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Figure 1: Illustration examples of GIR-Bench, which highlight misalignments between the reason-
ing and generation capabilities of state-of-the-art unified multimodal models.

ABSTRACT

Unified multimodal models integrate the reasoning capacity of large language
models with both image understanding and generation, showing great promise for
advanced multimodal intelligence. However, the community still lacks a rigorous
reasoning-centric benchmark to systematically evaluate the alignment between
understanding and generation, and their generalization potential in complex visual
tasks. To this end, we introduce GIR-Bench, a comprehensive benchmark that
evaluates unified models across three complementary perspectives. Firstly, we ex-
plore whether models can consistently leverage the same knowledge for both un-
derstanding and generation (GIR-Bench-Uni). Secondly, we investigate whether
models can perform reasoning-centric text-to-image generation that requires ap-
plying logical constraints and implicit knowledge to generate faithful visual con-
tent (GIR-Bench-T2I). Thirdly, we evaluate whether models can handle multi-step
reasoning in editing (GIR-Bench-Edit). For each subset, we carefully design dif-
ferent task-specific evaluation pipelines tailored for each task. This enables fine-
grained and interpretable evaluation while mitigating biases from the prevalent
MLLM-as-a-Judge paradigm. Extensive ablations over various unified models
and generation-only systems have shown that: Although unified models are more
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capable of reasoning-driven visual tasks, they still exhibit a persistent gap between
understanding and generation. The data and code for GIR-Bench are available at
https://anonymous.4open.science/r/GIR-Bench-7E40.

1 INTRODUCTION

Image generation and editing techniques ( , ; ; ;

, ) have evolved rapidly, demonstrating strong capablhtles in producmg hlgh quahty vi-
sual content aligned with explicit prompts. However, existing models still struggle with complex
visual generation tasks that require multi-step reasoning. This limitation has triggered the research
focus toward unified multimodal models, where a single model supports both image generation and
understanding. By leveraging the intrinsic knowledge and reasoning abilities of multimodal large
language models (MLLM), such unified approaches enable richer expressiveness and more control-
lable image generation. Recent breakthroughs, such as Gemini-2.5-Flash-Image ( )
and GPT-Image ( , ), further highlight the transformative potential of this paradlgm
showing that unified models can fundamentally reshape real-world applications, empowering users
to accomplish complex visual tasks through natural language interaction. Compared to generatlon—
only models, unified models ( s s ) promise sub-
stantial gains. With these advances comes a crltlcal research questlon how do we comprehensively
evaluate the extent to which enhanced multimodal understanding improves generation capabilities?

Earlier image generation benchmarks ( ; , ) malnly focused on
object attributes and compositional evaluation, but remalned limited to shallow mappings between
text and visual content. Recent works ( s ; s ) have

attempted to consider the reasoning capability. However, ex1st1ng benchmarks remain limited in both
their evaluation dimensions and protocols, making them inadequate for capturing the full capabilities
of unified models.

* For evaluation dimensions, they cannot quantify the alignment between reasoning and generation
within unified models. As shown in Figure 1, we observe consistent misalignments in transferring
knowledge to generation, reasoning to generation, and reasoning to editing. For instance, a unified
model may correctly recognize a real-world entity (e.g., the Merlion in Figure 1), but still fail to
generate it with an explicit description. Revealing and quantifying the gap is crucial, as it not
only uncovers the inherent limitations of current unified models but also verifies whether they can
deploy their knowledge and reasoning abilities equally across understanding and generation tasks.

* For evaluation protocols, prevalent benchmarks always propose some challenging tasks such
as idiom interpretation to investigate unified models, but they cannot decompose these designed
reasoning-centric tasks into more evaluable and interpretable forms. Instead, they rely heavily
on the MLLM-as-a-Judge paradigm, where MLLMs serve directly as evaluators and evaluation
scores are obtained through visual question answering. Such dependence inevitably couples the
evaluation result with the biases and limitations of multimodal models themselves.

To this end, we introduce GIR-Bench, a benchmark designed to systematically explore the capabil-
ity boundaries of unified models in reasoning-driven image generation and editing. The benchmark
consists of three components: 1) GIR-Bench-Uni: We first systematically evaluate the gap between
understanding and generation for the same real-world entity. As shown in Figure 1(a), we collect
300 real-world entities across zoology, botany, and geography, design reasoning-oriented implicit
prompts, and pair them with curated reference images to construct paired tests. This design enables
us to quantify the gap between understanding and generating the same entity. 2) GIR-Bench-T2I:
We then explore reasoning-centric text-to-image generation (c.f., Figure 1(b)). It requires models not
only to retrieve relevant knowledge but also to apply precise logical reasoning to faithfully satisfy
specified constraints. We design 300 carefully crafted prompts spanning three dimensions: numeri-
cal reasoning, spatial layout, and text rendering. 3) GIR-Bench-Edit: We further evaluate whether
models can perform global planning and reasoning-driven local modifications (c.f., Figure 1(c)).
We construct 370 cases spanning visual puzzles, visual logic, and reasoning perception. Each case
consists of an input image and its associated ground-truth image, i.e., reducing evaluation bias.

In terms of evaluation, unlike previous works that heavily rely on the MLLM-as-a-Judge paradigm,
we design a series of task-specific evaluation pipelines tailored for each task. Our results demon-
strate that these specialized evaluations not only provide fine-grained and interpretable assessments
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Figure 2: Examples of leading models on the GIR-Bench. Designed complex and various tasks pose
challenges to current models.

but also effectively mitigate the inherent biases of large multimodal models. Within GIR-Bench,
we systematically evaluate 21 state-of-the-art models. Our challenging benchmark reveals the lim-
itations of leading models in performing generation tasks that require complex visual reasoning, as
shown in Figure 2. Massive results show that integrating understanding with generation enables
models to perform more complex visual tasks. However, for unified models, a significant gap re-
mains between understanding and generation. Thus, effective integration of the two is crucial for
unlocking the potential of unified multimodal models. In summary, our contributions are threefold:

* We propose GIR-Bench, a comprehensive reasoning-centric benchmark that evaluates unified
multimodal models across three perspectives.

* We design a diverse suite of tasks with task-specific evaluation pipelines that provide fine-grained
and interpretable metrics, moving beyond the limitations of the MLLM-as-a-Judge paradigm.

» Through extensive experiments, we reveal both the performance gap between unified and
generation-only models and the internal gap between understanding and generation.

2 GIR-BENCH

In this section, we introduce the main components of GIR-Bench. Section 2.1 details the data
sources, dataset construction, prompt suites and evaluation pipeline of GIR-Bench-Uni. In Sec-
tion 2.2, we present the task dimensions and evaluation suite of GIR-Bench-T2I. Section 2.3 elab-
orates on the evaluation dimensions, image sources and evaluation metrics of GIR-Bench-Edit. Fi-
nally, the experiments and the insights derived from GIR-Bench will be discussed in Section 3.

Our design of GIR-Bench is guided by three concrete principles intended to keep the benchmark
objective, interpretable, and reproducible:

* Objectivity over Subjectivity: While many advanced reasoning scenarios (e.g., causal reasoning
or open-ended commonsense) typically rely on the “MLLM-as-a-Judge” paradigm, this approach
often introduces bias. We prioritized tasks with deterministic solutions (e.g., the unique solution
in Sudoku, the original image in Jigsaw Puzzles, or exact answers in arithmetic). This ensures that
our evaluation results are reproducible and indisputable.
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* Availability of Ground Truth: We exclusively selected tasks where ground truth can be pro-
grammatically generated or strictly verified. For instance, Spatial Layout is verified via
bounding box coordinates, and Text Rendering is checked via OCR. This quantifiable nature
is a prerequisite for building a rigorous benchmark.

* Focus on Implicit Reasoning & Planning: We explicitly excluded tasks solvable by simple
“keyword-to-image” mappings. The selected tasks (e.g., Visual Puzzle and Numerical
Reasoning) compel the model to perform implicit reasoning or global planning before gener-
ating visual content that satisfies the constraints. This is key to measuring whether a model truly
comprehends the logical constraints within a prompt.

2.1 GIR-BENCH-UNI

We collected 300 real-world entities from the Internet and open-source datasets, covering domains
such as zoology, botany, and geography. Although previous works have explored the dimension of
world knowledge, they typically remain limited to textual interpretation or text—image alignment
without a deeper investigation. To evaluate reasoning ability, we utilize GPT-40 to generate implicit
descriptions of each entity category, incorporating representative features such as visual appearance,
historical context, and distinctive attributes. These prompts are then manually verified and refined
to ensure that each uniquely corresponds to the real entity. Meanwhile, we curate a set of high-
quality images to serve as reference exemplars for each entity. With entity categories, prompts, and
reference image sets in place, we construct paired evaluation sets for both image understanding and
image generation as shown in Figure 3. We compute the average DINOv3 (Siméoni et al., 2025)
feature similarity between the generated image and the reference image sets as the evaluation metric.
For image understanding, reference images are used to formulate visual question-answering cases.
This design enables us to systematically investigate whether unified models can leverage the same
underlying knowledge and reasoning for both understanding and generating the same entity.

2.2 GIR-BENCH-T2I

GIR-Bench-T2I consists of three text-to-image generation tasks that require deep reasoning. We
design 300 carefully crafted prompts and construct evaluation pipelines by object detection and
text recognition models. Although such problems are trivial for multimodal models, existing image
generation models often fail to reason correctly and generate the expected images.

Numerical Reasoning. We design prompts that explicitly state mathematical constraints and record
the corresponding ground truth, e.g., the chicken-rabbit problem, while models must reason over
these constraints to infer the correct objects and their quantities. For example, given the prompt
“A photo of ducks and dogs. There are a total of 10 legs visible, and the total number of animals
is 4. Display all the animals clearly.”, the expected output is 3 ducks and 1 dog. For evaluation,
we apply object detection to extract the categories and counts of objects in the generated image
and compare them against the ground truth. Notably, a case is counted as correct only when all
object counts extracted from the generated image match the expected numbers. This strict criterion
is necessary since the quantities of objects specified in the prompts are logically interdependent.
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Partial correctness indicates a broken reasoning chain, whereas full correctness ensures that the
model has followed the intended reasoning process.

Spatial Layout. We design prompts that specify how objects should be arranged according to
constraints (e.g., categorical rules or ordered attributes) and record the corresponding ground truth
layouts. For example, the prompt “A picture showing a bicycle, a dog, a car, and a cat. Arrange
the items in a horizontal line, with animals on the left and vehicles on the right.” requires that the
bounding boxes of animals appear to the left of those of vehicles. We evaluate results by extract-
ing bounding boxes from generated images via object detection and verifying whether the spatial
relations conform to the specified constraints.

Text Rendering. While existing models already demonstrate strong text rendering capabilities,
their ability to reason over textual knowledge remains underexplored. To this end, we collect 60
short quotes or slogans and design implicit descriptions that correspond to them. For example, the
target text “Just do it” corresponds to the prompt “A photo of an original 1988 Nike billboard featur-
ing the brand’s iconic three-word call-to-action slogan in bold capital letters.” For evaluation, we
first extract text from generated images. Unlike traditional settings, our prompts are deliberately im-
plicit, which often leads models to generate the target text along with additional irrelevant content.
Common metrics (e.g., word accuracy and edit distance) are not suitable, since they wrongly penal-
ize extra words. Our goal is instead to assess whether the model successfully generates the ground

truth text while allowing the presence of additional content. To this end, we propose the word-level

continuous substring score as the primary evaluation metric. It is defined as sy.(g, p) = %,

where W(g) denotes the set of words in the ground truth g, and Wiuen(g, p) counts the number of
ground truth words that are fully covered by continuous character spans in the predicted text p.

2.3 GIR-BENCH-EDIT

GIR-Bench-Edit evaluates the image editing capabilities of models along three novel dimensions.
Unlike previous works, each editing case in our benchmark includes both an input image and a
corresponding ground truth image, thereby mitigating bias in evaluation.

Visual Puzzle. We filter real-world images collected in Section 2.1 to retain near-square, high-
resolution photos (minimum side length > 1024 and aspect ratio < 1.2), and resize each to a square.
The processed images are partitioned into grids, and the tiles are randomly permuted such that at
least half of the tile positions are altered. Given the shuffled image and the accompanying instruc-
tion, the model is required to reconstruct the original image, thereby evaluating its ability to integrate
semantic understanding with spatial reasoning in order to restore both the global structure and the
local coherence of natural images. For evaluation, we compute the Fréchet Inception Distance (FID)
between generated images and ground truth. To facilitate comparison with other metrics, we further
normalize FID to the range [0, 1], where larger values indicate better reconstruction quality.

Visual Logic. We construct a high-quality dataset of Sudoku puzzles using a systematic generation
pipeline. For ground truth solutions, we employ a constraint-propagation algorithm that maintains
candidate sets for rows and columns, filling the grid iteratively with randomized choices while en-
suring the validity of standard Sudoku constraints. For input puzzles, we adopt a deductive removal
strategy, ensuring that each removed digit preserves the uniqueness of the solution. The puzzles and
their corresponding solutions are then rendered into images. For evaluation, we apply text detection
to extract the digits and their positions from generated images, and compute accuracy by comparing
predictions against the ground truth.

Reasoning Perception. We select high-quality images from the LISA ( , ) dataset and
filter those with small aspect ratios and resize them to a square. Editing instructions are constructed
from their implicit textual descriptions. The task requires models to edit the target regions into
green while keeping the background unchanged. Conceptually, this corresponds to segmentation,
but since directly predicting binary masks is out of scope for editing models, we use this proxy for-
mulation. Specifically, we instruct the model to segment the target region and render it in solid, fully
opaque green while leaving the rest of the image unchanged. For evaluation, we extract the edited
regions from the model outputs and convert them into binary masks. The procedure combines color-
threshold detection centered on the target green, enhanced, with channel-ratio based seed detection
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Table 1: Results of various multimodal understanding and generation models on GIR-Bench-Uni.

Type Model Image Understanding Image Generation

Zoology Botany Geography Overall Zoology Botany Geography Overall

Qwen2.5VL-7B 0.943  0.990 1.000 0.978 - - - -

Und Qwen2.5-VL-32B 0.951  0.990 1.000 0.976 - - - -

GPT-5 0.983  1.000 1.000 0.994 - - - -

Gemini-2.5-Flash 0.991  1.000 1.000 0.997 - - - -
SD-3.5-Large - - - - 0.263  0.163 0.437 0.288
Gen HiDream-11-Full - - - - 0.298 0.218 0.617 0.378
FLUX.1-schnell - - - - 0.239  0.197 0.440 0.292
Show-02-7B 0.894 0910 1.000 0935 0.200 0.128 0.265 0.198
Janus-Pro-7b 0.813 0.810 1.000 0.874 0.201 0.111 0.321 0.211
BLIP30o-NEXT-SFT-3B 0.951  0.970 1.000 0974 0.260 0.169 0.360 0.263
Ovis-U1-3B 0.878  0.850 1.000 0909 0.225 0.130  0.377 0.244
OmniGen2 0.932  0.940 0.984 0952 0.214 0.218 0.451 0.294
Unified UniPic2-Metaquery-9B - - - - 0.269  0.195 0.440 0.301
UniWorld-V1 - - - - 0236 0220 0451 0.302
BAGEL-7B 0911  0.900 1.000 0937 0.242 0.200 0445 0.295
BAGEL-7B w/ CoT 0.935 0.970 1.000 0.968 0.256 0.243 0.525 0.341
Qwen-Image - - - - 0.293 0319 0.677 0.429
Gemini-2.5-Flash-Image - - - - 0.448  0.565 0.772 0.595
GPT-Image-1 - - - - 0.568 0.700  0.800 0.689

obtained by comparing the input and generated images. The resulting binary mask is then compared
with the ground-truth mask using Intersection-over-Union (IoU) as the evaluation metric.

3 EXPERIMENTAL RESULTS AND INSIGHTS

3.1 EXPERIMENT SETTINGS

Evaluated Models. We evaluate 21 representative models, including: Multimodal understanding

models: Qwen2.5-VL-7B ( s ), Qwen2.5-VL-32B ( s ), GPT-5 ( s
), Gemini-2.5-Flash ( , ); Image generation models: SD-3.5-Large (

, ), HiDream-I1-Full ( s ), FLUX.1-schnell ( , ); Image edit-
ing models: FLUX.1-Kontext ( , ), ICEdit ( , ), Step1X-Edit (

, ); Unified multimodal models: Uniworld ( , ), UniPic2 ( , ),
BAGEL ( , ), Ovis-Ul ( s ), OmniGen2 ( , ), Show-
02 ( s ), Janus-Pro ( , ), BLIP3o0 ( , ), Qwen-Image (

R ), GPT-Image-1 ( s ), Gemini-2.5-Flash-Image ( R ).
Implementation Details. For object detection, we employ the grounding capability of InternVL3.5-
38B ( , ) to detect object categories and bounding boxes from generated images. For
text detection, we use PPOCR v5 ( , ) to detect and recognize textual content, retaining

only segments with confidence scores greater than 0.5.

3.2 EVALUATION ON REAL-WORLD UNDERSTANDING AND GENERATION

Table 1 reports results on GIR-Bench-Uni, which jointly evaluates real-world entity understanding
and generation. The left panel shows understanding accuracy, while the right panel presents gener-
ation performance under implicit prompts. Overall, unified models outperform generation-only sys-
tems on reasoning-centric generation tasks, indicating that joint training across understanding and
generation yields tangible benefits. GPT-Image-1 achieves the best performance and significantly
outperforms other models, providing a strong upper bound. Unexpectedly, however, open-source
unified models do not show a clear advantage in generation compared to strong generation-only
models. To further probe this phenomenon, we conducted two complementary analyses:

Knowledge and Reasoning Capacity. We further probed whether generation failures stem from
missing world knowledge or from difficulty in reasoning. To this end, we evaluated image under-
standing and reported the results in Table 1. Unified models exhibit consistently strong understand-
ing: BLIP3o attains the highest overall score of 0.974, while the lowest, Janus-Pro, still achieves
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Table 2: Results of various multimodal models on GIR-Bench-T2I and GIR-Bench-Edit.

GIR-Bench-T2I GIR-Bench-Edit

Type Model Numerical Spatial Text o n Visual Visual Reasoning o I
Reasoning Layout Rendering Verall puzzle Logic Perception vera

SD-3.5-Large 0.107  0.069  0.227 0.134 - - - -

Gen HiDream-I1-Full 0.062 0.218 0.180 0.153 - - - -

FLUX.1-schnell 0.045 0.195 0.238 0.159 - - - -
FLUX.1-Kontext-dev - - - - 0.044 0.000 0.271 0.105
Edit ICEdit - - - - 0.023 0.030 0.233 0.095
Step1X-Edit - - - - 0.037 0.041 0.132 0.070
UniWorld-V1 0.062  0.207 0.146 0.139 0.038 0.013 0.111 0.054
UniPic2-Metaquery-9B 0.107  0.172  0.126 0.135 0.107 0.030 0.261 0.133
Ovis-U1-3B 0.051 0.356  0.082 0.163 0.203 0.033  0.049 0.095
OmniGen2 0.057 0.195 0.167 0.140 0.029 0.051 0.139 0.073

Unified Qwen-Image 0.153 0368  0.150 0.224 - - - -
Qwen-Image-Edit - - - - 0.230 0.012  0.233 0.158
BAGEL-7B 0.057 0.287 0.163 0.169 0.131 0.058 0.105 0.098
BAGEL-7B w/ CoT 0.249  0.448  0.120 0.272 0224 0.050 0.147 0.140
Gemini-2.5-Flash-Image  0.362  0.759  0.806 0.642 0.375 0.249 0.396 0.340
GPT-Image-1 0.328 0.690 0.813 0.610 0.403 0.202 0.444 0.350

0.874. Such uniformly high scores suggest that entity recognition and basic reasoning are not the
main bottlenecks. Moreover, with respect to implementation, it is worth noting that UniWorld and
UniPic2 do not release official image understanding scripts. Both are developed upon a frozen
Qwen2.5-VL-7B, and thus their understanding capability can be reasonably approximated by the
performance of Qwen2.5-VL-7B. In a similar vein, Qwen-Image is built on Qwen2.5-VL (variant
undisclosed); here we use Qwen2.5-VL-32B as a reference.

Bridging Reasoning and Generation. To disentangle the effect of reasoning, we compare two types
of inputs: (i) a category input, which directly specifies the target entity using the template “a photo
of {category}”, and (ii) the original prompt input, which requires reasoning to infer the entity.
Figure 4 presents the per-model performance under both conditions. Across all models, scores with
prompt input exhibit a marked reduction compared to category input, often by a significant margin.
This pattern indicates that while models are capable of rendering entities when explicitly named,
their performance deteriorates when the entity must be reasoned. The limitation therefore lies not
in the ability to render the object itself, but in transferring reasoned constraints into the generative
process. We further illustrate this gap through qualitative case studies in Section 4.

3.3 EVALUATION ON REASONING-CENTRIC TEXT-TO-IMAGE GENERATION

We report results on GIR-Bench-T2I in Table 2 (left). Overall, unified models outperform
generation-only models, indicating that coupling understanding and generation yields measurable
gains on reasoning-driven text-to-image generation. Nevertheless, even the strongest proprietary
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Prompt GPT-Image-1 Gemini-2.5-Flash-Image Bagel w/CoT Qwen-image Target

A photo of a weather-
stained Texian battle flag
displayed in a San Antonio
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rallying cry that honored

an 1836 mission fortress.

The displayed text is in
English.

Remember the
Alamo

A photo of laptops, phones,
and chairs. The number of
laptops is equal fo the
number of phones, and the
number of chairs is one
more than the number of
phones. Altogether, there
are four items. Display all
the objects.

laptop: 1
phone: 1
chair: 2

A photo of the bronze
sculpture in Copenhagen
harbour inspired by Hans

Christian Andersen’s fairy
tale.

1 4 - 4 =
Figure 6: Illustrative examples from GIR-Bench-Uni and GIR-Bench-T2I.

Prompt Input image GPT-Image-1 Gemini-2.5-Flash-Image Bagel w/CoT Qwen-image-Edit Ground Truth
Solve the given Sudoku 13 42 3 142 3 E 4 5/a 2 3 4 E 14 3.2
Pl the mpty cols 2314 /2314|2016 !|2/3/14 ' 2314
oo 324113241 9289 |32 132041
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Please segment the region
from the image described
as [something that makes
the coffee more sweet].....

Rearrange the shuffled
Jigsaw puzzle image to
restore the original photo
of [bouvier des flandres].....

Flgre 7 Representive outputs from GIR-Bench-Edit.

models (i.e., GPT-Image-1 and Gemini-2.5-Flash-Image) are far from perfect, highlighting the lim-
itations of current unified models in visual generation with reasoning.

Specifically, for numerical reasoning, the highest score is just 0.362 with Gemini-2.5-Flash-Image,
underscoring that models are largely unable to generate correct quantities when reasoning over im-
plicit prompts. Among open-source unified models, BAGEL w/ CoT exhibits a substantial gain over
its base counterpart (0.249 vs. 0.057), suggesting that explicit chain-of-thought helps transfer arith-
metic constraints into the generative process. In spatial Layout, proprietary models again dominate,
with Gemini-2.5-Flash-Image at 0.759. Within open-source unified models, BAGEL w/ CoT (0.448)
outperforms Qwen-Image (0.368) and Ovis-U1 (0.356), indicating that explicit planning improves
global arrangement beyond local object placement. For text rendering, under implicit descriptions,
the performance gap between proprietary and open-source models is the most pronounced: GPT-
Image-1 (0.813) and Gemini-2.5-Flash-Image (0.806) substantially outperform all others. While
many models can render text reliably with explicit input text, they struggle to produce correct out-
puts when the target text must first be reasoned and then generated. Notably, BAGEL w/CoT does
not improve over BAGEL (0.120 vs. 0.163), suggesting that current reasoning traces are not yet ef-
fectively grounded in the generation process, thereby reflecting the broader gap between reasoning
and generation. We further provide qualitative analysis in Section 4.

3.4 EVALUATION ON REASONING-CENTRIC IMAGE EDITING

Table 2 (right) presents results on GIR-Bench-Edit, which covers three editing tasks: visual puz-
zle, visual logic, and reasoning perception. In contrast to the trends observed in Section 2.1 and
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<think>
The model should generate an image featuring Martin Luther King Jr.
delivering his ‘T Have a Dream’ speech, with the manuscript clearly visible
and the fext I have a dream” prominently displayed. Here's the finished
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large, diverse crowd at the 1963 March on Washington, with his manuscript
Bagel w/CoT clearly visible in his hands. The manuscript prominently displays the

Target: T have a dream Reasoning  celebrated four-word refrain, I have a dream," in bold English letters....
</think>
@ & Extended Prompt
from CoT
Bagel w/o CoTe Bagel w/CoT° Bagel w/o CoT

Figure 8: Misalignment between reasoning and generation.
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Section 2.2, the performance gaps across model categories are noticeably narrower, with all models
demonstrating constrained abilities. Even the strongest proprietary models (i.e., Gemini-2.5-Flash-
Image and GPT-Image-1) often fail, highlighting limitations in fine-grained local control and pixel-
level information maintenance for image reconstruction and region editing. While explicit reasoning
mechanisms occasionally improve results, the overall effectiveness remains limited.

4  QUALITATIVE ANALYSIS

Qualitative Results. Figure 6 and Figure 7 illustrate representative outputs across image generation
and editing. For image generation, current models satisfy only part of the coupled constraints and
struggle to faithfully generate correct visual content through reasoning. For image editing, visual
puzzles yield globally coherent yet unfaithful reconstructions, visual logic suffers from digit errors
despite clean grids, and reasoning perception reveals limitations in region preservation and editing.

Misalignment between Reasoning and Generation. Figure 5 presents a case study with Qwen-
Image, comparing outputs under category input and prompt input. While the model produces faithful
generations when the category is explicitly provided, it fails to reason the correct entity and generate
it with the implicit prompt. To further investigate this misalignment, we analyze BAGEL w/CoT by
comparing its reasoning process with the generated images. As shown in Figure 8, BAGEL correctly
infers the ground-truth text (i.e., “I Have a Dream”) within its reasoning process and even expands
it into an explicit prompt. However, when asked to generate directly from the original implicit
description, it fails to render the target text. By extracting the expanded prompt from the reasoning
process and re-feeding it into the model, the target text is successfully generated. This observation
suggests that reasoning the target text from an implicit prompt is not the primary difficulty, and the
real challenge lies in reliably transferring the inferred content into the generative process.
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Qualitative Comparison with MLLM-as-a-Judge. Figure 9 contrasts MLLM-as-a-Judge with our
explicit, task-specific metrics. MLLM-as-a-Judge sometimes assigns high scores based on superfi-
cial resemblance or biased reasoning, whereas our metrics correctly penalize mismatches with the
ground truth. For example, in the Lotus Temple case, judge-based scoring mislabels the Qwen-
Image output as correct despite clear structural inaccuracies. In the pens-and-pencils case, it fails
to reward Gemini-2.5-Flash-Image for producing the exact target. These cases highlight that our
metrics yield more consistent and interpretable evaluations.

Misalignment Understanding-Generation Based on our quantitative ablations and qualitative
case studies presented, we identify three primary factors driving the misalignment between the un-
derstanding and generation capabilities of unified models:

* Asymmetry of Reasoning Capabilities: Our experiments reveal a fundamental asymmetry:
models often possess the knowledge but fail to “activate” it during the generation process. As
illustrated in our case studies and experiments (in Figure 4 and Figure 5), the model successfully
generates the correct entity when explicitly named (e.g., “Charging Bull United States”) but fails
when the same entity must be reasoned from an implicit prompt. This suggests that the reasoning
capability is localized within the LLM component. While the model correctly solves the inter-
mediate logic (e.g., identifying the entity), the image generator—which is optimized for visual
fidelity rather than logical adherence—fails to receive or adhere to this reasoned state, leading to
generation failures.

* Information Bottleneck in Heterogeneous Architectures: Many unified models evaluated in
GIR-Bench (e.g., BAGEL, Qwen-Image) employ heterogeneous architectures that couple a ca-
pable LLM with a separate generation head via a lightweight interface. This design creates a
significant information bottleneck. While the LLM performs deep reasoning, the interface often
compresses this rich semantic state into a limited number of condition tokens. Consequently, fine-
grained logical constraints (e.g., exact counts in Numerical Reasoning) are often diluted or lost
before reaching the pixel generation stage.

* Lack of Process-Oriented Training Data: Current multimodal pre-training relies heavily on
static image-text pairs. These datasets map a final text description directly to an image but fail
to capture the process of generation. Existing models lack exposure to interleaved “reasoning-
trace” data (e.g., [Reasoning Step] — [Intermediate Visual State] —
[Refined Image]). Without such data, the model struggles to learn how to decompose a
complex abstract instruction into a sequential plan for visual execution.

5 CONCLUSION

In this work, we presented GIR-Bench, a reasoning-centric benchmark that systematically evaluates
unified multimodal models across understanding, generation, and editing. By grounding evaluation
in explicit, task-specific metrics rather than the MLLM-as-Judge paradigm, GIR-Bench exposes
fine-grained weaknesses that are otherwise hidden behind holistic scores. Extensive experiments and
analyses show that while unified models consistently surpass generation-only models on reasoning-
intensive tasks, they still struggle with reliably transferring reasoning into faithful visual outputs.
These findings point to the importance of advancing unified models capable of seamlessly integrat-
ing reasoning and generation.
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A ETHICS STATEMENT

This work introduces GIR-Bench, a benchmark designed to evaluate unified multimodal models on
reasoning-driven image generation and editing tasks. Our study does not involve human subjects,
personally identifiable information, or sensitive private data. All images used in the benchmark
are either collected from publicly available open-source datasets or generated through automated
pipelines, and we have carefully filtered the data to avoid inappropriate or harmful content.

We acknowledge that generative models, when misused, could produce misleading or harmful out-
puts. To mitigate such risks, GIR-Bench is constructed solely for research purposes, with a focus
on advancing transparent and interpretable evaluation of multimodal reasoning. We explicitly avoid
releasing prompts or data that could be exploited for malicious generation, and we emphasize that
our benchmark should not be deployed in downstream applications without appropriate safeguards.

The release of GIR-Bench, along with its evaluation protocols, aims to foster reproducibility, fair-
ness, and accountability in multimodal research. By replacing opaque “MLLM-as-a-Judge” evalu-
ation with task-specific, interpretable metrics, we encourage ethical research practices and reduce
risks of hidden biases. Our study complies with the ICLR Code of Ethics, and we affirm our com-
mitment to responsible Al research.

B REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of GIR-Bench. All dataset con-
struction procedures, including the collection of real-world entities, prompt generation, and editing
case design, are described in detail in Section 2.1, 2.2 and 2.3, with additional implementation de-
tails provided in the Appendix. Evaluation metrics and pipelines are explicitly defined for each
task, covering object detection, text recognition, and segmentation-based analysis, enabling oth-
ers to replicate our results without relying on subjective judgments. Comprehensive experimental
results across 21 models are reported in Table 2 and Table 1, and we also provide qualitative ex-
amples in Figures 10-12 to illustrate typical outcomes. To further support reproducibility, we re-
lease all data, prompts, and evaluation code at https://anonymous.4open.science/r/
GIR-Bench-7E40, ensuring that our benchmark can be independently verified and extended by
the research community.

C RELATED WORK

C.1 UNIFIED MULTIMODAL MODELS

Research in multimodal generation has shifted from modality-specific architectures to unified mod-
els that handle both understanding and generation across modalities ( , ; ,
;a3 , ; , ; , ; , ; ; )-
Chameleon ( , ) pioneered an early-fusion, token-based transformer that can generate and
interpret text and images interchangeably, matching or surpassing proprietary systems. Emu3 (
, ) shows that pure autoregressive modeling can achieve general multimodal intelligence
without relying on diffusion. MetaQueries ( , ) introduces learnable query tokens to
interface a frozen multimodal LLM with a diffusion decoder, enabling knowledge-augmented image
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Prompt GPT-Image-1 Gemini-2.5-Flash-Image Bagel w/CoT Qwen-image

A photo of the lotus-
bud-shaped
telecommunications
tower rising above
Colombo as South Asia's
tallest structure.

A photo of the mud-brick
mosque on the Niger River
floodplain considered the
world's largest earthen
building.

A striking bloom with a
vivid pink inflorescence
shaped like a flattened
quill. Native to Central and
South America, it thrives
in tropical rainforests as
an epiphyte. Known .....

A striking flower with
feathery, plume-like
inflorescences, native to
tropical and subtropical
regions. Historically
cultivated in Victorian-era
gardens for its ornamental

A large, muscular herding
dog with a long, wavy coat
and distinctive double
dewclaws on its hind legs.
Historically used in France
to guard and move flocks,
it was a favourite of
Napoleon and featured.....

A sturdy dog with a lion-
like mane and deep-set
eyes, known for its ancient
origins in China.
Historically used for
hunting and guarding, it
was once a favourite of
Chinese emperors......

Figure 10: Examples from GIR-Bench-Uni.

generation without degrading understanding performance. Some works attempt to integrate diffu-
sion into unified frameworks. BLIP3-o (Chen et al., 2025a) uses a diffusion transformer to generate
semantically rich CLIP image features and employs sequential pretraining (understanding followed
by generation). BAGEL (Deng et al., 2025) is a decoder-only foundation model pretrained on tril-
lions of interleaved multimodal tokens, exhibiting emergent capabilities in complex multimodal
reasoning such as free-form image manipulation. Proprietary systems (e.g., GPT-Image-1 (OpenAl,
2025b) and Gemini 2.5 Flash Image (DeepMind, 2025)) further showcase the powerful capabilities
of unified multimodal models and have given rise to a wide range of real-world applications. These
advancements underscore the need for comprehensive and reasoning-centric benchmarks.

C.2 BENCHMARKS FOR UNIFIED MULTIMODAL MODELS

Existing benchmarks (Huang et al., 2023; Niu et al., 2025; Zhao et al., 2025) for unified multimodal
models cover various aspects but still fall short of probing reasoning. GenEval (Ghosh et al., 2023)
uses object detection to check whether generated images match explicit constraints on object co-
occurrence, position, count and colour, limiting its scope to compositional alignment. ImgEdit (Ye
et al., 2025) introduces a large-scale, high-quality dataset of 1.2 million edit pairs covering both
single-turn and multi-turn image editing tasks, and proposes ImgEdit-Bench, a benchmark eval-
uating instruction adherence, editing quality and detail preservation; however, its focus remains
on surface-level editing fidelity rather than deeper reasoning. WISE (Niu et al., 2025) provides
1,000 prompts spanning cultural commonsense, spatio-temporal reasoning and natural science, and
measures knowledge—image alignment with its WiScore metric, but its evaluation depends on the
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Prompt GPT-Image-1 Gemini-2.5-Flash-Image Bagel w/CoT Qwen-image Target

A photo of keys, lamps,
and blankets. The number
of keys is equal to twice

the number of plates. In
total, there are four items.
Show all the objects.

1
1
1
1 .
the number of lamps, and | key: 2
the number of blankets is 1 lamp: 1
equal to the number of ! blanket: 2
lamps. Altogether, there :
are five items. Display all
the objects.
A photo of cups, plates, :
and bottles. The number
of cups is one more than ! cup: 2
the number of plates. The : plate: 1
number of bottles equals | bottle: 1
1
|
1

A photo of an ancient
Roman marble tablet in
the Capitoline Museums

bearing Caesar's succinct
three-word report of
victory in Latin. The
displayed text is in English.

I came, I saw, I
conquered

A photo of Benjamin
Franklin's Poor Richard
Almanack opened to the
page where punctuality is
directly linked with profit,
the sentence underlined.
The displayed text is in
English.

Time is money

Figure 11: Examples from GIR-Bench-T2I.

inherent knowledge of multimodal LLMs, making it prone to bias. T2I-ReasonBench (Sun et al,,
2025) introduces 800 prompts across idiom interpretation, textual design, entity and scientific rea-
soning, but its two-stage evaluation (LLM-generated questions and LMM-based scoring) cannot
disentangle understanding from generation. RISEBench (Zhao et al., 2025) extends evaluation to
visual editing tasks involving temporal, causal, spatial and logical reasoning and scores instruction
adherence, appearance consistency and visual plausibility using human and multimodal judges, yet
it again depends on large models as judges rather than explicit, interpretable metrics. Current bench-
marks emphasize explicit alignment and surface-level fidelity, lean heavily on multimodal models
as judges, and lack a framework to decouple comprehension from generation.

D IMAGE EDITING INSTRUCTIONS

To ensure consistency and clarity in evaluating editing capabilities, we design explicit instructions
for the three tasks in GIR-Bench-Edit. Each instruction specifies the editing objective, the con-
straints to be preserved, and the expected output format. Placeholders such as {caption} and
{category} are replaced with task-specific descriptions or categories for each case.

Reasoning Perception: Please segment the region from the image described as {caption}. Out-
put the image with a solid, fully opaque green (#00FF00) segmentation mask overlay, and leave the
rest of the image unchanged.

Visual Logic: Solve the given Sudoku puzzle shown in the image. Fill in all the empty cells with the
correct numbers according to Sudoku rules. Keep the existing numbers and the grid lines unchanged.
Write the solution numbers in a consistent font and size, aligned within each cell, so that the final
image shows the completed Sudoku solution.

Visual Puzzle: Rearrange the shuffled jigsaw puzzle image to restore the original photo of
{caption}.

E MORE QUALITATIVE RESULTS

In this section, we provide representative qualitative results from the three components of GIR-
Bench. Figure 10 shows examples from GIR-Bench-Uni, Figure 11 from GIR-Bench-T2I, and Fig-
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Prompt Input image GPT-Image-1 Gemini-2.5-Flash-Image Bagel w/CoT Qwen-image-Edit Ground Truth
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Please segment the region
from the image described
as [If pigs are shot and
Killed, they usually fall to
the ground. Which pigs in
the picture are most likely
to still be alive?].....

Please segment the region
from the image described
as [What are some of the
key features of the
rainforest environment that
support the growth and
development of the diverse
collection of plants found

Rearrange the shuffled
Jigsaw puzzle image to
restore the original photo
of [scotch terrier].

Rearrange the shuffled
jigsaw puzzle image to
restore the original photo
of [norfolk terrier].

Figure 12: Examples from GIR-Bench-Edit.

ure 12 from GIR-Bench-Edit. These cases illustrate typical challenges faced by current models and
highlight the reasoning—generation misalignment observed across different tasks.

F ROBUSTNESS AND VALIDATION OF AUTOMATED EVALUATION METRICS

To ensure the reliability of GIR-Bench, we conducted a comprehensive analysis of the robustness
of our automated evaluation metrics compared to human judgment and MLLM-based judges. As
illustrated in Figure 13, our automated metrics demonstrate a high Pearson correlation of p ~ 0.96
with human annotation globally. In contrast, MLLM-as-a-Judge approaches exhibit lower consis-
tency and a notable tendency towards score inflation, particularly in lower-performance regimes
(visible as points floating significantly above the diagonal in the lower-left quadrant). This quanti-
tative evidence supports our choice of using deterministic, verifiable metrics over stochastic MLLM
judgments.

We specifically investigated edge cases where automated tools might misjudge correct outputs. Our
observations indicate:

* Rare False Negatives: Mismatches are infrequent and typically occur only when objects are
rendered in highly abstract, stylized forms, are heavily occluded, or when text is severely distorted
beyond standard legibility. In such cases, human annotators often also find the content ambiguous.

* Ranking Stability: Crucially, these edge cases are uniformly distributed and do not dispropor-
tionately affect specific models. Consequently, the relative ranking of models remains consistent.
The significant performance gap is robust to these minor metric fluctuations.
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1.0 Ours: p=0.964 A
Gemini 2.5: p=0.795
Qwen3VL-32B: p=0.720
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Metric Score
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*x  Gemini 2.5
4 Qwen3VL-32B
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Figure 13: Correlation Analysis of Evaluation Protocols. We aggregated evaluation scores across all
tasks in GIR-Bench to compare our metrics against MLLM-as-a-Judge methods. Our task-specific
metrics (Green) show a strong linear correlation (p ~ 0.96) with human judgment, demonstrating
high robustness. In contrast, MLLM judges (Red/Blue) exhibit higher variance and inflation bias.

G EXTENDED DISCUSSION: THE GAP BETWEEN UNDERSTANDING AND
GENERATION

In this section, we provide an in-depth analysis of the performance gap observed between the un-
derstanding and generation capabilities of unified multimodal models. Based on our quantitative
ablations in Figure 4) and qualitative case studies in Figure 5), we identify the root causes of this
misalignment and propose potential research directions to bridge this gap.

G.1 RoOOT CAUSES OF THE PERFORMANCE GAP

We identify three primary factors driving the misalignment where models fail to transfer their rea-
soning capabilities into faithful visual generation:

* Asymmetry of Reasoning Capabilities: Our experiments reveal a fundamental asym-
metry: models often possess the requisite knowledge but fail to “activate” it during the
generation process. As illustrated in our case study on the “Charging Bull” (as shown in
Figure 5), the model successfully generates the correct entity when explicitly named (e.g.,
“Charging Bull United States”) but fails when the same entity must be reasoned from an
implicit prompt. This suggests that the reasoning capability is primarily localized within
the Large Language Model (LLM) component. While the model correctly solves the in-
termediate logic (e.g., identifying the entity), the image generator—which is optimized for
visual fidelity rather than logical adherence—fails to receive or adhere to this reasoned
state, leading to generation failures.

* Information Bottleneck in Heterogeneous Architectures: Many unified models evalu-
ated in GIR-Bench (e.g., BAGEL (Deng et al., 2025), Qwen-Image (Wu et al., 2025a))
employ heterogeneous architectures that couple a highly capable autoregressive LLM with
a separate generation head via a lightweight interface. This design creates a significant
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information bottleneck. While the LLM performs deep reasoning, the interface often com-
presses this rich semantic state into a limited number of condition tokens or a concise
embedding. Consequently, fine-grained logical constraints (e.g., exact counts in Numerical
Reasoning tasks) are often diluted or lost before reaching the pixel generation stage.

* Lack of Process-Oriented Training Data: Current multimodal pre-training relies heavily
on static image-text pairs. These datasets map a final text description directly to an image
but fail to capture the process of generation. Existing models lack exposure to interleaved
“reasoning-trace” data (e.g., [Reasoning Step] — [Intermediate Visual State| —
[Refined Image|). Without such data, the model struggles to learn how to decompose a
complex abstract instruction into a sequential execution plan for visual generation.

G.2 FUTURE DIRECTIONS

To narrow the gap between understanding and generation, we propose three concrete research direc-
tions supported by our empirical findings:

» Explicit Chain-of-Thought (CoT): Our experimental results with BAGEL w/ CoT (Ta-
ble 2) demonstrate that externalizing the reasoning process significantly boosts perfor-
mance. For instance, accuracy on the Numerical Reasoning task improves from 0.057
to 0.249. This confirms that forcing the model to output an explicit textual plan acts as
a crucial bridge, converting implicit logic into explicit constraints that the generator can
better attend to and execute.

* Native Unified Architectures: We argue that future work should move towards natively
unified paradigms where text and image tokens are treated equally within a single back-
bone. This would effectively eliminate the heterogeneous interface bottleneck, allowing
the visual generation process to attend directly to the full, uncompressed reasoning states
of the MLLM.

» Dataset Evolution: We advocate for the construction of reasoning-trace datasets. Future
benchmarks and training sets should provide not only the final ground-truth image but also
the logical execution trace. This would enable models to be supervised directly on the
reasoning-to-generation mapping, rather than relying solely on end-to-end alignment.

H CLARIFICATION FOR THE TEXT RENDERING METRIC (S,,.)

We illustrate the robustness of our proposed metric (S,,.) compared to standard accuracy (S4..) using
the Ground Truth: “Make It Happen”.

Table 3: Comparison of metric behaviors under different generation scenarios. Ground Truth:
“Make It Happen™.

Case | Generated Text (OCR Output) | Swe (Ours) | sqcc
A (Perfect) “Make It Happen” 1.00 1.00
B (Extra Words) | “Poster says xxxxx Make It Happen” 1.00 ~ 0.00
C (Merged) “MakeltHappen” 1.00 0.86
D (Missing) “Make It” 0.67 0.50

The cases in Table 3 demonstrate the specific advantages of s,,.:

* Case B (Robustness to Context): Unified models often generate descriptive text or arti-
facts (e.g., “Poster says xxxxx”’) alongside the target. This effectively handles the “chatty”
nature of these models. s, fails due to the length penalty imposed by the extra characters,
whereas s,,. correctly credits the presence of the valid content.

* Case C (Robustness to Layout): Tight visual layouts or artistic fonts often lead to merged
OCR outputs. s, successfully identifies the legible words within the merged string, while
Sace penalizes the missing whitespace.
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e Case D (Penalty for Missing): Both metrics correctly penalize missing content. It is
important to note that s,,. acts as a strict filter: partial matches (e.g., “Make It Hap”) are
not credited, ensuring that the metric does not reward incomplete generations.
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