
What is my quantum computer good for? Quantum
capability learning with physics-aware neural

networks

Daniel Hothem
Quantum Performance Laboratory

Sandia National Laboratories
Livermore, CA 94550
dhothem@sandia.gov

Ashe Miller
Quantum Performance Laboratory

Sandia National Laboratories
Albuquerque, NM 87185
anmille@sandia.gov

Timothy Proctor
Quantum Performance Laboratory

Sandia National Laboratories
Livermore, CA 94550
tjproct@sandia.gov

Abstract

Quantum computers have the potential to revolutionize diverse fields, including
quantum chemistry, materials science, and machine learning. However, contem-
porary quantum computers experience errors that often cause quantum programs
run on them to fail. Until quantum computers can reliably execute large quantum
programs, stakeholders will need fast and reliable methods for assessing a quantum
computer’s capability—i.e., the programs it can run and how well it can run them.
Previously, off-the-shelf neural network architectures have been used to model
quantum computers’ capabilities, but with limited success, because these networks
fail to learn the complex quantum physics that determines real quantum computers’
errors. We address this shortcoming with a new quantum-physics-aware neural
network architecture for learning capability models. Our scalable architecture com-
bines aspects of graph neural networks with efficient approximations to the physics
of errors in quantum programs. This approach achieves up to ∼ 50% reductions in
mean absolute error on both experimental and simulated data, over state-of-the-art
models based on convolutional neural networks, and scales to devices with 100+
qubits.

1 Introduction

Quantum computers have the potential to efficiently solve classically intractable problems in quantum
chemistry [Cao et al., 2019], materials science [Rubin et al., 2024], machine learning [Harrow et al.,
2009], and cryptography [Shor, 1997]. While contemporary quantum computers are approaching
the size and noise levels needed to solve interesting problems [Arute et al., 2019], they are far from
being capable of reliably running most useful quantum programs [Proctor et al., 2021a]. Until we
build quantum computers capable of executing any and all useful and interesting quantum programs,
stakeholders will require fast, reliable, and scalable methods for predicting the programs that a given
quantum computer can reliably execute.

The task of learning which quantum programs a particular quantum computer can reliably execute is
known as quantum capability learning [Proctor et al., 2021a]. Quantum capability learning is very

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

difficult because the number of possible (Markovian) errors plaguing a quantum computer grows
exponentially in its size [Blume-Kohout et al., 2022], i.e., in the number of qubits (n) it contains,
and errors in a quantum program can combine in difficult-to-predict ways [Proctor et al., 2021a].
Most existing approaches to capability learning restrict themselves to learning how well a quantum
computer executes a small set of quantum programs, by running all of those programs and estimating
a success metric for each one [Lubinski et al., 2023, Proctor et al., 2024]. While these methods
provide insight into a quantum computer’s capability, they are not predictive.

Recently, several groups have proposed building predictive models of a quantum computer’s capability
using convolutional neural networks (CNNs) [Elsayed Amer et al., 2022, Hothem et al., 2024b, Vadali
et al., 2024, Hothem et al., 2023b] and graph neural networks (GNNs) [Wang et al., 2022]. However,
these neural-network-based capability models achieve only modest prediction accuracy when applied
to real quantum computers, because they fail to learn the complex physics that determines real
quantum computers’ failures [Hothem et al., 2024b].

In this work, we introduce a novel quantum-physics-aware neural network (qpa-NN) architecture
for quantum capability learning (Fig. 1). Our approach uses neural networks with GNN-inspired
structures to predict the rates of the most physically relevant errors in quantum programs. These
predicted error rates are then combined using an efficient approximation to the exact (but exponentially
costly) quantum physics formula for how those errors combine to impact a program’s success rate.
Our approach leverages the graph structures that encode the physics of how errors’ rates typically
depend on both the quantum program being run and how a quantum computer’s qubits are arranged,
and it offloads the difficult-to-learn, yet classically tractable task of approximately combining these
error rates to predict a circuit’s performance to an already-known function. This enables our qpa-NNs
to vastly outperform the state-of-the-art CNNs of Hothem et al. [2024b] on both experimental and
simulated data without sacrificing the ability to model large devices of 100+ qubits.

Our qpa-NNs are enabled, in part, by focusing on learning a quantum computer’s capability on high-
fidelity quantum programs, which are those programs that a quantum computer correctly executes
with high probability. High-fidelity programs are arguably the most interesting programs to study as
we care far more about whether a quantum computer successfully executes a program 99% or 90% of
the time rather than 1% or 10% of the time.

In a head-to-head comparison, our qpa-NNs achieve a ∼ 50% reduction in mean absolute error
(MAE) over the CNNs of Hothem et al. [2024b], on average and on the same experimental datasets.
Our qpa-NNs achieve an average ∼ 36% improvement over those CNNs even after fine-tuning those
CNNs on the same subset of the training data (high-fidelity programs) used to train our qpa-NNs.

Our qpa-NNs’ improved performance is likely largely due to their improved ability to model the
impact of coherent errors on a program’s success rate. Off-the-shelf networks struggle with coherent
errors [Hothem et al., 2024b], but our qpa-NNs are designed to model how these errors add up and
cancel out, making the qpa-NNs much better predictors in the presence of coherent errors. To verify
this, we demonstrate that our qpa-NNs can accurately predict the performance of random circuits
run on a hypothetical 4-qubit quantum computer experiencing only coherent errors. Our qpa-NN
obtained a ∼ 50% lower MAE than a CNN, averaged across five datasets, and the trained qpa-NN
even exhibits moderate performance when making predictions for a different class of circuits (random
mirror circuits [Proctor et al., 2021a]) simulated on the same hypothetical 4-qubit quantum computer,
i.e., our qpa-NNs display moderate prediction accuracy on out-of-distribution data.

We make the following contributions in our work:

1. We introduce qpa-NNs, a bespoke neural network architecture for modeling the capability
of a quantum computer, which outperform state-of-the-art CNN models by ∼ 50% on
experimental and simulated data.

2. We use our qpa-NNs to model the capability of a simulated 100-qubit device; the largest
ever neural network capability learning demonstration by a factor of two.

3. We demonstrate, for the first time, how to train NNs to predict the process fidelity [Nielsen,
2002] of a circuit, which is the most widely used quantum channel error metric.

4. We provide evidence that the improved performance of our qpa-NNs is partly due to their
ability to better model the effect of coherent errors, which are known to be challenging for
other state-of-the-art methods.

2

2 Background

In this section, we review the background in quantum computing necessary to understand this paper.
See Nielsen and Chuang [2010] for an in-depth introduction to quantum computing and Blume-
Kohout et al. [2022] or Hashim et al. [2024] for a thorough description of the errors in quantum
computers.

2.1 Quantum computing

A quantum computer performs computations using qubits, which are two-level systems whose pure
states are unit vectors in a complex two-dimensional Hilbert space,H. The pure states of n qubits are
unit vectors in H⊗n. The two orthonormal vectors |0〉 and |1〉 that are eigenvectors of the Z Pauli
operator are identified as the computational basis ofH. Errors and noise in real quantum computers
mean that they are typically in states ρ that are probabilistic mixtures of pure states.

A quantum computation is performed by running a quantum program, typically known as a quantum
circuit (see illustration in Fig. 1a). An n-qubit quantum circuit (c) of depth d is defined by a sequence
of d layers of logical instructions {Li}. Executing c consists of preparing each qubit in |0〉, applying
each Li, and then measuring each qubit to obtain an n-bit string b. Each layer typically consists of
parallel one- and two-qubit gates, and it is intended to implement a 2n × 2n unitary U(Li). Together,
the layers are intended to implement U(c) = U(Ld) · · ·U(L1).

If quantum circuit c is implemented without error, its output bit string b is a sample from a distribution
P(c) whose probabilities are given by Pr(b = x) = |〈x|U(c)|00 · · · 0〉|2 where |00 · · · 0〉 = |0〉 ⊗
· · · ⊗ |0〉, |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉, and xi is the i-th bit in x. However, when a circuit is executed
on a real quantum computer, errors can occur and this means that its output bit string b is a sample
from some other distribution P̃(c). The process of errors corrupting a quantum computation can be
modelled as follows. Each logic layer Li implements the intended unitary superoperator U(Li) :
ρ → U(Li)ρU

†(Li), where ρ is a general n-qubit state, followed by an error channel Λi that is a
completely positive and trace preserving (CPTP) superoperator [Blume-Kohout et al., 2022]. The
imperfect implementation of a circuit c is then simply Ũ(c) =

∏d
i=1 Λi ◦ U(Li), and the output bit

string b is x with probability Pr(b = x) = Tr(|x〉〈x|Ũ(c)[|00 · · · 0〉〈00 · · · 0|]).

2.2 Quantum capability learning

Because quantum computers are error-prone, knowing which quantum circuits a particular quantum
computer can execute with low error probability is important. Known as quantum capability learning
[Proctor et al., 2021a, Hothem et al., 2024b], this task formally involves learning the mapping between
a set of quantum circuits c ∈ C and some success metric s(c) ∈ R quantifying how well c runs on
a quantum computer Q. In this work, we consider a large class of circuits known as Clifford (or
stabilizer) circuits [Aaronson and Gottesman, 2004], which are sufficient to enable quantum error
correction [Campbell et al., 2017], and two widely-used success metrics: probability of successful
trial (PST) (a.k.a. success probability) and the process fidelity (a.k.a. entanglement fidelity) [Hothem
et al., 2024b, Nielsen, 2002].

PST is defined only for definite-outcome circuits, which are circuits whose output distribution has (if
run without error) support on a single bit string, b(c). For any such circuit c, PST is defined as

PST(c) = Pr(measuring b(c) when executing c on Q). (1)
In practice, PST(c) is estimated by running the circuit Nshots � 1 times on Q and calculating

P̂ST(c) =
observations of b(c)

Nshots
. (2)

Process fidelity is defined for all circuits, and it quantifies how close the actual quantum evolution of
the qubits is to the ideal unitary evolution. It is given by

F (c) =
1

4n
Tr
[
Ũ(c)U−1(c)

]
. (3)

Estimating F (c) is more complicated than estimating PST(c), but efficient methods exist, such as
mirror circuit fidelity estimation [Proctor et al., 2022]. Hence, in theory, it is possible to efficiently
gather training data using either PST(c) or F (c) on arbitrarily large quantum computers.

3

Figure 1: Quantum capability learning with quantum-physics-aware neural networks (qpa-
NNs). Our qpa-NNs are a novel architecture for learning a quantum computer’s capability, i.e., the
mapping from quantum circuits (or programs) to how well that imperfect quantum computer can
run those circuits. These networks build in physical principles for how errors in quantum circuits
occur—which can be expressed in terms of a quantum computer’s connectivity graph—and efficient
approximations to the physics of how these errors combine to impact a circuit’s success rate.

2.3 Modelling errors in quantum computers

Our qpa-NNs build in efficient approximations to the quantum physics of errors in quantum computers.
They do so using the following parameterization of an error channel: Λ = exp(

∑
j εjGj). Here

Gn = {Gj} is the set of 22n+1 − 2 different Hamiltonian (H) and Stochastic (S) elementary error
generators introduced by Blume-Kohout et al. [2022], and εj is the rate of error Gj . Not every
kind of error process can be represented in this form (e.g., amplitude damping, or non-Markovian
errors), but this parameterization includes many of the most important kinds of errors in contemporary
quantum computers. Each H and S error generator is indexed by a non-identity element of the n-qubit
Pauli group (Pn). The Pauli operator indexing an H or S error indicates the qubits it impacts and its
direction, e.g., the H error generator indexed by X ⊗ I⊗(n−1) is a coherent error on the 1st qubit and
it rotates that qubit around its X axis.

Our qpa-NNs use approximate formulas for computing PST(c) or F (c) from the rates of H and S
errors, which we now review. Consider pushing each error channel Λi to the end of the circuit and
combining them together, i.e., we compute the error channel Λ(c) defined by Ũ(c) = Λ(c) ◦ U(c).
Then

PST(c) ≈ 1−
∑

P∈PX,Y
n

(
sP + θ2p

)
, (4)

where sP and θP are the rates of the P -indexed S and H error generators, respectively, in c’s error
channel Λ(c), and PX,Y

n is the set of n-qubit Pauli operators containing at least oneX or Y . Similarly,

F (c) ≈ 1−
∑
P∈Pn

(
sP + θ2p

)
. (5)

Equations (4) and (5) are good approximations for low-error circuits [Mądzik et al., 2022]. However,
they both suffer from the same flaw: they require trackingO(4n) parameters. To address this problem,
our qpa-NNs make an approximation: they only account for the contributions of a polynomially-sized
set of errors that contains all those errors which are most likely to be experienced by a quantum
computer. In this work, we chose to account for only local, low-weight errors, i.e., those with initial
support on a small, connected subset of a device’s connectivity graph.

4

3 Neural network architecture

Our neural network architecture (see Fig. 1) for quantum capability learning combines neural network
layers that have GNN-like structures with efficient approximations to the physics of errors in quantum
computers. The overall action of our neural networks is to map an encoding of a circuit c to a
prediction for PST(c) or F (c). The same network can predict either PST(c) or F (c) by simply
toggling between two different output layers that have no trainable parameters. Our architecture is
divided into two sequential parts. The first part of our architecture is a neural network N that has the
task of learning about the kinds and rates of errors that occur in quantum circuits. We use GNN-like
structures within N to embed physics knowledge for how those errors depend on the quantum circuit
being run. The second part of our architecture is a function f with no learnable parameters, that turns
N ’s output into a prediction for PST(c) or F (c).

3.1 Physics-aware neural networks for predicting errors in quantum circuits

The neural network N ’s input is a quantum circuit c of depth d(c) represented by (i) a tensor
I(c) ∈ {0, 1}n×d(c)×nch describing the gates in c (see Fig. 1a), and (ii) a matrix M(c) ∈ {0, 1}2×n
describing the measurement of the qubits at the end of c. N maps I(c) to a matrix E ∈ Rk×d(c) and
M(c) to a vector ~m ∈ Rk. Eij is a prediction for the rate with which error type j occurs during
circuit layer i, and mj is a prediction for the rate with which error type j occurs when measuring
the qubits at the end of a circuit. There are 2(4n − 1) different possible error types that can occur in
principle (see Section 2) so it is infeasible to predict all their rates beyond very small n. However, the
overwhelming majority of these errors are implausible, i.e., they are not expected to occur in real
quantum computers [Blume-Kohout et al., 2022]. Our networks therefore predict the rates of every
error from a relatively small set of error types G = {G1, . . . , Gk} containing the k most plausible
kinds of error. G is a hyperparameter of our networks. It can be chosen to reflect the known physics of
a particular quantum computer and/or optimized using hyperparameter tuning. In our demonstrations,
we choose G to contain all one-body H and S errors as well as all two-body H and S errors that
interact pairs of qubits within h steps on the modelled quantum computer’s connectivity graph for
some constant h (see Fig. 1b-c, where Fig. 1c shows an H or S error in G if h ≥ 2). This choice for
G encodes the physical principles that errors are primarily either localized to a qubit or are two-body
interactions between nearby qubits [Blume-Kohout et al., 2022]. The size of G grows with n, and for
planar connectivity graphs (as in, e.g., contemporary superconducting qubit systems [Arute et al.,
2019]) it grows linearly in n. This results in k = O(n) errors whose rates N must learn to predict.

The internal structures ofN are chosen to reflect general physical principles for how E and ~m depend
on c. Eij is a prediction for the rate that Gj occurs in circuit layer i, and this error corresponds to a
space/time location within c—because it occurs at layer index or time i and Gj acts on a subset of
the qubits Q(Gj) (see example in Fig. 1c). This error’s rate will therefore primarily depend only on
the gates in a time- and space-local region around its location in c. Furthermore, this dependence will
typically be invariant under time translations (this is true except for some exotic non-Markovian kinds
of errors, which we discuss in Section 8.1). We can encode these structures into N by predicting Eij
from a space-time “window” of c around the associated error’s location using a filter Wj that “slides”
across the circuit to predict the rate of Gj versus time i. Stated more formally, we predict Eij using a
multilayer perceptron Nj whereby Nj(Wj [I(c), i]) = Eij and Wj [I(c), i] is a snippet of I(c) whose
temporal origin is i (see Fig. 1e). The shape of each filter Wj is a hyperparameter of our networks and
it can be designed to reflect general physical principles, the known physics of a particular quantum
computing system, and/or optimized with hyperparameter tuning. The particular neural networks we
present later herein use filters Wj(I(c), i) that snip out only layer i and discard the parts of the layer
that act on qubits more than l steps away from Q(Gj) in the quantum computer’s connectivity graph
(e.g., the filter shown in Fig. 1e corresponds to the error shown in Fig. 1c and l = 1). This neural
network structure has close connections to graph convolution layers [Kipf and Welling, 2016], as
well as CNNs. We choose this structure as it can model spatially localized crosstalk errors, which are
a ubiquitous but hard-to-model class of errors in quantum computers [Sarovar et al., 2020].

The network N must also predict the rates of errors that occur during measurements (unless the
qpa-NN will only ever predict F (c) not PST(c)), but these are typically independent of the rates of
gate errors (which are predicted by the Nj). So we do not use the Nj and their convolutional filters
Wj to make predictions for ~m. Instead we use separate but structurally equivalent networks N ′j with

5

corresponding filters W ′j that take M(c) as input and implement only spatial filtering. That is, W ′j
simply discards rows from M(c), as, unlike I(c), M(c) has no temporal dimension. The W ′j are
hyperparameters of our networks allowing us to separately adjust the shape of each W ′j to reflect the
known physics of errors induced by measuring qubits. In our demonstrations, our W ′j filters have the
same structure as the Wj filters but with an independent l′ steps parameter (large l′ enables modelling
many-qubit measurement crosstalk).

3.2 Processing predicted error rates to predict capabilities

We process N ’s output to predict PST(c) or F (c) using a function f with no learnable parameters.
This turns N ’s output into the two quantities of interest, and it also makes training N feasible.
We cannot easily train N in isolation because the error matrix E predicted by N is not a directly
observable quantity. Generating the data needed to train N directly would require extraordinarily
expensive quantum process tomography [Nielsen et al., 2021], which is infeasible except for very
small n. In contrast, both PST(c) and F (c) can be efficiently estimated (see Section 2) for a given
circuit c.

The function f computes an approximation to the value for PST(c) or F (c) predicted by E and ~m.
The matrix E encodes the prediction that c’s imperfect action is

Ũ(c) = Λd(E)U(Ld) · · ·Λ1(E)U(L1), (6)

where the Li are the d layers of c (see Section 2) and Λi(E) = exp(
∑k

j=1 EijGj), i.e., Λi(E) is an
error channel parameterized by the ith column of E . Equation (6) implies an exact prediction for
PST(c) or F (c) [e.g., Eq. (3)], but exactly computing that prediction involves explicitly creating and
multiplying together each of the 4n × 4n matrices in Eq. (6). This is infeasible, except for very small
n. Instead our f computes an efficient approximation to this prediction.

Our function f ’s action is most easily described by embedding E into the space of all possible H and S
errors Gn, resulting in a d× (22n+1 − 2) matrix Ee whose columns are k-sparse. However, we never
construct these exponentially large matrices. Consider pulling each error channel to the end of the
circuit, giving Ũ(c) = Λ′d(E ′e) · · ·Λ′1(E ′e)U(c) where Λ′d(E ′e) = exp(

∑22n+1−2
j=1 [E ′e]ijGj). Because c

contains only Clifford gates and Clifford unitaries preserve the Pauli group [Aaronson and Gottesman,
2004], E ′e has columns that are just c-dependent signed permutations of Ee’s columns. The signed
permutations required can be efficiently computed in advance (i.e., as an input encoding step) using
an efficient representation of Clifford unitaries [Gidney, 2021]. Furthermore, these permutations
can be efficiently represented in two d× k matrices: a sign matrix S(c) containing ±1 signs to be
element-wise multiplied with E and a permutation indices matrix P (c) containing integers between 1
and 22n+1 − 2, where Pij specifies what error Gj becomes when pulled through the d − i circuit
layers after layer i.

We now have a representation of E’s prediction for the circuit c’s error map Λ(c) as a sequence
of error maps Λ′d(E ′e) · · ·Λ′1(E ′e), and we need to predict PST(c) or F (c). We can do so if we
can compute E’s prediction for the S and H error rates in Λ(c), as we can then apply Eq. (4) or
Eq. (5). To achieve this, we combine the Λ′i(E) into a single error map using a first-order Baker-
Campbell-Hausdorff (BCH) expansion. Using our embedded representation, this means simply
approximating Λ(c) as Λ(c) ≈ exp(

∑
j vjG

′
j) where vj =

∑d
i=1[E ′e]ij , i.e., we sum over the rows

of E ′e. To predict F (c) we then simply apply Eq. (4) (meaning summing up vj with those elements
that correspond to Hamiltonian errors squared). Because measurement errors impact PST(c), to
predict PST(c) we again apply the BCH expansion to combine in the predicted measurement error
map exp(

∑l
j=1mjGj) and then apply Eq. (5). The efficient representation of the overall action of f

is illustrated in Fig. 1 (the addition of the measurement error map is not shown).

4 Datasets

4.1 Experimental 5-qubit data

We used the 5-qubit datasets from Hothem et al. [2024b] for our experimental demonstrations. Each
of these datasets D = {(c, P̂ST(c))} was gathered by running random and periodic mirror circuits

6

(two types of definite-outcome circuits) on 5-qubit IBM Q computers (ibmq_london, ibmq_essex,
ibmq_burlington, ibmq_vigo, ibmq_ourense and ibmq_yorktown), and estimating the PST of
each circuit using Eq. (2). Each circuit was run between 1024 and 4096 times, with the exact number
depending upon how many times the circuit sampling process generated the circuit (some short,
1-qubit circuits were generated multiple times). The random and periodic mirror circuits contained
between 1 and 5 active qubits—called the circuit’s width—and ranged in depth from 3 to 515 layers
(alt. 259 layers for the ibmq_yorktown dataset).

As we focus on high-PST circuits, we removed all circuits with a PST less than 85% from each dataset,
leaving between 864 (ibmq_burlington) and 1369 (ibmq_yorktown) circuits in each dataset. The
remaining circuits were partitioned into training, validation, and test sets by their original assignment
in Hothem et al. [2024b]. This setup enables a direct comparison between our qpa-NNs and the CNNs
trained in Hothem et al. [2024b]. Training set sizes ranged from 682 circuits on ibmq_burlington
to 1097 circuits on ibmq_yorktown, with an approximate training, validation, testing split of 80%,
10%, and 10%, respectively.

4.2 Simulated 4-qubit data

For our 4-qubit simulations, we generated 5 datasets of 5000 high-fidelity (F (c) > 85%) ran-
dom circuits, for a hypothetical 4-qubit processor with a “ring” geometry (i.e., like that in
Fig. 1b). The circuits ranged in width (w) from 1 to 4 qubits, and in depth from 1 to 180 cir-
cuit layers. We designed each circuit for a randomly chosen subset of w qubits. Each circuit
layer was created by i.i.d. sampling from all possible circuit layers on the w active qubits. We
used a gate set containing two-qubit CNOT gates and 7 different single-qubit gates (specifically
{X(π/2), Y (π/2), X(3π/2), Y (3π/2), X(π), Y (π), Z(π)} where P (θ) denotes a rotation around
the P axis of the Bloch sphere by θ). See Appendix C for additional details.

All circuits were simulated under the same error model, consisting of local coherent (i.e., H) errors, to
exactly compute each c’s F (c) [Fig. 3 shows a histogram of F (c)]. After removing duplicate circuits,
the resulting datasets D = {(c, F (c))} were partitioned into training, validation, and testing subsets,
with a partition of 56.25%, 18.75%, and 25%, respectively. The parameters of the error model
were randomly selected: each gate was assigned a small error strength, which was then distributed
randomly across all possible (local) one- or two-qubit coherent errors, for the one- and two-qubit
gates, respectively. We chose a model with only coherent errors as these errors are ubiquitous, they
are hard to model accurately and efficiently, and we conjecture that qpa-NNs can model them.

We also generated 5 datasets of 750 random mirror circuits on the same hypothetical 4-qubit quantum
computer. Again, the random mirror circuits varied in width from 1 to 4 qubits, and were designed to
be run on a randomly selected subset of w qubits. However, instead of i.i.d. sampling of each circuit
layer, each circuit was randomly sampled from the class of random mirror circuits on the w qubits.
The depth of the mirror circuits ranged from 8 to 174 layers. Because we generated the mirror circuit
datasets to evaluate how well qpa-NNs and CNNs generalize to out-of-distribution circuits, they
were used exclusively as testing sets. To ensure that no training was performed on mirror circuits,
we removed any mirror circuits that appeared in the random circuit sets (in actuality, there were no
duplicates).

4.3 Simulated 100-qubit data

For our 100-qubit simulation, we generated a single dataset of 5000 high-fidelity (F (c) > 91%)
random circuits, for a hypothetical 100-qubit quantum computer with a “ring” geometry. All of the
circuits had a width of 100 qubits, and ranged in depth from 1 to 22 circuit layers. We sampled circuit
layers using the same process and gate set as in the 4-qubit simulations.

We simulated every circuit using the same error model, consisting of local, weight-1 S and H errors.
As before, the parameters of the error model were randomly selected and the data were partitioned
into training, validation, and testing subsets according to a 56.25%, 18.75%, 25% split.

Unlike in our 4-qubit simulations, we did not compute F (c) exactly as doing so for a 100-qubit
circuit is infeasible in the presence of coherent errors. Instead, we used a first-order simulation
method to approximate F (c). In this method, F (c) is computed by assigning each gate its own error
vector based on the error model, adding up the error vectors layer-wise to compute an error vector

7

Figure 2: Prediction accuracy on real quantum computers. (a) The mean absolute error of our
qpa-NNs (•), the CNNs from Hothem et al. [2024b] (o-CNN, +), and fine-tuned CNNs (ft-CNN, �)
on the test data. (b) The predictions of the three models for ibmq_vigo on the test data, and (c) the
distribution of each model’s absolute error on the test data, including the 50th, 75th, 95th and 100th

percentiles (lines) and the means (points).

for each circuit layer, and then computing F (c) as in the second part of a qpa-NN [Figure 1(f)]. See
Appendix C.4 for more details.

4.4 Encoding schemes

We used two different encoding schemes for converting each circuit c into a tensor. For the CNNs
on experimental data, we used the same encoding scheme as Hothem et al. [2024b], as we used
their data and networks. For all qpa-NNs, and the CNNs on simulated data, we used the following
scheme. As outlined in Section 3, each width-w circuit c is represented by a three-dimensional tensor
I(c) ∈ {0, 1}n×d(c)×nch describing the gates in c and a matrix M(C) ∈ {0, 1}2×w describing the
measurement of the qubits. The ij-th entry of I(c),

Iij(c) = (Iij1(c), . . . , Iijnch
(c)), (7)

is a one-hot encoded vector of what happens to qubit i in layer j. For the hypothetical 4-qubit
ring processor, nch = 11: one channel for each single-qubit gate and four channels for the CNOT
gates. There are four CNOT channels to specify if the qubit i is the target or control qubit and if
the interacting qubit is to the left or right of qubit i. We used an additional 4 or 8 CNOT channels
for the experimental data, depending on the quantum computer’s geometry. The first row in M(c)
is the bitstring specifying which qubits are measured at the end of c. When c is a definite-outcome
circuit, the second row is its target bit string, i.e., the sole bit string in the support of c’s outcome
distribution when it is executed without error [i.e., P(c)]. Both I(c) and M(c) are zero-padded to
ensure a consistent tensor shape across a dataset.

Additionally, each circuit c is accompanied by a permutation matrix P (c) ∈ Nn×k and sign matrix
S(c) ∈ {±1}n×k. The ij-entry of P (c) specifies which error the j-th tracked error occurring after
the i-th layer is transformed into at the end of the circuit. The ij-th entry of S(c) specifies the sign of
that error.

5 5-qubit experiments

We now present the results from our head-to-head comparison between the qpa-NNs and the CNNs
on the 5-qubit datasets used in Hothem et al. [2024b]. Figure 2 shows the mean absolute error (MAE)
achieved by the CNNs (+) and the qpa-NNs (•) on each of the datasets. For all datasets, MAE
is lower for the qpa-NNs than the CNNs, with an average reduction of 50.4% (σx = 16.7%, i.e.,
the standard deviation of percent-drop in MAE). The Bayes factor K is between K = 1030 and
K = 10383 (here, K is the ratio of the likelihood of the qpa-NN to the likelihood of the CNN given
the test data). This is overwhelming evidence that the qpa-NN is a better model (K ≥ 102 is typically

8

Figure 3: Demonstrating our qpa-NNs’ accuracy for hard-to-model coherent errors and at
scale. (a) Scatter plot of the prediction errors on test data of a qpa-NN (•) and CNN (•) trained to
predict the fidelity F (c) of random circuits run on a hypothetical 4-qubit quantum computer. The
qpa-NN significantly outperforms the CNN. The top subplot contains a histogram (green bars) of
the ground-truth fidelities. (b) Prediction errors on out-of-distribution test data, from random mirror
circuits. The qpa-NN achieves modest prediction accuracy on this out-of-distribution task, suggesting
that the qpa-NNs are accurately learning error rates. (c) Prediction errors on the 100-qubit test data,
demonstrating that our qpa-NN approach can accurately predict F (c) for circuits run on large-scale
quantum computers.

considered decisive). These results strongly suggest that the extra infrastructure in the qpa-NNs is
making a difference.

The improved performance of the qpa-NNs is not because of an increase in model size. For example,
the ibmq_london CNN contains 6, 649, 531 trainable parameters compared to the 1, 218, 348 train-
able parameters in the qpa-NN. Moreover, CNNs of similar or larger sizes than the qpa-NNs were
included in the hyperparameter optimization space of the CNNs [Hothem et al., 2024b].

Nonetheless, comparing the qpa-NNs to the CNNs is somewhat unfair as the CNNs were trained
on out-of-distribution circuits—they were trained on the entire training dataset from Hothem et al.
[2024b] which also contains low-PST circuits. For a fairer comparison, we fine-tuned each CNN
(Fig. 2, �) on the same high-PST training set used to train the qpa-NNs. Fine-tuning typically
increased the CNNs’ performances (mean 25.1% improvement, σx = 22.3%). However, the qpa-
NNs achieve a MAE that is lower than the fine-tuned CNNs by 32.2% on average (σx = 17.3%)
and outperform the fine-tuned CNNs on all six datasets. K is between 1028 and 10238, which is
overwhelming evidence that the qpa-NNs are better models than the fine-tuned CNNs.

6 4-qubit simulations

One reason why the extra infrastructure in our qpa-NNs may be necessary is that off-the-shelf
networks struggle with modeling coherent errors [Hothem et al., 2024b]. To test our hypothesis,
we trained a qpa-NN to predict the fidelity F (c) of random circuits executed on a hypothetical
4-qubit quantum computer experiencing purely coherent errors. We compared this qpa-NN to
a hyperparameter-tuned CNN trained on the same data. Figure 3 shows the results from one
representative dataset.

The qpa-NNs again significantly outperform the CNNs. Across the five datasets, the qpa-NNs’
averaged a 52.4% reduction in MAE (σx = 3.00%) on the test data. We also see a significant
improvement in the mean Pearson correlation coefficient, r̄qpa−NN = .968 vs. r̄CNN = .749.

We also found that qpa-NNs trained on random circuits are modest predictors of the infidelity of
random mirror circuits, which are a different family of circuits. This is an example of out-of-
distribution generalization. Random mirror circuits differ in a variety of ways from the random
circuits on which the qpa-NNs were trained, including both the presence of idle gates (which are
noiseless in our simulations) and a motion-reversal structure in the circuits that causes the addition
or cancellation of errors that are far apart in time. The qpa-NNs achieve an average MAE of .72%
on the random mirror circuits (σx = .046%). Although this is a 3.2× increase in MAE over the
in-distribution test data, the strong linear relation between the network’s predictions and the ground
truth (r̄ = .912, σx = .009) strongly suggests that the qpa-NNs are learning information relevant to
random mirror circuits.

9

7 100-qubit simulation

Quantum-physics-aware neural networks scale just as well as CNNs, despite their extra infrastructure.
To demonstrate their scalability, we trained a qpa-NN to predict the fidelity F (c) of random circuits
executed on a hypothetical 100-qubit quantum computer experiencing a mix of stochastic and coherent
errors. To our knowledge, this is the first creation of a capability model of any kind, for a 100+ qubit
quantum computer. Figure 3(c) shows the results from our demonstration.

The qpa-NN achieved a MAE of 0.097%. While the underlying noise model was quite simple,
this result shows that it is technically feasible to construct qpa-NN capability models for today’s
moderate-scale quantum computers and for tomorrow’s early fault-tolerant quantum computers.

8 Discussion

8.1 Limitations

Our results are a significant improvement over the state of the art, but our approach does have several
limitations:

1. As presently conceived, our approach assumes that the modelled quantum computer’s error
rates are invariant under time translations, which is a kind of Markovianity assumption
(although it is weaker than the typical Markovian assumption used in conventional quantum
computer models [Nielsen et al., 2021]). However, non-Markovian noise exists in quantum
computers [White et al., 2020]. In the future, we plan to address this issue by adding temporal
information into our approach, perhaps with a temporal or positional encoding [Vaswani
et al., 2017].

2. Our approach only considers two error classes (H and S errors). Other Markovian error
classes, like amplitude damping, exist, but their error rates ε contribute to PST and fidelity
at order O(ε3) [Mądzik et al., 2022]. Our approach can be easily extended to include those
errors, if necessary, by learning their rates with N and updating f to account for their
presence.

3. Our current approach works for Clifford circuits, which includes arguably the most important
kinds of circuits (e.g., quantum error correction circuits) but not all interesting circuits. This
is because our method for efficiently propagating errors through circuits (implemented by f
together with the S and P matrices) leverages the elegant mathematics of Clifford circuits.
Our approach can be easily extended to generic few-qubit quantum circuits (. 10 qubits),
but to obtain the efficiency needed for large n with general circuits we will need to develop
approximate methods for propagating errors through those circuits.

8.2 Conclusion

In this paper, we presented a new quantum-physics-aware neural network architecture for modelling
a quantum computer’s capability that significantly improves upon the state of the art. The new
architecture concatenates two parts: (i) a neural network with structural similarities to GNNs that uses
gate information and a quantum computer’s connectivity graph to predict the rates of errors in each of
a circuit’s layers, and (ii) a non-trainable function that turns the predicted error rates into a capability
prediction. By imbuing these networks with knowledge about how errors occur and combine within a
circuit, we are able to outperform state-of-the-art CNN-based capability models by ∼ 50% on both
experimental data and simulated data. We also provided evidence that our quantum-physics-aware
networks are learning the true physical error rates, as they exhibit modest prediction accuracy when
predicting the fidelity of out-of-distribution quantum circuits, which would enable our networks to
also be used to diagnose the error processes occurring in a particular quantum computer (an important
task known as characterization or tomography [Nielsen et al., 2021]).

Understanding which quantum circuits a quantum computer can run, and how well it can run them,
is an important yet challenging component of understanding a quantum computer’s power. Given
the complexity of the problem, neural networks are likely to play a large role in its solution. As our
results demonstrate, our new physics-aware network architecture could play a critical role in building
fast and reliable neural network-based capability models.

10

Acknowledgments and Disclosure of Funding

This material was funded in part by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program, and by the
Laboratory Directed Research and Development program at Sandia National Laboratories. T.P.
acknowledges support from an Office of Advanced Scientific Computing Research Early Career
Award. We acknowledge the use of IBM Quantum services for this work. The views expressed are
those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum
team.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
(DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of
NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work
and is responsible for its contents. Any subjective views or opinions that might be expressed in
the written work do not necessarily represent the views of the U.S. Government. The publisher
acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this written work or allow others to do so, for
U.S. Government purposes. The DOE will provide public access to results of federally sponsored
research in accordance with the DOE Public Access Plan.

References
S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70

(5):052328, Nov. 2004. ISSN 1050-2947. doi: 10.1103/PhysRevA.70.052328. URL https:
//link.aps.org/doi/10.1103/PhysRevA.70.052328.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G.
S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney,
A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin,
S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble,
S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman,
M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel,
P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M.
Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574
(7779):505–510, Oct. 2019. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-019-1666-5. URL
http://dx.doi.org/10.1038/s41586-019-1666-5.

R. Blume-Kohout, M. P. da Silva, E. Nielsen, T. Proctor, K. Rudinger, M. Sarovar, and K. Young.
A taxonomy of small markovian errors. PRX Quantum, 3:020335, May 2022. doi: 10.
1103/PRXQuantum.3.020335. URL https://link.aps.org/doi/10.1103/PRXQuantum.3.
020335.

E. T. Campbell, B. M. Terhal, and C. Vuillot. Roads towards fault-tolerant universal quantum
computation. Nature, 549(7671):172–179, Sept. 2017. ISSN 0028-0836, 1476-4687. doi:
10.1038/nature23460. URL http://dx.doi.org/10.1038/nature23460.

Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke,
B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik. Quantum chemistry in the age

11

https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://link.aps.org/doi/10.1103/PhysRevA.70.052328
http://tensorflow.org/
http://dx.doi.org/10.1038/s41586-019-1666-5
https://link.aps.org/doi/10.1103/PRXQuantum.3.020335
https://link.aps.org/doi/10.1103/PRXQuantum.3.020335
http://dx.doi.org/10.1038/nature23460

of quantum computing. Chemical Reviews, 119(19):10856–10915, 2019. doi: 10.1021/acs.chemrev.
8b00803. URL https://doi.org/10.1021/acs.chemrev.8b00803. PMID: 31469277.

F. Chollet et al. Keras. https://keras.io, 2015.

N. Elsayed Amer, W. Gomaa, K. Kimura, K. Ueda, and A. El-Mahdy. On the learnability of quantum
state fidelity. EPJ Quantum Technology, 9:31, 2022. URL https://epjquantumtechnology.
springeropen.com/articles/10.1140/epjqt/s40507-022-00149-8#citeas.

C. Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, July 2021. ISSN 2521-327X.
doi: 10.22331/q-2021-07-06-497. URL https://doi.org/10.22331/q-2021-07-06-497.

A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations.
Phys. Rev. Lett., 103:150502, Oct 2009. doi: 10.1103/PhysRevLett.103.150502. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.103.150502.

A. Hashim, L. B. Nguyen, N. Goss, B. Marinelli, R. K. Naik, T. Chistolini, J. Hines, J. P. Marceaux,
Y. Kim, P. Gokhale, T. Tomesh, S. Chen, L. Jiang, S. Ferracin, K. Rudinger, T. Proctor, K. C. Young,
R. Blume-Kohout, and I. Siddiqi. A practical introduction to benchmarking and characterization
of quantum computers. arXiv [quant-ph], Aug. 2024. URL https://arxiv.org/abs/2408.
12064.

D. Hothem, T. Catanach, K. Young, and T. Proctor. Learning a quantum computer’s capability
using convolutional neural networks [Data set]. https://doi.org/10.5281/zenodo.7829489,
2023a. Published: 2023-04-12.

D. Hothem, J. Hines, K. Nataraj, R. Blume-Kohout, and T. Proctor. Predictive models from quantum
computer benchmarks. In 2023 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 709–714, Los Alamitos, CA, USA, sep 2023b. IEEE Computer Society.
doi: 10.1109/QCE57702.2023.00086. URL https://doi.ieeecomputersociety.org/10.
1109/QCE57702.2023.00086.

D. Hothem, A. Miller, and T. Proctor. Supplementary material for What is my quantum computer
good for? Quantum capability learning with physics-aware neural networks. Online, 2024a. To be
released as part of praqtice, a GitHub repository.

D. Hothem, K. Young, T. Catanach, and T. Proctor. Learning a Quantum Computer’s Capability
. IEEE Transactions on Quantum Engineering, 5(01):1–26, Jan. 2024b. ISSN 2689-1808. doi:
10.1109/TQE.2024.3430215. URL https://doi.ieeecomputersociety.org/10.1109/TQE.
2024.3430215.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun,
editors, Proceedings of the 3rd International Conference for Learning Representations. Microtome,
2015. URL https://arxiv.org/abs/1412.6980.

T. N. Kipf and M. Welling. Semi-Supervised classification with graph convolutional networks.
Proceedings of the 5th International Conference for Learning Representations, Sept. 2016. URL
http://arxiv.org/abs/1609.02907.

T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H. Baldwin, K. Mayer, and
T. Proctor. Application-Oriented performance benchmarks for quantum computing. IEEE Transac-
tions on Quantum Engineering, 4:1–32, 2023. ISSN 2689-1808. doi: 10.1109/TQE.2023.3253761.
URL http://dx.doi.org/10.1109/TQE.2023.3253761.

M. T. Mądzik, S. Asaad, A. Youssry, B. Joecker, K. M. Rudinger, E. Nielsen, K. C. Young, T. J.
Proctor, A. D. Baczewski, A. Laucht, V. Schmitt, F. E. Hudson, K. M. Itoh, A. M. Jakob, B. C.
Johnson, D. N. Jamieson, A. S. Dzurak, C. Ferrie, R. Blume-Kohout, and A. Morello. Precision
tomography of a three-qubit donor quantum processor in silicon. Nature, 601(7893):348–353, Jan.
2022.

E. Nielsen, K. Rudinger, T. Proctor, A. Russo, K. Young, and R. Blume-Kohout. Probing quantum
processor performance with pyGSTi. Quantum Sci. Technol., 5(4):044002, July 2020. ISSN
2058-9565. doi: 10.1088/2058-9565/ab8aa4. URL https://iopscience.iop.org/article/
10.1088/2058-9565/ab8aa4.

12

https://doi.org/10.1021/acs.chemrev.8b00803
https://keras.io
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00149-8#citeas
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00149-8#citeas
https://doi.org/10.22331/q-2021-07-06-497
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/2408.12064
https://arxiv.org/abs/2408.12064
https://doi.org/10.5281/zenodo.7829489
https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00086
https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00086
https://doi.ieeecomputersociety.org/10.1109/TQE.2024.3430215
https://doi.ieeecomputersociety.org/10.1109/TQE.2024.3430215
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://dx.doi.org/10.1109/TQE.2023.3253761
https://iopscience.iop.org/article/10.1088/2058-9565/ab8aa4
https://iopscience.iop.org/article/10.1088/2058-9565/ab8aa4

E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout. Gate set to-
mography. Quantum, 5(557):557, Oct. 2021. ISSN 2521-327X. doi: 10.22331/q-2021-10-05-557.
URL https://quantum-journal.org/papers/q-2021-10-05-557/.

M. A. Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation.
Physics Letters A, 303(4):249–252, 2002.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2010.

T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout. Measuring the capabilities
of quantum computers. Nature Phys, 18(1):75, Dec. 2021a. ISSN 1745-2473. doi: 10.1038/
s41567-021-01409-7. URL https://www.nature.com/articles/s41567-021-01409-7.

T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout. Scalable randomized bench-
marking of quantum computers using mirror circuits [Data set]. https://doi.org/10.5281/
zenodo.5197499, 2021b. Accessed: 2023-04-12.

T. Proctor, S. Seritan, E. Nielsen, K. Rudinger, K. Young, R. Blume-Kohout, and M. Sarovar. Estab-
lishing trust in quantum computations, 2022. URL https://arxiv.org/abs/2204.07568.

T. Proctor, K. Young, A. D. Baczewski, and R. Blume-Kohout. Benchmarking quantum computers.
arXiv [quant-ph], July 2024. URL https://arxiv.org/abs/2407.08828.

N. C. Rubin, D. W. Berry, A. Kononov, F. D. Malone, T. Khattar, A. White, J. Lee, H. Neven,
R. Babbush, and A. D. Baczewski. Quantum computation of stopping power for inertial fu-
sion target design. Proceedings of the National Academy of Sciences, 121(23):e2317772121,
2024. doi: 10.1073/pnas.2317772121. URL https://www.pnas.org/doi/abs/10.1073/
pnas.2317772121.

M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout. Detecting
crosstalk errors in quantum information processors. Quantum, 4(321):321, Sept. 2020. ISSN 2521-
327X. doi: 10.22331/q-2020-09-11-321. URL https://quantum-journal.org/papers/
q-2020-09-11-321/.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi: 10.1137/
S0097539795293172. URL https://doi.org/10.1137/S0097539795293172.

A. Vadali, R. Kshirsagar, P. Shyamsundar, and G. N. Perdue. Quantum circuit fidelity estimation
using machine learning. Quantum Mach. Intell., 6(1), June 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

H. Wang, Z. Liang, J. Gu, Z. Li, Y. Ding, W. Jiang, Y. Shi, D. Z. Pan, F. T. Chong, and S. Han.
TorchQuantum Case Study for Robust Quantum Circuits. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, volume 30 of ICCAD ’22, page 1–9. ACM,
Oct. 2022. doi: 10.1145/3508352.3561118. URL http://dx.doi.org/10.1145/3508352.
3561118.

G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hollenberg, and K. Modi. Demonstration of non-
markovian process characterisation and control on a quantum processor. Nature Communications,
11(1), Dec. 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-20113-3. URL http://dx.doi.
org/10.1038/s41467-020-20113-3.

13

https://quantum-journal.org/papers/q-2021-10-05-557/
https://www.nature.com/articles/s41567-021-01409-7
https://doi.org/10.5281/zenodo.5197499
https://doi.org/10.5281/zenodo.5197499
https://arxiv.org/abs/2204.07568
https://arxiv.org/abs/2407.08828
https://www.pnas.org/doi/abs/10.1073/pnas.2317772121
https://www.pnas.org/doi/abs/10.1073/pnas.2317772121
https://quantum-journal.org/papers/q-2020-09-11-321/
https://quantum-journal.org/papers/q-2020-09-11-321/
https://doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1145/3508352.3561118
http://dx.doi.org/10.1145/3508352.3561118
http://dx.doi.org/10.1038/s41467-020-20113-3
http://dx.doi.org/10.1038/s41467-020-20113-3

A Compute resources

All of the quantum-physics-aware neural networks used in our 5-qubit experiments and 4-qubit
simulations were trained using a 6-Core Intel Core i9 processor on a MacBookPro 15.1 with 32GB of
memory. Each model took roughly 15-20 wall clock minutes to train. Total training time, across the
paper, totaled ∼ 160 wall clock minutes.

All of the 4-qubit simulations and data pre-processing were performed using a 6-core Intel Core i9
processor on a MacBookPro 15.1 with 32GB of memory. Each dataset took approximately 1 hour of
wall clock time to create. This total includes the initial circuit creation, simulating the circuits, and
encoding each circuit into a tensor.

All of the 100-qubit simulations, data pre-processing, and model training were performed using
two 14-core Intel Xeon CPU E5-2697 v3 @ 2.60GHz processors. An end-to-end run (i.e., circuit
generation to trained model predictions) took roughly 12 hours of wall clock time.

B Code and data availability

The simulated data as well as records of all the quantum physics-aware networks will be released
publicly once they clear Sandia’s copyright process. Until then, please email the authors. The CNNs
and 5-qubit experimental datasets used in Hothem et al. [2024b] are available at Hothem et al. [2023a].
The datasets were originally located at Proctor et al. [2021b]. Each dataset was released under a
CC-BY 4.0 International license.

All simulations were performed using a combination of pygsti version 0.9.11.2 [Nielsen et al., 2020]
and stim version 1.13.0 [Gidney, 2021]. Models were trained and developed using Keras version
2.12.0 [Chollet et al., 2015] and TensorFlow version 2.12.0 [Abadi et al., 2015]. The physics-aware
network model classes (CircuitErrorVecScreenZErrorsWithMeasurementsBitstrings for
PST and CircuitErrorVec for process fidelity) are available in the Supplementary Mate-
rial [Hothem et al., 2024a] as well as on the feature− ml branch of pygsti.

C Datasets

Device Geometry Circuit
types

Circuit
widths

Circuit
depths

Training
set size

Validation
set size

Test set
size

ibmq_london t-bar mirror 1-5
qubits

3-515
layers

711 cir-
cuits

104 cir-
cuits

91
circuits

ibmq_ourense t-bar mirror 1-5
qubits

3-515
layers

930 cir-
cuits

124 cir-
cuits

114 cir-
cuits

ibmq_essex t-bar mirror 1-5
qubits

3-515
layers

713 cir-
cuits

93
circuits

86
circuits

ibmq_burlington t-bar mirror 1-5
qubits

3-515
layers

682 cir-
cuits

90
circuits

92
circuits

ibmq_vigo t-bar mirror 1-5
qubits

3-515
layers

1029 cir-
cuits

137 cir-
cuits

126 cir-
cuits

ibmq_yorktown bowtie mirror 1-5
qubits

3-515
layers

1097 cir-
cuits

132 cir-
cuits

140 cir-
cuits

Ring (x5) ring random
i.i.d.

1-4
qubits

1-180
layers

2813 cir-
cuits

938 cir-
cuits

1250 cir-
cuits

Ring (x5) ring mirror 1-4
qubits

8-174
layers

- - 750 cir-
cuits

100-qubit Ring ring random
i.i.d.

100
qubits

1-22 lay-
ers

2812 cir-
cuits

938 cir-
cuits

1250 cir-
cuits

Table 1: Summary data of every dataset used in the paper. The data for the 4-qubit ring processors
is averaged over the 5 simulated datasets. See Figure 4 for images of each processor geometry (i.e.,
the qubit connectivity graph).

14

We provide additional details on the datasets used in the paper. Table 1 summarizes each dataset.
We tracked all weight-2 errors with support on qubits connected by 2 hops in all, but the 100-qubit
datasets. Below, we provide additional details on the circuit and error model generating processes.

C.1 Creating the circuits

Figure 4: Device geometries. The connectivity graphs for the (a) 5-qubit ibmq_yorktown “bowtie”
processor; (b) the remaining 5-qubit experimental “t-bar” processors; and (c) the 4-qubit simulated
“ring” processor. The 100-qubit simulated “ring” processor has the same topology, just more qubits.

In this subsection, we go over how the random i.i.d.-layer circuits and random mirror circuits were
created for this paper. We start by explaining how we generated the random i.i.d.-layer circuits for
a 4-qubit ring processor, and then explain the modifications needed to generate the random mirror
circuits. This subsection’s content is conceptual. The actual circuits were created in pygsti using
the code in the Supplementary Material.

Each random i.i.d.-layer circuit c was created by a multi-step process. First, we randomly sampled a
connected subset Qc ⊆ {Q0,Q1,Q2,Q3} of qubits for which c is designed for. Then, we uniformly
sampled c’s depth from between 1 and dw, a pre-determined, circuit-width-dependent maximum
depth. The depths dw were selected to ensure that F (c) > 85% given the maximum error strengths
used to create the simulated error model (Section C.2). Third, we randomly sampled a two-qubit gate
density ρ2Q between 0 and 2/3. The density ρ2Q determines the average number of two-qubit gates
in each of c’s layers. We then sampled each layer i.i.d. from all possible circuit layers on the qubits
in Qc.

The random mirror circuits were generated using a similar multi-step process with two differences.
The first difference is that we used a pre-determined maximum depth of dw/6. We chose to reduce the
pre-determined, circuit-width-dependent maximum depth so that the deepest random mirror circuits
had roughly the same length as the deepest random i.i.d. circuits. The second difference is that we
created a random mirror circuit on Qc. See Proctor et al. [2021a] for more details.

C.2 Creating a 4-qubit error model

In this subsection, we explain how we constructed the 4-qubit Markovian local coherent error model
used in Section 6. Again, we provide a conceptual explanation. The actual error model was created
in pygsti using the code found in the Supplementary Material.

The 4-qubit Markovian local coherent error model was specified using the error generator framework
explained in Section 2 and Blume-Kohout et al. [2022]. The error model consists of operation-
dependent errors sampled according to a two-step process. The error strengths for each gate and
qubit(s) pairs were independently sampled. First, we sampled an overall error strength εg for each one-
and two-qubit gate g by randomly sampling from [0, 1] and scaling by a pre-determined maximum
error strength (.025%). Then we sampled the relative error strengths ~εg,rel of each of the 4n − 1
coherent errors, where n = 1, 2 for one- and two-qubit gates, respectively. We then normalized ~εg,rel

15

to obtain the actual error strengths according to the following equation:

~εg =

√
εg · ~εg,rel√∑

i ε
2
g,i

. (8)

The re-scaling ensures that, to first order, gate g contributes approximately εg to the circuit’s process
infidelity (or PST, if appropriate).

C.3 Creating a 100-qubit error model

In this subsection, we explain how we constructed the 100-qubit Markovian error model used in
Section 7. As with the 4-qubit error model, we provide a conceptual explanation. The actual error
model was created in pygsti.

As with the 4-qubit error model, the 100-qubit Markovian error model was specified using the error
generator framework explained in Section 2. The error model consisted of gate-dependent errors
sampled according to a two-step process. Unlike with the 4-qubit error model, the 100-qubit error
model included non-local Pauli stochastic and coherent errors, and the errors for each gate were
independent of the qubit acted upon by the gate. Moreover, all of the errors in the 100-qubit error
model are weight-1 errors (i.e., they affect a single qubit).

Each gate’s error strengths were independently sampled. First, we enumerated all 600 possible
weight-1 Pauli stochastic and coherent errors in a 100-qubit device. Then, for each gate g, we
independently sampled the strength of each of the 300 weight-1 Pauli stochastic errors and the 300
possible weight-1 coherent errors. The strengths were sampled uniformly random, with a maximum
Pauli stochastic error strength of 0.0000001 and a maximum coherent error strength of 0.00005. The
resulting 600 error strengths were assembled into a 600-dimensional error vector for the gate, ~εg .

C.4 Simulating the 100-qubit circuits

In this subsection, we describe the first-order simulation method used to approximate F (c) in our
100-qubit simulations (Section 4.3). The method works by constructing an approximate error matrix
E(c) [Fig. 1(e)], and then estimating F (c) by performing the same computation as in the second half
of a qpa-NN [Fig. 1(f)]. Herein, we describe how to construct the approximate error matrix E(c).
Readers should refer to Section 3 for an in-depth explanation on how to use E(c) to estimate F (c).

For each circuit c, we constructed an approximate error matrix E(c) by concatenating approximate
error vectors Ei(c) for each circuit layer in c. Each layer’s error vector was computed as a linear
combination of the individual gate error vectors, with coefficients equal to the number of times each
gate appears in the circuit layer.

D Networks

D.1 Quantum-physics-aware network details

Dataset Metric Model size Nhops Nerrors Dense units

5-qubit t-bar PST(c) 1218348 3 174 [30, 20, 10, 5,
5, 1]

5-qubit bowtie PST(c) 1596420 3 210 [30, 20, 10, 5,
5, 1]

4-qubit ring F (c) 299772 2 132 [30, 20, 10, 5,
5, 1]

100-qubit ring F (c) 12706200 1 600 [30, 20, 10, 5,
5, 1]

Table 2: Summary data for the quantum-physics-aware networks used in the paper.

Table 2 briefly outlines the hyperparameters and model sizes of the physics-aware neural networks
used in this paper. The Nhops and Nerrors hyperparameters were chosen by hand based upon subject-
matter-expert knowledge of the errors in a quantum computer. The size and shape of the dense layers

16

were selected arbitrarily. All dense subunits used a ReLU activation function. All models were
trained using keras’s Adam [Kingma and Ba, 2015] optimizer with a step size of 10−3 and with
mean squared error as the loss function. Model training was cut short using early stopping. To help
with training, we scaled PST(c) and F (c) by 10000 when training the physics-aware networks. The
notebooks in the Supplementary Material contain more details.

D.2 Convolutional neural network details

Details on the specific convolutional neural networks used in this paper are located in Hothem et al.
[2024b]. We fine-tuned each network on high-PST experimental data using the Adam optimizer and
early stopping.

We selected the model architecture for the convolutional neural networks used in our simula-
tions via hyperparameter tuning. We performed 100 trials of hyperparameter tuning using the
BayesianOptimization class in kerastuner. Additional details, including the specific hyperpa-
rameter space, are located in the Supplementary Material.

E Experimental results

Dataset Network Mean absolute er-
ror (%)

Bayes factor vs.
CNN

Bayes factor vs.
ft-CNN

ibmq_london
qpa-NN 1.09 10340 10184

CNN 3.44 - -
ft-CNN 2.39 10156 -

ibmq_ourense
qpa-NN 1.24 1030 1033

CNN 1.55 - -
ft-CNN 1.68 10−2.48 -

ibmq_essex
qpa-NN 1.39 10248 10238

CNN 3.03 - -
ft-CNN 2.82 109.46 -

ibmq_burlington
qpa-NN 1.25 10152 1058.2

CNN 2.27 - -
ft-CNN 1.61 1093.7

ibmq_vigo
qpa-NN 1.21 10378 10115

CNN 2.98 - -
ft-CNN 1.75 10263 -

ibmq_yorktown
qpa-NN 1.19 10383 1028.4

CNN 2.71 - -
ft-CNN 1.31 10354 -

Table 3: Summary model performance data on experimental data.

Table 3 summarizes model performance on each of the experimental datasets used in the paper.
Copies of the pre-trained quantum-physics-aware neural networks, original CNNs, and fine-tuned
CNNs are available in the Supplementary Material. Scatter plots of each model’s predictions are also
available in the Supplementary Material.

F Simulation results

Table 4 summarizes model performance on each of the 4-qubit simulated datasets used in the paper.
Copies of the pre-trained quantum-physics-aware neural networks and fine-tuned CNNs are available
in the Supplementary Material. Scatter plots of each model’s prediction errors are also available in
the Supplementary Material.

17

Dataset Network Circuit type Mean absolute error
(%)

Pearson correlation
coefficient

0
qpa-NN random i.i.d. .176 .968

mirror .720 .914

CNN random i.i.d. .404 .751
mirror 1.17 .872

1
qpa-NN random i.i.d. .200 .960

mirror .652 .921

CNN random i.i.d. .421 .741
mirror .922 .861

2
qpa-NN random i.i.d. .190 .970

mirror .769 .914

CNN random i.i.d. .406 .732
mirror 1.20 .853

3
qpa-NN random i.i.d. .191 .952

mirror .719 .912

CNN random i.i.d. .367 .764
mirror 1.02 .857

4
qpa-NN random i.i.d. .195 .960

mirror .761 .898

CNN random i.i.d. .405 .763
mirror 1.05 .847

Table 4: Summary model performance data on the 4-qubit simulated data.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we list the main claims and the section in which they are answered below.
(a) We developed a new physics-aware neural network architecture for quantum capability

learning: Section 3.
(b) Our new approach achieves up to a ∼ 50% and ∼ 76% improvement over state-of-the-

art convolutional neural networks on experimental and simulated data, respectively:
Section 5 and 6.

(c) Our new approach beats state-of-the-art convolutional networks, in part, due to their
improved ability to model coherent errors: Section 6.

(d) Our new approach achieves moderate prediction accuracy on an out-of-distribution
prediction task: Section 6.

(e) Our approach scales to 100+ qubits.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

18

Answer: [Yes]
Justification: We include a discussion of the limitations of the work in Section 8.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include any new theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We believe that we provide sufficient details to reproduce the main experimen-
tal results of the paper. Readers should be able to recreate our results based on the details in
the main body of the paper and the appendix, or by using the notebooks in the supplemental
material once released.

19

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to provide open access to all the data and code used in the paper
through a GitHub repository. We also provide explicit instructions on how to access the
experimental data in Appendix B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4 we explain how we processed the experimental and simulated
datasets. Appendices C and D contain additional details on the datasets, specific network
instantiations, and model training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars on the mean absolute error of the models’ predictions
in Section 6. We do not report error bars on the models’ predictions in the experimental
data as the original paper [Hothem et al., 2024b] reported their error bars as being trivial.
However, we do provide the standard deviation of the percent change in the MAE across the
experimental datasets, and we report Bayes factors for each model on each experimental
dataset, demonstrating substantial improvement by the physics-aware networks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

21

Answer: [Yes]

Justification: We provide details on the compute resources and compute time used in this
work in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that we have conducted our research in a manner that conforms, in
every respect, with the NeurIPS Code of Ethics. The only relevant areas of concern are the
use of deprecated datasets and respect for copyright and fair use. We believe that we have
not violated either of these requirements, although the cloud-accessed processors used in
the experimental section are no longer available (but the datasets are not deprecated).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe that there is little to no societal impact of our work. We believe
that the following quote from the checklist guidelines is relevant: “it is not needed to point
out that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.” While quantum computers might some day have a
large societal impact, our work does not directly improve their ability to run programs with
societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

22

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly reference each existing dataset in the References, and state each
existing datasets license in Appendix B. All existing assets were licensed under a CC-BY
4.0 license, requiring proper attribution.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

23

paperswithcode.com/datasets

Answer: [Yes]
Justification: At the time of submission, we have released code used in Section 6 and the
new simulated dataset in the supplemental material. In the future we will release additional
assets, such as the models trained on experimental data, publicly after receiving approval
from our employer.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Background
	Quantum computing
	Quantum capability learning
	Modelling errors in quantum computers

	Neural network architecture
	Physics-aware neural networks for predicting errors in quantum circuits
	Processing predicted error rates to predict capabilities

	Datasets
	Experimental 5-qubit data
	Simulated 4-qubit data
	Simulated 100-qubit data
	Encoding schemes

	5-qubit experiments
	4-qubit simulations
	100-qubit simulation
	Discussion
	Limitations
	Conclusion

	Compute resources
	Code and data availability
	Datasets
	Creating the circuits
	Creating a 4-qubit error model
	Creating a 100-qubit error model
	Simulating the 100-qubit circuits

	Networks
	Quantum-physics-aware network details
	Convolutional neural network details

	Experimental results
	Simulation results

