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Abstract

Reinforcement learning (RL) has become a promising approach for portfolio opti-
mization, but conventional models rely almost exclusively on structured price and
return data. They typically neglect unstructured signals such as investor sentiment,
which can anticipate short-term market movements. We introduce sentiment-
augmented PPO (SAPPO), which incorporates daily asset-level sentiment extracted
from Refinitiv financial news using large transformer-based models. Sentiment
is embedded both in the observation space and in a modified advantage function,
producing sentiment-guided updates. On a portfolio of ten U.S. equities, SAPPO
improves Sharpe ratio from 1.67 to 2.07 and annualized return from 57% to 83%,
with volatility reduced by 3 percentage points. Robustness checks show the im-
provement persists across sentiment models, hyperparameters, and market regimes.
These results demonstrate that multimodal RL can leverage financial text to yield
more adaptive trading strategies under uncertainty.

1 Introduction

Portfolio optimization aims to allocate capital across assets to maximize returns for a given level of
risk [Markowitz, 1952]. Classical frameworks such as mean–variance optimization and factor models
assume stable distributions of returns and correlations. These assumptions often fail in practice,
where structural breaks, news shocks, and investor psychology drive volatility [DeMiguel et al.,
2009]. Deep reinforcement learning (DRL) offers an adaptive alternative by framing allocation as
sequential decision-making [Moody et al., 2001, Deng et al., 2017]. Proximal Policy Optimization
(PPO) [Schulman et al., 2017] has been especially effective in financial settings due to its balance of
sample efficiency and stability [Ye et al., 2020, Wang et al., 2019].

Yet existing DRL agents rely almost exclusively on numerical features. They miss unstructured
signals—particularly textual sentiment—that influence prices before they are fully reflected in returns.
Empirical evidence shows that media tone and investor sentiment affect returns, volatility, and
liquidity [Tetlock, 2007, Baker and Wurgler, 2012, Smales, 2014]. Advances in large language
models (LLMs), such as BERT [Devlin et al., 2019], FinBERT [Araci, 2019], OPT [Zhang et al.,
2022], and LLaMA 3.3 [Dubey et al., 2024], allow scalable sentiment extraction from vast amounts
of financial text. Most prior work treats sentiment as an external regressor for predictive models; few
integrate it directly into an RL agent’s policy learning process.

We propose sentiment-augmented PPO (SAPPO), which extends PPO in two ways: (i) sentiment
vectors are concatenated with market states to inform the agent’s perception of the environment,
and (ii) sentiment modifies the advantage function, biasing updates toward allocations consistent
with market tone. This dual integration allows SAPPO to be both sentiment-aware and sentiment-
guided. Empirical evaluation on U.S. equities shows SAPPO consistently outperforms PPO and
index benchmarks. Beyond finance, SAPPO exemplifies how multimodal RL can operationalize
unstructured signals to improve sequential decision-making.
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2 Methodology

2.1 Data and preprocessing

We align trading days with RL steps. Daily adjusted closing prices for 10 liquid U.S. stocks (covering
technology, retail, financials, and industrials) were collected for 2012–2019. The first seven years
serve as training, with 2019 reserved for testing. Orders are placed at the close and executed the
following day at a 10-minute VWAP, with transaction costs set at 0.01% per turnover.

For sentiment, we use Refinitiv financial news, extracting article headlines and short text for each firm.
To reduce redundancy, near-duplicate articles are pruned using cosine similarity over TF-IDF vectors
within a 5-day window. Each article is scored with LLaMA 3.3 fine-tuned for financial sentiment
classification, producing values in [−1, 1]. Daily asset-level sentiment vectors mn are computed as a
time-decayed average of available headlines, normalized across assets.

2.2 State, action, and policy

The baseline market state sn comprises previous portfolio weights wn−1 and current price relatives
Sn. SAPPO extends this with sentiment mn, yielding s′n = (wn−1,Sn,mn).

Actions an represent target portfolio weights, sampled from a Gaussian parameterized by the policy
network. Allocations are projected to the simplex to enforce long-only, fully invested portfolios. The
policy πθ and critic Vϕ are 2-layer MLPs with 64 ReLU units, trained using Stable-Baselines3 [Raffin
et al., 2021]. Hyperparameters follow standard PPO defaults: learning rate 3×10−4, γ=0.99, batch
size 64, and clip parameter 0.2.

2.3 Sentiment-weighted advantage

The key innovation is the sentiment-modified advantage:

A′(sn,an) = A(sn,an) + λwn ·mn, (1)

where A is the standard PPO advantage, wn the resulting weights after projection, and λ regulates
sentiment strength. Intuitively, this term rewards allocations aligned with positive sentiment and
penalizes exposure to negative sentiment. We tune λ via grid search on training data; λ=0.1 yields
the best balance of return and stability.

3 Results

3.1 Main performance

Table 1 reports out-of-sample (2019) results. SAPPO delivers an annualized return of 83% with
Sharpe 2.07, compared to PPO’s 57% and 1.67. Drawdowns are slightly deeper, but volatility is
reduced, indicating better efficiency. SAPPO outperforms index benchmarks by large margins.

Table 1: Out-of-sample (2019) performance.
Sharpe Ann. Return Max DD Vol. Turnover

PPO 1.67 57% -8.4% 20.5% 3.5%
SAPPO 2.07 83% -10.2% 17.3% 12.0%
NASDAQ-100 1.20 33% -12.1% 16.1% N/A
S&P 500 1.05 27% -11.4% 13.0% N/A
Dow Jones 0.95 21% -9.8% 12.5% N/A

3.2 Portfolio dynamics

Analysis of daily weights shows SAPPO reallocates more aggressively in response to sentiment shocks.
For instance, during Apple’s January 2019 earnings warning, SAPPO reduced exposure within two
days, whereas PPO maintained overweight positions until losses materialized. This responsiveness
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explains both SAPPO’s higher turnover and its superior drawdown resilience. Although turnover is
higher (12% vs. 3.5%), the incremental costs are small relative to excess returns.

3.3 Ablations and robustness

Ablation on λ confirms that moderate sentiment weighting improves outcomes, while excessive
reliance (λ ≥ 0.25) amplifies noise. When sentiment is included only as a state feature (not in
the advantage), Sharpe rises modestly (1.78) but remains below SAPPO’s 2.07, showing that the
learning-signal modification is critical.

Replacing LLaMA 3.3 with FinBERT, BERT-base, or OPT-1.3B reduces performance but still beats
PPO, demonstrating robustness. Stress tests with random sentiment perturbations (10% sign flips)
yield Sharpe 1.91, above PPO’s 1.67. SAPPO also generalizes to different regimes: on 2021 data, it
achieves Sharpe 1.92 vs. PPO’s 1.38, underscoring adaptability.

4 Discussion

SAPPO illustrates the power of integrating structured and unstructured signals within RL. Sentiment-
weighted updates allow the agent to anticipate market moves rather than react solely to lagging price
data. The approach generalizes beyond finance: any sequential decision problem with rich text signals
(e.g., healthcare triage, supply-chain logistics) could benefit from sentiment-aware RL.

The higher turnover of SAPPO raises questions about practical execution. While our cost assumptions
are modest, real markets impose liquidity and slippage constraints. Extensions could incorporate
execution-aware RL modules or model sentiment uncertainty explicitly, weighting updates by confi-
dence scores.

5 Limitations and Future Work

Our study has several limitations. First, we rely solely on Refinitiv news; social media, earnings calls,
or analyst reports may provide complementary sentiment. Second, daily aggregation may obscure
intraday dynamics where sentiment impacts prices more quickly. Third, while our trading simulation
includes costs, it assumes frictionless execution at VWAP; live deployment would require order book
modeling. Finally, LLM sentiment classifiers may misinterpret context, sarcasm, or domain-specific
phrasing.

Future work will address these by incorporating multiple sentiment sources, exploring intraday
horizons, and testing SAPPO in simulated order books with market impact. Broader applications
include multi-asset portfolios and cross-market arbitrage. From a methodological perspective,
confidence-calibrated sentiment and attention mechanisms could refine how unstructured signals
enter the advantage function.

6 Conclusion

We introduced SAPPO, a sentiment-augmented PPO that embeds LLM-extracted news sentiment into
both state and policy updates. On U.S. equities, SAPPO achieves substantial gains in return and Sharpe
relative to PPO and benchmarks, with robustness across hyperparameters, sentiment models, and
regimes. Crucially, ablations show that sentiment-guided updates—not just state augmentation—drive
the improvements.

SAPPO demonstrates that multimodal RL can effectively harness unstructured information for
financial decision-making. More broadly, it provides a blueprint for integrating textual signals into
sequential control tasks, opening pathways for RL systems that adapt not only to numerical dynamics
but also to the narratives shaping human behavior.
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Appendix

A Reinforcement learning framework

This section formalizes the reinforcement learning setup for portfolio optimization. I define states,
actions, rewards, and transitions to support both price-driven and sentiment-aware strategies.

State definition. The market state at day n is

sn = (wn,Sn),

where wn ∈ Rd is the agent’s portfolio allocation and Sn ∈ Rd are adjusted closing prices for d
assets.
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Actions and rebalancing. The action an updates allocations via

wn = wn−1 + an,

subject to a self-financing constraint
an · Sn = 0.

Reward signal. Daily reward is the log return

xn+1 = log
wn · Sn+1

wn · Sn
.

Transaction costs of 0.01% per unit turnover are applied.

Policy and value function. The stochastic policy is parameterized as πθ(an | sn). PPO with
clipping is used for stable training. SAPPO modifies the advantage function:

A′(sn,an) = A(sn,an) + λwn ·mn,

where mn is the daily sentiment vector.

—

B Theoretical rationale for sentiment-guided advantage

Financial markets are non-stationary due to shocks and evolving expectations. Sentiment acts as
side information that captures latent regime shifts earlier than prices. By integrating sentiment into
the advantage function, SAPPO effectively conditions on partially observable states and relaxes the
strict Markov assumption. This modification functions as behaviorally-informed regularization and
improves adaptability under volatility.

—

C Ablation studies

Varying sentiment weight λ. Performance improves as λ increases up to 0.10, but degrades beyond
that due to overreaction to noise. Table 2 reports results.

Configuration Sharpe Annual Return Max Drawdown

PPO baseline (λ = 0) 1.67 57.0% -8.4%
λ = 0.05 1.87 72.6% -7.2%
λ = 0.10 2.07 83.0% -10.2%
λ = 0.20 1.80 68.4% -12.3%

Table 2: Effect of sentiment weighting parameter λ.

Alternative sentiment models. FinBERT, BERT-base, and OPT-1.3B improve over PPO, but
LLaMA 3.3 achieves the best performance (Sharpe 2.07).

Robustness. Noise injection and out-of-sample tests (2020) confirm SAPPO’s resilience across
regimes. Full robustness checks appear in the Supplementary Material.

—

D Dataset summary

The dataset integrates price and sentiment signals for 10 large-cap U.S. equities (AAPL, NVDA,
CMG, TGT, CPRT, LDOS, SBUX, JPM, BAC, ADP).

• Market data: Yahoo Finance daily adjusted closes (2012–2020).
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• Sentiment: Refinitiv news headlines, classified by LLaMA 3.3 and baselines.
• Training period: 2012–2018.
• Test period: 2019 (main) and 2020 (robustness).
• Execution: VWAP over first 10 minutes, 0.01% transaction costs.

—

E Implementation details

Agents are implemented in PyTorch 2.0 with Stable-Baselines3. The environment is OpenAI
Gym-compatible and enforces long-only, self-financing portfolio constraints.

Portfolio rebalancing occurs daily. Sentiment signals are appended to the observation vector and used
in the modified advantage function. All runs use NVIDIA V100 GPUs with CUDA 11.7.

—

F Training and architecture

Architecture. Actor and critic are two-layer MLPs (128–64 units, ReLU). Actor outputs a Gaussian
distribution projected onto the simplex. Critic outputs scalar V (st).

Training. PPO with Adam optimizer (3 × 10−4), rollout length 256, 10 epochs per batch, clip
range 0.2, discount factor 0.99, GAE λ = 0.95.

SAPPO uses λsent = 0.1. Random seeds fixed for reproducibility.

—

Note on Supplementary Material

Extended robustness checks (qualitative examples, scalability to 50 assets, statistical tests, Sharpe
ratio derivation, and baseline comparisons) are available in the Supplementary Material.
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