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1 Introduction1

As a general framework for applying deep learning methods to solve a problem, Deep Reinforcement2

Learning (RL) has many applications. In this paper we study Deep RL as it applies to the Vehicle3

Routing Problem (VRP). Specifically, we focus on the capacitated variant of the VRP (CVRP), in4

which vehicles have a maximum carrying capacity and customers have varied demands. Currently5

in the literature, there are quite a few papers in which researchers have applied Deep RL to the6

CVRP [Bengio et al., 2018, Kool et al., 2019, Lu et al., 2020]. While the methods developed are7

able to produce solutions to problems fairly quickly, so far, they all use GPUs to train the models,8

which reduces scalability. Recently, OpenAI released a study on comparing Evolution Strategies (ES)9

with classic Deep RL training methods, such as Policy Gradient (PG), and found that ES uses less10

resources and performs similarly to state-of-the-art Deep RL training methods [Salimans et al., 2017].11

The main benefit of this is that ES can be trained on CPUs in parallel, which costs less than training12

on a GPU. In light of this, we are motivated to replace traditional RL training methods in the research13

with ES for comparison.14

Recent works To begin, there have been attempts to build an end-to-end model that takes the15

Traveling Salesman Problem (TSP) or VRP as an input and outputs a solution [Bello et al., 2016, Kool16

et al., 2019]. The seminal paper written by Vinyals et al. [2015] on Pointer Network largely influenced17

these designs. Pointer networks can be used to tackle combinatorial optimization problems using18

a sequence-to-sequence model in a supervised fashion, but this limits its applicability to problems19

outside of the training data [Bello et al., 2016]. To overcome these limitations, Bello et al. [2016]20

proposed training a Pointer Network model with actor-critic and produced good results on the TSP.21

Encouraged by this, Kool et al. [2019] proposed using an Attention based encoder-decoder model that22

was trained using PG with a baseline based on a deterministic rollout, rather than a value function,23

to reduce the variance. This Attention model was able to produce quality solutions on large VRP24

in a small amount of time [Kool et al., 2019]. Taking advantage of the speed of the model, Kool25

et al. [2019] was also able to further improve the performance of the model by performing a simple26

n-sized search, in which the best of n was recorded as the solution. Along with this type of sampling,27

Bello et al. [2016] also proposed a "Active Search" sampling method that took advantage of fast28

end-to-end models to search the solution space at inference time and improve the policy using the29

solutions found during search. Instead of using end-to-end models to produce solutions, Lu et al.30

[2020] propose a learning-based iterative method that starts from a random solution and trains an31

RL agent to use a rich set of improvement operators to improve the solution and when the agent is32

"stuck" a rule-based perturbation operator would be applied to restart the improvement process with33

minimal loss in solution quality (route length).34

Our contributions We directly compare two RL models in the literature that have taken different35

approaches to the VRP. We then combine these models to create a pipeline that is more efficient and36

guarantees better solutions. We then consider the performance of each model when ES is used instead37

of PG and the benefits of a pipeline of these ES trained models.38
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2 ES pipeline39

Since the so-called "Learn 2 Improve" (L2I) local-search method developed by Lu et al. [2020] uses40

an initial solution, it may greatly benefit from having an initial solution generated by an end-to-end41

model rather than starting with a random solution. This is not just true of L2I, but of all local-search42

methods. Thus, we propose a pipeline that begins with a generated solution from an end-to-end43

model and then uses this solution to initialize a local-search method, such as L2I. This is a general44

pipeline framework, allowing for a variety of combinations to be compared to find optimal results.45

However, our main interest is in the application of Deep RL to the VRP, so we focus on a pipeline46

that uses the Attention model developed by Kool et al. [2019] as the end-to-end model and L2I as the47

local-search method. While the models used in both papers are trained using PG with a baseline, the48

way that models re-frame the CVRP in an RL context are somewhat different.49

Attention Kool et al. [2019] uses an Attention-based encode-decoder model that outputs a solution50

given a VRP. The solution is incrementally built internally by the decoder which is fed embedded51

positional information, problem-specific context, and a mask which denotes visited nodes. Since this52

is done internally, the policy selects a solution given a problem instance. In this way, the action space53

for the RL environment is the solution space and the Attention model frames the VRP as a one-step54

episode.55

L2I Lu et al. [2020] uses a combination of improvement and perturbation steps that take an initial56

solution and gradually change it into a more optimal solution. This system has two parts: An57

improvement controller, which is done using RL, and a perturbation controller, which is rule-based.58

The RL environment within this system is essentially a multi-armed bandit problem in which the agent59

is given a solution and is asked to choose the best improvement operator to apply to the solution. If60

improvements begin to stagnate, that is no improvement has occurred for a predetermined number of61

steps, a perturbation step will take place and a new solution will be reconstructed from the stagnated62

solution. Then the improvement process will begin again. The amount of timesteps per "episode",63

T = n − p, where n is the number of rollout steps, or the total improvement/perturbation steps64

allowed per problem, and p is the amount of perturbations. Lu et al. [2020] uses n = 40000, however65

they also demonstrate that trivially increasing n will lead to depreciating performance gains. In66

training and experiments, we use n = 20000 because we found that it requires half the processing67

time per problem on average and performs essentially the same. Also, Lu et al. [2020] mentions68

using an ensemble model in which multiple policies are queried every improvement step and the best69

solution from the policies is chosen, however we found that similar performances were attainable70

using only one policy.71

Pipeline To train a pipeline of these models, the Attention model must be trained first and then used72

to generate solutions for training the L2I model.This is due to the fact that the Attention model is73

trained on batches of problems and the L2I model is trained over multiple steps on a single problem.74

This splits training into two parts that cannot be done in parallel. While an L2I model that is trained75

using random initial solutions can be tested with a trained Attention model, we found that there are76

no performance improvements in doing this. In Figure 1, we have the learning curves of each of77

the models given 20 hours of training using an Nvidia Tesla V100 GPU. As seen in the figure, the78

pipeline model was able to match the average tour distance of the L2I in half the amount of time.79

2.1 Evolution strategies80

In addition to using the original Attention and L2I models in the pipeline, we also create ES81

versions of the models and build different pipelines with each. In ES, a random population of k82

perturbations, εi ∈ N(0, 1); 1 ≤ i ≤ k, are generated every timestep, t, of the episode. Then k83

actions, ati = π(s|θt + σεi), are selected, where θ represents the parameters of the model and σ84

controls the exploration around θ in the parameter space. The parameters are then updated according85

to86

θt+1 = θt +
1

kσ

k∑
i=1

F (ati|s)εi

where F (a|s) is the reward function. Since the Attention and L2I models frame the RL environment87

differently, how ES is used to update the models is also slightly different.88
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Figure 1: Learning curve of Attention, L2I, and Pipeline models.

Attention w/ ES The Attention model frames the CVRP as a one step episode which means that89

if updated according to ES, an update would be performed after each episode which would lead to90

stability issues. Instead, a modified ES update will be applied in which the perturbation population is91

created before each batch and batches are evaluated for each member of the population. Essentially,92

instead of updating every timestep, an update is applied with every batch. The learning curve of the93

Attention model with and without ES is viewable in Figure 2a. The Attention model is trained with94

an Nvidia Tesla V100 GPU and the ES variant is trained on a CPU using a perturbation population95

of k = 5. The Attention model with PG seems to be more training efficient than the ES variant.96

This is likely due to the fact that the Attention model frames the VRP as a one-step episode. In their97

paper, Salimans et al. [2017] mentioned that ES models would perform better when trained with long98

episodes with a large amount of timesteps. Given larger k and more CPUs, the ES variant would99

likely do better as it would be able to search a larger portion of the parameter space in less time.100

L2I w/ ES ES can be implemented exactly as described earlier to update the L2I model as the101

CVRP is framed as a traditional multi-step episode. We chose to use k = 1 here to minimize the time102

spent per problem in training. As with the Attention model test, the L2I model is trained with an103

Nvidia Tesla V100 GPU and the ES variant is trained on a CPU. In Figure 2b, we have the learning104

curve of the L2I model with and without ES. They are almost identical. The success of the ES105

variant could be due to the power of the improvement operators available within the L2I method.106

Nonetheless, further improvement should be possible given larger k and more CPUs.107

Figure 2: a) Learning curve of Attention w/ and w/o ES and b) L2i model w/ and w/o ES.

Pipelines w/ ES Finally we combined the models and their variants into pipelines and trained them.108

The ES variant portions of the pipelines were trained on a CPU, while the regular models were trained109

on an Nvidia Tesla V100 GPU. The training curves of each of these pipelines can be seen in Figure 3.110

While having different initial starts, the pipelines are essentially the same with minor differences that111
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can be accounted for with the fact that the ES variant of L2I is slower than the original. This seems to112

show that the L2I method, irrespective of the update method and initial solution, will perform well.113

Figure 3: Learning curves of 4 different Pipelines

From the training curves, it is clear that L2I w/ ES can be trained just as efficiently as L2I. This114

means that, given limited resources, it would be better to have multiple CPUs in parallel to train ES115

variant than one GPU to train L2I. ES will not benefit every model as seen with Attention, but when116

it does, it should be applied to further scale the model at a low cost and improve training efficiency.117
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