . , sin

(
2πw

(i)⊤
l xN

)]⊤
∈ RN×1, (63b)

Re
(
Z

(i)
l Z

(i)∗
l

)
= c

(i)
l c

(i)⊤
l + s

(i)
l s

(i)⊤
l , (63c)

and the last inequality in Eq. (62), we use the fact that∥∥∥Re(Z(i)
l Z

(i)∗
l

)∥∥∥
2
= sup

∥v∥2
2=1

v⊤
(
c
(i)
l c

(i)⊤
l + s

(i)
l s

(i)⊤
l

)
v ≤ 2N.

Next, we are going to bound the variance,
∥∥∥∑m

i=1

∑L/2
l=1 E[(E

(i)
l)2]

∥∥∥
2
.

3). Upper Bound for the Variance,
∥∥∥∑m

i=1

∑L/2
l=1 E[(E

(i)
l)2]

∥∥∥
2
. We first have the following bound:

L2

4α2
i

E
[(

E
(i)
l

)2]
= E

[
Re
(
Z

(i)
l Z

(i)∗
l

)2]
−
(
E
[
Re
(
Z

(i)
l Z

(i)∗
l

)])2
(64a)

≼ E
[
Re
(
Z

(i)
l Z

(i)∗
l

)2]
(64b)

= E
[(

c
(i)⊤
l c

(i)
l

)
c
(i)
l c

(i)⊤
l +

(
s
(i)⊤
l s

(i)
l

)
s
(i)
l s

(i)⊤
l +

(
s
(i)⊤
l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)]
(64c)

≼ NE
[
c
(i)
l c

(i)⊤
l + s

(i)
l s

(i)⊤
l

]
+ E

[(
s
(i)⊤
l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)]
(64d)

= NE
[
Re
(
Z

(i)
l Z

(i)∗
l

)]
+ E

[(
s
(i)⊤
l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)]
(64e)

where the notation A ≼ B denotes that B −A is a positive semi definite (PSD) matrix, and the inequality in Eq. (64b)

holds due to the fact that
(
E
[
Re
(
Z

(i)
l Z

(i)∗
l

)])2
is a PSD matrix. The inequality in Eq. (64d) holds because

NE
[
c
(i)
l c

(i)⊤
l + s

(i)
l s

(i)⊤
l

]
− E

[(
c
(i)⊤
l c

(i)
l

)
c
(i)
l c

(i)⊤
l +

(
s
(i)⊤
l s

(i)
l

)
s
(i)
l s

(i)⊤
l

]
= E

[(
s
(i)⊤
l s

(i)
l

)
c
(i)
l c

(i)⊤
l +

(
c
(i)⊤
l c

(i)
l

)
s
(i)
l s

(i)⊤
l

]
. . .

[
due to

(
c
(i)⊤
l c

(i)
l + s

(i)⊤
l s

(i)
l

)
= N

] (65)

Preventing Model Collapse in Gaussian Process Latent Variable Models 24

is a PSD matrix.

Then we are able to bound the variance,
∥∥∥∑m

i=1

∑L/2
l=1 E[(E

(i)
l)2]

∥∥∥
2
, as∥∥∥∥∥∥

m∑
i=1

L/2∑
l=1

E[(E(i)
l)2]

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
m∑
i=1

L/2∑
l=1

4α2
i

L2

(
NE

[
Re
(
Z

(i)
l Z

(i)∗
l

)]
+ E

[(
s
(i)⊤
l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)])∥∥∥∥∥∥
2

≤ 2a

L

∥∥∥∥∥
m∑
i=1

αi

(
NE

[
Re
(
Z

(i)
l Z

(i)∗
l

)]
+ E

[(
s
(i)⊤
l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)])∥∥∥∥∥
2

≤ 2a

L

(
N ∥Ksm∥2 +

m∑
i=1

αi

∥∥∥E [(s(i)⊤l c
(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)]∥∥∥
2

)
(triangle inequality)

≤ 2a

L

(
N ∥Ksm∥2 +

m∑
i=1

αiE
[∥∥∥(s(i)⊤l c

(i)
l

)(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)∥∥∥
2

])
(Jensen’s inequality)

≤ 2a

L

(
N ∥Ksm∥2 +

N

2

m∑
i=1

αiE
[∥∥∥(s(i)l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)∥∥∥
2

]) (
|s(i)⊤l c

(i)
l | ≤ N

2

)
≤ 2aN

L

(
∥Ksm∥2 +

N

2
a
√
m

)

(66)

where the last inequality is because that

E
[∥∥∥(s(i)l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)∥∥∥
2

]
= sup

∥v∥2
2=1

E
[∥∥∥v⊤

(
s
(i)
l c

(i)⊤
l + c

(i)
l s

(i)⊤
l

)
v
∥∥∥
2

]
≤ N, (67)

and
∑m

i=1 αi ≤ a
√
m by the Cauchy–Schwarz inequality.

4). Final Result. We next can apply the derived upper bounds, Eqs. (62) and (66), to the H and v(Y) in Lemma C.1,

P
(∥∥∥K̂sm −Ksm

∥∥∥
2
≥ ϵ
)
≤ N exp

(
−3ϵ2L

2Na (6 ∥Ksm∥2 + 3Na
√
m+ 8ϵ)

)
(68)

which completes the proof of Theorem 4.3

D. Extended Related Work
VAEs. As a facet of model collapse, the posterior collapse in variational autoencoders (VAEs) occurs when the variational
posterior distribution of the latent variables approaches to the prior, resulting in a failure to exploit the valuable knowledge
embedded in the observed data. Numerous approaches have been proposed to tackle this issue, with the most commonly
embraced heuristic solution being the annealing of the KL term in the ELBO objective (Bowman et al., 2016; Sønderby
et al., 2016). Specifically, Gulrajani et al. (2016) suggest that posterior collapse is induced by the high-capacity decoder,
which can map any noise vector to the desired target X. Motivating by this hypothesis, Gulrajani et al. (2016); Yang et al.
(2017) propose reducing the capacity of the decoder for better representations, albeit at the cost of a reduction in generative
capability. Another line of works, such as (Lucas et al., 2019; Wang & Liu, 2022; Wang et al., 2021), claims that posterior
collapse is partially attributed to the suboptimal selection of likelihood variances, aligning with our findings in the context of
the Bayesian non-parametric GPLVM. Nevertheless, despite the alignment of these works addressing posterior collapse with
our findings, the primary objective in VAEs is to improve generative capacity, deviating from our emphasis, which lies in
recovering compact and informative latent representations.

GPLVMs. This paper focuses on the GPLVMs (Lawrence, 2005), which apply GP for modeling the nonlinear function in
LVM, obviating the need to optimize substantial neural network parameters while alleviating overfitting and generalization

Preventing Model Collapse in Gaussian Process Latent Variable Models 25

Table 3: A summary of relevant LVMs, where N and M denote # observations and the observation dimension, respectively, while
U,m,L represent # inducing points, # mixture components in SM kernel, and the dimension of random features, respectively.

Model
Scalable
model

Advanced
kernel

Probabilistic
mapping

Bayesian inference
of latent variables

Computational
complexity # parameters Reference

VAE ✓ - ✗ ✓ - - Kingma & Welling (2019)
NBVAE ✓ - ✗ ✓ - - Zhao et al. (2020)
DCA ✓ - ✗ ✓ - - Eraslan et al. (2019)
CVQ-VAE ✓ - ✗ ✓ - - Zheng & Vedaldi (2023)
GPLVM ✗ ✗ ✓ ✗ O(N3) N(N +Q) + C Lawrence (2005)
BGPLVM ✓ ✗ ✓ ✓ O(NU2) Q(1 + U +N +NQ) + C Titsias & Lawrence (2010)
GPLVM-SVI ✓ ✗ ✓ ✓ O(MU3) U(M +MU +Q) + 2NQ+ C Lalchand et al. (2022)
RFLVM ✗ ✓ ✓ ✗ O(NM2L) NQ+ L(Q+M + Q2

2) + 2M + C Zhang et al. (2023)

advised RFLVM ✓ ✓ ✓ ✓ O(N(mL)2) Q(N +NQ+ 2m) +m+ C This work

issues (Wilson & Izmailov, 2020). The seminal work of GPLVM was proposed by Lawrence (2005). Subsequently, Titsias
& Lawrence (2010) introduced the Bayesian formulation of the GPLVM, which variationally integrated out latent variables.
However, this model exhibits computational efficiency only with specific preliminary kernel functions, such as the radial
basis function (RBF) kernel (Rasmussen & Williams, 2006), imposing significant constraints on the model capacity of
the GPLVM and leading to model collapse. Recent endeavors have focused on enhancing the scalability and flexibility
of the GPLVM (Lalchand et al., 2022; de Souza et al., 2021), as well as ensuring compatibility with various likelihoods
(Ramchandran et al., 2021). Despite the relevance of these endeavors, the inference of these models relies on inducing
points-based sparse GP (Titsias, 2009). This necessitates optimizing additional inducing points, leading to increased
computational burden and the risk of getting stuck in suboptimal solutions. Consequently, despite the enhanced model
capability, these models often face challenges in achieving their theoretical potential to address model collapse.

E. Experiment Details
E.1. Data Descriptions and Preprocessing

We first describe the detailed parameter settings for the two synthetic S-shaped datasets used in § 6.2. The datasets are
generated from a GPLVM with different kernel configurations, which are listed below:

• Dataset with RBF kernel:

krbf(x,x
′) = ℓo exp

(
− (x− x′)2

2ℓ2l

)
, (69)

with outputscale ℓo = 1 and lengthscale ℓl = 1.

• Dataset with a hybrid (RBF+periodic) kernel:

khybrid(x,x
′) = krbf(x,x

′) + kperiodic(x,x
′), (70a)

krbf(x,x
′) = ℓo exp

(
− (x− x′)2

2ℓ2l

)
, with ℓo = 0.5, ℓl = 1; (70b)

kperiodic(x,x
′) = ℓo exp

−
2 sin2

(
x−x′

p

)
ℓ2l

 , with ℓo = 0.5, ℓl = 1, p = 4.5. (70c)

Next, we offer a comprehensive introduction to real-world datasets and downsample large-scale datasets to a smaller size to
accommodate the high computational complexity in RFLVM (Gundersen et al., 2021).

• BRIDGES: We recorded the daily count of bicycles crossing each of the four East River bridges in New York City5. To
assign labels, we categorized the data into weekday versus weekend, treating them as binary labels due to the absence
of explicit labels in the dataset. This categorization was made based on the understanding that weekdays and weekends
are inherently linked to variations in bicycle counts.

5https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/
gua4-p9wg

https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/gua4-p9wg
https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/gua4-p9wg

Preventing Model Collapse in Gaussian Process Latent Variable Models 26

• CIFAR-10: To create a final dataset of size 2000, we subsampled 400 images from each class within [airplane,
automobile, bird, cat, deer]. These images were further resized from 32× 32 pixels to 20× 20 pixels and converted to
grayscale. Test performance of different models on the full dataset can be found in §. E.4.4.

• MNIST: The dataset size was reduced by randomly selecting 1000 images. Test performance of different models on
the full dataset can be found in §. E.4.4.

• MONTREAL: We analyze the daily count of cyclists on eight bicycle lanes in Montreal6. Given the absence of explicit
labels, we employed the four seasons as labels, as seasonality is correlated with bicycle counts.

• NEWSGROUPS The 20 Newsgroups Dataset7 was employed, with classes limited to comp.sys.mac.hardware, sci.med,
and alt.atheism. The vocabulary was constrained to words with document frequencies falling within the range of
10− 90%.

• YALE: The Yale Faces Dataset8 was employed in our study, with subject IDs utilized as labels.

• BRENDAN: This dataset comprises 2000 images, each with a size of 20× 28 pixels, depicting the face of Brendan9.

E.2. Benchmark Methods Descriptions

• PCA, LDA, Isomap: PCA (Wold et al., 1987), LDA (Blei et al., 2003), and Isomap (Balasubramanian & Schwartz,
2002) were implemented utilizing the sklearn.decomposition module within the scikit-learn library
(Buitinck et al., 2013).

• HPF: The implementation of HPF (Gopalan et al., 2015) is based on the hpfrec library10.

• BGPLVM: We utilized the BayesianGPLVMMiniBatch implementation in the GPy library11, which is an inducing
points-based method (Titsias, 2009).

• GPLVM-SVI: We used the official source code based on GPyTorch12. We also extended the GPLVM-SVI (Lalchand
et al., 2022) to accommodate the SM kernel function, but this modification could result in further performance
degradation.

• VAE: The implementation of the VAE (Kingma & Welling, 2013) was built upon the example code provided by the
pytorch library13.

• NBVAE, DCA, CVQ-VAE, RFLVM: All implementations for those algorithms adhere to the corresponding official
code libraries available online 14 15 16 17.

6http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/
resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b

7http://qwone.com/˜jason/20Newsgroups/
8http://vision.ucsd.edu/content/yale-face-database
9https://cs.nyu.edu/˜roweis/data/frey_rawface.mat

10https://github.com/david-cortes/hpfrec
11http://github.com/SheffieldML/GPy
12https://github.com/vr308/Generalised-GPLVM
13https://github.com/pytorch/examples/blob/main/vae/main.py
14https://github.com/ethanhezhao/NBVAE
15https://github.com/theislab/dca
16https://github.com/lyndonzheng/CVQ-VAE
17https://github.com/gwgundersen/rflvm

http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b
http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b
http://qwone.com/~jason/20Newsgroups/
http://vision.ucsd.edu/content/yale-face-database
https://cs.nyu.edu/~roweis/data/frey_rawface.mat
https://github.com/david-cortes/hpfrec
http://github.com/SheffieldML/GPy
https://github.com/vr308/Generalised-GPLVM
https://github.com/pytorch/examples/blob/main/vae/main.py
https://github.com/ethanhezhao/NBVAE
https://github.com/theislab/dca
https://github.com/lyndonzheng/CVQ-VAE
https://github.com/gwgundersen/rflvm

Preventing Model Collapse in Gaussian Process Latent Variable Models 27

E.3. Default Hyperparameter Configurations
Table 4: Default hyperparameter settings.

PARAMETER VALUE

MIXTURE DENSITIES IN SM KERNEL (m) 2
DIM. OF RANDOM FEATURE (L) 50
DIM. OF LATENT SPACE (Q) 2

OPTIMIZER ADAM (KINGMA & BA, 2014)
LEARNING RATE 0.005
BETA (0.9, 0.99)
ITERATIONS 10000

Tab. 4 displays the default hyperparameter settings employed by advised RFLVM. These hyperparameter settings are
employed in the majority of experiments, with the exception of the experiment corresponding to the left side of Fig. 2. In
this case, the dimensionality of the latent space is configured to 50 to intuitively illustrate the variability in the number of
zero-columns within the latent variables.

E.4. Additional Results

E.4.1. S-SHAPED LATENT MANIFOLD ESTIMATION

Figure 4: (Left) R2 against the number of mixture densities in SM kernel (m). (Right) R2 versus the dimensionality of the random
feature (L/2).

To validate the rationale behind our parameter selection, this section presents an evaluation of advised RFLVM, showcasing its
performance in manifold visualization and R2 scores across various values of m and L/2. Fig. 4 depicts the advised RFLVM
performance in terms of R2 scores. Additionally, visualizations of the latent manifold recovered by advised RFLVM are
provided in Fig. 5 and Fig. 6. The results affirm that opting for m = 2 and L/2 = 50 ensures the lowest computational
complexity while maintaining comparable performance.

E.4.2. MISSING DATA IMPUTATION

To intuitively showcase the capability of advised RFLVM in the task of missing data imputation, visualizations of the
reconstructed observed data are presented in Fig. 7 and Fig. 8, underscoring its superior ability to restore missing pixels.

Preventing Model Collapse in Gaussian Process Latent Variable Models 28

(a) Ground-truth (b) m=1 (c) m=2 (d) m=3

(e) m=4 (f) m=5 (g) m=6 (h) m=7

(i) m=8 (j) m=9 (k) m=10 (l) m=11

Figure 5: Latent manifold learning results with L/2 = 25 and different m

(a) Ground-truth (b) L=10 (c) L=20 (d) L=25

(e) L=40 (f) L=50 (g) L=65 (h) L=75

(i) L=85 (j) L=100 (k) L=125 (l) L=150

Figure 6: Latent manifold learning results with m = 2 and different L.

Preventing Model Collapse in Gaussian Process Latent Variable Models 29

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

(a) MNIST reconstruction task with 0% missing pixels.

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

(b) MNIST reconstruction task with 10% missing pixels.

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

(c) MNIST reconstruction task with 30% missing pixels.

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

0 20

0

10

20

(d) MNIST reconstruction task with 60% missing pixels.

Figure 7: MNIST reconstruction task with missing pixels. From left to right: Ground truth, training images, reconstructions

Preventing Model Collapse in Gaussian Process Latent Variable Models 30

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

(a) Brendan faces reconstruction task with 0% missing pixels.

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

(b) Brendan faces reconstruction task with 10% missing pixels.

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

(c) Brendan faces reconstruction task with 30% missing pixels.

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

0 10

0

10

20

(d) Brendan faces reconstruction task with 60% missing pixels.
Figure 8: Brendan faces reconstruction task with missing pixels. From left to right: Ground truth, training images, reconstructions

Preventing Model Collapse in Gaussian Process Latent Variable Models 31

Table 5: KNN classification accuracy using different numbers of nearest neighbors (K values). We ran this classification using 5-fold
cross validation.

METHODS VAE advisedRFLVM
K-VALUE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

BRIDGES 0.780 0.794 0.766 0.789 0.794 0.799 0.804 0.808 0.780 0.776 0.846 0.846 0.902 0.902 0.907 0.888 0.893 0.898 0.879 0.903
CIFAR 0.256 0.260 0.266 0.274 0.280 0.282 0.291 0.296 0.293 0.300 0.300 0.310 0.309 0.340 0.335 0.342 0.350 0.357 0.365 0.358
MNIST 0.631 0.614 0.657 0.646 0.677 0.670 0.674 0.671 0.673 0.669 0.801 0.780 0.819 0.824 0.823 0.813 0.812 0.800 0.802 0.800

MONTREAL 0.649 0.655 0.683 0.662 0.699 0.705 0.718 0.718 0.696 0.712 0.799 0.759 0.796 0.802 0.815 0.787 0.777 0.755 0.768 0.759
YALE 0.667 0.667 0.672 0.667 0.636 0.630 0.600 0.576 0.558 0.552 0.757 0.703 0.721 0.745 0.727 0.691 0.685 0.673 0.655 0.642

NEWSGROUPS 0.381 0.389 0.384 0.397 0.402 0.409 0.406 0.410 0.399 0.404 0.401 0.403 0.399 0.412 0.419 0.408 0.414 0.414 0.426 0.424

METHODS BGPLVM RFLVM
K-VALUE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

BRIDGES 0.836 0.808 0.813 0.794 0.818 0.808 0.837 0.832 0.832 0.813 0.860 0.859 0.869 0.892 0.869 0.869 0.883 0.888 0.883 0.887
CIFAR 0.262 0.278 0.279 0.293 0.291 0.295 0.282 0.290 0.288 0.294 0.270 0.288 0.288 0.288 0.306 0.310 0.320 0.326 0.331 0.333
MNIST 0.573 0.585 0.611 0.622 0.627 0.636 0.640 0.645 0.652 0.648 0.592 0.567 0.591 0.603 0.634 0.624 0.638 0.634 0.633 0.633

MONTREAL 0.752 0.771 0.759 0.771 0.787 0.778 0.800 0.800 0.793 0.787 0.778 0.818 0.819 0.844 0.809 0.831 0.806 0.815 0.806 0.790
YALE 0.558 0.515 0.545 0.558 0.527 0.503 0.503 0.467 0.485 0.461 0.576 0.515 0.612 0.564 0.564 0.576 0.576 0.558 0.582 0.576

NEWSGROUPS 0.388 0.374 0.406 0.397 0.392 0.395 0.404 0.397 0.396 0.403 0.404 0.394 0.411 0.425 0.412 0.413 0.417 0.424 0.416 0.426

Table 6: KNN classification accuracy using different numbers of nearest neighbors (K values) on larger datasets. We ran this classification
using 5-fold cross validation.

METHODS VAE advisedRFLVM
K-VALUE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F-CIFAR 0.157 0.151 0.157 0.166 0.174 0.178 0.180 0.187 0.188 0.190 0.172 0.161 0.177 0.181 0.194 0.199 0.203 0.209 0.213 0.214
FD-CIFAR 0.263 0.266 0.279 0.285 0.293 0.297 0.302 0.304 0.309 0.312 0.321 0.323 0.344 0.359 0.368 0.370 0.377 0.384 0.390 0.391
F-MNIST 0.728 0.728 0.756 0.766 0.774 0.775 0.778 0.782 0.782 0.783 0.794 0.796 0.831 0.838 0.845 0.847 0.850 0.852 0.851 0.852

METHODS BGPLVM Isomap
K-VALUE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F-CIFAR 0.138 0.132 0.140 0.145 0.154 0.156 0.159 0.161 0.162 0.163 0.144 0.142 0.147 0.157 0.159 0.163 0.165 0.168 0.170 0.173
FD-CIFAR 0.250 0.260 0.258 0.264 0.279 0.277 0.281 0.285 0.287 0.287 0.264 0.270 0.279 0.287 0.291 0.292 0.296 0.301 0.305 0.305
F-MNIST 0.414 0.420 0.433 0.449 0.455 0.464 0.466 0.470 0.473 0.474 0.456 0.468 0.493 0.504 0.514 0.524 0.529 0.534 0.535 0.540

METHODS NBVAE CVQ-VAE
K-VALUE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F-CIFAR 0.134 0.137 0.140 0.147 0.152 0.157 0.156 0.155 0.161 0.162 0.101 0.098 0.099 0.101 0.102 0.102 0.101 0.100 0.098 0.096
FD-CIFAR 0.252 0.248 0.255 0.264 0.273 0.277 0.282 0.287 0.291 0.292 0.203 0.201 0.200 0.199 0.201 0.200 0.201 0.199 0.197 0.200
F-MNIST 0.502 0.502 0.533 0.548 0.557 0.566 0.571 0.577 0.579 0.582 0.104 0.107 0.107 0.104 0.105 0.106 0.102 0.103 0.103 0.103

E.4.3. KNN CLASSIFICATION ACCURACY WITH VARYING K

We have presented the KNN results with ten different choices of K in Tab. 5, wherein the setting of K = 1 aligns with the
configuration employed in (Gundersen et al., 2021). The simulation results consistently demonstrate the superiority of our
method over the benchmarks regardless of the K values across most datasets. In those exception cases, advised RFLVM still
achieves very comparable performance with RFLVM on some relatively simple datasets, e.g., BRIDGES, MONTREAL,
and NEWSGROUP datasets.

E.4.4. LARGER DATASETS EXTENSION

To ensure equitable evaluation of deep learning methods, such as various VAE variants, we conducted comprehensive
comparisons on larger datasets, including the full MNIST and CIFAR datasets. The results are summarized in Table 6,
where F-CIFAR and F-MNIST represent the full CIFAR and MNIST datasets, respectively, and FD-CIFAR denotes the full
CIFAR dataset with each image downsampled to 20× 20 pixels. Our empirical results demonstrate significant performance
improvement for both VAE and our advised RFLVM when applied to larger datasets. Notably, advised RFLVM consistently
outperforms the other benchmarks across datasets of varying sizes, highlighting its superiority over state-of-the-art variants
irrespective of the dataset size.

	Introduction
	Preliminaries
	Causes of Model Collapse
	Projection Variance Matters
	Kernel Function Flexibility Matters

	Preventing Model Collapse
	Approximate Bayesian Inference
	Differentiable RFF Approximation for SM Kernel

	Related Work
	Experiments
	Projection Variance Matters
	S-shaped Latent Manifold Learning
	Real Dataset Evaluation
	Missing Data Imputation

	Conclusions
	Model Collapse Mechanism Revelation
	Special Case of GPLVM: Dual Probabilistic Principal Analysis (DPPCA)
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Auxiliary Theorem
	Proof of Proposition 3.2

	Proof of Proposition 3.3

	Modeling and Variational Approximation
	ELBO Derivation and Evaluation
	Interpretation of Modeling and Variational Distribution

	Auto-differentiable SM Kernel using RFF Approximation
	Proof of Proposition 4.2
	Proof of Theorem 4.3

	Extended Related Work
	Experiment Details
	Data Descriptions and Preprocessing
	Benchmark Methods Descriptions
	Default Hyperparameter Configurations
	Additional Results
	S-shaped Latent Manifold Estimation
	Missing Data Imputation
	KNN Classification Accuracy with Varying K
	Larger Datasets Extension

