
A Template Framework CRUD for Constructing Virtual Assembly
Prototypes Supporting Multipath and Its Validation

Weichao Lin*

South China University of Technology
Liang Chen†

South China University of Technology
Zesheng Lin‡

Guangzhou Industry & Trade Technician College

ABSTRACT

The use of virtual reality technology for assembly training can pro-
vide an interactive and intuitive learning environment, enhancing
learners’ practical skills. However, the current methods for creating
virtual assembly training content have limitations. Animation-based
content requires manual arrangement of animation sequences by
experienced users, which is inefficient. Interactive content based
on the ASP algorithm incurs high computational costs and relies
heavily on CAD data, imposing strict requirements on the model
data. Furthermore, user interaction is constrained to the optimal
solution calculated by the ASP algorithm, limiting the range of pos-
sibilities. To address these issues, we propose a framework called
CRUD for the rapid construction of virtual assembly prototypes.
This framework supports multipath assembly, enabling the simula-
tion of real-world assembly scenarios. It can be implemented using
common game engines, allowing end users to create virtual assem-
bly sequences through simple configurations. We demonstrate the
effectiveness and universality of the framework using a complex me-
chanical assembly case. We argue that enabling multipath assembly
support in virtual training represents a significant step in making
virtual simulation more realistic and practical.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interactive systems and tools; Human-centered
computing—Human computer interaction (HCI)—Interaction
paradigms—Virtual reality; Human-centered computing—Human
computer interaction (HCI)—Interaction paradigms—Graphical user
interfaces; Computing methodologies—Modeling and simulation—
Simulation evaluation; Software and its engineering—Software no-
tations and tools—Development frameworks and environments—
Application specific development environments

1 INTRODUCTION

Cognitive training in mechanical structures is a key focus and chal-
lenge in the field of mechanical engineering. Traditional offline
classrooms, which rely on textbooks, exercise books, and presenta-
tion slides, often lack intuitive structural representation and inter-
active engagement with learners. As a result, they fail to captivate
students’ interest and lead to suboptimal learning outcomes. While
physical training shows reasonable effectiveness, it is limited by
the availability of school model resources and incurs significant
maintenance costs, which hinder its widespread adoption. In recent
years, virtual technology has gained increasing significance in the
manufacturing industry. Particularly in employee education and
production tasks, the use of virtual reality has increased in industrial
applications, such as training and product demonstrations. Cognitive
assistance systems have demonstrated a high potential for improv-
ing efficiency, which in turn continuously creates new demands for

*e-mail: linwc1126@gmail.com
†e-mail: earchen@scut.edu.cn
‡e-mail: linzesheng@outlook.com

content creation tools. Virtual reality-based assembly training offers
learners an intuitive and interactive learning environment, address-
ing the limitations of traditional learning methods. In addition to
interactive assembly training, visualizing assembly tasks through
animations is also considered acceptable.

The creation of animated demonstrations of assembly processes is
a laborious and time-consuming task, often carried out manually by
graphic artists or engineers. Existing 3D modeling tools can assist in
this process, but even for simple animations, they still require users
with expertise to invest time in editing animation sequences [10]. In
many current workflows for producing training materials, human
designers are still responsible for making design decisions regarding
assembly processes.

On the other hand, the field of industrial robotics has seen ex-
tensive research in Assembly Sequence Planning (ASP), which is
a crucial aspect for the efficient production of large products with
numerous components. However, these methodologies rely on 3D
CAD data and result in significant computational costs. Even for
simple assemblies, the computation of the explosion direction alone
can take several minutes [6]. Such intricate calculations may not
be easily embraced by general training teams. Furthermore, while
the computed assembly sequence may represent a local or global
optimum, it is imperative to acknowledge that in practice, there
are multiple potential assembly sequences. It is also noteworthy
that even suboptimal solutions can still meet the final assembly
requirements. Therefore, for training teams seeking high realism
and desiring to explore various possibilities and enhance training
resilience, it may be more favorable to consider methodologies that
offer more than just an optimal solution [8].

In order to address these concerns, we present a framework for
creating multipath assembly sequences based on real-world physics
principles to efficiently develop virtual assembly prototypes. This
approach can be integrated into 3D game engines such as Unity 3D
and Unreal Engine, allowing end-users to easily construct virtual
assembly experiences that strictly adhere to real-world physics rules
through simple configuration. This enhances the realism of the learn-
ing process and improves students’ learning outcomes. The template
method is thoughtfully designed and logically structured, requir-
ing minimal resources to achieve a high-fidelity prototype, thereby
reducing development costs and increasing system reusability.

This paper provides a comprehensive description of the frame-
work’s design and principles, emphasizing its uniqueness in com-
parison to existing methods. For the specific implementation of
the framework, this paper utilizes Unreal Engine as an example
and presents a complex mechanical assembly case to validate the
framework’s effectiveness and generality.

This paper makes the following contributions:

(1) Introducing an innovative framework for constructing virtual
training prototypes capable of multipath assembly.

(2) Implementing this framework using the Unreal Engine and cre-
ating a prototype for a virtual assembly experience.

(3) Conducting an experimental study using the framework to de-
velop an assembly training system for a complex mechanical
product, with the aim of validating the effectiveness and gener-
ality of the framework.

Washer

(obscured)

Slide

Replaceable

jaws

base

Cotter

pin

Screw
Screw

nut

Lead

screw

Lead screw

nutWasher

a B

C

D

E

E
FGH

I

(a)

(1)

(2)

(1)

(2)

F

G A

E B C

D

D

CI

H

(end)

(b)

Figure 1: (a) The part composition and assembly structure of bench vise. (b) Hasse diagram is used to represent the relationship of the parts.

2 RELATED WORK

2.1 Virtual Training in Mechanical Products

In the realm of mechanical products, assembly systems can be
viewed as a flow process where components are systematically con-
nected to obtain the desired final product [9]. The primary goal of
integrating VR technology into education, particularly in the me-
chanical field, is to address the challenges associated with high risks,
high costs, lack of intuitiveness, and inadequate hands-on experience
in traditional practices.

Adas et al. proposed a learning environment based on virtual
reality and augmented reality (VAR), which enables students to in-
teract with virtual and real mechanical components in an interactive
and guided manner [3]. Winkes et al. introduced a virtual reality
workspace for assessment assembly decisions and training assembly
operations [13]. Bharathi et al. compared VR devices with desktop
solutions to investigate their effectiveness in learning how to perform
product functional analysis, specifically in assembling components
of a coffee machine [7]. Al-Ahmari et al. developed a virtual manu-
facturing assembly simulation system that provides an interactive
workstation for evaluating assembly decisions and training assem-
bly operations. The system provides feedback through multiple
channels, including visual, auditory, and tactile sensations [5].

2.2 Assembly Sequence Generation

The rational design of assembly sequences is crucial for the assembly
process, emphasizing the feasibility and rationality of assembly
operations. For virtual training, recent research has focused on
methods such as generating visual animations using game engines,
conducting physical simulations in virtual training environments,
and designing assembly instructions effectively.

Bahubalendruni et al. proposed a framework that takes parts, their
assembly positions, and assembly sequence plans as inputs. Once the
requirements of feasibility testing and interference testing are met,
this framework can generate visual animations of assembly opera-
tions in a game engine [6]. Dyck et al. developed a virtual training
environment to simulate the assemble of mechanical chucks, which
described the precise motion sequence of each component in the
assembly process. This high-fidelity assembly is achieved through
the coordination of multiple colliders and constraints [8]. Agrawala
et al. proposed design principles for creating effective assembly
instructions and a system based on these principles. The system
consists of a planner and a presenter responsible for determining the
optimal assembly sequence and generating assembly demonstration
graphics [4]. Gaarsdal et al. introduced an animation creation tool
based on ASP that is capable of generating real-time exploded views
of components for viewing in VR headsets [10]. Kalkofen et al.
implemented an application that introduced explosion diagrams into

augmented reality based on ASP [11].
Except for Dyck’s training system, which allows for interactive

training, the other systems can only provide demonstrations of the
assembly process. Most current systems still rely on the initial in-
volvement of professional engineers. This typically involves creating
plans that include assembly direction vectors, movement distances,
fixed sequences, and other parameters for each component. These
plans are then used in preprocessing steps [6, 11]. Some systems
cannot support assembly hierarchical structures with two or more
levels [4]. Expanding the applicability of these systems to compo-
nents would enable them to address larger and more complex use
cases.

3 SOLUTION

3.1 Design Process
Based on the preceding discourse, the current industry solutions for
virtual assembly training can be broadly classified into two cate-
gories: one involves the manual arrangement of product assembly
animations by designers or engineers, often utilizing software such
as Maya or 3ds Max; the other is based on ASP algorithms for deter-
mining the most efficient assembly sequences. Both methods have
their own limitations. The former necessitates the manual arrange-
ment of animations for each moving component, which takes up a
substantial amount of time and labor. Furthermore, this approach
typically only showcases the most efficient assembly sequences. The
latter heavily depends on CAD data, making it unsuitable for models
with incomplete data and resulting in high computational costs. The
outcomes are either globally optimal or locally optimal sequences,
disregarding other potential sequences that may exist in reality.

Here, we describe our solution using a classic mechanical assem-
bly case as an example. Consider a bench vise, which is often used
as a typical example to describe assembly structures in engineering
drawing courses. The marks (A)−(I) in Figure 1(a) represent all the
parts (excluding the base) that make up a bench vise. The collection
of all parts is denoted as S. The complete assembly of this bench
vise consists of several assemble tasks, where certain tasks can only
be completed after others (e.g., screws on the jaw plate cannot be
installed before the jaw plate is mounted). We can classify this as a
partial order and represent the assembly relationships between parts
as R [12]. The pair (S,R) forms a finite partial order set, and Figure
1(b) depicts its Hasse diagram representation.

To find a sequence for these assembly tasks, we can use a topo-
logical sorting algorithm, as shown in Algorithm 1, to obtain a
compatible total order:

F → G→ A→ E→ B→C1→ D1→ I2→C2→ D2→ H

It is important to note that this order represents only one of the

Algorithm 1 TopologicalSorting
Require:

(S,≼) Finite poset.
Result: A compatible total ordering of S.

1: procedure TOPOLOGICALSORTING(S)
2: k← 1;
3: while S ̸=∅ do
4: ak← a minimal element of S;
5: S← S−{ak};
6: k← k+1;
7: end while
8: return [a1,a2, ...,an];
9: end procedure

potential sequences for these tasks. In reality, based on experimental
observation, the most common assembly sequence is:

F → G→ E→ I→ H→ A→ B→C1→ D1→C2→ D2

The generation of multiple sequences is interpretable. With the
continuous iteration of the topological sorting algorithm, the Hasse
diagram may have non-unique minimal element, leading to different
choices and subsequently different sequences. However, such se-
quence diversity is in line with real-world principles, and not every
sequence necessarily adheres to the optimal sequence produced by
ASP algorithms.

The reflexivity, antisymmetry, and transitivity of assembly re-
lationships R among parts in set S demonstrate the diversity of
assembly sequences. Transitivity reflects the relationships between
parts in terms of their assembly order. In other words, if part A and
part B are directly connected in the Hasse diagram, and part A is
positioned lower in the Hasse diagram, the completion of assembly
for part A will activate the assembly task for part B.

Therefore, we present our proposed solution, which revolves
around a table that illustrates the activation relationships among
PARTS, based on the transitivity of a finite partial order set. By
utilizing the principles of topological sorting, we can execute as-
sembly tasks from various initial points, aligning with the multiple
assembly paths encountered in real-life situations. Drawing from the
topological sorting algorithm, we introduce a template framework
called CRUD for developing virtual assembly prototypes that accom-
modate multipath functionality. In this framework, C denotes core,

encompassing the fundamental class models for system logic. R
signifies resource, encompassing external assets such as CAD mod-
els, textures, and animations utilized for visual representation. U
represents utility, classes, and function libraries for managing global
operations and decoupling from core models. Lastly, D stands for
data, which typically refers to a table that records the identifica-
tion information of each component and the activation relationships
between components. The structure of the CRUD framework is
illustrated in Figure 2.

3.2 CRUD Framework

This section elucidates the components of the CRUD framework,
with the R part referring to external resources and therefore not
elaborated upon. The focus is on explaining the composition and
functions of the C, U, and D sections.

3.2.1 Core

The core of this framework can be described using the PAM compo-
sition, which includes Part, AttachPoint, and Master.

Part is a general category that includes all individual parts. Master
is the main part that is assembled using child parts (For example,
in the case of the bench vise mentioned earlier, the base should be
an instance of Master, while the other parts should be instances of
Part). AttachPoint refers to a specific location on Master where all
parts that can be assembled are located. There is also an abstract
base class called PartBase, which internally stores information about
specific components. PAM has an obvious triangular relationship,
with Part and AttachPoint inheriting from the base class PartBase.
The same pair of Part and AttachPoint shares the same set of part
information. The Master needs to accommodate several instances of
AttachPoint, forming a composite relationship between them. The
Master derives from Part, and the assembly of Master instances also
depends on Part instances.

3.2.2 Utility

The utility is responsible for supporting certain common operations
that are not data-coupled. Here, an example of QueryHelper is
given, which is responsible for globally querying Part instances and
returning results. It also has the ability to activate parts. Utility is
extendable.

Core

Part
- attached : boolean

+ eventOnGrabbed()

+ eventOnDropped()

<< abstract >>
PartBase

- pi : PartInfo

- qh : QueryHelper

PartMaster
- matchChild : int

- activateMap : Map

+ addActivationRelation()

+ activateAttachPoints()

AttachPoint
- match : boolean

- activates : int

- collision : Collision

+ eventOnBeginOverlap()

+ eventOnEndOverlap()

+ tryAttach()

Utility

<< utility >>
QueryHelper

- queryMap : map

+ activateParts()

Data

<< struct >>
PartInfo

- pn : PartName

- pm : PartMesh

- active : boolean

- activateOther : boolean

- activates : Part[0..*]

<< enum >>
PartName

<< struct >>
Map

Resource

<< resource >>
Collision

<< resource >>
PartMesh

1

0..*

1..*

1..*

<< instance >>

Figure 2: Class diagram representation of the CRUD framework.

3.2.3 Data
The primary component of the data section consists of a data struc-
ture that provides information about the parts and an activation table
that outlines the assembly relationship before and after the part. Ta-
ble 1 presents the relevant part information within the data structure,
with each attribute accompanied by a corresponding description.
The activation table is populated with data following this structure
and serves as the central element of the entire framework, upon
which the multipath assembly mechanism relies.

Table 1: Basic properties and their descriptions of the part infomation.

Properties Type Description
partName enum Friendly name of the part
partMesh model Model for visual representation
isActive bool If the parts is initially active or not
isActivateOther bool If other parts are activated by this
partActivates Set Names of parts activated by this

3.3 Mechanism
To illustrate the mechanism of this framework, let’s consider a spe-
cific assembly node task within the assembly process. Figure 3
depicts the interaction sequence diagram between core’s PAM com-
position and utility. When a user grabs an instance of Part, it triggers
the OnGrabbed event for that instance. When the user overlaps the
grabbed Part instance with an instance of AttachPoint on Master,
it triggers the OnBeginOverlap event. If the Part instance matches
and is in an active state, it binds the OnDropped event of the Part in-
stance, preparing for subsequent delegation. When the user releases
the Part instance in the overlapping state, it triggers the OnDropped
event and delegates the AttachPoint instance to execute TryAttach.

opt

opt

1: actionGrab

3: actionDrop

user

<< instance >>
[1..*] : Part

<< instance >>
[1..*] : AttachPoint

<< instance >>
[1..*] : Master

<< instance >>
[1] : QueryHelper

1.1: eventOnGrabbed

3.1: eventOnDropped

4: tryAttach

4: activateAttachPoints

4.1: activateParts

2: eventOnBeginOverlap
2.1: bindOnDropped

{active and match}

[overlap]

[drop]

[activate other parts]

<< delegate >>

<< delegate >>

opt

Figure 3: Sequence diagram represention of the core machanism

Here is a detailed explanation of TryAttach and the subsequent
process. The pseudocode for the TryAttach process is shown in

Algorithm 2 . First, it attaches the Part instance to Master as a
child element. Then, it adds physical constraints to limit degrees of
freedom for both elements. Finally, it removes the grab component
from the Part instance. If this step can activate other Part instances,
it calls the ActivateParts function using the QueryHelper reference.

Algorithm 2 TryAttach
Require:

P Current being assembled Part,
M Current assembling Master,
Q Reference to the QueryHelper.

Result: P is fixed onto M as a child with physical constraints. The
relevant parts and attach points are also activated.

1: procedure TRYATTACH(P,M,Q)
2: if match then
3: Attach P → M as child;
4: Set Physics constraints between P and M;
5: Remove Grab component of P;
6: if P.activateOtherParts = true then
7: Q.ACTIVATEPARTS(P.name);
8: end if
9: M.ACTIVATEATTACHPOINTS(P.name);

10: end if
11: end procedure

The pseudocode for the ActivateParts process is shown in Algo-
rithm 3. It uses the activation component name of the Part instance
as the key to query in map and sets the active state to true for all
returned instances. Then, the AttachPoint instance delegates the
execution of ActivateAttachPoints to the Master instance, which
activates the next assembly location points. The key represents the
name of the AttachPoint instance, which is used to find matching
objects in map. The process then sets the active state to true for all
of the results. The pseudocode for the ActivateAttachPoints process
is shown in Algorithm 4.

Finally, the AttachPoint instance is destroyed. With this, the
assembly node task is completed, and the next assembly node task
can proceed. This is the core mechanism that enables the framework
to support multipath assembly.

Building the necessary attachment operations for assembly re-
quires a clear hierarchy of the assembly. In more complex scenarios,
people might consider assembling separate subassemblies. This
framework also supports a two-level assembly structure, where only
the entire subassembly composed of Master and its various child
elements needs to be transformed into a new Part instance.

Algorithm 3 ActivateParts
Require:

P Newly assembled part.
Result: Following the completion of P, the subsequent step’s part

is activated.
1: procedure ACTIVATEPARTS(P)
2: for all i ∈ P.activates do
3: for all r ∈ R,R← queryMap[i] do
4: r.active← true;
5: end for
6: end for
7: end procedure

4 IMPLEMENTATION

This framework can be implemented as a plugin or toolkit and can
be applied in 3D engines such as Unity 3D or Unreal Engine. The
end-users (i.e., developers) of this framework can import the plugin

 VR HeadsetTemplate

Package for Unreal

Package for Unity

Package for other engine

Project

 Config the activate table [1]

2.1 Config attach points

2.2 Add Master to scene

2.1 Config attach points

2.2 Add Master to scene

2.1 Config attach points

2.2 Add Master to scene [1..*]

 Add Part to scene Add Part to scene Add Part to scene [1..*]

 Add Helper to scene [1]

Plugin / Toolkit package

implementation... import... debug & deploy...

do...

Model

Engine

Figure 4: A reference pipeline for prototyping a system using the CRUD framework.

Algorithm 4 ActivateAttachPoints
Require:

A Current attach point being overlapped.
Result: Following the completion of A, the attach points for the

subsequent step are activated.
1: procedure ACTIVATEATTACHPOINTS(A)
2: if A.activates = 1 then
3: r← activateMap[A];
4: r.active← true;
5: else if A.activates > 1 then
6: n← A.name;
7: for all k.name = n,k ∈ K,K← activateMap.keys do
8: for all r ∈ R,R← activateMap[k] do
9: r.active← true;

10: end for
11: end for
12: end if
13: end procedure

into their specific projects and utilize it to build a multipath virtual
assembly. The following are the four steps required for developers
to prepare and utilize this framework:

(1) Configure the activation table.
(2) Configure AttachPoints for each Master instance, and then add

them to the scene.
(3) Add all Part instances to the scene.
(4) Add the single instance of utility classes to the scene.

With these steps, all the preparation work is completed.
This framework is extensible. For advanced users, custom func-

tion libraries, core class models, and activation table structures can
be defined and developed based on project requirements. Figure 4
illustrates the above process

Unreal Engine 4 is the fourth generation of the Unreal game en-
gine developed by Epic Games. The software includes a distinctive
visual scripting system called Blueprint, which greatly lowers the
barrier to entry for programming. This allows entry-level develop-
ers to implement basic functionalities in a short period of time. In
recent years, UE4 has been increasingly applied in practical projects
by animation and architectural companies. Considering the user-
friendly interface, this paper uses Unreal Engine as an example to
demonstrate the implementation of this framework.

5 END-USER DEVELOPMENT

The swerve drive module, which integrates drive motors, steering
motors, reducers, and other components into a compact mechanical
structure, was selected as the focus for the virtual assembly training
system. The complex design of the swerve drive module presents
a significant challenge for first-year undergraduate students when
it comes to understanding its assembly process. In this paper, a
virtual assembly training system is developed using the proposed

CRUD framework, and the swerve drive module of FIRST Robotics
Competition is used as the training material [2]. The virtual assem-
bly system is deployed on the Oculus Quest 2.The objective is to
validate the effectiveness and generality of the framework in com-
plex scenarios, while assisting university students in comprehending
the fundamental principles of complex mechanical structures and
acquiring proficiency in the basic assembly process of the swerve
drive module. Figure 5 shows a comprehensive view of the swerve
drive module assembly.

5.1 Preparation

Commencing with the project setup, begin by creating an empty
project using the VR project template provided by Unreal Engine.
The version used throughout this paper is Unreal Engine 5.1 [1].

Subsequently, incorporate the Unreal implementation of the
CRUD framework outlined in this paper as an Unreal content plugin
within the established project. Following the import process, the plu-
gin’s content should comprehensively cover the key elements of the
CRUD framework, as depicted in the Figure 6 below. Descriptions
for each file can be found in Table 2.

5.2 Configuration

To illustrate the specific configuration, we will use the example of
the wheel sub-assembly within the swerve drive module, as shown
in Figure 7.

5.2.1 Configure the activation table

Before configuring the activation table, developers need to enumer-
ate the names of all parts involved in the assembly. Figure 8 outlines

21 3 4 5 6 7 8 9 10 11 12

21 3 4 5 6 7 8 9 10 11 12

B

A

C

D

E

F

G

H

B

A

C

D

E

F

G

H

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

2023/11/25

1/1

全向轮装配体V2A

Weichao Lin

Figure 5: Assembly structure of the swerve drive module.

Table 2: Contents of the CRUD plugin, along with file types and descriptions.

Module Asset Type Description

Core

BP AttachPoint Blueprint Class Implementation of AttachPoint
BP Part Blueprint Class Implementation of Part
BP PartBase Blueprint Class Implementation of PartBase
BP PartMaster Blueprint Class Implementation of PartMaster

Data

F ActivateMapStruct Structure Strucure expressing the mapping of activation relationships
F PartDataStruct Structure Structure storing infomation about parts
E PartName Enumeration Enumeration of all part names in the assembly tasks
DT PartDataTable Data Table Table containing infomation about all parts in the assembly task (Activation table)

Utils BP QueryHelper Blueprint Class Implementation of QueryHelper

Core
Data
Utils

CRUD_Framework
Plugins
Content

All

BP_AttachPoint
BP_Part
BP_PartBase
BP_PartMaster

F_ActivateMapStruct
F_PartDataStruct
E_PartName
DT_PartDataTable

BP_QueryHelper

All Plugins > Project > Simulation

CRUD

Framework

CRUD_Framework
Version 1.0

Edit Package

Figure 6: Contents of the CRUD framework plugin.

E 60T Bevel Gear

A Tread

B Wheel

F Wheel axles

H Bearing ×2

G Screw ×6

D Nut ×6

C Mount ×2

Figure 7: Wheel Sub-Assembly of the swerve drive module.

the process of configuring the activation table. For each part, cre-
ate a new record using its enumeration name as the key. Then, set
its activation status and select its visual model from the asset li-
brary. To indicate activation relationships with other parts, simply
drag and drop the corresponding part record into the activation field.
Additional fields can be added to accommodate more subordinate
activating parts.

partName

Wheel

Tread

WheelMount

BevelGear_60t

Bearing

Screw

Nut

WheelAxles

True

True

False

False

True

False

False

False

False

False

False

True

True

True

False

True

()

()

()

(Screw)

()

(Nut)

()

(WheelMount)

isActive isActivateOther partActivate WheelAxles

WheelMount

partName

partMesh

isActive

isActivateOther

partActivate 1 set elements

index [0]

SM_Wh..

Drag...

Figure 8: Operations for configuring the activation table.

5.2.2 Configure the master
For the wheel sub-assembly, it is intuitive to designate the hub as
the Master. Therefore, within the outliner of the BP PartMaster
instance, add the AttachPoint components, as illustrated in Figure
9. The AttachPoint corresponding to the tread position is high-
lighted in blue in the viewport for visual reference. Concerning the

activation relationships of AttachPoint, include map relationships
in the config panel. Then, drag and drop the AttachPoint compo-
nents from the outliner into their respective fields, serving as both
the key and value in the activation map. Given that the structure
of the value field is a set, it allows for one-to-one and one-to-many
activation mappings.

Mesh (Inherited)

GrabComponent (Inherited)

PhysicsConstraint (Inherited)

Mesh (Inherited)

GrabComponent (Inherited)

PhysicsConstraint (Inherited)

Tread
WheelAxles
Mount_L
Mount_R
BevelGear
Screw_01
Nut_01
Screw_02
...

6×

Default Value

Activate Map

Index [0]

key

key

value

Index [0]

Index [0]

Index [1]

2 elements

2 elements

1 Set elements

Index [1]

2 Array elements

WheelAxles

Screw_01

Mount_L

Nut_01

Mount_R

Drag...

Config panelOutliner

Viewport

Figure 9: Configuring the AttachPoint components for the Master.

5.3 Add to Scene and Deploy
Upon completing the configuration of the Part and Master in-
stances for the assembly training, add them to the final interactive
scene. Additionally, include an instance of QueryHelper in the
scene. Once these steps are completed, deploy the project and make
it available for use on VR headsets. Our virtual assembly training
system for Swerve drive module has been successfully deployed and
tested on the Oculus Quest 2.

6 EXPERIMENTAL VALIDATION

6.1 Participants
The experiments were conducted at the School of Design, South
China University of Technology. Sixteen students with no prior
experience in using VR and no prior knowledge of the swerve drive
module were recruited as participants. There were 8 female (50%)
and 8 male (50%) participants, aged between 19 and 24 years. Before
the start of the experiment, participants were given instructions
regarding the tasks they needed to complete and the maximum time
for the entire experiment (a total of 120 minutes). Participants also
received a detailed introduction on how to use the Oculus Quest 2.

6.2 Tasks
The experiment consisted of two tasks: assembling the swerve drive
module using the VR system and assembling a physical model

(1) Assembly of flange bearings. (2) Assembly of the bevel gear. (3) Assembly of the wheel shaft. (n) Complete.

...

Figure 10: Using Unreal Engine 4 to implement the CRUD framework and create virtual assembly training content. The picture shows the process
and final result of assembling swerve drive module.

of the swerve drive module. Before starting, participants were
randomly divided into two groups, labeled as Group A and Group
B. Group A, comprised of 5 females and 3 males, first completed
the virtual assembly task using the VR system and then assembled
the physical model. Group B, which comprised of 3 females and
5 males, first assembled the physical model and then completed
the virtual assembly task using the VR system. Participants were
required to complete the assembly tasks as quickly as possible.
After completing the first assembly task, participants had a suitable
rest period before proceeding to the second assembly task. Figure.
10 depicts the step-by-step process of assembling a swerve drive
module in VR. After conducting the assembly training experiment,
we recorded the time taken by all participants to complete the tasks.

6.3 Results and Discussion
The disparity in the duration required to complete the tasks is de-
picted in Figure. 11. The time taken to complete tasks using the VR
system was significantly lower than assembling the physical model.
This could be attributed to the relatively easy learning curve of the
VR system, which offers an advantage by simplifying less critical
steps (such as screwing screws), while the actual physical assembly
necessitates a methodical and meticulous approach. The statistical
chart not only demonstrates the efficiency of virtual assembly in
terms of the required time but also shows that the results are less
dispersed compared to assembling the physical model. Some par-
ticipants spent a significant amount of time assembling the physical
model. On the other hand, the effectiveness of virtual assembly is
also evident from the experimental arrangement of different groups.
Group A performed physical assembly first and then virtual as-
sembly, resulting in more time being spent on physical assembly
compared to Group B. However, Group B had prior experience with
virtual assembly, resulting in generally less additional time spent on
physical assembly.

In addition, we primarily validate the versatility of the frame-
work in complex scenarios by observing the diversity of assembly
sequences among participants. Given that the omnidirectional wheel
involves up to 105 component instances, we use the WHEEL sub-
assembly as a representative example. The most commonly adopted
assembly sequence is determined through experimental observa-
tions:

B→ A→ H×2→ E→ G×6→ D×6→ F →C×2

For the assembly of screws and nuts, the recommended sequence
involves first assembling all the screws before uniformly attaching
the nuts. Another feasible approach is to assemble one set of screw
and nut combinations before moving on to the next set, as adopted
by many participants, with the assembly sequence:

B→ A→ H×2→ E→ (G→ D)×6→ F →C×2

Some participants choose to assemble the tread in a later sequence
rather than at the beginning, resulting in the following sequence:

B→ H×2→ E→ (G→ D)×6→ A→ F →C×2

120

100

80

60

40

20

0
A 01 A 02 A 03 A 04 A 05 A 06 A 08 A 08

GROUP A:

120

100

80

60

40

20

0
B 01 B 02 B 03 B 04 B 05 B 06 B 07 B 08

GROUP B: VR Physic model

Figure 11: The temporal distribution of the completion of the task by
the two groups of participants.

According to experimental results, seemingly ”random” assembly
sequences are also achievable as long as the activation relationships
are satisfied. For instance:

B→E→ (G→D)×2→H1→G×4→D×4→H2→A→F→C×2

The framework’s versatility in accommodating multiple se-
quences in complex scenarios has been successfully validated, as
assessed by the experimenters.

7 LIMITATIONS AND FUTURE WORK

Although the effectiveness and generality of the CRUD frame-
work have been experimentally validated, it still has certain lim-
itations.The CRUD framework is particularly suitable for building
prototypes that support multi-path assembly training for household
products or small studio-level mechanical products, such as furni-
ture, appliances, and robots. Generally, it works well at this level of
complexity because these products have a clear assembly structure.
However, for large-volume assemblies such as automobiles, using
CRUD to build assembly training prototypes may not be as intu-
itive, as they typically have three or more levels of assembly. While
configuring the assembly activation relationship table is typically
done through a graphical interface (often involving drag-and-drop
operations, especially in engines like Unreal Engine), it may not be
considered easy.

Our framework is currently focused on training for non-large
assembly purposes, making it very suitable for generating clear
multi-path assembly sequences to realistically reproduce real-world
assembly processes. Multi-path assembly of products such as bench
vises, gearboxes, or swerve drive modules can be easily accom-
plished using the CRUD framework. In the implementation of the

Unreal Engine 4, developing assembly prototypes is straightforward.
During the testing experiment of the framework, three undergraduate
students majoring in fields other than computer science discovered
that they could effectively use the framework to develop virtual
training prototypes that support multi-path assembly. They were
able to do this after a short learning period, and two of them even
expressed interest in pursuing further development. However, spe-
cific implementation on other engine platforms, such as Unity3D,
has not been done for this framework.

We proposed a framework, CRUD, for rapidly building virtual
assembly prototypes that support multi-path assembly simulations
of real-world assembly scenarios. Compared to existing methods,
our framework offers unique advantages. Firstly, our framework
allows end-users (developers) to create virtual assembly sequences
based on simple configurations. This means that sequences can
be customized for various projects and requirements, significantly
enhancing flexibility. Secondly, multi-path assembly adheres to
real-world physical principles, ensuring that learners’ experiences
in the virtual environment align with reality. This enhances the
practicality and effectiveness of training. Most importantly, our
framework improves system reusability, reduces development costs
and time, making it applicable to a wider range of learning scenarios.
We believe that supporting multi-path assembly into virtual training
is a small step towards creating more realistic and practical virtual
simulations.

One direction for future work is to focus on the adaptability of
large assemblies. While this work contributes to the development
of multi-path assembly prototypes for typical assembly models, the
framework’s upper limit of applicability, or its ability to handle
large-scale use cases, remains an unavoidable question. Another
direction is to focus on the specific implementation of the framework,
including implementing it on other engines such as UNITY3D as a
planned task. Additionally, we will address user experience concerns,
including improving the convenience of configuring the assembly
activation relationship table and enhancing the overall workflow to
increase efficiency.

REFERENCES

[1] Release unreal engine 5.1.1 · epicgames/unrealengine.
[2] First robotics competition. Wikipedia, Oct. 2023.
[3] H. A. Adas, S. Shetty, and S. K. Hargrove. Virtual and augmented

reality based assembly design system for personalized learning. pp.
696–702, 2013.

[4] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Hanrahan,
and B. Tversky. Designing effective step-by-step assembly instructions.
ACM Transactions on Graphics, 22(3):828–837, July 2003.

[5] A. M. Al-Ahmari, M. H. Abidi, A. Ahmad, and S. Darmoul. Develop-
ment of a virtual manufacturing assembly simulation system. Advances
in Mechanical Engineering, 8(3):168781401663982, Mar. 2016.

[6] M. V. A. R. Bahubalendruni and B. Putta. Assembly sequence vali-
dation with feasibility testing for augmented reality assisted assembly
visualization. Processes, 11(7):2094, July 2023.

[7] A. K. B. G. Bharathi and C. S. Tucker. Investigating the impact of
interactive immersive virtual reality environments in enhancing task
performance in online engineering design activities. Jan. 2016.

[8] F. Dyck, M. Pilates, L. Masjutin, and J. Stöcklein. Physically realis-
tic simulation of mechanical assembly operations in a virtual reality
training environment. Lecture Notes in Networks and Systems, pp.
177–188, 2022.

[9] M. Eswaran and M. V. A. R. Bahubalendruni. Challenges and opportu-
nities on ar/vr technologies for manufacturing systems in the context
of industry 4.0: A state of the art review. Journal of Manufacturing
Systems, 65:260–278, Oct. 2022.

[10] J. Gaarsdal, S. Wolff, and C. B. Madsen. Real-time exploded view ani-
mation authoring in vr based on simplified assembly sequence planning.
pp. 667–668, Mar. 2023.

[11] D. Kalkofen, M. Tatzgern, and D. Schmalstieg. Explosion diagrams in
augmented reality. pp. 71–78, Mar. 2009.

[12] K. H. Rosen. Discrete Mathematics and Its Applications. 7th ed ed.,
2012.

[13] P. A. Winkes and J. C. Aurich. Method for an enhanced assembly
planning process with systematic virtual reality inclusion. Procedia
CIRP, 37:152–157, 2015.

	Introduction
	Related Work
	Virtual Training in Mechanical Products
	Assembly Sequence Generation

	Solution
	Design Process
	CRUD Framework
	Core
	Utility
	Data

	Mechanism

	Implementation
	End-user Development
	Preparation
	Configuration
	Configure the activation table
	Configure the master

	Add to Scene and Deploy

	Experimental Validation
	Participants
	Tasks
	Results and Discussion

	Limitations and Future Work

