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Abstract

We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint
embedding and variational inference to enable self-supervised learning of probabilistic rep-
resentations in a reconstruction-free, non-contrastive setting. Compared to energy-based
predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric
conditional evidence lower bound (ELBO) for a latent-variable model defined directly on
encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student–t
model using a polar decomposition that explicitly decouples directional and radial factors
to prevent norm-induced instabilities during training. VJE employs an amortized infer-
ence network to parameterize a diagonal Gaussian variational posterior whose feature-wise
variances are shared with the likelihood scale to capture anisotropic uncertainty without
auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves
performance comparable to standard non-contrastive baselines under linear and k-NN evalua-
tion. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly
detection, where likelihood-based scoring under the proposed model outperforms comparable
self-supervised baselines.

1 Introduction

Joint embedding architectures have emerged as a powerful paradigm for self-supervised representation learning
in computer vision. These architectures can be broadly categorized into contrastive and non-contrastive
methods. Contrastive approaches, such as SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020; Chen et al.,
2020b), learn representations by maximizing similarity between pairs of semantically related (positive) samples,
and minimizing similarity between unrelated (negative) samples. Since these methods are unsupervised, they
must approximate ‘negative’ associations through heuristic choices of negatives (typically other instances in the
minibatch, and in some cases external memory banks or queues) to ensure the presence of sufficiently diverse
samples. This estimation procedure increases computational and memory demands, and can complicate
training in domains where modelling patterns can be sensitive to erroneous negative associations.

Non-contrastive methods, including BYOL (Grill et al., 2020), SimSiam (Chen and He, 2021), VICReg (Bardes
et al., 2022), and Barlow Twins (Zbontar et al., 2021), avoid the need for negative samples by learning from
paired views of the same input. To prevent the model from collapsing to a trivial solution (e.g., mapping all
inputs to the same constant representation), these approaches incorporate architectural asymmetries and
auxiliary heads (e.g., prediction/projection heads), as well as redundancy-reduction objectives, largely as
heuristic choices. By eliminating the dependence on negative samples, non-contrastive methods simplify
training and can extend the applicability of self-supervised learning to settings where the notion of similarity
and what constitutes a ‘negative’ sample are inherently ambiguous. A prominent viewpoint within this
landscape is the Joint Embedding Predictive Architecture (JEPA) (LeCun, 2022), which formulates training
in terms of minimizing a pointwise compatibility or energy between predicted and target embeddings in
representation space, with recent instantiations including I-JEPA (Assran et al., 2023) and LeJEPA (Balestriero
and LeCun, 2025).

Despite their empirical success, both contrastive and non-contrastive objectives are commonly trained to
produce deterministic point embeddings, as each input is mapped to a single point in latent space and learning
proceeds by optimizing pointwise similarity or discrepancy objectives between paired embeddings. As a
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result, such representations do not naturally support distributional semantics under a normalized probabilistic
formulation in representation space, and therefore do not readily yield density-based scoring or calibrated
uncertainty signals. In applications such as medical diagnosis (Begoli et al., 2019; Ghesu et al., 2019; Gal
et al., 2017), anomaly detection (Schlegl et al., 2019; Zimmerer et al., 2018; Wang and Huang, 2018; Liang
et al., 2018), and reinforcement learning (Depeweg et al., 2018; Chua et al., 2018; Ha and Schmidhuber, 2018),
the inability to represent uncertainties over latent factors can severely limit the reliability and interpretability
of the resulting embeddings, or can limit the effectiveness of downstream tasks.

Variational methods, and in particular Variational Autoencoders (VAEs) (Kingma and Welling, 2014) and their
extensions (Higgins et al., 2017; van den Oord et al., 2017; Maaløe et al., 2019), provide a principled probabilistic
framework by modelling latent variables as distributions. This is accomplished through a reconstruction-based
objective, which ensures that latent variables capture detailed generative factors associated with pixel-level
input data. However, when the end goal is to obtain high-level semantic representations for downstream
tasks, enforcing pixel-level fidelity can impose significant and often unnecessary computational overhead. This
motivates latent-variable objectives defined directly on representations rather than on pixels, while retaining
the robust probabilistic representations that make VAEs attractive in uncertainty-sensitive applications.

In this work, we introduce Variational Joint Embedding (VJE), a framework that synthesizes variational
inference and joint embedding to provide a latent-variable formulation of self-supervised learning without
relying on input reconstruction (i.e., pixel-level) or contrastive objectives. In contrast to pointwise compatibility
objectives that directly optimize discrepancies between embeddings, VJE adopts a normalized probabilistic
formulation in representation space as its training primitive by defining an explicit latent-variable likelihood
on target embeddings. An amortized inference network parameterizes a variational posterior over the
corresponding latent variables. The model is trained by maximizing a symmetric conditional evidence lower
bound (ELBO) on paired embeddings, where the target branch is detached to implement fixed-observation
conditioning in the likelihood term, yielding probabilistic representations with feature-wise (i.e., anisotropic)
uncertainty. We formalize this objective-level distinction between pointwise energy-based predictive losses
and normalized likelihood-based training in Appendix B.

Empirically, VJE attains performance comparable to leading non-contrastive methods on representation
learning benchmarks across ImageNet (Russakovsky et al., 2015), STL-10 (Coates et al., 2011), and CI-
FAR (Krizhevsky, 2009), while additionally exhibiting coherent probabilistic semantics as demonstrated in a
downstream anomaly detection task on CIFAR-10. Taken together, these results position VJE as a principled
alternative to pointwise energy-based objectives, with normalized probabilistic modelling as the underlying
training primitive for non-contrastive representation learning.

2 Background

Non-contrastive self-supervised learning (SSL). The central principle of non-contrastive SSL is to relate
representations derived from different views of the same input, without relying on negative samples. Under
the JEPA viewpoint (LeCun, 2022; Assran et al., 2023), this is instantiated as prediction in representation
space under a pointwise compatibility objective. More specifically, a context representation is used to predict
a corresponding target representation from a paired view. Formally, given two related views x1 and x2, the
encoder fθ and predictor gϕ are learned by minimizing:

LJEPA(x1, x2) = d
(
gϕ(fθ(x1)), fξ(x2)

)
, (1)

where fξ denotes a target encoder providing target embeddings for the predictive loss, and the metric d(·, ·)
is generally some distance or similarity measure (e.g., cosine or Euclidean distance). Many non-contrastive
objectives can be written in closely related paired-view forms, including BYOL (Grill et al., 2020) and
SimSiam (Chen and He, 2021), which rely on asymmetric branches, as well as VICReg (Bardes et al., 2022)
and Barlow Twins (Zbontar et al., 2021), which impose explicit variance/covariance or redundancy reduction
penalties. Despite their empirical success, these approaches yield deterministic embeddings by mapping each
input to a single point in latent space, and their pointwise energy/compatibility primitives cannot be defined
through a tractable normalized probabilistic model in representation space (LeCun, 2022).

2



Under review as submission to TMLR

Variational inference and uncertainty quantification. Variational inference provides a general frame-
work for probabilistic representation learning by representing each input as a distribution over latent factors.
A canonical instance is the Variational Autoencoder (VAE) (Kingma and Welling, 2014), in which an encoder
produces an approximate posterior qϕ(s | x) over latent variables s, and a decoder reconstructs the input via
a generative model pθ(x | s). Training proceeds by maximizing the evidence lower bound (ELBO):

LVAE = Eqϕ(s|x)
[
log pθ(x | s)

]
−DKL

(
qϕ(s | x) ∥ p(s)

)
, (2)

where the prior p(s) is typically taken to be a standard Gaussian (Kingma and Welling, 2014), p(s) = N (0, I).
To enable gradient-based optimization, the reparameterization trick (Kingma and Welling, 2014; Rezende
et al., 2014):

s = µ(x) + σ(x) ⊙ ϵ, ϵ ∼ N (0, I) (3)
is used to express stochastic samples as a differentiable transformation of ϵ. The encoder learns both a
central estimate µ and a feature-wise dispersion σ, yielding an explicit posterior distribution over latent
variables. The KL divergence term regularizes the posterior toward the prior. While this establishes a rigorous
and tractable probabilistic foundation, its dependence on pixel-level reconstruction motivates alternative
approaches suited to representation learning settings where such reconstruction is not required.

Variational inference in joint embedding architectures. Recent works have attempted to combine
the efficiency of non-contrastive self-supervised learning with the probabilistic foundations of variational
inference to produce uncertainty-aware representations, though several challenges remain. Notably, VI-
SimSiam (Nakamura et al., 2023) modifies SimSiam by wrapping each unit-length embedding in a Power-
Spherical (PS) (Cao et al., 2020) density parameterized by a mean direction µi and concentration κi, with
one branch’s embedding frozen via stop-gradient and κi = uθ(xi) predicted by an additional scalar head. The
resulting loss is defined as a PS log-likelihood applied to unit-norm embeddings:

Lalign = 1
2

[
− log PS

(
z2; µ1, κ1

)
− log PS

(
z1; µ2, κ2

)]
. (4)

In their variational interpretation, this likelihood term is augmented with a KL divergence between the
PS density and a hyperspherical prior on SD−1, yielding an ELBO-like objective on unit embeddings.
Mathematically, this defines a directional density on the unit sphere, with the scalar concentration κi
controlling dispersion around µi. This is a coherent probabilistic formulation of non-contrastive alignment,
though its uncertainty mechanism is inherently limited since κi is a single scalar, and decreasing it pushes the
density toward the uniform distribution on SD−1, which directly weakens the alignment penalty on hard or
noisy pairs. As a result, the learned κi largely functions as an example-dependent temperature controlling how
strongly directional agreement is enforced, rather than as a structured uncertainty representation. Moreover,
the scalar form restricts uncertainty to isotropic dispersion on the sphere and cannot represent feature-wise
uncertainty.

VSSL (Yavuz and Yanikoglu, 2025) takes a different approach, whereby it couples a student encoder with a
momentum-updated teacher, both outputting diagonal Gaussians over latent features. The teacher processes
view x1 to define a data-dependent “prior” pθt(s | x1) = N (s; µ1, σ2

1), while the student processes view x2
to produce a “posterior” qθs

(s | x2) = N (s; µ2, σ2
2). The objective combines a likelihood term evaluating

student samples under the teacher Gaussian:

Eq(s|x2)
[
logN

(
s; µ1, σ2

1
)]

, (5)

with a KL penalty KL
(
qθs

(s | x2) ∥ pθt
(s | x1)

)
. This is framed as a self-supervised ELBO with the teacher

as prior. However, since the teacher is defined by a moving-average update of the student, the KL term
primarily enforces teacher–student consistency rather than regularization toward a fixed Bayesian prior.

More fundamentally, replacing the analytic Gaussian KL and log-likelihood with cosine-based alternatives
breaks the probabilistic interpretation: these cosine quantities depend only on the directions of the mean
and variance vectors and are not the KL divergence or log-likelihood of any Gaussian in RD. The resulting
objective consequently becomes a heuristic angular-alignment loss, insensitive to parameter norms and at odds
with the Euclidean geometry that underlies the Gaussian distribution. As a result, the variance parameters
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are optimized as directional features rather than calibrated uncertainty measures, and their probabilistic
semantics become unclear.

Collectively, these efforts highlight the potential of integrating variational inference into non-contrastive
joint embedding architectures, while also demonstrating the difficulty of obtaining normalized probabilistic
semantics when pointwise compatibility objectives remain the underlying training primitive. This motivates
our work, in which a normalized latent-variable model is constructed from the ground up in representation
space.

3 Model Architecture

Our implementation of the Variational Joint Embedding (VJE) framework follows the standard training
structure of non-contrastive self-supervised learning (Chen and He, 2021; Grill et al., 2020), while adopting a
normalized probabilistic latent-variable objective. A stochastic augmentation τ is applied twice to an input x
to produce two views, x1 = τ (1)(x) and x2 = τ (2)(x), which are processed by a shared encoder fθ : X →RD
into deterministic embeddings z1 = fθ(x1) and z2 = fθ(x2). The framework consists of two asymmetric
branches: an inference branch that maps zi to the parameters of a stochastic latent code for view i, and a
target branch that treats the opposite embedding zj as a fixed observation during training via stop-gradient.
Note that this asymmetry is used to implement the fixed-observation conditioning required by the conditional
ELBO derived in Section 4, rather than serving as a stabilization heuristic.

Consistent with the theoretical derivations in Section 4, we represent each embedding by its direction ẑ
and magnitude ∥z∥. This separation decouples directional matching from norm matching, allowing each to
be modelled with a dedicated likelihood term that stabilizes optimization while respecting the geometry of
the embedding space. We factorize the conditional likelihood into an extrinsic directional term (24) and
a one-dimensional radial term (28), both instantiated as heavy-tailed Student–t likelihoods as detailed in
Section 4. The overall architecture is depicted in Figure 1.

stop-grad

Figure 1: The asymmetric forward pass for one conditional direction in VJE, from view 1 to view 2. An encoder
fθ produces z1, and an amortized inference network gϕ maps it to a latent distribution q1(s) = N (µ1, σ2

1). A
sample s1 is drawn and the conditional likelihood of the reparameterized target observation y2 = (ẑ2, ∆r12) is
evaluated under this latent code, where ∆r12 = ∥z2∥ − ∥s1∥. The target branch is detached (stop-gradient),
enforcing fixed-observation semantics for the conditional likelihood term. The loss consists of directional (ℓdir)
and radial (ℓrad) negative log-likelihoods (NLLs), jointly denoted LNLL, together with a Kullback–Leibler
(KL) divergence term LKL.

Encoder and inference network. The encoder fθ : X →RD is a shared backbone across views, and
an inference network gϕ maps each zi to the parameters of a diagonal Gaussian variational posterior,
qi(s) = N

(
µi, diag(σ2

i )
)
, with qi(s) ≡ qϕ(s | zi). While gϕ is architecturally akin to the predictor networks

used in non-contrastive methods, we refer to it as an amortized inference network to reflect its variational
role, since it parameterizes an instance-conditional posterior from which reparameterized samples are drawn
and evaluated under the conditional likelihood. The network gϕ is implemented as a bottleneck MLP in
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which each layer applies a linear transformation followed by layer normalization and a nonlinear activation
function. Its final hidden representation is mapped through two linear output heads to produce µi and σ2

i .

The same variance vector σ2
i is used both as the diagonal covariance of the variational posterior qi and, via

Σ = diag(σ2
i ), as the whitening matrix in the directional Student–t likelihood (24). This tying ensures that

feature-wise dispersion governs both the posterior sampling distribution and the conditional likelihood in a
consistent manner. We adopt a diagonal covariance to keep the number of parameters linear in D and to
ensure that sampling and KL evaluation scale linearly with the embedding dimension.

Unlike other joint-embedding architectures (Chen and He, 2021; Bardes et al., 2022; Grill et al., 2020;
Assran et al., 2023), we do not introduce a separate projection head, as doing so would define an auxiliary
representation space whose geometry is not constrained to relate to that of the encoder output. In VJE, both
the conditional likelihood and the variational posterior are defined directly in the encoder’s embedding space,
so the inference network parameterizes latent structure within this same geometry rather than operating
through an additional projection with unrelated semantics.

Latent sampling and likelihood evaluation. A latent sample si = µi + σi ⊙ εi, with εi ∼ N (0, I),
is drawn using the reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014). Defining
ŝi = si/∥si∥, the negative log-likelihood averages directional and radial terms across both conditional directions
(i, j) ∈ {(1, 2), (2, 1)}:

LNLL = 1
2

∑
(i,j)∈{(1,2),(2,1)}

Esi∼qi

[
ℓdir

(
sg(ẑj), ŝi; σ2

i

)
+ ℓrad

(
∆rij

)]
, (6)

where sg(·) denotes a stop-gradient and terms constant with respect to θ, ϕ are omitted for clarity. The
directional term ℓdir is an extrinsic Student–t negative log-likelihood on unit vectors:

Qdir =
D∑
d=1

(ŝi,d − ẑj,d)2

σ2
i,d

, ℓdir = ν+D
2 log

(
1 + Qdir

ν

)
+ 1

2

D∑
d=1

log σ2
i,d. (7)

The radial term ℓrad is a one-dimensional Student–t negative log-likelihood acting on the norm residual:

∆rij = ∥zj∥ − ∥si∥, ℓrad = ν+1
2 log

(
1 + ∆r 2

ij

ν

)
. (8)

KL regularization and total objective. To anchor the posteriors, each qi(s) is regularized toward a
standard Gaussian prior p(s) = N (0, I) using the analytic KL divergence:

LKL = 1
2

2∑
i=1

D∑
d=1

(
σ2
i,d + µ2

i,d − 1− log σ2
i,d

)
. (9)

The final training loss combines the likelihood and regularization terms with a weighting factor β:

L = LNLL + β LKL. (10)

Appendix A provides pseudocode for the forward pass and loss computation of VJE.

4 Latent variable model

We begin our theoretical formulation by defining a likelihood model pψ(z | s) that formalizes the probabilistic
relationship between the latent variable s and the observed embedding z, both D-dimensional vectors in
RD. Here, z is produced by the encoder and s is sampled from a variational posterior q(s | z), with the
two corresponding to different views of the same input. The likelihood model evaluates how well a latent
representation inferred from one view explains the embedding observed from another view. We ultimately
evaluate the likelihood on the reparameterized observation y = (ẑ, ∥z∥), where ẑ := z/∥z∥, and write the
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final model as pψ(y | s). This construction provides the foundation for our conditional evidence lower bound
(ELBO) objective.

Our approach makes several explicit modelling choices that are motivated by geometric and statistical
considerations. These choices are developed throughout this section and empirically evaluated in Section 5.
The distinction between the normalized likelihood-based formulation presented here and pointwise energy-
based objectives is formalized at the objective level in Appendix B.

Likelihood distribution. The choice of likelihood distribution pψ(z | s) is a central design element, as
it determines how residuals between z and s are scored under a normalized density and how sensitive the
resulting objective is to large deviations. To motivate the final form we adopt, we first examine the behaviour
of a Gaussian likelihood and its limitations. Choosing a Gaussian likelihood yields:

pN
ψ (z | s) = (2πλ)−D/2 exp

(
− 1

2λ∥z− s∥2)
, (11)

with corresponding negative log-likelihood (NLL) and gradient:

ℓN (z; s) = 1
2λ∥z− s∥2, ∇zℓN = 1

λ (z− s). (12)

The gradient norm ∥∇zℓN ∥ grows linearly with ∥z− s∥, leading to unbounded influence from large residuals.

Since the Gaussian loss grows quadratically with ∥z− s∥, large deviations in high-dimensional spaces can
dominate training dynamics. To mitigate this behaviour in a model-based manner, we instead adopt a
heavy-tailed Student–t likelihood. The Student–t distribution has a bounded influence function (Huber
and Ronchetti, 2009), ensuring that large residuals continue to contribute to the objective without exerting
unbounded influence on gradients or parameter estimates. This robustness arises from the probabilistic form
of the likelihood itself, rather than from ad-hoc clipping or heuristic penalties. The resulting likelihood is
given by (Kotz and Nadarajah, 2004; Bishop, 2006):

pt,Σψ (z | s) = Cν,D |Σ|−1/2 [
1 + 1

ν (z− s)⊤Σ−1(z− s)
]− ν+D

2 , (13)

yielding NLL and gradient functions:

ℓt,Σ(z; s) = ν+D
2 log

(
1 + 1

ν (z− s)⊤Σ−1(z− s)
)

+ 1
2 log |Σ|,

∇zℓt,Σ = ν + D

ν + (z− s)⊤Σ−1(z− s) Σ−1(z− s),
(14)

where ν > 0 controls tail heaviness, Σ is a symmetric positive-definite scale matrix, and Cν,D is the normalizing
constant. As ν →∞, the Student–t likelihood recovers the Gaussian case.

This formulation ensures that the NLL grows only logarithmically for large residuals, while the gradient
magnitude decays with the Mahalanobis distance (z− s)⊤Σ−1(z− s). Figure 2 illustrates this behaviour,
highlighting the bounded influence of the Student–t likelihood compared to the unbounded Gaussian case.

Although the Student–t likelihood provides robustness to large deviations, the Mahalanobis term (z −
s)⊤Σ−1(z − s) still couples angular misalignment and differences in norms into a single error channel.
Expanding this term,

(z− s)⊤Σ−1(z− s) = z⊤Σ−1z + s⊤Σ−1s− 2 z⊤Σ−1s, (15)

reveals both the individual quadratic norms z⊤Σ−1z, s⊤Σ−1s and their inner product z⊤Σ−1s. As a
consequence, the contribution of an angular discrepancy between z and s is scaled by their norms (in the Σ−1

metric), so that large-norm embeddings can produce large Mahalanobis residuals even for moderate angular
error. In contrast, a large Mahalanobis residual does not reveal whether it is dominated by a mismatch
in direction or magnitude. This coupling between scale and orientation motivates a reparameterization in
which directional and radial contributions are modelled by separate likelihood factors. To tackle this, we
reformulate the likelihood in a space where angular and radial variations are explicitly decoupled, and so
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Figure 2: One-dimensional views of the Student–t loss used in VJE, plotted as functions of the residual r
for different degrees of freedom ν (with the Gaussian limit at ν =∞). Panel (a) illustrates how heavy tails
moderate the growth of the negative log-likelihood for large residuals, while panel (b) shows the corresponding
influence functions, where gradients saturate and then decay so that outliers contribute only a bounded
amount of signal. This underlines the choice of Student–t likelihoods in VJE to stabilize training without
ad-hoc heuristics.

each embedding is represented not by its Euclidean coordinates, but by its direction and magnitude. In the
radial channel, discrepancies are evaluated relative to the predicted norm via the residual:

∆r := ∥z∥ − ∥s∥ ∈ R. (16)

This representation allows us to treat directional and radial channels separately in the likelihood, each with its
own stability properties and normalization behaviour. We define a product-form likelihood on the observation
y = (ẑ, ∥z∥), with the radial factor expressed in terms of the residual ∆r.

In Section 4.1, we develop this decomposition by examining how a polar factorization of the isotropic Student–t
distribution motivates the separation of directional and radial channels. In Section 4.2, we recover feature-wise
(i.e., anisotropic) uncertainty by introducing directional whitening through a diagonal variance vector σ2,
which allows the model to weight dimensions according to their uncertainty. Section 4.3 formalizes the
radial residual ∆r and its associated likelihood, and Section 4.4 establishes the conditional evidence lower
bound (ELBO) that combines these components into a symmetric objective suitable for joint embedding
architectures.

4.1 Polar decomposition of the likelihood

To motivate the separation of directional and radial channels, we begin from an isotropic Student–t likelihood,
whose rotational symmetry admits a well-defined polar decomposition into independent radial and directional
factors (Mardia and Jupp, 2000). The isotropic Student–t likelihood can be written as:

pt,λψ (z | s) = Cν,D λ−D/2
[
1 + ∥z− s∥2

νλ

]− ν+D
2

, (17)

where λ > 0 is a scalar scale parameter. This corresponds to the isotropic special case Σ = λI of the elliptical
Student–t likelihood in Eq. (13).

We introduce polar coordinates for the displacement vector z− s:

ρ := ∥z− s∥ ∈ (0,∞), ω := z− s
∥z− s∥ ∈ SD−1, (18)

and the corresponding Jacobian for this change of variables:

dz = ρD−1 dρ dω, (19)
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where dω denotes the uniform surface measure on the unit sphere SD−1 (Mardia and Jupp, 2000). Since the
isotropic density in Eq. (17) depends only on ρ, the direction ω is uniformly distributed and independent of
ρ. The likelihood therefore factorizes into independent radial and directional components:

pt,λψ (z | s) = prad(ρ) pdir(ω), pdir(ω) = 1
vol(SD−1) . (20)

The explicit form of the radial factor is given by:

prad(ρ) =
2 Γ

(
ν+D

2
)

Γ
(
ν
2
)

Γ
(
D
2

)
(νλ)D/2 ρD−1

[
1 + ρ2

νλ

]− ν+D
2

, ρ > 0, (21)

which provides a clear geometric interpretation, as the isotropic Student–t distributes mass uniformly over
directions, and the entire radial structure is captured by the corresponding one-dimensional term.

This polar decomposition motivates our use of a product-form likelihood (i.e., joint likelihood) with independent
directional and radial factors, enabling separate treatment of angular and radial errors. While the isotropic
case yields a well-defined factorization, our full model extends this structure to incorporate anisotropic scaling
and alternative radial parameterizations. This design choice provides flexibility to model uncertainty while
retaining probabilistic and geometric coherence. The specific parameterization of these factors is developed
in subsequent sections.

4.2 Directional whitening and feature-wise uncertainty

An immediate limitation of the isotropic form derived in Section 4.1 is the shared scale λ, which prevents
the likelihood from expressing feature-wise variation. We enable anisotropic weighting of dimensions by
introducing a diagonal variance vector σ2 ∈ RD+ in the directional term through per-dimension whitening.
In the polar parametrization of the displacement z− s, the radial variable ρ = ∥z− s∥ is one-dimensional,
so any anisotropy is naturally confined to the directional term. We define the directional scale matrix as
Σ = diag(σ2) and the corresponding whitening operator W = diag(σ−1).

The directional discrepancy is computed by first normalizing each embedding to unit length and then applying
coordinate-wise whitening:

ẑ = z
∥z∥ , ŝ = s

∥s∥ , u = W (ẑ− ŝ), Qdir = ∥u∥2. (22)

Here, Qdir measures the normalized squared difference after rescaling each coordinate by its variance.

To implement this whitening of the isotropic scale λI to the diagonal matrix Σ = diag(σ2), we work with
an extrinsic directional representation in RD rather than an intrinsic one on the hypersphere SD−1. An
intrinsic construction would require explicit Jacobian terms from Eq. (19) and would complicate the whitening
operator, as the diagonal matrix W = diag(σ−1) would need to be projected onto tangent spaces at each
point. In contrast, the extrinsic formulation treats unit-normalized embeddings as vectors in the ambient
space and absorbs the sphere Jacobian into the normalizing constant, allowing the whitening transformation
to be applied directly in RD. This also gives each variance component σ2

d a clear interpretation as uncertainty
along a specific encoder feature, whereas on the sphere, coordinates are arbitrary due to rotational symmetry.

We model the directional component directly by an extrinsic Student-t distribution in RD:

pdir(ẑ | ŝ, σ2) = Cν,D |Σ|−1/2(
1 + 1

νQdir
)− ν+D

2 , (23)

which retains heavy-tailed robustness while simplifying computation. From this expression, the per-sample
negative log-likelihood, dropping constants independent of (µ, σ2), becomes:

ℓdir = ν + D

2 log
(

1 + 1
νQdir

)
+ 1

2 log |Σ| = ν + D

2 log
(

1 + 1
νQdir

)
+ 1

2

D∑
d=1

log σ2
d. (24)
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The quadratic term Qdir down-weights high-variance dimensions and emphasizes low-variance ones, while the
1
2 log |Σ| term penalizes variance inflation.

To ensure that feature-wise uncertainty jointly governs the directional likelihood and the variational posterior,
we tie the variance vector σ2 between the two distributions. The inference network output σ2 is shared
across the Gaussian posterior q(s | z) and the directional likelihood pdir(ẑ | ŝ, σ2), with the same matrix
Σ = diag(σ2) appearing in both. This choice makes each σ2

d a shared per-feature scale parameter: it controls
the weighting of the directional residual in the likelihood while also serving as the variance parameter of the
posterior, so that feature-wise uncertainty is expressed consistently across both distributions.

4.3 Radial reparameterization and final likelihood

While the polar factorization in Section 4.1 yields a one-dimensional radial variable ρ = ∥z− s∥, using this
Euclidean distance directly as the radial term still couples angular misalignment with differences in norms.
The squared distance expansion

∥z− s∥2 = ∥z∥2 + ∥s∥2 − 2 ∥z∥ ∥s∥ cos θ (25)

reveals that the Euclidean distance inherently couples angular alignment with magnitude through the cosine
term, so angular discrepancies contribute to the radial error in proportion to the product of norms. For a
Student-t likelihood, the angular gradient takes the form

∂ℓt
∂θ

= ν + D

νλ + ∥z− s∥2 ∥z∥ ∥s∥ sin θ, (26)

which remains susceptible to norm amplification despite the bounded prefactor.

To address this coupling, we reparameterize the radial channel as the difference of norms:

∆r := ∥z∥ − ∥s∥. (27)

This parameterization measures magnitude discrepancy independently of angular alignment: the radial
residual is zero when predicted and observed magnitudes agree, regardless of their relative directions. The
reference point shifts from the Euclidean distance ∥z − s∥ to the predicted norm ∥s∥, enabling a clean
separation of scale from orientation in the radial term.

Consequently, translation invariance is no longer preserved, since ∥(z + a) − (s + a)∥ = ∥z − s∥ but
∥z + a∥ − ∥s + a∥ ̸= ∥z∥ − ∥s∥. However, this does not introduce inconsistencies, as we anchor both the
posterior q(s | z) and the likelihood pψ(z | s) to the origin by introducing the standard Gaussian prior in
Section 4.4. Since both the likelihood and the posterior are defined relative to this fixed coordinate system,
the reparameterization remains geometrically consistent with the choice of a fixed origin.

The resulting radial likelihood is given by a one-dimensional Student-t kernel

p
(∆)
rad (∆r) =

Γ(ν+1
2 )

√
νπλ Γ( ν2 )

(
1 + (∆r)2

νλ

)− ν+1
2

, ∆r ∈ R. (28)

Therefore the per-sample NLL, omitting constants, is

ℓrad(∆r) = ν + 1
2 log

(
1 + ∆r2

νλ

)
, (29)

with the derivative of its loss∣∣∣∣ ∂

∂ ∆r

[
− log p

(∆)
rad (∆r)

]∣∣∣∣ = ν + 1
νλ

|∆r|
1 + (∆r)2/(νλ) ≤

ν + 1
2
√

νλ
, (30)

which is bounded for any finite ν. In the radial kernel p
(∆)
rad (∆r), the parameter λ > 0 acts purely as a

global scale: the density depends on ∆r only through the combination ∆r2/(νλ). A change in λ is therefore
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equivalent to a rescaling of the radial coordinate and does not increase the expressiveness of the model.
Moreover, for any fixed ∆r ̸= 0 and ν > 0, increasing λ decreases the radial NLL ℓrad(∆r). An unconstrained
maximum-likelihood solution would therefore push λ→∞, effectively eliminating the radial penalty. To avoid
this degenerate path, we fix the radial scale to λ = 1, and leave ν as the sole shared radial hyperparameter.

Combining the stabilized radial term (28) with the directional factor (23) yields the product likelihood used
in training on the observation y = (ẑ, ∥z∥):

pψ(y | s, σ2) = p
(∆)
rad (∆r) · pdir(ẑ | ŝ, σ2), ∆r := ∥z∥ − ∥s∥. (31)

Constants independent of (µ, σ2) are omitted from the loss. The Jacobian terms associated with the change
of variables from z to (ẑ, ∥z∥) do not depend on the trainable parameters and are absorbed into these omitted
constants.

Together, the radial factor derived in this section and the directional factor defined in Eq. (23) specify the
complete likelihood model pψ(y | s, σ2) on representation-space observations.

4.4 Variational posterior and evidence lower bound

To establish the evidence lower bound (ELBO) underlying the VJE objective, we combine the product-form
likelihood pψ(y | s, σ2) of Eq. (31), defined on the observation y = (ẑ, ∥z∥), with a diagonal-Gaussian
variational posterior. This formulation defines a conditional variational inference framework in which each
view predicts the latent representation of its paired view under the factorized likelihood.

For each view i ∈ {1, 2}, we denote by qi the variational posterior associated with zi, parameterized as a
diagonal Gaussian

qi(s) = N
(
µi, diag(σ2

i )
)

, (32)
where µi and σ2

i are produced by the inference network for view i, and the variance σ2
i is shared with the

directional likelihood introduced in Section 4.2. Samples are drawn via the reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014):

si = µi + σi ⊙ ε, ε ∼ N (0, I), (33)

and regularized toward the standard normal prior p(s) = N (0, I) using the analytic KL divergence

LKL(qi∥p) = 1
2

D∑
d=1

(
σ2
id + µ2

id − 1− log σ2
id

)
. (34)

We use a fixed standard Gaussian prior rather than a learned or data-dependent prior. This choice provides
a consistent reference frame that anchors all embeddings to the origin, enabling the norm-difference radial
parameterization developed in Section 4.3.

For the variational posterior, we adopt a diagonal Gaussian to keep the number of covariance parameters and
the cost of sampling and KL evaluation linear in D, and to reuse the same diagonal scale matrix Σ = diag(σ2)
that appears in the Student–t directional likelihood. This tying makes each σ2

d a shared per-feature scale
parameter across likelihood and posterior, ensuring that feature-wise uncertainty is parameterized consistently
in both components of the model.

For each conditional direction i→ j with (i, j) ∈ {(1, 2), (2, 1)}, we treat the target embedding zj (j ≠ i) as
a fixed observation by detaching it from the computation graph. This implements the conditioning semantics
of the variational posterior qi predicting the opposite view: in the conditional ELBO, yj appears only as an
observed variable in the likelihood term and is not a parameter to be optimized. The one-way conditional
ELBO is then

Fi→j = Esi∼qi

[
log p

(∆)
rad (∥zj∥ − ∥si∥) + log pdir

(
ẑj | ŝi, σ2

i

)]
− LKL(qi∥p), (35)

which, by Jensen’s inequality (Kingma and Welling, 2014; Rezende et al., 2014), provides a lower bound on
the conditional log-likelihood log pψ(yj | zi) for the observation

yj =
(
ẑj , ∥zj∥

)
. (36)

10
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Since the Jacobian of the mapping from zj to (ẑj , ∥zj∥) does not depend on the model parameters (µi, σ2
i ),

the same bound holds for log pψ(zj | zi) up to an additive constant that is omitted from the loss.

Symmetrizing over both directions yields the β-weighted objective

F (β) = 1
2

∑
(i,j)∈{(1,2),(2,1)}

{
Esi∼qi

[
log p

(∆)
rad (∥zj∥ − ∥si∥) + log pdir

(
ẑj | ŝi, σ2

i

)]
− β LKL(qi∥p)

}
. (37)

Here, β weights the KL regularization analogously to β-VAE (Higgins et al., 2017): β = 1 corresponds to
the unweighted conditional ELBO, β < 1 emphasizes likelihood fitting, and β > 1 increases regularization
strength.

For training, we minimize the negative of Eq. (37). Writing the likelihood terms as their negative log-likelihoods
(NLLs) gives

Ltrain = 1
2

∑
(i,j)∈{(1,2),(2,1)}

Esi∼qi

[
ℓdir

(
ẑj , ŝi; σ2

i

)
+ ℓrad(∆rij)

]
︸ ︷︷ ︸

LNLL

+β
1
2

2∑
i=1
LKL(qi∥p)︸ ︷︷ ︸
LKL

, (38)

where ∆rij := ∥zj∥ − ∥si∥. Here, zj is always detached, ensuring that gradients flow only through the
inference network of branch i, consistent with the conditional ELBO formulation in which zj is treated as a
fixed observation. Note that constants independent of (µ, σ2) are dropped from the loss.

5 Experiments

We evaluate the proposed Variational Joint Embedding (VJE) framework along two complementary axes.
First, we assess whether VJE retains discriminative representation quality comparable to deterministic
joint-embedding baselines, establishing that the normalized likelihood objective supports competitive feature
learning. We evaluate this on both large-scale ImageNet-1K (Russakovsky et al., 2015) and smaller-scale
CIFAR–10 (Krizhevsky, 2009) benchmarks (Section 5.2), and perform related ablations to quantify the
contributions of key design choices (Section 5.4) using CIFAR–10, CIFAR–100 (Krizhevsky, 2009), and
STL–10 (Coates et al., 2011) datasets. Second, and more centrally, we test whether VJE yields probabilistically
coherent uncertainty estimates through one-class anomaly detection on CIFAR–10 (Section 5.3), evaluating
joint-likelihood scores (directional + radial) and related uncertainty signals (entropy, variance) using AUROC
averaged over classes. We sweep the KL weight β and the Student–t degrees of freedom ν on a grid to map
the operating regime, and report class-averaged trends, per-class results, and diagnostics across the (β, ν)
surface.

5.1 Experimental setup

All experiments use a ResNet backbone (He et al., 2016) for consistency, followed by an inference network that
outputs posterior parameters (µ, σ2) as described in Section 3. For ImageNet-1K (Russakovsky et al., 2015)
we use a ResNet–50 backbone as our encoder, while for CIFAR–10, CIFAR–100, and STL–10 we use a smaller
ResNet–18 model. For CIFAR–10 and CIFAR–100, the architecture is adapted to 32×32 inputs by modifying
the first convolutional layer to 3×3 with stride 1 and removing the initial max-pooling layer. The inference
network is a three-layer bottleneck MLP interleaved with Layer Normalization and nonlinear activation, with
the bottleneck dimension set to 512 for ResNet–50 and 128 for ResNet–18. Two separate linear heads then
produce the posterior mean µ and diagonal variance σ2. Recall that the standard implementation does not
include a separate projection head, as the inference network directly models the latent distribution over
encoder features.

5.2 Representation learning and discriminative capacity

ImageNet-1K. We begin with a large-scale representation learning experiment on ImageNet-1K (Rus-
sakovsky et al., 2015) to assess whether introducing a variational objective fundamentally compromises
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discriminative capacity. Training follows a 100-epoch pretraining schedule with ResNet–50 and the standard
MoCo v2 augmentation recipe (Chen et al., 2020b). We use stochastic gradient descent with momentum 0.9,
batch size 256, cosine learning-rate decay (Loshchilov and Hutter, 2017) from an initial value of 0.05, and
weight decay of 5×10−6, with a 10-epoch linear warm-up preceding the cosine phase (Goyal et al., 2017).
We set β=1.0 to match the exact symmetric conditional ELBO formulation and ν=3.0 for a moderately
heavy-tailed Student–t likelihood. After pretraining, we train a linear classifier on frozen backbone features
for 100 epochs using the same optimizer configuration, excluding the warm-up phase.

Table 1: Linear evaluation of comparable non-contrastive methods on ImageNet-1K, with ResNet–50 and 100
pretraining epochs. VJE (ours) was pretrained and evaluated over three runs to obtain mean and standard
deviation. All baseline values are taken directly from cited sources where available. Entries for SimCLR and
BYOL are 100-epoch results reproduced by Chen and He (2021) and marked with an asterisk (*).

Method Top-1 (%)
SimCLR (Chen et al., 2020a) 66.5*
BYOL (Grill et al., 2020) 66.5*
SwAV (Caron et al., 2020) 66.5
SimSiam (Chen and He, 2021) 68.1
VICReg (Bardes et al., 2022) 68.6
VJE (ours) 65.6± 0.4

VJE achieves 65.6% top-1 accuracy (Table 1) and 86.8% top-5 accuracy after 100 epochs of pretraining,
retaining discriminative capacity comparable to deterministic baselines under the same training configuration.
The results demonstrate that the stochasticity introduced by the variational formulation does not fundamen-
tally compromise representation quality, and so the model is able to learn useful features while simultaneously
capturing uncertainty information, although a modest gap to the strongest deterministic baselines remains.

CIFAR–10. We next evaluate VJE on CIFAR–10 (Krizhevsky, 2009) using ResNet–18 adapted for 32×32
inputs. Training runs for 800 epochs with the MoCo v2 augmentation recipe (Chen et al., 2020b) excluding
Gaussian blur, which is less effective at this resolution. We use stochastic gradient descent with momentum
0.9, cosine learning-rate decay from an initial value of 0.05, batch size 256, and weight decay 5×10−6. As
before, we set β=1.0 and ν=3.0.

As baselines, we reproduce SimSiam (Chen and He, 2021) with a 2-layer 2048-dimensional projector and
VICReg (Bardes et al., 2022) with a 3-layer 4096-dimensional projector, matching their original architectural
choices while using the common training schedule and augmentation pipeline described above.

Table 2: CIFAR–10 evaluation with ResNet–18 after 800 epochs. VJE is evaluated on both encoder output
z and posterior mean µ using k–NN (k = 30) and a linear probe trained on frozen backbone features. All
results are obtained under identical training conditions.

Method Projector k–NN Top-1 (%) Linear Top-1 (%)
SimSiam (reproduced) 2048-dim, 2-layer 90.60 91.8
VICReg (reproduced) 4096-dim, 3-layer 86.37 89.4
VJE (ours), z — 89.98 92.1
VJE (ours), µ — 89.02 90.8

Table 2 shows that VJE trails SimSiam by approximately 0.6 percentage points in k–NN accuracy (k = 30)
while outperforming VICReg by 3.6 points. For linear evaluation, VJE achieves 92.1% accuracy on the
encoder output, outperforming both SimSiam (91.8%) and VICReg (89.4%). The close alignment between
k–NN and linear evaluation performance on z (89.98%, 92.1%) and µ (89.02%, 90.8%) indicates that the
variational posterior concentrates around the encoder embedding while maintaining non-trivial variance, as
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we further explore in the anomaly detection experiments (Section 5.3). Figure 3 shows the k–NN training
trajectories, with both z and µ curves exhibiting stable convergence throughout the 800-epoch schedule.
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Figure 3: k–NN accuracy over training on CIFAR–10 for SimSiam, VICReg, and VJE (k = 30). VJE curves
are shown for both encoder output z and posterior mean µ, demonstrating stable convergence and close
alignment between the two representations throughout training.

Projection heads in VJE. Although VJE defines the latent variable model and conditional ELBO directly
on the encoder feature space, we investigate whether a projection head offers empirical benefits, analogous to
its role in deterministic self-supervised methods. We train a variant mirroring SimSiam by inserting a 2-layer,
2048-dimensional projection MLP after the encoder. To ensure posterior statistics remain independent of
batch composition, we replace all Batch Normalization layers in the projector and the inference network
(matching the SimSiam predictor) with Layer Normalization. This variant attains a final k–NN accuracy of
approximately 89.5% at epoch 800, slightly below the projection-free baseline (89.98%), suggesting that the
projection head provides no tangible benefit despite the added architectural complexity.

5.3 Anomaly detection and probabilistic semantics

To probe the probabilistic semantics of VJE that are central to its design, we adopt a one-class anomaly
detection protocol on CIFAR–10 (Krizhevsky, 2009), where a model is trained on a single class treated as
normal and evaluated on its ability to separate inliers (the training class) from outliers (the other 9 classes) at
test time. A well-defined probabilistic model is expected to assign high likelihood to inliers and low likelihood
to outliers. This protocol directly tests the density estimation capacity and likelihood structure developed in
Section 4.

Our experiment follows a one-vs-rest CIFAR–10 anomaly detection protocol commonly used in prior work (Ruff
et al., 2018; Tack et al., 2020), where we train 10 models independently, one per class, and evaluate on the
full test set, measuring AUROC for separating the training class (inlier) from the other 9 classes (outliers).
Each model uses ResNet–18 with the architecture described in Section 5.1. Training runs for 800 epochs
with SGD using momentum 0.9, batch size 64, learning rate 5×10−6 with cosine decay, and weight decay
5×10−6. The reduced batch size and learning rate reflect the one-class setting, where training data has
limited diversity. We use the same MoCo v2 augmentation recipe (Chen et al., 2020b) as in Section 5.2, again
excluding Gaussian blur.

We sweep β ∈ {0, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0} and ν ∈ {0.25, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0} across all 10 classes,
producing a 7 × 8 grid of 56 configurations averaged across each of the 10 one-vs-rest splits (560 models
total). The primary anomaly score is the joint negative log-likelihood, matching the per-sample NLL terms
in the training objective of Eq. (38):

Sjoint(x) = ℓdir(ẑ, ŝ; σ2) + ℓrad(∆r), ∆r := ∥z∥ − ∥s∥, (39)
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where higher values indicate greater anomaly. This score aggregates directional and radial contributions
under the learned model.
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Figure 4: CIFAR–10 one-class detection: class-averaged AUROC across the β×ν grid using the joint-likelihood
score (Eq. 39). Lighter regions indicate higher AUROC. The optimal regime concentrates at β ≈ 1.0 and
small ν.

Figure 4 shows that AUROC reaches a broad optimum near β=1.0 (unweighted ELBO) and small ν ∈
{0.25, 0.5, 1.0} (strong heavy tails). At (β, ν) = (1.0, 0.5), the class-averaged AUROC is 0.903 with an
across-class standard deviation of 0.043. Neighbouring settings (1.0, 1.0) and (1.0, 0.25) yield 0.899 and 0.897,
respectively, indicating a stable operating region forming the ridge in Figure 4. These results empirically
confirm the role of heavy tails as anticipated in Section 4: down-weighting large errors through a Student–t
likelihood improves generalization at the inlier-outlier boundary and prevents overfitting to inlier noise. The
consistency across classes indicates that the optimal hyperparameters generalize well without per-class tuning.

Table 3: Per-class AUROC at (β, ν) = (1.0, 0.5) using the joint-likelihood score.

Class airp. auto. bird cat deer dog frog horse ship truck

AUROC 0.872 0.976 0.851 0.828 0.884 0.897 0.909 0.935 0.940 0.937

Attempts to use Gaussian likelihoods (ν → ∞) resulted in posterior collapse across all classes, where
learned σ2 converged to near-zero and the model effectively behaved as a deterministic encoder with an
uninformative posterior. To evaluate other uncertainty signals, we compare the joint-likelihood score (Eq. 39)
against alternative uncertainty-based scores at (β, ν) = (1.0, 0.5): variance sum Svar =

∑
d σ2

d, and entropy
Sent = 1

2
∑
d log(2πe σ2

d). The joint-likelihood score performs best (0.903 AUROC), followed by variance
sum (0.867) and entropy (0.852). Across the full (β, ν) grid, cell-averaged AUROC correlates strongly with
posterior entropy (r=0.896) and posterior variance sum (r=0.817), indicating that the posterior’s dispersion
parameters track the difficulty of the anomaly detection task, with the joint-likelihood score being the most
effective way to combine them.
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Comparative performance. To contextualize this result, we benchmark VJE’s class-averaged AUROC of
90.3% on CIFAR–10 against representative one-class anomaly detection methods (Table 4). We group methods
by supervision regime to distinguish approaches trained with generic self-supervised/one-class objectives from
approaches that incorporate anomaly-specific signals (e.g., synthetic anomalies, shifted negatives, or feature
adaptation).

Within the generic self-supervised / one-class training regime, VJE achieves the strongest performance,
outperforming Rot+Trans (89.8%) and GOAD (88.2%). Notably, VJE is evaluated without anomaly-specific
modifications, using only joint likelihood scoring under the learned model.

For completeness, we also report several state-of-the-art methods that achieve higher absolute AUROC by
leveraging anomaly-specific configurations, including CSI (Tack et al., 2020), PANDA (Reiss et al., 2021),
CutPaste (Li et al., 2021), and SimpleNet (Liu et al., 2023). These methods rely on synthetic anomalies,
shifted negatives, or feature adaptation and therefore operate under different supervision assumptions than
the generic regime, and are included to provide a broader reference point on the state-of-the-art, rather than
as directly comparable baselines.

Table 4: Comparison of one-class CIFAR–10 anomaly detection methods. Entries report mean AUROC
(%) over ten one-vs-rest splits. Methods are grouped by training regime: the top block contains generic
self-supervised or one-class objectives that are directly comparable to VJE, while the bottom block contains
state-of-the-art approaches that utilize anomaly-specific signals or pretrained embeddings (synthetic anomalies,
shifted negatives, or feature adaptation) included for broader context. For VJE, scores are computed using
the joint likelihood score. Asterisks (*) mark values reproduced from Tack et al. (2020) and Reiss and Hoshen
(2023).

Method Backbone Learning approach AUROC (%)

VJE (ours) ResNet–18 one-class variational SSL (joint likelihood) 90.3
Rot+Trans (Tack et al., 2020) ResNet–18 rotation+translation self-supervision 89.8*
GOAD (Bergman and Hoshen, 2020) ResNet–18 multi-head transformation prediction 88.2*
GEOM (Golan and El-Yaniv, 2018) WRN-16-8 geometric self-supervision 86.0
DROCC (Goyal et al., 2020) LeNet adversarial robust one-class classifier 71.6*
Deep SVDD (Ruff et al., 2018) LeNet hypersphere one-class objective 64.8

SimpleNet (Liu et al., 2023) ResNet–18 feature mixing with synthetic noise 99.6
PANDA (Reiss et al., 2021) ResNet–18 pre-trained feature adaptation 96.2
CutPaste (Li et al., 2021) ResNet–18 cut-paste synthetic anomalies 95.2
CSI (Tack et al., 2020) ResNet–18 contrastive learning with shifted views 94.3

5.4 Ablation studies

We perform further ablations on the VJE objective along two axes: tail heaviness in the Student–t likelihood,
and the contribution of each loss component (KL regularizer, directional Student–t term, radial Student–t
term).

Student–t degrees of freedom. To understand the role of tail heaviness in representation learning, we
sweep the degrees of freedom ν ∈ {1.0, 3.0, 7.0, 20.0, 50.0,∞} while holding β fixed at 1.0. We train for 200
epochs across CIFAR–10, CIFAR–100, and STL–10 (Coates et al., 2011), and evaluate both k–NN (k = 30)
accuracy on the encoder output z and linear probe accuracy on frozen features.

Table 5 shows that, unlike the anomaly detection setting (Section 5.3) where very small values of ν are crucial
and performance drops sharply as ν increases, representation learning is less sensitive to the exact choice of
tail heaviness. Across finite values ν ∈ {1, 3, 7, 20, 50}, both k–NN and linear accuracy stay within a narrow
band on all three datasets, with smaller ν still slightly preferred (e.g., , ν=1 on CIFAR–10/100 and ν=3
on STL–10). In contrast, the Gaussian limit (ν → ∞) exhibits clear signs of failure on all datasets, with
substantially lower k–NN and linear accuracy. This confirms that the bounded influence of the heavy-tailed
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Table 5: Ablation of Student–t degrees of freedom ν across three datasets. All models use β=1.0. The
Gaussian limit (ν →∞) consistently underperforms across all datasets, with severe degradation on CIFAR–
100. Results are averaged across three runs.

CIFAR–10 CIFAR–100 STL–10
ν k–NN Linear k–NN Linear k–NN Linear
1.0 86.18 89.23 54.17 63.05 78.71 84.23
3.0 86.2 88.9 53.7 62.7 79.7 85.1
7.0 86.02 88.71 53.26 62.08 79.4 84.58
20.0 85.82 88.5 53.42 62.29 79.35 84.93
50.0 85.4 88.08 51.93 61.53 78.91 84.68
∞ (Gaussian) 29.0 62.0 3.3 23.4 37.8 55.7

Student–t likelihood is essential for stable optimization even when the primary objective is discriminative
rather than probabilistic.

Loss components. To assess the contribution of the KL regularizer LKL, the directional Student–t term
Ldir, and the radial Student–t term Lrad, we ablate these components on CIFAR–10, CIFAR–100, and
STL–10. We utilize the same architecture and training setup as in the previous experiment, with ν=3.0
and β=1.0, and evaluate six objectives: the full loss Ldir + Lrad + LKL, variants that drop exactly one term
(Ldir + Lrad, Lrad + LKL, Ldir + LKL), and extreme cases retaining only Lrad or Ldir. For each configuration,
we report k–NN (k=30) and linear accuracy, alongside the mean and coefficient of variation (CV) of the
posterior variance σ2 across latent dimensions. Tables 6 and 7 summarize the discriminative performance
and posterior statistics.

Table 6: Ablation of loss components on CIFAR–10, CIFAR–100, and STL–10 with ν=3.0. We report k–NN
accuracy (k=30) and linear probe accuracy (Top-1, %) on frozen encoder features.

CIFAR–10 CIFAR–100 STL–10

Objective k–NN Linear k–NN Linear k–NN Linear

Ldir + Lrad + LKL 86.18 88.91 53.65 62.70 79.74 85.11
Ldir + LKL 86.08 88.97 53.34 62.00 79.41 84.40
Ldir + Lrad 19.86 22.68 3.69 6.30 10.10 10.01
Lrad + LKL 25.41 31.63 4.53 9.38 23.58 27.83
Lrad 18.19 19.13 4.58 9.67 18.66 23.48
Ldir 13.44 15.66 3.90 5.52 9.78 10.00

The ablations reveal three qualitatively distinct regimes consistent with the latent-variable analysis in Section 4.
The first regime corresponds to the full objective Ldir + Lrad + LKL and the variant Ldir + LKL. These are
the only configurations that maintain strong discriminative performance and yield a nondegenerate posterior
with moderate variance and clear anisotropy. For instance, on CIFAR–100, they attain linear accuracies of
62.70% and 62.00% (Table 6), with Var mean ≈ 0.33 and Var CV ≈ 0.74 (Table 7). This finite, anisotropic
variance confirms that the model learns structured uncertainty while retaining discriminative capacity.

A second regime arises when LKL is absent (Ldir +Lrad and Ldir). Without regularization, the optimizer can
minimize the directional loss by collapsing the posterior variance to zero while aligning the mean direction
with the target. This results in Var mean ≈ 0 and poor accuracy. In this collapsed regime, Var CV is
undefined (and therefore omitted in Table 7) and does not indicate meaningful anisotropy, as the posterior is
effectively deterministic.
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Table 7: Posterior variance statistics for loss ablations. Var mean denotes the average posterior variance
Mean(σ2

1 , . . . , σ2
D), and Var CV is its coefficient of variation Std(σ2

1 ,...,σ
2
D)

Mean(σ2
1 ,...,σ

2
D

) , which measures anisotropy across
latent dimensions d ∈ {1, . . . , D}. For configurations with nonzero Var mean, values of Var CV close to 0
imply isotropy, while higher values imply anisotropy. Omitted entries indicate cases where Var mean ≈ 0, in
which CV is numerically unstable and not informative.

CIFAR–10 CIFAR–100 STL–10

Objective Mean CV Mean CV Mean CV

Ldir + Lrad + LKL 0.32 0.78 0.33 0.73 0.28 0.70
Ldir + LKL 0.32 0.77 0.33 0.74 0.27 0.70
Ldir + Lrad 0.00 – 0.00 – 0.00 –
Lrad + LKL 0.99 0.00 0.99 0.00 0.99 0.00
Lrad 0.07 0.06 0.32 0.11 0.21 0.07
Ldir 0.00 – 0.00 – 0.00 –

The third regime occurs when the directional likelihood is omitted. With Lrad + LKL, retaining LKL without
Ldir allows the posterior to match the isotropic prior (Var mean ≈ 1, Var CV ≈ 0), leading to a sharp drop
in accuracy as the model converges to it. With Lrad alone, the posterior remains nearly isotropic (small
Var CV) as it shrinks to a roughly spherical shape with much smaller variance (Var mean ≈ 0.1–0.3), again
discarding informative anisotropy and yielding poor discriminative capacity.

Taken together, these results demonstrate that a well-posed VJE objective minimally requires the directional
Student–t term and the KL regularizer, as removing either leads to collapsed or prior-matching posteriors
and a significant loss of discriminative power. Lastly, while the radial term Lrad only modestly affects linear
accuracy in the full objective, it plays a geometric anchoring role by tying the radial scale of the posterior to
the encoder features, which prevents arbitrary latent rescaling when combined with the directional likelihood.

6 Conclusion

In this work, we introduced Variational Joint Embedding (VJE), a framework that presents a normalized
probabilistic formulation of non-contrastive self-supervised learning. By using an amortized inference network
and maximizing a symmetric conditional ELBO, VJE preserves the reconstruction-free training paradigm of
joint embedding architectures while providing feature-wise uncertainty signals through an explicit variational
posterior.

The theoretical robustness of the framework rests on defining a normalized likelihood on representation-
space observations. We achieved this by factorizing the likelihood into decoupled directional and radial
components, reparameterizing the radial term as a norm difference, and anchoring the geometry via analytic
KL regularization. This construction explicitly decouples angular alignment from embedding norm, mitigating
norm-induced inflation of the alignment signal and large, unstable updates that can arise when angle and scale
are coupled under a single discrepancy, while ensuring that the learned geometry remains probabilistically
coherent. Empirically, VJE maintains strong discriminative performance on standard benchmarks while
producing non-degenerate posteriors that enable effective likelihood-based scoring, as demonstrated by its
performance on anomaly detection against comparable baselines.

Furthermore, our theoretical analysis in Appendix B clarifies the relationship between this likelihood-based
formulation and standard pointwise objectives used in non-contrastive learning. Our analysis formally
distinguishes the normalized conditional modelling primitive of VJE from the pointwise compatibility
primitive of JEPA-style objectives. We further demonstrate that some common discrepancy measures, such
as squared-error and cosine-based losses, arise as objective-level limiting configurations of VJE under explicit
restrictions.
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Limitations and future directions. Although our experiments focus on augmented views in vision,
the underlying formulation is agnostic to both modality and the mechanism by which paired views are
generated, requiring only paired observations of a shared latent signal. While VJE is competitive across
benchmarks, we observe a gap to the strongest deterministic baselines on ImageNet-1K under linear probing,
which highlights a trade-off between the density-based semantics of VJE and the sharpness of point-estimate
objectives optimized primarily for separability. Closing this gap while maintaining the normalized conditional
objective remains an important open challenge.

A promising direction for future work is to extend this probabilistic formulation to hierarchical or patch-based
architectures to enable fine-grained spatial uncertainty. Additionally, while we instantiated the likelihood
using heavy-tailed Student–t factors, the framework can in principle admit other properly normalized kernels.
Exploring alternative likelihood families could further refine the model’s ability to capture complex data
manifolds in non-visual or mixed modalities.
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A Pseudocode

This appendix provides pseudocode for the VJE objective described in Sections 3 and 4. The routines
implement the symmetric conditional ELBO of Eq. (37) using the directional and radial Student–t likelihoods
together with a diagonal Gaussian variational posterior. All likelihood terms are evaluated with the target
view detached (stop-gradient), and constants independent of (µ, σ2) are omitted.

Directional negative log-likelihood. This routine evaluates the extrinsic directional Student–t negative
log-likelihood on unit-normalized embeddings, corresponding to Eq. (24).

Algorithm 1 Directional negative log-likelihood (extrinsic Student–t)
Require: Target embedding z, sample s, variance σ2, degrees of freedom ν, dimension D

1: ẑ← normalize(z)
2: ŝ← normalize(s)
3: q_dir←

∑
k(ẑk − ŝk)2/σ2

k

4: return 1
2 (ν + D) log

(
1 + q_dir/ν

)
+ 1

2
∑
k log σ2

k

Radial negative log-likelihood. This routine evaluates the radial Student–t negative log-likelihood on
the norm difference ∆r = ∥z∥ − ∥s∥ as introduced in Section 4.3.

Algorithm 2 Radial negative log-likelihood (Student–t on ∆r)
Require: Target embedding z, sample s, degrees of freedom ν

1: rz ← ∥z∥
2: rs ← ∥s∥
3: ∆r ← rz − rs
4: return 1

2 (ν + 1) log
(
1 + (∆r)2/ν

)
KL divergence. This routine computes the analytic KL divergence between a diagonal Gaussian posterior
and the standard Normal prior, as in Eq. (9).

Algorithm 3 KL divergence (diagonal Gaussian vs. standard Normal)
Require: Mean vector µ, variance vector σ2

1: return 1
2

∑
k

(
σ2
k + µ2

k − 1− log σ2
k

)
VJE training step. This routine performs one symmetric VJE update, combining the directional and
radial likelihood terms with the KL regularizer as in Eq. (38).

Algorithm 4 One training step of VJE
Require: Encoder fθ, inference network gϕ, views (x1, x2); weights β, ν

1: z1 ← fθ(x1); z2 ← fθ(x2)
2: (µ1, σ2

1)← gϕ(z1); (µ2, σ2
2)← gϕ(z2)

3: ϵi ∼ N (0, I); si ← µi +
√

σ2
i ⊙ ϵi for i = 1, 2

4: ℓdir ← 1
2
[
nll_dir(z2.detach(), s1, σ2

1, ν, D)
+ nll_dir(z1.detach(), s2, σ2

2, ν, D)
]

5: ℓrad ← 1
2
[
nll_rad(z2.detach(), s1, ν)

+ nll_rad(z1.detach(), s2, ν)
]

6: ℓKL ← 1
2
[
kld(µ1, σ2

1) + kld(µ2, σ2
2)

]
7: return ℓdir + ℓrad + β ℓKL
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Additional notes.

• ELBO structure. Likelihood terms use zj .detach(), implementing the conditional ELBO of
Section 4.4 and Eq. (37), where each view predicts the latent representation of the opposite view
under a fixed observation.

• Variance parameterization. The same diagonal variance σ2 parameterizes both the Gaussian
posterior and the directional Student–t likelihood, as described in Section 4.2. In practice, gϕ may
output an unconstrained vector that is passed through a softplus nonlinearity (and a small floor)
to obtain σ2; for clarity, the pseudocode assumes gϕ directly returns σ2.

• Stability. In practice, a small constant (e.g., 10−6) is used inside normalize (via ẑ = z/ max(∥z∥, ε))
and as a floor on σ2 to avoid division by zero and degenerate variances; we omit this from the
interface for clarity.

• Radial scale. The radial likelihood uses ∆r = ∥z∥ − ∥s∥ with the scale fixed to λ = 1, as described
in Section 4.3.

• Monte Carlo sampling. Each expectation under q(s | z) in Eq. (38) is approximated with a single
reparameterized sample per view.
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B Energy-based Predictive Learning and Normalized Probabilistic Modelling

B.1 Overview and scope

Predictive joint embedding in non-contrastive self-supervised learning admits two distinct formulations. The
first is an energy-based (or compatibility) formulation LeCun (2022), in which training minimizes a pointwise
discrepancy between a prediction and a target embedding, without specifying an explicit normalized density
over embeddings. The second is the normalized probabilistic formulation that we adopt in Variational Joint
Embedding (VJE), in which a normalized likelihood is specified in representation space and optimized through
a symmetric conditional ELBO (Section 4). While these paradigms may share architectural motifs (e.g.,
asymmetric branches, auxiliary heads, and momentum/target encoders (Grill et al., 2020; He et al., 2020;
Chen et al., 2020b)), they optimize different primitives and therefore assign different semantic roles to their
components.

In this appendix, we make an objective-level comparison between the primitive used by energy-based
(deterministic) non-contrastive objectives and our VJE formulation. Architectural patterns vary across
methods, and we do not conflate them with the energy-based or likelihood-based formulation itself, except
where the normalized likelihood formulation assigns a specific semantic role to the inference network and the
target branch.

Given two related views x1, x2 of an input x, let zi = fθ(xi) ∈ RD denote the encoder embedding for view
i ∈ {1, 2}. In VJE, we perform a directed scoring from a source embedding zi to a target embedding zj ,
averaged symmetrically over (i, j) ∈ {(1, 2), (2, 1)}. The inference network gϕ outputs parameters (µi, σ2

i ) of
a diagonal Gaussian variational posterior (Eq. (32)),

qi(s | zi) = N (µi, diag(σ2
i )),

from which a latent sample si is drawn. The representation-space observation scored by the likelihood is:

yj = (ẑj , ∥zj∥), ẑj = zj/∥zj∥,

and the radial residual entering the likelihood is:

∆rij = ∥zj∥ − ∥si∥,

as used in Eq. (31).

B.2 Energy scores and normalized likelihoods

A typical joint-embedding objective takes the form of a pointwise discrepancy between a prediction and a
target embedding:

LJEPA(xi, xj) = d
(
gϕ(zi), zj

)
. (40)

Here d(·, ·) is commonly a squared-error or cosine-style discrepancy. Optimization proceeds directly on this
pointwise score, shaping embedding geometry by enforcing low discrepancy for compatible pairs. While
such objectives can be related formally to energies and unnormalized conditional models, they are typically
optimized as pointwise compatibility losses on embedding pairs rather than as likelihoods.

To develop VJE, we instead take a normalized likelihood as the primitive. We specify pψ(yj | si, σ2
i ) on the

representation-space observation yj , and we optimize this likelihood through a symmetric conditional ELBO
by marginalizing latent codes to obtain the objective:

F (β) = 1
2

∑
(i,j)∈{(1,2),(2,1)}

{
Esi∼qi

[
log pψ(yj | si, σ2

i )
]
− β LKL(qi∥p)

}
, (41)

where training minimizes −F (β) (Eq. (38)). In our formulation, the likelihood is normalized by construction
on the observation space y = (ẑ, ∥z∥) (Section 4), so the negative log-likelihood terms have log-density
semantics without introducing a partition function over embeddings.
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B.3 Representation semantics: inference and fixed observations

A likelihood-based objective assigns specific semantic roles to components that otherwise appear as training
heuristics in energy-based objectives.

Stop-gradient and fixed-observation semantics. In VJE, the likelihood term evaluates the log-density
of a target-side observation yj = (ẑj , ∥zj∥), while zj is produced by a trainable encoder. In probabilistic
modelling, observations are treated as fixed while model parameters are optimized to explain them. In
representation learning, yj changes across training as the encoder evolves, and we enforce the intended
semantics by treating yj as fixed within each update step for the likelihood term, implemented by stop-
gradient on the target branch (or alternatively by using a slowly updated target encoder).

To make this explicit, we differentiate the one-directional negative ELBO likelihood term and omit the KL
term for clarity:

LNLL
i→j (θ, ϕ) = Esi∼qi(·|zi(θ))

[
− log pψ

(
yj(θ) | si, σ2

i

)]
, yj(θ) = (ẑj(θ), ∥zj(θ)∥).

Taking gradients with respect to θ yields two pathways:

∇θLNLL
i→j = Esi∼qi

[
∇si

(
− log pψ

(
yj | si, σ2

i

))
∇θsi

]
+ Esi∼qi

[
∇yj

(
− log pψ

(
yj | si, σ2

i

))
∇θyj

]
. (42)

Our intended semantics correspond to retaining only the first pathway, in which model parameters are
updated to explain a fixed observation under the conditional likelihood. Detaching the target branch in
Eq. (38) sets ∇θyj = 0 for the likelihood term. Allowing gradients to flow through both pathways changes
the meaning of the objective by introducing a route in which the scored observation is modified by the same
likelihood term.

Amortized inference network. Optimizing an ELBO requires an explicit variational posterior q(s |
z) (Kingma and Welling, 2014; Rezende et al., 2014). In VJE, the inference network gϕ parameterizes this
posterior by producing (µi, σ2

i ), enabling reparameterized sampling and efficient optimization of the ELBO.
Deterministic objectives in energy-based joint embedding can be interpreted as learning point estimates, while
VJE maintains an explicit distributional posterior that supports marginalization and density-based scoring.

Objective and architecture. The comparison above is objective-level, contrasting a pointwise energy
score with a normalized likelihood. Many non-contrastive baselines apply their loss in a projected space. We
omit a separate projection head since the likelihood semantics in VJE are attached directly to the geometry of
the encoder embedding space, and both the posterior qi(s | zi) and the likelihood pψ(yj | si, σ2

i ) are defined
in relation to z (Section 3).

B.4 Unifying specific objectives as boundary configurations

With the primitives separated, we show two objective-level correspondences that recover common pointwise
losses as boundary configurations under explicit likelihood choices and limits. These correspondences concern
objective functions rather than full training pipelines, and they are not intended to claim complete equivalence
of optimization dynamics.

Energy-to-likelihood mapping and partition functions. Given an energy E(zj ; zi), one may define
an unnormalized conditional model p̃(zj | zi) ∝ exp(−E(zj ; zi)). The corresponding normalized conditional
density is:

p(zj | zi) = exp(−E(zj ; zi))
Z(zi)

, Z(zi) =
∫

exp(−E(z; zi)) dz. (43)

Its negative log-likelihood decomposes as:
− log p(zj | zi) = E(zj ; zi) + log Z(zi). (44)

This identity explains why pointwise energy minimization does not generally coincide with likelihood
maximization unless log Z(zi) is handled, for example by exact computation or sampling-based approximation,
consistent with the energy-based predictive viewpoint of LeCun (2022).

25



Under review as submission to TMLR

Recovering squared-error objectives. A squared-error JEPA objective arises from our formulation when
we replace the representation-space likelihood by an isotropic Gaussian density on embeddings, pN (zj | si) =
N (zj ; si, λI), keep λ > 0 fixed, score the observation zj rather than yj = (ẑj , ∥zj∥), take the point-estimate
posterior limit σ2

i → 0 so that si → µi, and remove KL regularization by setting β → 0. Under these limits
and up to additive constants, the one-directional objective reduces to:

Li→j →
1

2λ
∥zj − µi∥2, µi = gϕ(zi),

which is a squared-error compatibility loss. Averaging symmetrically over both directions recovers the
standard squared-error JEPA objective, and the same reduction applies when zj represents a collection of
patch embeddings, yielding the corresponding I-JEPA loss (Assran et al., 2023). The fixed-scale restriction is
essential, since removing the KL term while retaining a learned per-sample scale no longer coincides with
a deterministic squared-error energy, a distinction consistent with the variance degeneracy observed in the
“without KL” ablation in Section 5.4.

Recovering directional objectives. A cosine-style objective arises from the directional channel when we
restrict to the directional NLL in Eq. (24), fix the scale to be isotropic (σ2

i ≡ 1), take the Gaussian limit
ν →∞ (Eq. (13)), take the point-estimate posterior limit, and remove the KL and radial terms. Under these
limits and up to constants, we obtain:

ℓdir →
1
2∥µ̂i − ẑj∥2 = 1− µ̂⊤

i ẑj ,

which is equivalent to cosine alignment. Summed symmetrically over both directions, this reproduces a
SimSiam-style objective at the level of the loss (Chen and He, 2021), while SimSiam’s empirical behavior
additionally depends on its architectural asymmetry and optimization dynamics.

B.5 Geometric regularization

The formulations also differ in how embedding geometry is regulated. Energy-based objectives are commonly
paired with architectural stabilization, such as stop-gradient or momentum targets, and may additionally
include explicit penalties on batch statistics. VICReg and Barlow Twins, for example, enforce representation
diversity through variance or covariance constraints computed over batches (Bardes et al., 2022; Zbontar
et al., 2021). These mechanisms constrain aggregate embedding geometry but do not specify a conditional
likelihood on representation-space observations.

In VJE, geometric regularization follows from the probabilistic structure. The analytic KL term in Eq. (38)
anchors each instance-conditioned posterior to the explicit isotropic Gaussian prior p(s) = N (0, I) (Eq. (34)).
Moreover, we share the posterior scale σ2

i with the directional likelihood scale (Section 4.2), so the same
feature-wise parameters govern both sampling in qi(s) and normalization or weighting in the directional
likelihood. This yields a prior-relative notion of geometry within a normalized likelihood model and underlies
likelihood-based scoring such as the anomaly detection experiments in Section 5.3.

LeJEPA (Balestriero and LeCun, 2025) provides a complementary perspective by advocating an isotropic
Gaussian target geometry for embeddings and introducing SIGReg as an explicit global regularizer that
encourages this structure. The relationship to VJE is geometric rather than a strict reduction, since LeJEPA
enforces isotropy through a deterministic regularizer on encoder outputs, whereas VJE encourages prior-
relative structure through an instance-conditioned posterior and analytic KL within a normalized likelihood
model.
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