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ABSTRACT

We study Neural Foley, the automatic generation of high-quality sound effects
synchronizing with videos, enabling an immersive audio-visual experience. De-
spite its wide range of applications, existing approaches encounter limitations
when it comes to simultaneously synthesizing high-quality and video-aligned
(i.e.,semantic relevant and temporal synchronized) sounds. To overcome these
limitations, we propose FoleyCrafter, a novel framework that leverages a pre-
trained text-to-audio model to ensure high-quality audio generation. FoleyCrafter
comprises two key components: a semantic adapter for semantic alignment and a
temporal adapter for precise audio-video synchronization. The semantic adapter
utilizes parallel cross-attention layers to condition audio generation on video fea-
tures, producing realistic sound effects that are semantically relevant to the visual
content. Meanwhile, the temporal adapter estimates time-varying signals from
the videos and subsequently synchronizes audio generation with those estimates,
leading to enhanced temporal alignment between audio and video. One notable
advantage of FoleyCrafter is its compatibility with text prompts, enabling the use
of text descriptions to achieve controllable and diverse video-to-audio generation
according to user intents. We conduct extensive quantitative and qualitative exper-
iments on standard benchmarks to verify the effectiveness of FoleyCrafter. Models
and codes will be available.

1 INTRODUCTION

Foley, a key element in film and video post-production, adds realistic and synchronized sound ef-
fects to silent media (contributors, 2024). These sound effects are the unsung heroes of cinema and
gaming, enhancing realism, impact, and emotional depth for an immersive audiovisual experience.
Traditionally, skilled Foley artists painstakingly create, record, and process sound effects in spe-
cialized studios, making it a labor-intensive and time-consuming process (Ament, 2014). Despite
advancements in recent video-to-audio generation, achieving Neural Foley, which requires synthe-
sizing high-quality, video-aligned sounds that are semantically related and temporally synchronized
with the videos, remains challenging (Luo et al., 2023).

Figure 1: (a) (Video-to-audio) V2A methods struggle with audio quality due to noisy training data,
while (b) video-to-text (V2T) methods encounter difficulties in producing synchronized sounds. Our
model FoleyCrafter, integrates a learnable module into a pre-trained Text-to-Audio (T2A) model to
ensure audio quality while enhancing video-audio alignment with the supervision of audios.

State-of-the-art approaches for Neural Foley in video-to-audio generation can be categorized into
two main groups, as illustrated in Figure 1. The first group involves training a video-to-audio gen-
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erative model on a large-scale paired audio-video dataset (Chen et al., 2020a; Iashin and Rahtu,
2021; Luo et al., 2023; Sheffer and Adi, 2023). However, the audio quality of such datasets crawled
from the Internet can be subpar, with issues like noise and complex environmental sounds recorded
in the wild, which hinder the production of high-quality sounds (Wang et al., 2024a; Xie et al.,
2024b). To address this, the second group of approaches (Figure 1-(b)) adopts a two-stage process.
They first translate video into text using video captioning or embedding mapping techniques and
then employ a pre-trained text-to-audio model (Wang et al., 2024a; Xie et al., 2024b; Xing et al.,
2024). Leveraging the well-trained text-to-audio generator, these methods achieve impressive sound
quality. Nonetheless, effectively bridging the gap between video and text while preserving nuanced
details is challenging. As a result, these methods often produce unsynchronized sounds due to the
suboptimal translated text conditions.

To achieve both high-quality and video-aligned sound generation, we present FoleyCrafter, which
breathes life into silent videos with realistic and synchronized sound effects. As depicted in Fig-
ure 1-(c), the core of FoleyCrafter is an innovative pluggable module that can be integrated with
a pre-trained text-to-audio (T2A) model, optimized with the supervision of audios. Specifically,
FoleyCrafter comprises two main components: a semantic adapter for semantic alignment and a
temporal adapter for temporal synchronization. The semantic adapter introduces parallel cross-
attention layers into the backbone of the T2A model. It takes as input the extracted video features,
allowing FoleyCrafter to generate audio conditioned on the video without relying on explicit text.
The temporal adapter, on the other hand, is engineered to refine temporal synchronization. The tem-
poral adapter has two keysteps: figuring out time-varying signals from videos and matching them
to synchronize audio generation. First, we study two ways to find audio signals in video frames.
One way uses labels to detect when sounds start, and the other method uses energy maps without
needing labels (Du et al., 2023). Then, we make the audio features line up with the video by match-
ing them to these found audio signals. Such a design results in an enhanced video-synchronized
audio generation. During training, we train the semantic adapter and temporal adapter with video-
audio correspondent data, while fixing the text-to-audio base model to preserve its established audio
generation quality. After training, FoleyCrafter can generate high-quality sounds for videos with
semantic and temporal alignment in a flexible and controllable way.

We conduct extensive experiments to evaluate the performance of FoleyCrafter in terms of audio
quality and video alignment, both semantically and temporally. Our experiments include quantitative
analysis, qualitative comparison, and user studies, all of which demonstrate that FoleyCrafter has
achieved state-of-the-art results. Additionally, we have showcased the controllability of FoleyCrafter
through text prompts, allowing for a more fine-grained and versatile application of the model. Our
main contributions can be summarized as follows:

• We present a novel Neural Foley framework that generates high-quality, video-aligned
sound effects for silent videos, while also offeringfine-grainedcontrol through text prompts.

• To ensure both semantic and temporal alignment, we design a semantic adapter and a tem-
poral adapter, significantly improving video alignment.

• We validate the effectiveness of FoleyCrafter through extensive experiments, including
quantitative and qualitative analyses. Our results show that FoleyCrafter achieves state-
of-the-art performance on commonly used benchmarks.

2 RELATED WORK

Diffusion-based Audio Generation. Latent diffusion models have significantly advanced audio
generation (Liu et al., 2023a;b; Rombach et al., 2022). AudioLDM pioneers open-domain text-
to-audio generation using a latent diffusion model (Liu et al., 2023a;b). Tango improves text-to-
audio generation with an instruction-tuned LLM FLAN-T5 (Chung et al., 2024a) as the text encoder
(Ghosal et al., 2023). Make-an-Audio tackles complex audio modeling using spectrogram autoen-
coders instead of waveforms (Huang et al., 2023). Xue et al. conduct comprehensive ablation studies
to explore effective designs and set a new state-of-the-art with the proposed Auffusion (Xue et al.,
2024). Moreover, some works (Guo et al., 2024; Xie et al., 2024a; Chung et al., 2024b; Comunità
et al., 2024; Jeong et al., 2024) have further studied the conditional generation with temporal order
condition, promoting the controllability of these diffusion models. In this paper, we introduce Fol-
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eyCrafter, a module that extends state-of-the-art text-to-audio generators to support video-to-audio
generation while preserving the original text-to-audio controllability.

Video-to-Audio Generation. Foley artistry is a crucial audio technique that enhances the viewer’s
auditory experience by creating and recording realistic sound effects that synchronize with visual
content (contributors, 2024). Early Neural Foley models mainly focus on generating sounds tailored
to a specific genre or a narrow spectrum of visual cues, underscoring the potential of deep learning to
innovate sound effect creation for videos (Chen et al., 2018; 2020b; Owens et al., 2016; Zhou et al.,
2018). Despite recent advancements in large-scale generative models (Huang et al., 2023; Liu et al.,
2023a), generating high-quality and visually synchronized sounds for open-domain videos remains
a challenge (Dong et al., 2023; Du et al., 2023; Luo et al., 2023; Mo et al., 2024; Tang et al., 2024;
Wang et al., 2024a; Comunità et al., 2024; Pascual et al., 2024; Wang et al., 2024b; Su et al., 2024).

State-of-the-art video-to-audio approaches can be categorized into two groups. The first group fo-
cuses on training video-to-audio generators from scratch (Iashin and Rahtu, 2021; Luo et al., 2023;
Sheffer and Adi, 2023). Specifically, SpecVQGAN (Iashin and Rahtu, 2021) employs a cross-
modal Transformer (Vaswani et al., 2017) to auto-regressively generate sounds from video tokens.
Im2Wav (Sheffer and Adi, 2023) conditions an autoregressive audio token generation model us-
ing CLIP features, while Diff-Foley (Luo et al., 2023) improves semantic and temporal alignment
through contrastive pre-training on aligned video-audio data. However, these methods are limited
by the availability of high-quality paired video-audio datasets. An alternative approach is to uti-
lize text-to-audio generators for video Foley. Xing et al. (2024) introduce an optimization-based
method with ImageBind (Girdhar et al., 2023) for video-audio alignment, while SonicVisionLM
(Xie et al., 2024b) generates video captions for text-to-audio synthesis. Wang et al. note the lim-
itations of caption-based methods and propose V2A-Mapper to translate visual embeddings to text
embedding space (Wang et al., 2024a). Nevertheless, effectively bridging the gap between video
and text while preserving fine-grained temporal cues remains a significant challenge. In contrast,
we introduce FoleyCrafter, integrating a learnable module into text-to-audio models with end-to-end
training, enabling a high-quality, video synchronized and high-controllable Foley.

3 APPROACH

In this section, we introduce the framework of FoleyCrafter. We introduce related preliminaries
about Audio Latent Diffusion Models (ALDMs) (Liu et al., 2023a;b) and conditioning mechanisms
in Section 3.1. We then delve into the key components of FoleyCrafter in Section 3.2. The semantic
adapter generates audio based on visual cues and text prompts, while the temporal adapter improves
temporal synchronization with the video. We also outline the training process for each component
and explain how FoleyCrafter can be used to generate foley for videos in Section 3.3.

3.1 PRELIMINARIES

Audio Latent Diffusion Model. The latent diffusion model (LDM) has achieved remarkable ad-
vancements in text-to-audio generation, as demonstrated by recent studies (Ghosal et al., 2023; Liu
et al., 2023a;b; Xue et al., 2024). In this model, the audio waveform is initially transformed into a
mel-spectrogram representation. Subsequently, a variational autoencoder (VAE) encodes the mel-
spectrogram into a latent representation denoted as z. The LDM’s UNet is trained to generate z by
denoising normally distributed noise ϵ. The predicted latent z is then reconstructed by the VAE into
a mel-spectrogram, which is finally transformed into a waveform using a vocoder.

A latent diffusion model consists of two main processes: the diffusion process and the denoising pro-
cess. In the diffusion process, a clean latent representation z undergoes step-by-step noise addition
until it reaches an independently and identically distributed noise. It can be denoted as,

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

where ᾱt is the noise strength at t timestep. The UNet is trained to estimate the added noise at a
given timestep t using the following optimization objective:

L = Ex,ϵ∼N(0,1),t,c [∥ϵ− ϵθ(zt, t, c)∥] (2)
where x represents the mel-spectrogram in the ALDM, zt corresponds to the latent representation
of the mel-spectrogram at timestep t, and c denotes the condition information.
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Figure 2: The overview of FoleyCrafter. FoleyCrafter is built upon a pre-trained text-to-audio
(T2A) generator, ensuring high-quality audio synthesis. It comprises two main components: the
semantic adapter (S.A.) and the temporal adapter. temporal adapter first predicts the time-varying
signal from the video content (denoted as ‘Pred.’), and then synchronize the audio with these esti-
mated signals (denoted as ‘Sync.’). Both the semantic adapter and the temporal adapter are trainable
modules that take videos as input to synthesize audio, with audio supervision for optimization. The
T2A model remains fixed to maintain its established capability for high-quality audio synthesis.

Conditioning Mechanisms. There are two kinds of condition mechanisms mainly used in ALDM,
i.e., MLP-based mechanism (Ghosal et al., 2023; Liu et al., 2023a) and cross-attention-based mech-
anism (Xue et al., 2024; Liu et al., 2023b). In the MLP-based mechanism, the time step is mapped to
a one-dimensional embedding and concatenated with the text embedding as the conditioning infor-
mation. This one-dimensional condition vector is then merged with the UNet’s feature map through
MLP layers. In contrast, the cross-attention-based mechanism utilizes cross-attention in each block
of the UNet. This mechanism demonstrates improved alignment with conditions and allows for
more flexible and fine-grained controllable generation. It has been widely adopted in recent works
(Liu et al., 2023b; Xue et al., 2024). The cross-attention mechanism can be represented as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V, (3)

where Q = WQ · φ(zt), K = WK · τ(c), V = WV · τ(c), (4)

where φ denote the flattening operation, τ is the condition encoder and WQ,WK and WV is learn-
able projection matrices. In this study, we adopt a cross-attention mechanism to integrate textual
and visual cues, aligning with recent state-of-the-art ALDMs (Liu et al., 2023b; Xue et al., 2024).

3.2 FOLEYCRAFTER

The FoleyCrafter comprises two core components: a semantic adapter for semantic alignment and
a temporal adapter for temporal alignment. As illustrated in Figure 2, FoleyCrafter is a modular
system that leverages a pre-trained text-to-audio (T2A) model (Freesound Project, 2024; Xue et al.,
2024). This architecture enables FoleyCrafter to generate audio that is synchronized with videos,
ensuring both high-quality and varied audio output. For our audio generation, we utilize Auffusion
Xue et al. (2024) in our implementation. During training, only the two adapters are trainable, op-
timizing with the supervision of ground truth audio, while the weights of the T2A model remain
fixed. In the following sections, we provide more details of each component.

3.2.1 SEMANTIC ADAPTER

To efficiently extract semantic features from the input video and incorporate them into the pre-
trained text-to-audio generator, we employ a visual encoder along with decoupled parallel cross-
attention layers. We demonstrate the overview of the semantic adapter in Figure 3.

Visual Encoder. The CLIP encoder has demonstrated its effectiveness as a semantic extractor for
visual information (Radford et al., 2021). In our approach, we follow previous works (Rombach
et al., 2022; Ye et al., 2023) and extract visual embeddings from each frame of the input video using
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Figure 3: The overview of semantic adapter. Semantic adapter employs a pre-trained visual
encoder with several learnable layers to extract video embeddings that align better with the text-to-
audio generator. Then, it integrates trainable visual-cross attention mechanisms alongside text-based
ones, ensuring semantic alignment with the video without compromising text-to-audio generation.

the CLIP image encoder. To align these embeddings with the text-to-audio generator, we employ
several learnable projection layers. This process can be expressed as:

Vemb = MLP (AvgPooling(τvis(v))). (5)

Here, v represents the input video, τvis denotes the CLIP image encoder, and AvgPooling refers to
the average pooling of the extracted CLIP features across frames.

Semantic Adapter. To incorporate the extracted video embedding into the pre-trained text-to-
audio generator without compromising its original functionality, we introduce visual-conditioned
cross-attention layers alongside the existing text-conditioned cross-attention layers. In this approach,
visual and text embeddings are separately fed into their corresponding cross-attention layers. The
outputs of the new and original cross-attention layers are then combined using a weight parameter,
λ. The parallel cross-attention can be denoted as:

Attention(Q,K, V ) = softmax(
QKT

txt√
d

) · Vtxt + λ · softmax(
QKT

vis√
d

) · Vvis, (6)

where Ktxt = W txt
K · Temb, Vtxt = W txt

V · Temb, (7)

Kvis = W vis
K · Vemb, Vvis = W vis

V · Vemb, (8)

where Temb and Vemb represent the extracted text embeddings and video embeddings, respec-
tively. W txt

K and W txt
V correspond to the pre-trained projection layers in the text-conditioned cross-

attention layers, which remain fixed during training. On the other hand, W vis
K and W vis

V are newly
introduced learnable projection layers used to map the visual embedding to a space that aligns better
with the condition space of the pre-trained text-to-audio generator.

During the training of the semantic adapter, we initialize the vision-conditioned cross-attention lay-
ers from the text-conditioned ones. As shown in Figure 3, we train the newly added projection layers
after the visual encoder and the vision-conditioned cross-attention layers using ground truth audio
as supervision. Meanwhile, we keep the text encoder and the text-to-audio generator fixed. The
optimization objective can be expressed as:

L = Ex,ϵ∼N(0,1),t,c [∥ϵ− ϵθ(zt, t, Temb, Vemb)∥] . (9)

We noticed a related work, IP-Adapter, which is developed to inject image conditions into a pre-
trained text-to-image diffusion model (Ye et al., 2023). However, it remains less explored in studying
injecting a third modality (i.e.,video in our work) into a pre-trained text-to-audio diffusion model.
We surprisingly find that our proposed semantic adapter can effectively extract meaningful seman-
tic features from video frames and inject these features into audio features without compromising
audio generation quality. To effectively capture visual cues for audio generation while retaining the
capability of combining text prompts for more controllable video-to-audio generation, we randomly
drop the text condition during training in the majority of cases (approximately 90%).
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Figure 4: The overview of the temporal adapter. To enhance the temporal synchronization, tem-
poral adapter takes a two step approach. Firstly, it predicts the audio signals from the visual cues,
and then it utilizes the predicted signals to synchronize the audio with these estimated signals.

3.2.2 TEMPORAL ADAPTER

We observed that the semantic adapter captures video-level alignment without precise temporal syn-
chronization for each frame. To address this limitation, we develop a temporal adapter to enhance
the temporal synchronization. As shown in Figure 4, Overall, there are two key steps: first, estimat-
ing the time-varying signal from the video content, and second, synchronizing the audio with these
estimated signals. This approach ensures that the generated audio features are precisely matched
to the audio cues extracted from the video, resulting in improved temporal synchronization. We
introduce more details of each step below.

Audio Signal Estimation from Videos. We study two distinct approaches for temporal estimation
from video content: one that relies on timestamps and another that focuses on energy levels. In the
timestamp-based method, a binary vector is used, where ’1’ indicates the presence of sound effects
and ’0’ signifies silence. This type of timestamp signal has been demonstrated to effectively manage
audio generation in a time-sensitive manner, as shown in Xie et al. (2024b); Comunità et al. (2024).
To this end, we have developed an estimator designed to extract features from video inputs to forecast
the presence of sound at specific timestamps. This timestamp-based estimator is trained using binary
cross-entropy loss (Xie et al., 2024b), which is expressed as:

LBCE(y, ŷ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) . (10)

where N represents the number of samples, y denotes the ground truth, and ŷ is the prediction.

While timestamp-based estimators excel at extracting audio-related information from videos, they
often depend on the labor-intensive process of timestamp labeling. This reliance can restrict the
quality and applicability of the estimator. To address this, we also investigate an alternative ap-
proach: energy map estimation. In this method, an energy map is derived from the mel-spectrum of
the audio using a rule-based technique. The energy map effectively captures temporal audio charac-
teristics like sustain and release, eliminating the need for manual labeling efforts (Jeong et al., 2024;
Du et al., 2023). We train this energy map estimator using normalized energy values and mean
squared error loss, which is formulated as follows:

LMSE(y, ŷ) = − 1

N

N∑
i=1

||yi − ŷi||2 (11)

We employ a ResNet (2+1)-D18 convolutional network (Tran et al., 2018) as the temporal estima-
tor. After training, the estimator can extract audio-related temporal information (i.e., timestamp or
energy) from videos for further audio synchronization.

Synchronizing Audios with Estimates. Once we’ve extracted audio signals from videos, we im-
plement a ControlNet (Zhang et al., 2023a) to serve as our synchronization module. This module
aligns the audio features in the T2A model with the extracted estimates. Specifically, these estimated
signals are interpolated to match the length of the audio latent, allowing them to act as a condition
for the synchronization module. The synchronization module adopts the same architecture as the
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UNet encoder in the T2A model. The output from this module is then added as a residual to the out-
put of the original UNet to achieve synchronization. During the training phase, we focus on training
the replicated UNet blocks, using the same optimization goal as the diffusion model.

3.3 IMPLEMENTATION DETAILS

For the semantic adapter, we follow Ye et al. (2023) to use a linear projection for clip visual em-
bedding to better align with text representation and expand the embedding length to four. Then
we modify all the cross-attention to parallel cross-attention for visual conditions. We train semantic
adapter on the VGGSound (Chen et al., 2020a) for 164 epochs with a batch size of 128 on 8 NVIDIA
A100 GPUs. For the temporal adapter, we train the predictor and temporal adapter separately. The
predictor is trained on the subset of the VGGSound (Chen et al., 2020a) i.e. AVSync15 (Zhang
et al., 2024), which has a higher audio-visual relevance. The temporal adapter is also trained on the
VGGSound (Chen et al., 2020a) for 80 epochs. Note that the energy signal can be derived from the
mel-spectrum, whereas timestamps require manual annotation. This reduces data labeling costs and
provides us with more available data. After training, the two components in temporal adaptercan be
combined together for inference and evaluation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We conducted comprehensive evaluations of FoleyCrafter by comparing it with state-
of-the-art approaches, namely SpecVQGAN (Iashin and Rahtu, 2021), Diff-Foley (Luo et al., 2023),
V2A-Mapper (Wang et al., 2024a), Seeing-and-hearing (Xing et al., 2024) and SonicVisionLM (Xie
et al., 2024b). Both quantitative and qualitative comparisons were employed. SpecVQGAN gener-
ates audio tokens autoregressively based on extracted video tokens. Diff-Foley utilizes contrastive
learning for synchronized video-to-audio synthesis with its CAVP audio and visual encoder. V2A-
Mapper translates visual CLIP embeddings to CLAP space, enabling video-aligned audio generation
using a pre-trained text-to-audio generator. Seeing-and-hearing (Xing et al., 2024) propose using
ImageBind (Girdhar et al., 2023) as a bridge between visual and audio, leveraging off-the-shelf au-
dio and video generators for multimodal generation. SonicVisionLM (Xie et al., 2024b) converts
video-to-audio generation into text-to-audio generation by utilizing a large language model (Chen
et al., 2023) to derive video captions for audio generation. Due to the unavailable source codes
and non-publicly datasets in SonicVisionLM (Xie et al., 2024b), we tried our best to reproduce it
multiple times, and report their best results in our experiments for fair comparison.

Evaluation Metrics. We employed several evaluation metrics to assess semantic alignment and
audio quality, namely Mean KL Divergence (MKL) (Iashin and Rahtu, 2021), CLIP similarity, and
Frechet Distance (FID) (Heusel et al., 2017), following the methodology of previous studies (Luo
et al., 2023; Wang et al., 2024a; Xing et al., 2024). MKL measures paired sample-level similarity
by calculating the mean KL-divergence across all classes in the test set. CLIP Score compares the
similarity between the input video and the generated audio embeddings in the same representation
space. For this, we employed Wav2CLIP (Wu et al., 2022) as the audio encoder and CLIP (Radford
et al., 2021) as the video encoder, as done in previous works (Wang et al., 2024a; Sheffer and Adi,
2023). FID assesses the distribution similarity to evaluate the fidelity of the generated audio.

For the temporal synchronization, we follow Du et al. (Du et al., 2023; Xie et al., 2024b) and
adopt onset detection accuracy (Onset Acc) and onset detection average precision (Onset AP) to
evaluate the generated audios, using the onset ground truth from the datasets. However, we identify
certain limitations with onset metrics. Firstly, they concentrate on the onset of sound effects while
overlooking the persistence of sounds and temporal changes. Therefore, following Du et al. (2023),
we also compute the mean absolute error of the audio energy. Secondly, the onset is obtained by
setting the threshold of audio amplitude which may lead to inaccuracies. So we follow Yariv et al.
(2024) to calculate AV-Align as a supplement.
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Table 1: Quantitative evaluation in terms of semantic alignment and audio quality. Specifically,
FoleyCrafter achieves state-of-the-art performance with Mean KL Divergence (MKL) (Iashin and
Rahtu, 2021), CLIP (Wu et al., 2022) and FID (Heusel et al., 2017) on standard benchmarks, i.e.,
VGGSound (Chen et al., 2020a) and AVSync15 (Zhang et al., 2024). * denotes reproduction results.

VGGSound (Chen et al., 2020a) MKL↓ CLIP↑ FID↓
SpecVQGAN (Iashin and Rahtu, 2021) 4.337±0.001 5.079±0.023 65.37±0.01
Diff-Foley (Luo et al., 2023) 3.318±0.011 9.172±0.110 29.03±0.61
V2A-Mapper (Wang et al., 2024a) 2.654 9.720 24.16
Seeing and Hearing (Xing et al., 2024) 2.619±0.018 2.033±0.147 32.99±0.19
SonicVisionLM* (Xie et al., 2024b) 2.683±0.013 9.021±0.187 24.42±0.18
FoleyCrafter Timestamp (ours) 2.612±0.021 10.61±0.201 19.89±0.12
FoleyCrafter Energy (ours) 2.588±0.019 10.63 ±0.311 20.92±0.12

AVSync15 (Zhang et al., 2024) MKL ↓ CLIP ↑ FID ↓
SpecVQGAN (Iashin and Rahtu, 2021) 5.339±0.077 6.610±0.014 114.44±1.31
Diff-Foley (Luo et al., 2023) 1.963±0.007 10.38±0.008 65.77±0.01
Seeing and Hearing (Xing et al., 2024) 2.532±0.021 2.098±0.188 65.11±1.32
SonicVisionLM* (Xie et al., 2024b) 2.842 ±0.023 9.236±0.211 66.44±1.21
FoleyCrafter Timestamp (ours) 1.743±0.012 11.67±0.156 44.79±1.66
FoleyCrafter Energy (ours) 1.719±0.009 11.37±0.189 42.40±1.84

Table 2: Quantitative evaluation in terms of temporal synchronization. We report onset detection
accuracy (Onset ACC), average precision (Onset AP) (Comunità et al., 2024; Xie et al., 2024b),
AV-align (Yariv et al., 2024) and Energy MAE (Du et al., 2023) for the generated audios on AVSync
(Zhang et al., 2024), which provides onset timestamp labels for assessment, following previous
studies (Luo et al., 2023; Xie et al., 2024b). We report the results with error bars calculated from ten
times of evaluation with random seeds.

Method Onset ACC ↑ Onset AP ↑ AV-Align ↑ Energy MAE↓
SpecVQGAN (Iashin and Rahtu, 2021) 16.81±2.35 64.64±0.72 12.42±0.45 34.35±0.19
Diff-Foley (Luo et al., 2023) 21.18±0.08 66.55±0.10 18.64±0.38 41.43±0.11
Seeing and Hearing (Xing et al., 2024) 20.95±0.87 60.33±0.56 13.98±0.55 38.33±2.42
SonicVisionLM* (Xie et al., 2024b) 28.89±1.56 68.31±0.94 22.06±0.69 32.67±0.31
FoleyCrafter Timestamp (ours) 27.46±2.54 69.32±1.03 21.93±0.42 33.10±0.24
FoleyCrafter Energy (ours) 24.23±2.60 69.91±0.73 22.90±0.64 31.82±0.45

4.2 COMPARISON WITH STATE-OF-THE-ART

Quantitative Comparison. We present a quantitative comparison of semantic alignment and au-
dio quality on both the VGGSound (Chen et al., 2020a) and AVSync15 (Zhang et al., 2024) datasets,
as shown in Table 1. The VGGSound dataset consists of 15,446 videos sourced from YouTube, en-
compassing a wide range of genres. The results indicate that FoleyCrafter achieves superior semantic
alignment with visual conditions and provides higher audio fidelity. Previous approaches encounter
difficulties in capturing detailed information from the video due to suboptimal extracted conditions,
resulting in limited video alignment. In contrast, FoleyCrafter introduces a semantic adapter that
utilizes parallel cross-attention layers to directly integrate video features into the text-to-audio gen-
erator, ensuring better alignment with finer details in the videos. Furthermore, we report the results
for temporal synchronization on the AVSync15 dataset (Zhang et al., 2024), as displayed in Table 2.
The AVSync15 dataset is a carefully curated collection of video-audio pairs with strong video-audio
alignment and onset detection labels. This makes it a reliable benchmark for evaluating synchroniza-
tion. Energy offers more detailed temporal information in audio generation, thereby outperforming
other methods based on onset or timestamps (Xie et al., 2024b) Moreover, energy can be simply
calculated from mel-spectrum and requires no additional manual annotation.
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Figure 5: Qualitative comparison. As shown in the first case, both SpecVQGAN and Diff-Foley
fail to capture the onset of the gunshot sound. In contrast, FoleyCrafter generates the gunshot sound
synchronized with the video, showcasing its superior temporal alignment capability.

Table 4: Ablation on temporal adapter.
Method Onset Acc↑ Onset AP↑ AV-Align↑ Energy MAE↓

w/o temporal 26.65 63.20 21.46 36.12
w temporal 24.23 69.91 22.90 31.82

Qualitative Comparison. We provide the visualization of generated audio for qualitative com-
parison on the AVSync15 (Zhang et al., 2024) in Figure 5. It can be observed that FoleyCrafter
generates sound at the most accurate time aligned with visual cues, closely resembling the pattern
of the ground truth audio. However, SpecVQGAN (Iashin and Rahtu, 2021) tends to introduce more
noise, while Diff-Foley (Luo et al., 2023) often generates more or fewer sound events compared to
the ground truth. We provide more results in the Appendix.

One notable advantage of FoleyCrafter is its compatibility with text prompts, allowing for more
controllable Foley. We present visualization results of audio generation conditioned on both a video
and a text prompt in Figure 6. For instance, when the text prompt describes ”high pitch,” the cor-
responding value for high-frequency increases compared to when the prompt describes ”low pitch.”
Moreover, FoleyCrafter can also be utilized with negative prompts to prevent the generation of un-
wanted sounds. In the third case shown in Figure 6, the visual cues depict a horse running on the
beach. By setting the negative prompt as ”wind and noise” during inference, the generated audio
successfully removes the sound of wind and other environmental noise, resulting in a clear sound of
hooves. We provide more comparison results in the Appendix.

4.3 ABLATION STUDY

Table 3: Ablation on semantic adapter.
Method MKL↓ CLIP Score↑ FID↓

Image embedding 5.383 2.133 99.77
Image embedding* 5.821 2.778 95.78
Text captioner 2.331 9.177 67.40
Semantic adapter (Ours) 1.719 11.37 42.40

We conduct ablation studies to validate the ef-
fectiveness of semantic adapter and temporal
adapter. For semantic adapter, we compare the
audio-visual relevance of generated samples us-
ing different methods of video information in-
jection. We consider several baselines for com-
parison. First, we use a captioner model that
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Figure 6: Video-to-audio generation with text prompts. FoleyCrafter enhances controllability
in video-to-audio generation through text prompts. In the first case, providing a prompt for ”high
pitch” increases the corresponding value for the drum video. In the third case, a negative prompt
like ”wind noise” can be used during inference to prevent the generation of wind noise for the video.

utilizes a video-text captioning model (Achiam et al., 2023) to generate text descriptions as inputs
to the text-to-audio generator. Second, we directly feed the visual embedding into cross-attention
as the text prompt embedding, without any training. Third, we fine-tune the cross-attention module
to adapt it to the visual embedding. As shown in Table 3, ‘Image embedding’ denotes using image
clip embedding instead of text embedding as the input of the original cross attention blocks. Be-
sides, ‘Image embedding*’ denotes the results with further fine-tuning cross-attention blocks. We
observed that the caption-based method struggles to capture all the details in the video, resulting
in sub-optimal generation results with visual captioning. Using the visual embedding with or with-
out fine-tuning UNet both fail to generate relevant audio for the input video. We attribute this to the
significant distortion of the original text-to-audio framework when incorporating visual information.

For temporal adapter, we compare the temporal synchronization performance of FoleyCrafter with
and without the module. The results in Table 4 demonstrate that the absence of the temporal adapter
leads to a noticeable decline. This decline can be attributed to the fact that the semantic adapter is
only capable of capturing video-level semantic information without accurate synchronization fea-
tures. As a result, it tends to synthesize relevant sounds but with random onset timestamps, leading
to a lack of precise temporal alignment.

5 CONCLUSION

In this paper, we introduce FoleyCrafter for adding sound effects to silent videos. Unlike existing
methods that either train a video-to-audio generator from scratch or use video-to-text translation fol-
lowed by text-to-audio generation, FoleyCrafter is a pluggable module seamlessly integrated into a
text-to-audio generator. This integration ensures high-quality audio generation while synchronizing
with the video content. FoleyCrafter leverages two key components, namely semantic adapter for
semantic alignment and temporal adapter for temporal synchronization. Extensive experiments on
standard benchmarks demonstrate the effectiveness of FoleyCrafter.
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Overview. The appendix includes the following sections:

• Appendix A. Limitations and broader impact.
• Appendix B.2. Details of training datasets.
• Appendix B.3. Details of evaluation.
• Appendix B.4. Details of the user study.
• Appendix C. More qualitative results.

Video Result. We also present video results in a separate supplementary file sourced from Sora.

A LIMITATIONS AND BROADER IMPACT

A.1 LIMITATIONS.

Firstly, although the inclusion of the temporal adapter enhances the synchronization between the
generated audio and the input video, its performance can be ultimately limited by the capabilities
of the signal estimator. Second, the effectiveness of the signal estimator is contingent upon the
availability of strong and relevant training data. When dealing with more complex visual scenes
or extremely long videos, predicting the temporal signals for accurate synchronization becomes
challenging due to the scarcity of training data in those specific contexts. The visualization results
for failure cases are presented in Figure 7.

Figure 7: Failure cases of temporal misalignment. Left: When dealing with a video scene that
contains multiple sounds, such as trumpets and drums, the predicted temporal signals do not accu-
rately reflect the arrangement of each sound, resulting in missing audio. Right: Long videos often
contain camera cuts, making it difficult for the temporal estimator to accurately predict the correct
temporal signals, which leads to temporal misalignment.

A.2 BROADER IMPACT.

FoleyCrafter facilitates text-based video-to-audio generation, enabling the generation of sound ef-
fects for silent videos and providing control through user prompts. However, it is crucial to ac-
knowledge the potential misuse of such technology for generating fake content on video platforms
or social platforms. Users and researchers are strongly advised to exercise caution and carefully
screen the use of such technologies to ensure responsible and ethical application.

B DETAILS OF EXPERIMENTS

B.1 DIFFERENCE BETWEEN TIMESTAMP AND ENERGY

Timestamp is a binary mask that indicates the presence or absence of sound effects at each sample
point in the audio. Following Xie et al. (2024b); Comunità et al. (2024), we firstly predict the
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probability for the sound appearing and then use a threshold to convert it to a binary mask. Audio
Energy can be calculated from mel-spectrum Du et al. (2023); Jeong et al. (2024). We use the code
from Zhang et al. (2023b) to obtain normalized energy ground truth in training dataset. In practice,
our estimator outputs timestamps or energy values with the same length as the input video frames.
We then interpolate these to match the length of the audio latent representation.

B.2 DETAILS OF TRAINING DATASET

FoleyCrafter consist of two key components: semantic adapter and temporal adapter which are
trained separately. For the training of semantic adapter we use VGGSound (Chen et al., 2020a)
as the training set. VGGSound is an audio-visual dataset containing approximately 199,176 videos
sourced from YouTube with annotated label classes indicating the video content. We add the prefix
’The sound of’ to the label to form the prompt for generation. We train the timestamp and energy
estimator on the AVSync15 (Zhang et al., 2024). AVSync15 is a carefully curated dataset from the
VGGSound Sync (Chen et al., 2021) dataset, which contains 1500 strongly correlated audio-visual
pairs, making it a high-quality dataset for temporal synchronization. For both timestamp and energy
estimator, we train them for 30 epochs. When training the timestamp-based temporal adapter, we
need the ground truth timestamp lables for sound event. So we train it on AudioSet Strong (Hershey
et al., 2021) which contains 103,463 videos with the audio and the corresponding timestamp labels.
For the training of energy-based adapter, we also use the VGGSound Chen et al. (2020a) as we can
simply obtain ground truth energy from mel-spectrum.

B.3 DETAILS OF EVALUATION

We compare timestamp-based and energy-based FoleyCrafter with state-of-the-art methods. For the
predicted timestamp, we follow Xie et al. (2024b); Comunità et al. (2024) to use a threshold of 0.5
to get binary timestamp mask. The timestamp and energy condition are is interpolated to the same
length as the audio latent. Then they are fed to the ControlNet Zhang et al. (2023a) with the weight
of 0.3. For video-to-audio generation, we set the semantic adapter weight to 1.0 and and leave the
text prompt empty. This ensures that the semantic information of generated audio is entirely derived
from visual.

B.4 DETAILS OF USER STUDY

To further obtain subjective evaluation results, we conduct a user study. We randomly selected
the VGGSound test results generated by different methods for the questionnaire. A total of 20
participants answered our questions. As shown in Figure 8, each question contains audios generated
by two methods, one is our method and the other is the baseline e.g. SpecVQGAN (Iashin and Rahtu,
2021) Diff-Foley (Luo et al., 2023) and V2A-Mapper (Wang et al., 2024a). We ask participants to
select the one that has better semantic alignment, temporal alignment, and generation quality. Then
the preference score can be calculated as

Score =
S

A
(12)

where S is the number of times the method has been selected and A is the appearance times of that
method. A higher score means the greater performance of FoleyCrafter. Results can be found at
Table 5. FoleyCrafter is preferred by users in all three metrics.

C MORE QUALITATIVE RESULTS

Foley Generation for Generated Videos. FoleyCrafter is an effective Foley generation tool which
can also be used for movie and generated video. Herein, we take the Sora video as example and
provide the audio results generated by FoleyCrafter. In the foley process, semantic adapter can
directly utilize the rich visual information, which helps FoleyCrafter generate appropriate sound
effects for the visual subjects and environment shown in the generated videos.

Text-based video to audio generation. FoleyCrafter achieve text-based video-to-audio genera-
tion through parallel cross-attention in semantic adapter. Benefiting from this module, FoleyCrafter
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Figure 8: Screenshot of User Study.

Table 5: User study. We evaluated the performance of three metrics of different models i.e. semantic
and temporal alignment and generation quality.

Method Semantic Temporal Quality

SpecVQGAN 20.29 21.74 20.29
Diff-Foley 20.59 29.41 27.94
V2A-Mapper 44.00 44.00 42.67
FoleyCrafter (ours) 71.23 67.92 69.34

can utilize both visual information and text prompts to generate audio. Extra text-based video-to-
audio generation results are illustrated in Figure 9 and attached in a separate supplementary file.

Temporal Synchronization Comparison. The temporal controller enhances the temporal align-
ment in generated audios with visual cues. To show the synchronization ability of FoleyCrafter,
we show more intuitive comparison results between FoleyCrafter and other methods as shown in
Figure 10. Video results are also provided in a separate supplementary file.

Video to Audio generation on various genres. FoleyCrafter can generate audio for a wide variety
of videos. In the supplementary file, we provide generated audio-visual pairs from the VGGSound
test cases. The type of video contains realistic video, games, and animation. The main visual objects
in the video are people, animals, musical instruments, etc. It fully demonstrates the excellent video-
to-audio generation capabilities of FoleyCrafter.
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Figure 9: Extra examples on text-based video to audio generation.

Figure 10: Extra examples on temporal alignment comparison.
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