Active Model Selection for Large Language Models

Abstract

We introduce LLM SELECTOR, the first framework for active model selection of
Large Language Models (LLMs). Unlike prior work on evaluation and bench-
marking, LLM SELECTOR addresses the challenge of selecting the best LLM for
a given task under limited annotation budgets. In particular, LLM SELECTOR
adaptively identifies a small set of informative queries to annotate in order to effi-
ciently select the best LLM for the given task. To further reduce annotation cost,
we leverage a judge-based annotation model using an oracle. Through extensive
experiments, we show that LLM SELECTOR reduces annotation costs by up to
58.33% for identifying the best model, and by 62.50% when selecting a near-best
LLM that is within close vicinity of best model.

1 Introduction

How can we select the best Large Language Model (LLM) for a given application or data distribu-
tion without retraining? Answering this question has become increasingly difficult as the number of
readily available models continues to expand. Recent advances in architectures, training strategies,
and access to massive datasets have enabled impressive zero-shot capabilities, allowing LLMs to
perform a wide range of tasks without task-specific fine-tuning [[72,134]. As a result of these devel-
opments, a large and diverse collection of pretrained models differing in architecture, training data,
and optimization objectives is now easily accessible through academic repositories and commercial
platforms [23, 154} 21} 3]].

While the abundance of LLMs offers deployment flexibility, it also poses challenges as performance
varies widely across domains, tasks, and languages [42]]. Despite extensive benchmarking efforts
[42, 17, 156], the rapid growth of models and evaluation settings outpaces existing practices, which
often lag behind release cycles or focus narrowly on standardized tasks. Model selection typically
relies on randomly or heuristically chosen annotated subsets [61, [71], but these waste resources
and fail to capture model differences [47, 136]. Active selection [48]] addresses this by strategically
annotating subsets, yet prior work largely targets classification, not generative tasks [S3} 33} 48130,
60, 145, 131, [73) 138, [39]]. Thus, reliably identifying the best LLM for a task and distribution under
limited annotations remains open.

In this work, we address this problem and ask: Given a pool of queries and a set of candidate
LLMs, which examples should be annotated in order to reliably identify the best LLM, both in a
model-agnostic and annotation-efficient manner?

Contributions: In this paper, we introduce LLM SELECTOR, a principled framework for selecting
the best LLM under a limited annotation budget. Given a large set of n queries and a limited
annotation budget b with b < n, LLM SELECTOR selects b queries whose annotations are expected
to maximally reduce uncertainty about the best model under the budget constraint. Our approach
builds on information-gain criteria [[10], and quantifies informativeness using a two-parameter model
that measures information gain as Shannon’s mutual information between the unknown best model
and annotations.

We employ a judge-based annotation process in which each query is annotated with a vector over
candidate models. For each model candidate, we compare its response to the query against that of
a baseline model using oracle preference judgments. This judge-based design alleviates the need
for costly reference answers or summaries that are known to be far more expensive than pairwise
judgments [81L 157, 162} 46, 18], and mitigates the noise commonly introduced by reference-based
evaluation metrics [81}57, 162, 52].
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Figure 1: An overview of LLM SELECTOR. For an arbitrary pool of n LLM queries and a set of
candidate models, LLM SELECTOR adaptively picks and annotates most informative b < n queries
for identifying the best language model.

We validate LLM SELECTOR through an extensive set of experiments across diverse tasks, includ-
ing long-form question answering, code generation, summarization, translation, and mathematics.
Across all settings, LLM SELECTOR consistently identifies the best-performing model with only a
small fraction of the annotation budget required by baseline selection strategies, demonstrating both
efficiency and reliability under constrained annotation resources. LLM SELECTOR reduces annota-
tion costs by up to 58.33% while achieving a 57.55% reduction when selecting models within a 1%
win-rate vicinity of the best model.

Once the best LLM is selected based on b annotated queries, we use it to generate outputs for the
remaining n — b queries where n — b >> b. Our method is fully model-agnostic: it requires no access
to internal parameters and imposes no restrictions on output format, making it directly applicable in
black-box or API-only settings. An overview of LLM SELECTOR is shown in Figure ]

2 LLM SELECTOR

In this section, we introduce LLM SELECTOR. Section defines the problem, followed by our
preference-based annotation framework in Section Section presents the active selection
algorithm.

2.1 Problem Setting

We consider inference-time with a set of n unannotated queries Q@ = {¢; € Q | ¢ € [n]}, where
each query ¢; is a user-issued prompt to an oracle. The oracle response is r; € R, unobserved at
inference, and denoted by the random variable R;.

Given m pretrained models M = {h; : @ — R | j € [m]}, our goal is to identify the best
model for generating responses to (). Since oracle annotations are costly, we assume access to only
b < n annotations. The task is therefore to select b queries whose annotations provide maximal
information about the best model.

We define the best model h* as the one with highest utility if all responses {r; | ¢ € [n]} were
known, and denote it as the random variable H. The utility function can be any metric that evaluates
model quality, such as accuracy on a dataset or other established LLM evaluation measures. Once
h* is identified, it is used to generate responses for the remaining n — b queries.

Formally, we pose selection as maximizing mutual information. We seek a subset A C {(g;,7;) |
i € [n]} of at most b annotated examples that maximizes the mutual information between H and .A:

Aope[b] =  argmax  I(H; A). (1)
AC{(qi,ri)|i€[n]}
[AlI<b

2.2 Annotation via Direct Preference Judgments

Evaluating long-form responses cannot rely on exact string matching and requires more sophisti-
cated methods. Beyond correctness, aspects such as relevance, helpfulness, complexity, and detail
affect answer quality. Since reference-based metrics yield noisy scores [52} 18], we instead use direct
preference judgments [79} 162], which compare responses pairwise and are more stable than indi-
vidual ratings [29, [81]]. Preference-based evaluation is already widely adopted in open-ended LLM
benchmarks [79, 140, 41]].



Formally, for a query ¢; € @, an oracle judge compares responses of models h; and hy, where
hj(g;) > hi(q;) means h;’s response is preferred, h;(g;) < hi(g;) means hj’s response is pre-
ferred, and h;(g;) = hi(g;) means the responses are judged equally good (or poor).

The oracle judgment is expressed as OracleJudge(q;, h; (), hi(?)) = 1[h;(q;) > he(@)] + 5 -
1[h;(g;) = hk(g:)], where 1[-] is the indicator function.

To compare models across queries, we adopt the win rate metric [41]. For query set ), the win
rate of h; over hy, is defined as WRq(hj, hy) = 3" | OracleJudge(q;, hj(-), hi(+)), with
WRQ(hj, hi) + WRQ(hk, hj) = 1for j,k € [m].

Since full pairwise ranking requires O(m?) annotations, we reduce cost by comparing all models
against a single baseline model h € M, which has become standard practice in LLM evaluation

benchmarks [40]. Each model is evaluated by its win rate relative to h, and LLM SELECTOR selects
the one with the highest win rate on the annotated queries.

To characterize mutual information between the unknown best model and annotations, we use a
two-parameter model describing the relation between the best model and the baseline under oracle
preference:

P(H(q) < h(q) | H = h*) = e, P(H(q) = h(q) | H = h*) = e,

P(H(q) > hg) |H=h")=1—e — e @)

where €1,€5 € [0,1] and €] + eo < 1.
2.3 The Algorithm

Given the query set ), our goal is to select at most b queries whose annotations maximize informa-
tion about the best LLM as defined in equation[I] We adopt a sequential information maximization
strategy [10], selecting queries one at a time until the budget b is exhausted.

At step t = 0, the unannotated set is Uy = @ and the annotated set is Ag = (). More generally, at
step t, U; denotes the pool of unannotated queries and A; the annotated ones so far. The next query
q: is chosen as

q = argmax I[(H; R | At,q) = argmax H(H | A;) — Eg[H(H | A U{(q,R)})]

q€eUsy qeUy
= argnin Er[H(H | A U{(q, R)})], 3)
qeUys

where H(H | A) is the conditional entropy of H given the observed annotations at step ¢.

Thus, selecting the next query amounts to minimizing the expected conditional entropy of H as
in equation[3] Since oracle responses are unavailable, this expectation is approximated using noisy
annotations from weak judges.

2.3.1 Noisy Annotations via Weak Judges

The intuition behind noisy annotations is to evaluate a candidate response by comparing it to other
model responses, assigning higher preference to those more similar to others.

Formally, each response is tokenized as (ws,...,wr). For k € N, we build a k-gram language

model, where P(w;|wy.r) := P(w;|wi—k+1.4-1). The model is fit independently for each query ¢
using responses of candidate models M. The likelihood of a sequence is the average of its word

probabilities: P((wy, ..., wr)) = L 37 Plww_ji1.0-1)-
To compare models h and h, a weak judge selects the response with higher likelihood, yielding
h(q) > h(q). M(q) =) h(q), or h(q) <(xy h(q). We denote this noisy annotation as ;. Given

the parameter model in equation [2] the following probability is used to compute the information
gain:

]P)(H _ hj|AtU{(q, r(k))}) o ell[hj(Q)<(k)h(q)]€]21[hj(q):(k)h(q)](1_61_62)1[hj(Q)>(k)}_L(q)]]P>(H _ hg|At)
With z > 1 weak judges, each using a k-gram model (k € [z]), the expected entropy is computed

by averaging weak judge estimates: ¢; = argmin, g, ISP H(H | Ay U{(g,7(x))}), using a
uniform distribution over judges.



2.3.2 Updating Model Posterior Belief

After annotating the selected query at step ¢, we update the posterior belief over the best language
model conditioned on all annotations observed up to time ¢t: P(H = h;|A; U {(¢,R = r)}) x
P(A;U{(q, R =r)}H = hyj) - P(H = hy).
With the two-parameter annotation model in equation 2] the posterior belief is updated as:
P(H = hj[App1) < P(H(qr) = re[H = hy) - P(H = h;|Ay)
- 6111[hj(qt):h(qt)]6121[hj(qt)>h(qt)](1 —e — 62)1[h_1(qt)>ﬁ(qt)]P(H =hj|A;) @)

Further details on selecting ¢; and €2, as well as the complete pseudocode of LLM SELECTOR, are
provided in Appendices [D]and [F} respectively.

3 Experiments

‘We evaluate our approach on three datasets: AlpacaEval [41], Arena-Hard [40]], and MT-Bench [79],
and compare against baselines including Random, Bradley-Terry, Confidence, Uncertainty,
and Most Draws. Further details on the datasets, models and baselines are provided in Appen-

dices[Bland[C

In our experiments, we uniformly sample a pool of n examples from the test set. Model selection
strategies then choose b queries to annotate from the pool, and the LLM with the highest average
utility on these annotations is selected. We call this a realization, and evaluate each strategy over
multiple realizations to estimate performance.

We compare strategies by three metrics. Identification probability is the fraction of realizations that
correctly identify the best model for budget b, reported for b = 1, ..., n. Label efficiency measures
the percentage reduction in labels required to identify the best model or reach within ¢ of it. 95th
Percentile Win Rate Gap is the 95th percentile of the win rate difference between the selected model
and the best model.
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Figure 2: Best model identification probability of LLM SELECTORand the baselines on Arena-Hard
(left), AlpacaEval (middle), and MT-Bench (right).

Identification Probability Figure 2] shows the best model identification probability of LLM SE-
LECTOR and baselines. LLM SELECTOR consistently outperforms baselines, identifying the best
LLM with fewer annotations. In contrast, baselines exhibit unstable performance, with probabilities
that do not always improve with budget and occasionally fall below Random.

Label Efficiency Table [T shows the la- ~_ Dataset 0=1% 0=05% ¢=0.1%

bel efficiency of LLM SELECTOR to re-  AlpacaEval 1 11.65% 14.59% 1 8.87%
cover the near-best models on all datasets.  Arena-Hard | 57.55% | 62.50% | 53.57%

Robustness Analysis Additionally, we MT-Bench | 50.00% {57.14% {50.00%
have analyzed the 95th percentile win rate  Table 1: Label efficiency for near-best models across
gap between the chosen and the best LLM  datasets. Bolded numbers with | indicate decreases.
(see Appendix [E). This shows that LLM SELECTOR consistently returns a near-best model.

4 Conclusion

We introduced LLM SELECTOR, a framework for active model selection that identifies the best
LLM under limited annotation budgets. By leveraging preference-based judgments and information-
theoretic query selection our method significantly reduces annotation costs. Overall, LLM SELEC-
TOR provides a principled and efficient solution for reliable LLM selection in resource-constrained
settings.
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Supplementary Material for Active Model Selection for Large
Language Models

A Related Work

Several methodologies exist for the evaluation of LLMs. Traditional multiple-choice [66, [67]], or
short-answer benchmarks [13]] provide a standardized way to evaluate model performance, though
they do not assess the generative abilities of LLMs. For tasks such as summarization [65] [51]]
and translation [22], reference-based benchmarks are commonly used, where model outputs are
compared against human-written ground truth using metrics like BLEU [59]], ROUGE [44]], and
BERTScore [77]. More recently, judge-based evaluation gained traction. LMArena [79] is a live
leaderboard using human annotators. Static benchmarks like Arena-Hard [40], AlpacaEval [41] and
MT-Bench [[/9] rely on LLM-as-a-Judge for automated evaluation. At a higher level, leaderboards
such as HELM [42]], OpenCompass [56], and OpenLLM [17] aggregate benchmarks measuring
models on different capabilities, aiming to give a full view of LLM capabilities. However, these
evaluation methodologies require relying on human annotators or LLM-as-a-Judge, and due to the
large scale of modern benchmarks, such evaluations are often not feasible with limited resources.

Many existing studies on model selection under budget constraints concentrate on specific tasks or
model families. Okanovic et al. [33], Kay et al. [33]] address classification models, while Zhao et al.
[78] assume a graph-based semi-supervised learning task. Liang et al. [43] examine binary time-
series classification models, and Gardner et al. [[18] focus on Gaussian processes. Several studies
make less assumptions about the task or the model, focusing on estimating the model risk. These
settings consider either a single model [63} 132} 135], two models [64} 137]], or an unrestricted number
of candidate models [49].

While our work assumes that all unannotated examples are available beforehand, much of the litera-
ture adopts an online setting in which data arrive sequentially from a stream [48} 130,160, 145} 31} 73,
38,139, [74]]. Other approaches jointly train the candidate models during the active selection process
(L)

Although prior research has explored efficient active ranking based on comparisons [26, 9], existing
methods primarily select pairs of models for evaluation. By contrast, our setup compares models on
LLM queries spanning diverse levels of difficulty, where the outcome of the evaluation depends on
the query itself. This motivates a data-centric perspective in which we prioritize selecting examples
for annotation rather than model pairs.

B Dataset and Model Collections

" AlpacaEval Arena-Hard MT-Bench
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Figure 3: Candidate LLM win rate histograms

We conduct experiments on three datasets: AlpacaEval [41]], Arena-Hard [40], and MT-Bench [79].
Candidate models include LLMs from diverse families, including proprietary systems such as GPT-
3.5 and GPT-4 [58, 53], Claude 2/3 [4} 5], and Gemini [19]], as well as open-weight architectures
like LLaMA-2/3 [69, 50]], Mistral and Mixtral [27, 28], Falcon [2], Yi [[76], Qwen [6], Gemma [20],
InternLM [24]], GLM [16], and DBRX [14]. We further consider several widely adopted instruction-
tuned derivatives, including Alpaca [[68]], Vicuna [L1], Guanaco [15], Tulu-2 [25], WizardLM [75],
Zephyr [70], and Starling [80]. The chosen LLMs differ in both number of parameters and training
methodology.
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Arena-Hard consists of 500 test queries, which are selected from user queries of Chatbot Arena
[12]. We use gpt-4-1106-preview Judge for annotating model responses, and gpt-4-0314 as
the baseline model. In total, we evaluate 68 LLMs on Arena-Hard.

AlpacaEval is an LLM benchmark consisting of 805 test samples. The responses are evaluated by
GPT-4 Judge, and the baseline model is text_davinci_003. We test 55 LLMs on AlpacaEval.

MT-Bench contains only multi-turn conversations, making it more challenging than other two bench-
marks. However, the size is smaller as it only contains 80 queries. We evaluate 6 LLMs on this
benchmark.

The performance of the candidate LLMs is plotted in Figure [3| The plots show the histogram of
models which are in the different win rate ranges for each dataset.

We choose the parameters €; and €5 independently for each dataset, based on the procedure described
in Section[D] We choose the number of weak judges z as 10 in all experiments.

C Baselines

We compare LLM SELECTOR against several selection strategies:
Random Test queries are sampled uniformly from the set of unannotated examples.

Bradley-Terry Based on judge annotations, Bradley-Terry coefficients [7]] are computed to model
pairwise preferences. These coefficients are then used to form a model posterior. The next sample
is greedily chosen as the one expected to yield the greatest decrease in the entropy of this posterior.

Most Draws The queries are sorted according to the number of responses that have drawn against
the baseline response. The comparisons are done by the pseudo-judge described in Section [D] At
each step, unannotated sample with the most number of draws is selected.

Confidence For each test sample, the number of responses that win, draw, and lose against the
baseline is counted. The counts are then normalized by dividing to the number of responses to com-
pute the outcome frequencies. Test samples are sorted by the entropies of the computed frequencies.
The query with the lowest entropy is selected.

Uncertainty Same as Confidence, we compute outcome frequencies for each sample and their
entropies. The query with the highest entropy is selected.

D Parameter Selection

We choose the parameters €1 and €5 prior to LLM selection, therefore the oracle annotations are not
available during parameter optimization. As a replacement, we use ensemble of all weak judges as
a noisy oracle. More specifically, the noisy oracle behaves as follows:

1 ifvr>2/3 // win
WeakJudges(q, h(q), h(q)) = 0.5 if2/3>v>1/3 // draw
0  otherwise // loss

where v = & S0 1[h(q) > h(q)] + & - 1[A(q) =) h(q)]. We take average of all weak judge
predictions, and round the average to the closest option in the set {0, 0.5, 1}.

We perform a grid search over ¢; and e using the weak judge decisions as the ground-truth an-
notations. We select the parameter set that maximizes the identification probability, defined as the
probability of correctly recognizing the best LLM under the budget b.

E Robustness Analysis

Dataset LLM SELECTOR Random Bradley-Terry Confidence Uncertainty Most Draws
Identification probability  (70%/80%/90%/100%)  (70%/80%/90%/100%)  (70%/80%/90%/100%)  (70%/80%/90%/100%)  (70%/80%/90%/100%)  (70%/80%/90%/100%)
AlpacaEval 6.1/4.6/3.1/0.0 8.6/8.2/7.9/12.9 4.2/3.9/3.7/0.0 4.5/3.4/3.4/2.3 8.4/8.4/3.1/2.7 11.6/11.4/8.6/2.8
Arena-Hard 13.1/11.8/8.1/0.0 13.6/13.4/13.1/8.3 13.3/13.0/13.0/7.9 13.7/13.5/13.1/9.6 14.4/14.1/14.0/6.8 12.6/12.9/13.3/7.1
MT-Bench 12.5/12.5/12.5/0.0 34.2/34.2/34.2/14.2 33.3/33.3/33.3/0.0 34.2/34.2/34.2/0.0 34.2/34.2/34.2/15.8 35.3/35.3/35.3/0.0

Table 2: 95th percentile win rate gap (%) at budget needed to reach identification probability 70%,
80%, 90%, and 100% on three benchmarks. Best results are in bold; second-best underlined.

Table 2] show 95th percentile win rate gap between the chosen and the best LLMs on AlpacaEval,
Arena-Hard and MT-Bench. The 95th percentile is chosen accross all realizations, where strategies

12



use the budget which allows LLM SELECTOR to reach 70%, 80%, 90% and 100% identification
probability.

F Pseudocode

Algorithm 1 LLM SELECTOR Algorithm
Require: models M, test queries Q, parameters €1, €2, €3, labeling budget b

.A() < {}, UO “— Q
//Uniform model prior
P(H = hj\.Ao) — 1/M
fort=0tob—1do
for k =1to zdo
//Estimate model posterior with weak judge decisions
IP(H = hjl.At U {(q,r(k))) — %P(H = hJ‘At)
Gl[hj(Q)<(k)ﬁ(tZ)]61[hj(Q):(k)ﬁ(Q)]el[hj(Q)>(k)7l(¢I)]
1 2 3

end for

//Choose the sample with minimum expected entropy
. z

qt < argming ., % Zk:1 H(H|A; U {(q, T(k))})

//Get oracle decision

r¢ <= OracleJudge(qy, hj(-), h(-))
Ap1 — A U{(gqe, )}

Upr1 < U\ {at}

//Update model posterior S o o
P(H = hi|A1s1) < LP(H = hi|A,) - 6]11[hJ((1)<h(q)]6]21[hJ(Q):h(Q)]Eg[h’(Q)>h(Q)]
end for -
return arg max,c oy WR 4, (h, h)
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