
Restriction on orbital angular momentum
distribution: a role of media in vortex beams
propagation

TAO ZHANG,1 YI-DONG LIU,1,* KUO YANG,2 JIANDONG WANG,1

PUSHENG LIU,1 AND YUANJIE YANG,1,3,4

1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
2Institute of Applied Physics, A’Ba Teachers University, Wenchuan 623002, China
3School of Astronautics and Aeronautics, University of Electronic Science and Technology of China,
Chengdu 611731, China
4dr.yang2003@uestc.edu.cn
*liuyd@uestc.edu.cn

Abstract: The vortex beam carrying single orbital angular momentum (OAM) propagating
through a medium with a certain transmission function is investigated. We show that the OAM
mode weights in the output OAM spectrum involve two factors: the radial distribution of
output beam power and the proposed restriction-characterized function. Based on the restriction-
characterized function, we show that the OAM mode weights can only vary in a limited range.
We analyze the relationship between the radial distribution of the output beam power and the
OAM mode weights in the output OAM spectrum. Finally, our theoretical analysis is illustrated
numerically with the cases of eccentric circular aperture and atmospheric turbulence in a weak
fluctuation regime. These results provide new insights into the characterization of the OAM
spectrum and may find applications for fields involving OAM, such as an OAM-based optical
communication link and object detection.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

A vortex beam can carry orbital angular momentum (OAM) of l~ per photon due to its particular
phase distribution described by exp(ilϕ), where ϕ is the azimuthal angle and l is an integer
number [1, 2]. In recent decades, many studies have demonstrated that vortex beams have
dramatic potential in a wide range of optical applications such as optical communications [3–6],
astrophysical observations [7,8], optical microscopy [9] and optical manipulation [10]. Moreover,
the ubiquitous vortices were found and explored for applications in the millimetre-wave and x-ray
bands as well as near and in the visible light band [11, 12].
It is well known that the power on OAM modes of light beam may be redistributed when the

beam propagates through a medium [13–18]. This redistribution is jointly determined by both
the transmission medium and the incident light beam. In OAM multiplexed free-space optical
link, compensating the atmospheric turbulence and selecting proper light beam are two effective
ways to alleviate the OAM spreading and the resulting crosstalk [6, 13]. By utilizing media with
proper properties and shapes, beam power redistribution on OAM modes can be regulated for
OAM transformation [14, 15] and for generation of light beams carrying definite OAM [16,17].
Moveover, information of media can be detected by analyzing the OAM spectrum of distorted
wavefront of input vortex beams [18].

The goal of this study is to unveil a rule that how a transmission medium with certain
transmission function influences the OAM mode weights of output light beam and we show that
the input vortex beam carrying single OAM can only determine these weights within a limited
range. In this work, we firstly derive the upper and lower bounds of each OAM mode weight
in output OAM spectrum by defining a restriction-characterized function, which is also used
to analyze the regularity of the output OAM mode weights varying with radial distribution of
normalized output beam power. Indeed, it is not difficult to obtain this novel function because
only transmission function is required. For this reason, the restriction exists commonly. In order
to show the meaning of our analysis, we illustrate it in two typical examples: eccentric circular
hole and the atmospheric turbulence in weak fluctuation regime. Our expectation is to provide,
not only a new understanding of how media impact OAM carried by vortex beams, but also
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a useful guide for OAM related applications such as OAM based communication [3], object
detection [18] and efficient OAM generation [17, 19, 20].

2. Theoretical analysis

Consider themodel establishmentwhich startswith a general expression.With certain transmission
function, the normalized complex amplitude function of a vortex beam carrying single OAM
propagating along z axis through a medium can be expressed in cylindrical coordinates as

Φ(r, ϕ, z) = Π(r, ϕ)Rl0 (r, z)
exp(il0ϕ)√

2π

, (1)

where Π(r, ϕ) is the transmission function which can be random or not. Rl0 (r, z) is the normalized
radial basis set, where l0 is the OAM number. Definitely, Φ(r, ϕ, z) can be expanded as a
superposition of spiral harmonics [21]

Φ(r, ϕ, z) = 1
√

2π

∞∑
l=−∞

Cl(r, z) exp(ilϕ). (2)

Because of the orthogonality of spiral harmonics, the coefficient Cl(r, z) can be expressed as

Cl(r, z) =
1
2π

∫ 2π

0
Π(r, ϕ)Rl0 (r, z) exp(−i∆lϕ)dϕ, (3)

where ∆l = l − l0. In previous work, the rotational coherence function of phase perturbations in
the atmospheric turbulence was investigated [6]. Here we shall refer to 〈Π(r, ϕ1) [Π(r, ϕ2)]∗〉 as
the rotational coherence function of both phase and amplitude perturbations, and subsequently
express its circular harmonic transform as

A∆l(r) =
1

4π2

∫ 2π

0

∫ 2π

0
〈Π(r, ϕ1) [Π(r, ϕ2)]∗〉 exp[−i∆l(ϕ1 − ϕ2)]dϕ1dϕ2, (4)

where 〈·〉 is the ensemble average corresponding to random medium. A∆l(r) reflects the impact
of media on the radial distribution of incident beam power on the OAM mode with ∆l. In Eq.
(4), the real function A∆l(r) ≥ 0 and in the circular symmetric media, A∆l,0(r)=0. Calculating
ensemble average is a convenient way to investigate the OAM mode weights of output beam
through a random medium such as the atmospheric turbulence [6, 22, 23]. Based on [21], we
express the OAM mode weight of l with the ensemble average for both random and non-random
media as

pl(z) =
∫ ∞
0 〈|Cl(r, z)|2〉rdr∑∞

∆l=−∞
∫ ∞
0 〈|Cl(r, z)|2〉rdr

. (5)

Since 〈|Cl(r, z)|2〉 = |Rl0 (r, z)|2 A∆l(r), the OAM mode weight of l reads

pl(z) =
∫ ∞
0 |Rl0 (r, z)|2 A∆l(r)rdr∫ ∞

0 |Rl0 (r, z)|2
∑∞
∆l=−∞ A∆l(r)rdr

. (6)

Here we define a restriction-characterized function of medium as

Ω∆l(r) =
A∆l(r)∑∞

∆l=−∞ A∆l(r)
, (7)

where it is provable that 0 ≤ Ω∆l(r) ≤ 1. In Eq. (7), Ω∆l(r) for each ∆l is completely determined
by media, showing the restriction on output OAM mode weight distribution. The denominator
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∑∞
l=−∞ A∆l(r) in Eq. (7) reflects the impact of media on the power radial distribution of incident

light beam. The denominator being smaller than, equal to and higher than 1 means that the power
radial density is weakened, unchanged and strengthened, respectively. The denominator of Ω∆l(r)
mathematically should not be 0, and thus the discussion of Ω∆l(r) requires r to be limited into the
region S where

∑∞
l=−∞ A∆l(r) , 0. It is provable that the pl(z) in Eq. (6) can also be expressed as

an inner product in the region S

pl(z) =
∫
S

Ψ(r, z)Ω∆l(r)dr, (8)

where

Ψ(r, z) =
|Rl0 (r, z)|2

∑∞
∆l=−∞ A∆l(r)r∫

S
|Rl0 (r, z)|2

∑∞
∆l=−∞ A∆l(r)rdr

. (9)

Properties of vortex beams such as OAM number, frequency and other parameters were
emphatically investigated when the effects of media such as the atmospheric turbulence on the
OAM of vortex beams were studied in previous work [22, 23]. Equation (8) shows that the OAM
weight pl(z) only depends on two parts: Ψ(r, z) and the restriction-characterized function Ω∆l(r).
Ψ(r, z) is the radial distribution of normalized output beam power where

∫
S
Ψ(r, z)dr=1. Since

Ω∆l(r) with each ∆l is only determined by the properties of media, for a given ∆l, the reason for
why l0 and frequency can impact pl(z) is just that they can impact Ψ(r, z). In order to be more
essential, in the following discussion, we only discuss the impacts of the two parts rather than
other factors on output OAM weight.

Since
∫
S
Ψ(r, z)dr=1, pl(z) can be viewed as an expected value where Ψ(r, z) is the probability

density function of Ω∆l(r). Normally, at an arbitrary r , Ψ(r, z) increases as the radial distribution
of input beam power |Rl0 (r, z)|2r increases. In particular, if

∑∞
l=−∞ A∆l(r) is a constant, Ψ(r, z) is

reduced to |Rl0 (r, z)|2r . Equation (8) implies that, to obtain larger weight of the OAM mode with
arbitrary ∆l in output OAM spectrum, the output beam power should concentrate close to the
radial position with larger Ω∆l(r).

Another meaningful result is that, if the supremum sup{Ω∆l(r)} and the infimum inf{Ω∆l(r)}
exist, then

inf{Ω∆l(r)|r ∈ S} ≤ pl(z) ≤ sup{Ω∆l(r)|r ∈ S}. (10)

Equation (10) quantifies the upper and lower bounds of OAM mode weight pl(z). When
transmission function is explicit, both of these bounds for each ∆l are fixed. Note that the
maximum value [Ω∆l(r)]max and the minimum value [Ω∆l(r)]min, if exist, are definitely equal
to sup{Ω∆l(r)|r ∈ S} and inf{Ω∆l(r)|r ∈ S}, respectively. In general, pl(z) is between the two
bounds and can be impacted by the input vortex beam. But in some particular cases, e.g., in
case of the free space (Π(r, ϕ) = 1 and thus inf{Ω∆l(r)|r ∈ S} = sup{Ω∆l(r)|r ∈ S} = 1), input
vortex beams has no impact on pl(z) which reaches both of bounds. The propagation distance z
in pl(z) is only associated with the amplitude distribution of vortex beams, and we only consider
the case of z=0 in the following discussion.

3. Discussion of typical examples

Based on the above analysis, as the first example, we investigate the restriction of a misaligned
optical element on output OAM distribution. Here we simply consider a transverse obstruction
with an eccentric circular hole placed in the propagation path of a vortex beam. The transmission
function of the obstruction can be written asΠ(r, ϕ) = 1 ((r/R)2+ (r0/R)2−2(r/R)(r0/R)cos(ϕ−
ϕ0) ≤ 1) or 0 (other cases), where R > 0 is the radius of the circular hole. (r0, ϕ0) is the place of
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centre of the circular hole in polar coordinates. Consequently, the Ω∆l(r) of an eccentric circular
hole reads

Ω∆l(r) =



∆θ2

∆θ2 + 4
∑∞

n=1
1−cos(n∆θ)

n2

(∆l = 0)

2[1 − cos(∆l∆θ)]
∆l2∆θ2 + 4∆l2 ∑∞

n=1
1−cos(n∆θ)

n2

(∆l , 0).

(11)

In Eq. (11), the expression of ∆θ (0 ∼ 2π) depends on the relation of circular area with the
radius r and the center at the optical axis to the hole area. If the circular area is completely in the
hole area, ∆θ = 2π and consequently Ω∆l(r)=1 (∆l = 0) or 0 (∆l , 0). If it is partially in the hole
area, ∆θ = 2arccos[(r0/r + r/r0 − R2/r0r)/2]. If it is completely outside of the hole area, ∆θ = 0
and consequently Ω∆l(r) is meaningless. It can be known in Eq. (11) that, both bounds for each
∆l only depends on the eccentric coefficient r0/R. Based on Eq. (11), the upper and lower bounds
of OAM mode weights with ∆l = 0, 1 in output OAM spectrum are plotted in Fig. 1 as functions
of r0/R.

Fig. 1. Upper and lower bounds of output OAM mode weights for ∆l = 0, 1 (defined by
Eq. (10)) in the case of eccentric circular hole against the eccentric coefficient r0/R. There
are indications of relative position between the optical axis (•) and the hole edge (©) for
r0/R = 0, 1, 2, respectively.

As can be seen, the curves of both the bounds, with discontinuity, show non-smooth change
of varying ranges of the OAM mode weights as r0/R grows. The hole is circularly symmetric
with no misalignment (r0/R = 0), and all the vortex beams can completely reserve their
symmetrical patterns through it. Therefore, both bounds for ∆l = 0 and ∆l = 1 are 1 and 0,
respectively, which indicates that the weight of initial OAM mode keeps 1 regardless of the
properties of the input beam. As misalignment arises (r0/R > 0), the OAM mode weights
can be changed because of difference of values between the two bounds. In this case, lower
bounds for all ∆l are 0 because inf{Ω∆l(r)|r ∈ S} = lim∆θ→0Ω∆l(r) = 0. When optical axis
locates in the hole area with misalignment (0 < r0/R < 1), it is provable in Eq. (11) that the
upper bounds for all ∆l are invariable. Here the fixed upper bounds sup{Ω∆l=0(r)|r ∈ S} = 1
and sup{Ω∆l=1(r)|r ∈ S} = 0.236, with their zero lower bounds, show the constant and great
ranges that the OAM mode weights can vary in. In this case, the more the output beam power
concentrates close to the optical axis, the better the symmetrical pattern of initial optical field can
be reserved, and thus the weight of initial OAM mode can near 1. But, when optical axis moves
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outside of the hole (r0/R > 1), no vortex beams can well reserve their symmetrical patterns
through it, and thus the upper bound for ∆l = 0 jumps to a low level. Thus, it is not possible
to obtain a large weight of initial OAM mode. To avoid the OAM spreading which can not be
alleviated to a high level by changing properties of input vortex beam, the eccentric coefficient,
enlightened by the simulation results, should be lower than a threshold.
In order to show how output OAM distribution varies with radial distribution of normalized

output beam power under Ω∆l(r) in this example, we consider four LG beams with different
OAM numbers and different radial indexes propagating through the same eccentric circular hole,
as shown in Fig. 2.

Fig. 2. Restriction of the eccentric circular hole with R=0.05 m and {r0 = 0.05m, ϕ0 = π/4}
upon output OAM distribution of LG beams. There are considerations on the LG mode with
l0=0, radial index p=0 and waist radius 0.02m at z=0: (a) output intensity distribution, where
dash black line indicates the hole edge, (b) curves of Ψ(r, z) (solid pink line) and Ω∆l(r)
with ∆l=0 (long dash blue line), ∆l=1 (dot dash green line) and ∆l=2 (short dash red line),
(c) distribution of output OAM mode weights for ∆l = 0 to 2, along with their upper bounds
(solid red line) and lower bounds (dash green line). Moreover, there are considerations of
LG modes respectively based on (d)-(f) l0=5 and p=0, (g)-(i) l0=15 and p=0, (j)-(l) l0=10
and p=1.

After passing through an eccentric circular hole with r0/R = 1, four selected LG beams have
different output intensity patterns (Fig. 2, left column), which respectively result in four different
radial distributions of normalized output beam power plotted by the solid pink curves (Fig. 2,
middle column). The fixed transmission function leads to the same curve cluster of Ω∆l(r) in
Figs. 2(b), 2(e), 2(h) and 2(k). For each ∆l, varying trend of curve of its Ω∆l(r) means a unique
restriction, under which a varying regularity of the corresponding OAM mode weight in output
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OAM spectrum in relation to the Ψ(r, z) exists. For example, with the decreasing Ω∆l=0(r), as
the output beam power concentrates close to the optical axis, the OAM mode weight for ∆l = 0
increases in the range between lower bound 0 and upper bound 0.5 (Fig. 2, right column). For
this, we deduce that, a vortex beam with more concentrated energy can be better to resist OAM
spreading in this case. Moreover, the simulation results from the case of ∆l = 0, together with
those from the cases of ∆l = 1 and ∆l = 2, are perfectly consistent with the above analysis.

As the second example, we investigate the restriction in the case of the atmospheric turbulence
in weak fluctuation regime. There are researches involving the turbulence effects on vortex beams
with diverse OAM modes, where the OAM mode weights of output light beam are associated
with properties of the input vortex beam [6,22,23]. Paterson pointed out that, in this medium, the
more the power of input vortex beam distributes close to the optical axis, the larger the detection
probability of initial OAM mode can be obtained [6]. Here we explain this phenomenon by the
restriction theory and answer a question: where are the bounds of OAM mode weight for each ∆l
when OAM of a vortex beam spreads in the atmospheric turbulence?

To obtain Ω∆l(r) of the atmospheric medium, derivation will be based on the non-Kolmogorov
model which is widely used. In weak fluctuation regime, random phase fluctuation caused by the
turbulence is the main cause for OAM spreading [6]. Considering the ensemble average and using
the quadratic approximation, then 〈Π(r, ϕ)[Π(r, ϕ′)]∗〉 = exp{−[2r2−2r2 cos(ϕ′−ϕ)]/ρ2

0}, where
ρ0 is the spatial coherence radius for a plane or spherical wave in non-Kolmogorov turbulence [24].
By means of the equation

∫ 2π

0 exp [−inϕ1 + ηcos(ϕ1 − ϕ2)]dϕ1 = 2π exp (−inϕ2)In(η), where
In(·) is the modified Bessel function of the first kind with order n [25], then

Ω∆l(r) = exp

(
−2r2

ρ2
0

)
I∆l

(
2r2

ρ2
0

)
. (12)

After calculating the supremum and the infimum of Ω∆l(r) in Eq. (12), here we found that the
upper and lower bounds of OAM mode weights for each ∆l are irrelevant to ρ0 which indicates
the strength of phase fluctuation.

To show the varying range of OAM low-order mode weights in output OAM spectrum in this
example, the upper bounds are calculated by Eq. (12), as shown in Table 1. The lower bounds for
all ∆l can be directly calculated by inf{Ω∆l(r)|r ∈ S} = limr→+∞Ω∆l(r) = 0. These values are
intrinsic and unique, because they are independent of any properties of input vertex beam and
even the strength of phase fluctuation. The upper bound drops rapidly as |∆l | increases. When
|∆l | > 2, as a result of the fixed upper bounds near zero, the probability of an OAM mode being
cast into another one is very small.

Table 1. The upper bounds of output OAM mode weights for |∆l |=0 to 5 (defined by Eq.
(10)) in the case of the atmospheric turbulence in weak fluctuation regime.

|∆l | 0 1 2 3 4 5
upper bound 1 0.219 0.118 0.080 0.060 0.048

The atmospheric turbulence in weak fluctuation regime is transparent, and thus the Ψ(r, z) is
reduced to the |Rl0 (r, z)|2r . To show how OAM low-order mode weights in output OAM spectrum
vary with Ψ(r, z) under the restriction characterized by Ω∆l(r), three different narrow LG beams
are considered. Their beam power distributions keep unchanged in propagation, because here
only phase fluctuation needs to be taken into account (see Fig. 3, left column). Still, our restriction
analysis can be supported by the simulation results which will be shown next. When distribution
of the Ψ(r, z) concentrates around where Ω∆l=0(r) is the maximum, the OAM mode weight with
∆l = 0 in output OAM spectrum approaches its upper bound (see Figs. 3(b) and 3(c)). But with
the decreasing Ω∆l=0(r), there is a regularity showing that, as peak of the Ψ(r, z) moves to where
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the Ω∆l=0(r) is smaller (away from the optical axis), the weight decreases (see Figs. 3(c), 3(f)
and 3(i)). Therefore, a more concentrated vortex beam can be better to resist OAM spreading
that agrees with Paterson’s view. The “self-recovery effect” in our previous work [23] exists
because the power of a vortex beam with sufficient focusing-ability in propagation can rapidly
concentrate around the optical axis where Ω∆l=0(r) is larger, although a larger ρ0 results in a
more rapid decline of Ω∆l=0(r) as the propagation distance becomes longer. In previous work, the
results show that the OAM spreading becomes serious as the OAM number of the input vortex
beam increases [22,23]. The only reason for this is that, when OAM number increases, the output
power of the incident beam moves away from the optical axis.

Fig. 3. (a)-(c) Restriction of the atmospheric turbulence in weak fluctuation regime upon
output OAM distribution of an input LG beam with l0=0, p=0, ρ0=0.3m, waist radius 0.05 m
and z=0: (a) output intensity distribution; (b) curves of Ψ(r, z) (solid pink line) and Ω∆l(r)
with ∆l=0 (long dash blue line), ∆l=1 (dot dash green line) and ∆l=2 (short dash red line);
(c) distribution of output OAM mode weights for ∆l = 0 to 2, along with their upper bounds
(solid red line) and lower bounds (dash green line). Moreover, there are cases of LG modes
based on (d)-(f) l0=30, (g)-(i) l0=150, respectively.

4. Conclusion

We have discovered a restriction on OAM mode weights in output OAM spectrum when a vortex
beam propagates through a generalized medium. The restriction was studied based on a novel
functionΩ∆l(r), which was derived from the transmission function. We found a varying regularity
of the OAMmode weights in output OAM spectrum in relation to the radial distribution of output
beam power under the restriction characterized by the Ω∆l(r). It shows that, as the output beam
power concentrates close to the radial position with larger Ω∆l(r), the corresponding OAM mode
weight is larger. We also calculated the upper and lower bounds to show the varying range of
each OAM mode weight in output OAM spectrum, using the supremum and the infimum of
Ω∆l(r), respectively. Besides the media we discussed, one can also consider those of the other
kinds, e.g., the medium with a well-structured Ω∆l(r) for OAM generation. Due to the limitation
of this work, it is worth to make a more general discussion such as, considering more common
incident light beams.
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