Measuring and Reducing Model Update Regression in
Structured Prediction for NLP

Deng Cai* Elman Mansimov Yi-An Lai
The Chinese University of Hong Kong Amazon AWS Al Labs Amazon AWS Al Labs
thisisjcykcd@gmail.com mansimov@amazon.com yianl@amazon.com
Yixuan Su* Lei Shu Yi Zhang
University of Cambridge Amazon AWS AI Labs Amazon AWS AI Labs
ys484Q@cam.ac.uk leishu@amazon.com yizhngn@amazon.com
Abstract

Recent advance in deep learning has led to the rapid adoption of machine learning-
based NLP models in a wide range of applications. Despite the continuous gain
in accuracy, backward compatibility is also an important aspect for industrial
applications, yet it received little research attention. Backward compatibility
requires that the new model does not regress on cases that were correctly handled by
its predecessor. This work studies model update regression in structured prediction
tasks. We choose syntactic dependency parsing and conversational semantic parsing
as representative examples of structured prediction tasks in NLP. First, we measure
and analyze model update regression in different model update settings. Next, we
explore and benchmark existing techniques for reducing model update regression
including model ensemble and knowledge distillation. We further propose a simple
and effective method, Backward-Congruent Re-ranking (BCR), by taking into
account the characteristics of structured prediction. Experiments show that BCR
can better mitigate model update regression than model ensemble and knowledge
distillation approaches.

1 Introduction

Model update regression refers to the deterioration of performance in some test cases after a model
update, even if the new model has on average better performance than the old model. For example, on
a fixed test set, the new model may achieve 1% absolute improvement in accuracy. However, it does
not necessarily mean that the new model gets 1% extra test cases correct. Instead, it may correct 6%
mistakes made by its predecessor but also introduce 5% new errors. The occasional worse behavior
of the new model can overshadow the benefits of overall performance gains and hinder its adoption.
Imagine a newly updated virtual assistant stops understanding a user’s favorite ways to inquire about
the local traffic. This can severely degrade the user experience even if the assistant has been improved
in other aspects.

Prior research (Shen et al., 2020; |Yan et al., 2021} |Xie et al.,2021) has investigated model update
regression in classification problems of computer vision and natural language processing (NLP).
However, the formalization of classification only has limited coverage of real-world NLP applications.
For instance, the natural language understanding component behind modern virtual assistants aims
to transform user utterances into semantic graphs, a task known as conversational semantic paring

*Most of the work was done during an internship at Amazon AWS Al Labs.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(Figure[I). In contrast to classification tasks, the global prediction of structured prediction (e.g., graph
or tree) is often composed of many local predictions (e.g., nodes and edges). Some local predictions
can be correct while the global prediction is imperfect. Therefore, model update regression can
happen at fine-grained levels. Also, the output space is input-dependent and can be extremely large.
To our knowledge, the model update regression problem has not been studied in structured prediction
tasks.

In this work, we measure and analyze model update
regression in two typical NLP structured prediction o -
tasks: one general-purpose task (i.e., syntactic de- o L Directions o David' party. ‘

pendency parsing) and one application-oriented task outpur: ' ﬁ“e' model update " ‘Mde'
(i.e., conversational semantic parsing). We set up X e svesr e DIRCTION
evaluation protocols and test a range of model up- - -

. . . . directions, to, ~SL:DESTINATION directions, to, ~SL:DESTINATION
dates rooted in different aspects, including changes o mvmer [V
in model design, training data, and optimization pro- X S 3

. . SL:LOCATION sy SL:CATEGORY: SL:ORGANIZER ‘s; SL:CATEGORY
cess. Experiments show that model update regression I N . N
David, party, David, party,

is prevalent and evident across various model update

settings. Figure 1: Model update regression: When up-

The above finding shows a general and critical de- dating an old model to a new one, old errors
mand for techniques to reduce model update regres- are corrected (X— ') but new errors are in-
sion in structured prediction. Prior work for classifi- troduced (v — X).

cation problems (Shen et al.,[2020; Yan et al.| [2021;

Xie et al.| 2021) has borrowed the idea of knowledge distillation (Hinton et al., [2015), where the
new model (student) is trained to fit the output distribution of the old model (teacher). However,
vanilla knowledge distillation (Hinton et al., 2015) cannot be directly applied to structured prediction
models due to the intractability of the exact distribution of global prediction. Moreover, the goal
prediction of structured prediction can be factorized in distinct ways. For example, a graph-based
dependency parser (e.g.,|Dozat and Manning| [20177) scores every possible edge and searches for a
maximum spanning tree, while a transition-based dependency parser (e.g., Ma et al.,[2018) builds
the tree incrementally through a series of actions. We refer to a model update between models
with different factorizations as a heterogeneous model update. For heterogeneous model updates,
existing factorization-specific approximation (e.g.,|Zmigrod et al., 2021a; Wang et al.,|2021) or even
knowledge distillation at the level of local predictions is inapplicable. To develop generic solutions
that do not assume any specific factorizations, we instead resort to the sequence-level knowledge
distillation (Kim and Rush, 2016), which is originally proposed for machine translation. Previous
work also finds model ensemble, though not as practical due to high computational cost, a strong
baseline for reducing model update regression. We also include it for comparison purpose.

We further propose a novel and generic method named Backward-Congruent Re-ranking (BCR).
BCR takes into account the variety of structured prediction output. That is, a new model can produce
a set of different predictions achieving similar accuracies. The key is to pick the one with the highest
backward compatibility. In a nutshell, BCR uses the old model as a re-ranker to select a top structure
from a set of candidates predicted by the new model. We further propose dropout-p sampling, a
simple and generic sampling method, to improve the diversity and quality of candidates. Despite the
simplicity of BCR, it is a generic and surprisingly effective approach for mitigating model update
regression, substantially outperforming knowledge distillation and ensemble methods across all
studied model update settings. More surprisingly, we find that BCR can also improve the accuracy of
the new model.

2 Related Work

Forgetting in Machine Learning Model update regression is related to a spectrum of research
related to forgetting in machine learning, including continual learning (Chen and Liul 2018; Parisi
et al.,2019; [Biesialska et al.,[2020), incremental learning (Polikar et al., 2001;|Gepperth and Hammer,
2016; Masana et al.,|[2020), which are concerned with the learning of new tasks or streaming examples
and the forgetting of previously learned ones. The model update regression problem differs in that
models are tested on the same task and have full access to previous data.

Prior Research in Model Update Regression The model update regression problem was first
studied in (Shen et al.| 2020) on learning backward-compatible visual embeddings for image retrieval.
(Yan et al., [2021) suggested mitigating regression in image classification with positive-congruent
training, a specialized variant of knowledge distillation. (Xie et al.| |2021) extended the study of
backward compatibility to NLP classification and explored several knowledge distillation variants for
regression reduction. (Trauble et al.|2021) introduced a probabilistic approach to switch between the
legacy and updated systems, bringing down regression in image classification. Our work investigates
the model update regression in NLP structured prediction tasks, which can be particularly challenging
due to the enormous output space and the variety of different factorizations.

Re-ranking in Structure Prediction The re-ranking technique has a long history in NLP for
improving not only accuracy (Shen et al.;2004; [Collins and Koo, 2005; Salazar et al.; 2019} Yee et al.,
2019), but also output diversity (L1 et al.,[2016), fluency (Kriz et al., 2019; [Yin and Neubig| |2019),
fairness (Geyik et al.,[2019), and factual consistency (Falke et al.| |2019). Different from prior work,
we show that re-ranking can be adopted for improving backward compatibility in model updates.

3 Preliminaries

We first lay out the basic concepts for the quantitative measurement of model update regression
in structured prediction. Then we introduce two representative structured prediction tasks in NLP:
dependency parsing and conversational semantic parsing, and set up the evaluation benchmarks.

3.1 Prediction Flips in Structured Prediction

Model update regression happens after a model update, where an old model is replaced by a new model.
For typical NLP structured prediction tasks (Smith, 2011), the input is a piece of natural language
text and the output is a graph G = (V, E) with multiple nodes V" and edges E. Unlike classification
problems where the output is a label in a pre-defined label set, the output graph G is decomposable
and we may be interested in the correctness of some meaningful sub-graph G’ = (V' CV, E' C E)
even though the graph is not completely correct. We call the graphs (or sub-graphs) that are correctly
predicted by both the new and the old models as positive-congruent predictions. On the other hand,
negative flips are the cases where the graphs (or sub-graphs) are correctly predicted by the old model
but incorrectly predicted by the new one. There are also positive flips, where the new model corrects
the mistakes that the old one makes, which are desirable accuracy improvements.

Negative Flip Rate (NFR) To measure the severity of model update regression, we count negative
flips and compute their fraction of the total number of graphs (or sub-graphs). We term the fraction
as negative flip rate (NFR) (Yan et al.,[2021).

Negative Flip Impact (NFI) Note that NFR is capped by the overall error rate (ER) of the new
model, comparison is challenging across cases with different ERs. For this reason, we introduce
the negative flip impact (NFI): NFI = NFR /ER,,. Intuitively, the NFI computes the proportion of
errors caused by negative flips. In other words, the proportion of errors that could have been avoided
without the model update.

3.2 Dependency Parsing

The task of dependency parsing (Kiibler et al.,[2009) seeks to find the syntactic head word for each
word in a sentence and their syntactic relation. The overall output has a tree structure where nodes
are words in the sentence and edges are their relations. The importance of dependency parsing is
widely recognized in the NLP community, with it benefiting a wide range of NLP applications (Q1
et al., [2020).

We use the English EWT treebank from the Universal Dependency (UD2.2) Treebanks We adopt
the standard training/dev/test splits and use the universal POS tags (Petrov et al.,2012) provided in the
treebank. The parsing performance is measured by word-level accuracies: unlabeled/labeled attach-
ment score (UAS/LAS), and tree-level accuracies: unlabeled/labeled complete match (UCM/LCM).

http://universaldependencies.org/

http://universaldependencies.org/

We compute NFR and NFI under each accuracy metric. We find that the results of labeled metrics
are always consistent with unlabeled metrics. For clarity, we only show the results of unlabeled
metrics, the results of labeled metrics are presented in Appendix [A] Following conventions (Dozat
and Manning|, 2017; Ma et al., 2018), we report results excluding punctuations.

3.3 Conversational Semantic Parsing

Conversational semantic parsing is an important component for intelligent dialog systems such as
Amazon Alexa, Apple Siri, and Google Assistant, which transform user utterances into semantic
frames comprised of intents and slots.

We use the TOP dataset (Gupta et al., 2018)) for our experiments, which uses hierarchical intent-slot
annotations for utterances in navigation and event domains The output is a constituency-based
parse tree, where leaf nodes are words and the interior nodes are labeled with slots and intents. We
use the dataset version with the noisy IN:UNSUPPORTED_* intents excluded (Einolghozati et al.|
2019). The parsing performance is conventionally measured by tree-level Exact Match accuracy
(EM). We also report span-level EM accuracy (span EM): We represent the semantic annotations
on a sentence as a set of labeled spans (7, j, L) where ¢, j mark the start and end position of a span
and L is the corresponding label|*| For example, the gold tree in Figure E can be viewed as four
labeled spans including (0, 4, IN:GET_DIRECTION), (2, 4, SL:DESTINATION; IN:FIND_EVENT), (2,
2, SL:0RGANIZER), and (4, 4, SL:CATEGORY). We calculate the label accuracy on such spans. For
example, the new model’s output correctly predicted three of them, thus the span-level EM accuracy
is 3/4 = 75%. We calculate NFR and NFI under both metrics.

4 Measuring Model Update Regression

We carry out a series of experiments to examine the severity of model update regression under various
model update scenarios. In this section, we report the empirical results and conclude the findings.

4.1 Model Update Settings
In total, we consider four different causes for model updates.

* Change the training configurations (e.g., random seed, learning rate, etc). Despite this
setting being less likely in practice, we consider it as a synthetic evaluation to understand
the severity of model update regression.

* Scale up model sizes (e.g., increasing the depth or width of neural network). It is common
that using a larger pre-trained language model brings in a larger performance gain.

* Train on more data. Practitioners frequently collect more and more labeled data for training.

* Take another factorization choice. It happens when new algorithms or models are invented
and adopted.

4.2 Dependency Parsing

Setup For dependency parsing, we consider two popular models, namely the biaffine parser (Dozat
and Manning| |2017) (deepbiaf) and the stack-pointer parser (Ma et al., 2018) (stackptr). The biaffine
parser is a first-order graph-based parser, where the global prediction is decomposed to arc/edge
predictions between any two words. The stack-pointer parser is a transition-based auto-regressive
parser, where the global prediction is decomposed into a series of building action predictions. These
two represent two distinct factorizations of the dependency parsing problem. Table[I](top) presents
their accuracies (mean and standard deviation). We can see that in terms of word-level accuracy, the
performances of deepbiaf and stackptr are very close. However, in terms of complete match, stackptr
is slightly better than deepbiaf, likely due to its auto-regressive nature.

We study model update regression in three different model update settings (deepbiaf =deepbiaf,
stackptr=-stackptr, and deepbiaf=-stackptr). In the first two settings, the old and new models have

*http://fb.me/semanticparsingdialog
“The label can be a chain of slot and/or intent labels.

http://fb.me/semanticparsingdialog

Model EM 1 span EM 1

Model UCM 1 UAS 1 s2s-base-part 85.041+0.22 89.831+0.15

- s2s-large-part 86.86+0.24 90.9410.18
deepbiaf 63.88+0.56 91.76+0.10 s2s-base 85.67+0.10 90.3440.10
stackptr 65.831+0.44 91.81+0.09 s2s-large 86.974+0.11 91.11+0.12
Model Update NFR| NFI| NFR| NFI] Model Update NFR| NFI] NFR] NFI|
deepbiaf=-deepbiaf ~ 3.67 10.17 1.55 18.80 s2s-base-part=>s2s-base 298 21.12 225 2368
stackptr=>stackptr 3.44 10.07 1.64 19.99 s2s-large-part=-s2s-large 2.61 20.03 1.99 2237
deepbiaf=-stackptr 3.84 11.24 214 2557 s2s-base=-s2s-large 332 2545 261 2939

Table 1: Accuracy (top) and model update re- Table 2: Accuracy (top) and model update regres-

gression (bottom) results on dependency parsing. sion (bottom) results on conversational semantic

12 higher is better and |: lower is better. parsing. -part indicates the models are trained with
only 4/5 of the available training data.

identical model architecture and training data. The only difference is that they are trained with
different random seeds. We present these controlled experiments to demonstrate that even small
changes such as altering random seeds can introduce significant regression.

Results Table|l (bottom) shows that model update regression is severe across all model update
settings, including deepbiaf =-deepbiaf and stackptr=-stackptr. This implies that it could be funda-
mentally difficult to reduce model upgrade regression as initialization and optimization processes
naturally introduce prediction inconsistencies. On the other hand, model update regression in het-
erogeneous model update (deepbiaf=-stackptr) is even more severe. Particularly, negative flips
account for up to 25% of the errors made by new models (deepbiaf=-stackptr according to UAS).
Notably, despite that stackptr improves over deepbiaf by 1.95% on UCM, both NFR and NFI in
deepbiaf=>stackptr is higher than those in homogeneous model updates. This demonstrates that
reducing the error rate is not sufficient to reduce regression.

4.3 Conversational Semantic Parsing

Setup For conversational semantic parsing, we use the seq2seq parser (Rongali et al.,[2020) in our
experiments. It formulates the semantic parsing task as seq2seq generation of the linearized parse
tree given the source text. The global prediction is thus decomposed into a sequence of next-word
predictions.

The seq2seq parsers can be initialized with different pre-trained language models. We experiment
with two model variants: seg2seq parser with (1) roberta-base (Liu et al.|[2019) (s2s-base) and
(2) with roberta-large (s2s-large). In order to simulate data-driven model updates, we also train
parsers with only 4/5 of the available training data, denoted by s2s-base-part and s2s-large-part.
Table 2 (top) shows that s2s-large performs better than s2s-base and training on more data leads
to better performance, in terms of both EM and span EM. We test three kinds of model updates:
s2s-base-part=-s2s-base, s2s-large-part=-s2s-large, and s2s-base=>s2s-large.

Results As shown in Table [2| (bottom), model update regression is prevalent across different model
update settings. The most severe model update regression comes from different pre-trained language
models (s2s-base=-s2s-large), accounts for 25.45% (EM) and 29.39% (span EM) errors made by the
new model, while the absolute performance gains are merely 1.3% EM points and 0.77% span EM
points.

4.4 Discussions

The key findings observed across all studied tasks and model updates are the following: (1) Model
update regression is prevalent on two typical structured prediction tasks and various model update
settings. (2) Even small changes in training configuration such as changing the random seed can
introduce significant regression (a minimum of 1.55% NFR is observed). (3) Heterogeneous model
updates lead to severer regression compared to homogeneous model updates. (4) Updating pre-trained
language models leads to higher regressions than those caused by training on more data. As much
as 3 out of 10 test errors are regression errors (NFI=30%). (5) Improving accuracy alone does not
necessarily reduce regression (in fact, NFR can be larger than accuracy gain).

S Reducing Model Update Regression

First, we describe the adaptation of the methods explored in reducing model update regression in
classification problems (Shen et al.,2020;|Yan et al.| [2021; Xie et al.|[2021). Then, we introduce a
novel method, backward-congruent re-ranking that is better suited to structured prediction tasks.

5.1 Model Ensemble

In classification problems, (Yan et al., 2021} Xie et al.,|2021)) found that model ensemble can reduce
model update regression without any information about the old model. This can be attributed to
the reduction of variance by ensembling: Every single model may capture the training data from a
distinct aspect. The ensemble aggregates different aspects and has a shorter average distance to other
single models. Concretely, we train different models with different random seeds and average the
local prediction scores from all the models during decoding. Nevertheless, ensembles may not be
practical due to the high cost of training and inference.

We note that parameter averaging (i.e., averaging the parameters of different models and using the
resulting model for prediction) is an alternative to prediction ensembling. However, our preliminary
experiments show that this method gives worse performance than prediction ensembling.

5.2 Knowledge Distillation

Knowledge distillation (KD) is a technique originally proposed for model compression (Bucilua et al.|
2006; Ba and Caruana, 2014; Hinton et al., 2015), where a (smaller) student model is trained to mimic
a (larger) teacher model. By treating the old model as the teacher and the new model as the student,
KD has been proved a promising approach for reducing model update regression in both vision and
language classification tasks (Yan et al., 2021} |Xie et al.,[2021). The instantiations are usually based
on a loss function computing the cross-entropy between the output distributions predicted by the
teacher and the student. However, for structured prediction problems, the output space is exponential
in size, making the exact output distribution computationally intractable. Although some efficient
methods for approximating the cross-entropy have been proposed (Zmigrod et al.,|2021a; [Wang
et al.,[2021)), they assume the models follow certain factorizations and thus have limited application
scenarios (e.g., the techniques proposed in (Zmigrod et al.,2021a)) can only be used for edge-factored
parsers). One may think of performing KD on local predictions or hidden representations instead.
However, such distillation can also be infeasible between models with different factorizations or
structures (e.g., deepbiaf =stackptr in dependency parsing).

To tackle the above problem, we borrow the idea from sequence-level KD (Kim and Rush}[2016),
which approximates the teacher distribution with its mode. Specifically, sequence-level KD suggests
to (1) run the teacher model over the training set to create pseudo training data, (2) then train the
student model on this new dataset. The idea is well-suited to the problem of model update regression
because it is model-agnostic; it does not assume any specific factorizations for the old and new
models.

5.3 Backward-Congruent Re-ranking

Unlike model ensemble, knowledge distillation attempts to explicitly align the behaviors of the new
model to the old model during training. Alternatively, we propose Backward-Congruent Re-ranking
(BCR), which does not impose any constraint on the training of the new model and only takes effect
during inference.

Re-ranking is a popular approach in structured prediction to combine the strengths of two different
models (Collins and Koo, 2005; |Socher et al., 2013; |Le and Zuidemal |2014; Do and Rehbein, [2020).
It suggests to use one model as the candidate generator for creating a candidate pool and use the
other model as the re-ranker for picking the best candidate. While previous work has been focused
on developing powerful re-rankers for overall performance improvement, the purpose of BCR is to
reduce model update regression. BCR treats the new model as the candidate generator and the old
model as the re-ranker. Our motivations are two-fold. First, structured prediction models can produce
many possible predictions. Second, different predictions may achieve similar error rates but differ by

the mistakes they made. Among them, the most likely one according to the old model should have
the least prediction flips. These make re-ranking particularly useful for structured prediction.

Formally, we have the old model and the new model parameterized by @pew and ¢4 respectively. For
a given input z, the new model first generates a set of candidates GENg, . (). Then we choose the
prediction y* with the highest score computed by the old model.

y' = argmax pg,,(y|r),

YEGEN gy, ()

where pg,, (y|z) is the old model’s generation probability (score) of y given the input = and GEN can
be implemented by various decoding methods, including maximization-based search such as beam
search and k-best MST algorithm (Zmigrod et al.,[2020,2021b), and stochastic sampling such as
top-k sampling (Fan et al.,|2018; Radford et al.,|2019) and top-p sampling (Holtzman et al.,[2019).

Dropout-p Sampling Maximization-based search attempts to find the top outputs that received the
highest scores from the model. This inherently leads to a set of similar candidates and re-ranking may
suffer from the lack of diversity. On the other hand, stochastic sampling introduces more variances
among candidates by randomized choices during decoding. However, traditional stochastic sampling
may suffer from the low quality of sampled outputs due to the deterministic nature of structured
prediction. Furthermore, it is unclear how to adapt popular sampling methods, such as top-k and
top-p sampling, to solutions that are not formalized as sequence generation (e.g., the biaffine parser).

In this work, we explore a special sampling method, dropout-p sampling, that has attracted little
attention in the literature. Dropout (Srivastava et al., [2014) is a regularization technique used in
almost all modern neural network-based models. The key idea is to randomly drop some neurons
from the neural network during training. Normally, dropout is turned off during inference. However,
in dropout-p sampling, we keep using dropout with dropout rate p. Compared to traditional sampling
methods, dropout-p sampling has the following advantages: (1) It directly changes the scoring
function and keeps any default decoding algorithm unchanged; (2) It can be regarded as conducting
global sampling instead of a series of local sampling at each decoding step, potentially improving the
formality of output structure; (3) It also has a broader applicable scope that is not limited to sequence
generation models.

Discussion Following previous work (Shen et al., [2004; Yan et al.||[2021; |Xie et al., [2021), our
discussion has been focused on handling one model update. However, BCR can be extended to handle
multiple turns of model updates. To do so, one can keep the most recent k£ models and use a weighted
combination of their scores as the re-ranking metric. In practice, k can be set to trade-off between
performance and runtime cost.

One downside of BCR is that we must maintain and deploy both the old and new models. Because the
re-ranking step has less time complexity compared to the decoding algorithms and the computation is
fully parallelizable, this does not create much additional inference latency. However, the increase in
memory footprint does entail an increase in the inference hosting cost. One remedy could be to use
knowledge distillation to distill the old model(s) into a smaller one, which we leave for future work.

6 Experiments

6.1 Setup

For the ensembles of biaffine parsers, we first average the edge scores from each model, then run
MST on the average scores. For stack-pointer and seq2seq parsers, we average the local prediction
scores from each model at each decoding step. We combine 5 models in model ensemble. The impact
of ensemble size is discussed in Appendix [B] For knowledge distillation, as mentioned in Section[5.2,
we simply replace the ground-truth output in the original training set with the old model’s predictions
when training the new model For BCR, various decoding methods are explored for candidate
generation. Specifically, we use k-best spanning trees algorithm (Zmigrod et al., 2020, 2021b) with
biaffine parsers, and beam search with stack-pointer parsers and seq2seq parsers. We also explore

SWe also tried the combination of pseudo and original training data but found little difference in performance
and regression.

| deepbiaf = deepbiaf | stackptr=-stackptr | deepbiaf =>stackptr
| ucm UAS | UCM UAS | UCM UAS

ACC NFR NFI ACC NFR NFI| ACC NFR NFI ACC NFR NFI| ACC NFR NFI ACC NFR NFI
Old 63.88 - -91.76 - -165.83 - -91.81 - -163.88 - -91.76 - -
—Untreated [63.97 3.69 10.25 91.64 1.66 19.85/66.03 3.43 10.10 91.73 1.67 20.20{66.03 3.73 10.98 91.73 2.10 25.37
—Distillation|64.00 3.82 10.62 91.67 1.62 19.45|65.66 3.57 10.40 91.70 1.70 20.49|66.11 3.62 10.68 91.78 2.03 24.71
—Ensemble [64.81 2.51 7.14 92.10 1.02 12.97|67.21 2.21 6.74 92.21 1.11 14.30{67.21 2.83 8.62 92.21 1.62 20.75
—BCR 64.36 1.12 3.14 91.78 0.84 10.21|66.45 1.05 3.12 91.88 0.84 10.30(66.76 1.20 3.60 92.01 1.11 13.87

Table 3: Comparison of different regression reduction methods on dependency parsing (NFR | NFI |
ACC 1) using unlabeled metrics (results of labeled metrics are shown in Appendix|A). Old indicates
the old model’s performance before model update. Untreated denotes the results of new models
without any treatment. BCR denotes the results with backward-congruent re-ranking.

sampling-based decoding methods such as top-k sampling (k € {5, 10, 50, 100}) (Fan et al.,|2018;
Radford et al.| [2019), top-p sampling (p € {0.95,0.90,0.85,0.80}) (Holtzman et al., 2019), and
dropout-p sampling (p € {0.1,0.2,0.3,0.4}). The number of candidates in BCR is set to 10. Our
experiments show that the best results are always achieved using dropout-p sampling. For brevity,
we only report the best results and defer the detailed analysis of the candidate generation methods
to Section [6.4] We include the model update regression results without any treatment in Section 4
(denoted as Untreated) for reference (i.e., the new models are trained normally with a different set of
random seeds).

For dependency parsing, we adapt the implementation of the biaffine parser |Dozat and Manning
(2017) and the stack-pointer parser Ma et al.|(2018) in NeuroNLPZﬁ We use the default configurations
suggested in (Ma et al.|[2018) for training and testing models. For conversational semantic parsing,
we re-implement the seq2seq parser Rongali et al.|(2020) using Fairseq |Ott et al. (2019) and the
pre-trained language models [Liu et al.|(2019) are downloaded from HuggingFaC

6.2 Results on Dependency Parsing

Table[3|shows the results of different methods for reducing model update regression on the dependency
parsing task. We can see that model ensemble brings down negative flips in all model update settings
compared with the untreated baseline (on average 28% relative reduction in NFI). On the other hand,
knowledge distillation shows little effect on reducing model update regression. We hypothesize that it
is due to the almost perfect word-level accuracy (UAS) of the old model when running on the training
set. As a result, there is little difference between the original training set and the synthetic training set
used for distillation, leading to performance close to the untreated baseline.

For BCR, it substantially reduces NFR and NFI across all model update settings (an average of
58% relative reduction in NFI), greatly outperforming model ensemble and knowledge distillation.
This is very encouraging given that model ensemble is often the most effective approach to reduce
regression in classification problems (Yan et al., [2021; Xie et al.,2021) or even considered as a
paragon (Yan et al.,2021). Interestingly, BCR delivers more pronounced gains over model ensemble
in the heterogeneous model update setting (deepbiaf = stackptr). In particular, BCR reduces NFI
by 67% while model ensemble only obtains 21% relative reduction, according to UCM. The reason
might be that model ensemble can only reduce the variance in models of the same kind, while the
intrinsic gap between different kinds of models cannot be reduced. In contrast, BCR selects the
most backward-compatible prediction regardless of the source of candidates. Another interesting
observation is that BCR can also improve the overall accuracies though the improvements slightly
lag behind model ensemble (e.g., +0.19 vs. +0.37 UAS points on average). We regard it as a side
benefit since our primary goal here is to reduce model update regression rather than to boost accuracy.

6.3 Results on Conversational Semantic Parsing

Table[d shows the results of different methods for reducing model update regression on the conver-
sational semantic parsing task. The empirical results generally support the main findings on the

https://github.com/XuezheMax/NeuroNLP2
"https://huggingface.co

https://github.com/XuezheMax/NeuroNLP2
https://huggingface.co

| s2s-base-part=>-s2s-base | s2s-large-part=-s2s-large | s2s-base=>s2s-large

| EM span EM | EM span EM | EM span EM
ACC NFR NFI ACC NFR NFI| ACC NFR NFI ACC NFR NFI| ACC NFR NFI ACC NFR NFI
Old 85.04 - - 89.83 - -(86.86 - - 90.94 - -(85.67 - -90.34 - -

—Untreated [85.88 2.98 21.12 90.50 2.25 23.68|86.98 2.61 20.03 91.10 1.99 22.37|87.04 3.16 24.40 90.96 2.68 29.64
—Distillation|85.54 2.61 18.06 90.23 2.07 21.21|86.64 2.04 15.25 90.88 1.63 17.90|87.69 1.97 15.97 91.53 1.79 21.16
—Ensemble [86.90 1.73 13.24 91.35 1.28 14.80/87.65 1.17 9.47 91.62 1.00 11.78|87.65 2.70 21.88 91.62 2.15 25.60
—BCR 86.16 0.75 5.39 90.69 0.69 7.42|87.41 0.54 4.30 91.24 0.67 7.61|87.49 0.69 5.5191.53 0.74 8.78

Table 4: Comparison of different methods on conversational semantic parsing (NFR | NFI | ACC 1).

Method | EM span EM 30 3 o NFL

ACC NFR NFI ACC NFR NFI 24 \\ ER
Untreated |87.04 3.16 24.40 90.96 2.68 29.64 \ NER |
Beam, b=10 [87.61 1.63 13.20 91.52 1.49 17.57 18 N
top-k=5 87.71 2.16 17.55 91.62 1.81 21.63
top-p=0.95 |87.73 2.18 17.77 91.66 1.81 21.65 12 %}iﬁ— BT Y SN PR
dropout-p=0.3|87.49 0.69 5.5191.53 0.74 8.78) o G
dropout-p=0.1|88.01 1.26 10.54 91.98 1.0613.23 -]
dropout-p=0.2|87.87 0.88 7.27 91.88 0.81 10.03 0
dropout-p=0.3(87.49 0.69 5.51 91.53 0.74 8.78 1 2 3 4 5 6 7 8 9 10
dropout-p=0.4/87.26 0.72 5.63 91.31 0.81 9.36 .

Number of candidates

Table 5: Comparison of different decoding Figure 2: Effect of increasing number of candi-
methods with selected parameters of each dates to NFI ({), NFR (), and error rate (ER |)
method (s2s-base=>s2s-large). (s2s-base=>s2s-large).

dependency parsing task: (1) Knowledge distillation has little effect on reducing NFR and NFI (except
for the s2s-base=-s2s-large setting). (2) Model ensemble brings moderate reduction (28% relative
NFI reduction on average) across all model update settings. (3) BCR achieves substantial reduction
(73% relative NFI reduction on average), greatly outperforming model ensemble and knowledge
distillation. BCR not only reduces model update regression but also improves accuracies as compared
to the untreated baseline. This is particularly intriguing since we are using a weaker model (the
old model) is used to re-rank the candidates generated by a stronger model (the new model). We
speculate that the reason is the complementary effect of different models in differentiating distractors.

6.4 Analysis of BCR

Next, we study the two key components of BCR, namely candidate generation and the re-ranking
metric. We analyze the results of different decoding methods described in Section[5.3]and empirically
reveal the performance upper-bounds of BCR.

Candidates for Re-ranking We present the results of BCR with different decoding methods in
Table[5. For clarity, we only report the best result obtained using each decoding method together
with the optimal hyper-parameter setting (except for dropout-p sampling). We can see that dropout-p
sampling obtains the largest reduction in both NFR and NFI, substantially outperforming beam
search and traditional truncated sampling (the gaps in NFI are larger than 10 points). top-p and
top-k sampling are the least effective approaches. We hypothesize that traditional truncated sampling
is not suitable for our structured prediction tasks. Unlike open-ended generation tasks, there are
only a few valid local predictions at each decoding step. Therefore, the candidates generated by
truncated sampling may lack diversity. For dropout-p sampling, as p increases from 0.1 to 0.3, the
improvements in accuracies shrink while the reductions in NFR and NFI increase. This is expected
since a larger p leads to lower quality of individual candidates but a more diverse candidate pool.

We plot the curves of NFR, NFI, and error rate (ER) with the number of candidates in Figure g As
seen, all three metrics decrease as the number of candidates increases. However, they converge at
different points. NFI and NFR drop significantly even after the reduction in ER reaches its limit.

Oracle Re-ranker To shed light on the effectiveness of our choice of the re-ranking metric (i.e.,
the old model’s prediction score pg,,,), we compare it to two kinds of oracle re-rankers: one using
span-level EM (w/ ACC) and one using span-level NFR (w/ NFR). The ACC and NFR re-rankers

represent the upper bounds of ACC and NFR that re-ranking methods can achieve. The results are
presented in Table E It can be observed that the NFI and NFR of using py ,, are very close to the
upper bounds for reducing model update regression (w/ NFR). Another notable observation is that
the NFIs of using pg,, and NFR re-ranking are much lower than the NFI of ACC re-ranking. This
demonstrates that improving accuracy is not equivalent to reducing model update regression.

Inference Speed For dropout-p sampling, the over-
all computation overhead of the decoding step grows
linearlypwith the number of candidates. I%Ieve?tl%eless, Re-ranker| EM span EM
different runs of sampling can be done in parallel. ACC NFR NFI ACC NFR NFI
With the same inference hardware (one Nvidia V100 Untreated |87.04 3.16 24.40 90.96 2.68 29.64
GPU) and the same batch size of 32, the decoding W; 1;&31& S;gg 822 2;} g;gg 8;3 gzg
and re-ranking speeds of deepbiaf are 171 and 244 W ol Lt : o .
sentences periecpond, and 64l;nd];21 sentences per w/ACC [92.68 0.65 EEI 9504 0.55 I
second for stackptr. For seq2seq parsers, we observe
that the speed of re-ranking is about 5x of the de-
coding speed. In practice, the re-ranking step can
be made even faster as it generally allows for larger
batch sizes.

Table 6: Comparison of BCR (pg,,,) to ora-
cle re-rankers (NFR, ACC) (s2s-base=>s2s-
large).

7 Conclusions

This paper presented the first study on the model update regression issue in NLP structured prediction
tasks. Experiments on two representative structured prediction tasks showed that model update
regression is severe and widespread across different model update settings. To reduce model update
regression, we explored knowledge distillation, model ensemble, and backward-congruent re-ranking.
Backward-congruent re-ranking consistently achieves much more significant regression reduction
than distillation and ensemble methods. In the future, model update regression should be examined in
other structured prediction tasks such as text generation in NLP and image segmentation in computer
vision, and scenarios of multiple rounds of model updates.

References

Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep? In Proceedings of
the 27th International Conference on Neural Information Processing Systems-Volume 2, pages
2654-2662.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussa. 2020. Continual lifelong
learning in natural language processing: A survey. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6523-6541.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 535-541.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1-207.

Michael Collins and Terry Koo. 2005. Discriminative reranking for natural language parsing.
Computational Linguistics, 31(1):25-70.

Bich-Ngoc Do and Ines Rehbein. 2020. Neural reranking for dependency parsing: An evaluation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
4123-4133.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency
parsing. In International Conference on Learning Representations, 2017.

Arash Einolghozati, Panupong Pasupat, Sonal Gupta, Rushin Shah, Mrinal Mohit, Mike Lewis, and
Luke Zettlemoyer. 2019. Improving semantic parsing for task oriented dialog. arXiv preprint
arXiv:1902.06000.

10

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An interesting but challenging application for
natural language inference. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2214-2220.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story generation. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 889-898.

Alexander Gepperth and Barbara Hammer. 2016. Incremental learning algorithms and applications.
In European symposium on artificial neural networks.

Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-aware ranking in
search & recommendation systems with application to linkedin talent search. In Proceedings

of the 25th acm sigkdd international conference on knowledge discovery & data mining, pages
2221-2231.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representations. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 2787-2792.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2019.

Yoon Kim and Alexander M. Rush. 2016. Sequence-level knowledge distillation. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1317-1327.

Reno Kriz, Jodo Sedoc, Marianna Apidianaki, Carolina Zheng, Gaurav Kumar, Eleni Miltsakaki,
and Chris Callison-Burch. 2019. Complexity-weighted loss and diverse reranking for sentence
simplification. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3137-3147.

Sandra Kiibler, Ryan McDonald, and Joakim Nivre. 2009. Dependency parsing. Synthesis lectures
on human language technologies, 1(1):1-127.

Phong Le and Willem Zuidema. 2014. The inside-outside recursive neural network model for
dependency parsing. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 729-739.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting
objective function for neural conversation models. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 110-119.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. 2018.
Stack-pointer networks for dependency parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1403-1414.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and J. Weijer.
2020. Class-incremental learning: survey and performance evaluation. ArXiv, abs/2010.15277.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 48-53.

11

G. L. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and S. Wermter. 2019. Continual
lifelong learning with neural networks: A review. Neural networks : the official journal of the
International Neural Network Society, 113:54-71.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In
Proceedings of the Eighth International Conference on Language Resources and Evaluation, pages
2089-2096.

Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. 2001. Learn++: An incremental
learning algorithm for supervised neural networks. IEEE transactions on systems, man, and
cybernetics, part C (applications and reviews), 31(4):497-508.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many human languages. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages
101-108.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and Wael Hamza. 2020. Don’t parse, generate! a
sequence to sequence architecture for task-oriented semantic parsing. In Proceedings of The Web
Conference 2020, pages 2962-2968.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. 2019. Masked language model
scoring. arXiv preprint arXiv:1910.14659.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004. Discriminative reranking for machine
translation. In Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pages 177-184.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. 2020. Towards backward-compatible
representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6368—6377.

Noah A Smith. 2011. Linguistic structure prediction. Synthesis lectures on human language
technologies, 4(2):1-274.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013. Parsing with
compositional vector grammars. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 455-465.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958.

Frederik Trauble, Julius von Kiigelgen, Matthédus Kleindessner, Francesco Locatello, Bernhard
Scholkopf, and Peter V. Gehler. 2021. Backward-compatible prediction updates: A probabilistic
approach. arXiv preprint arXiv:2107.01057.

Xinyu Wang, Yong Jiang, Zhaohui Yan, Zixia Jia, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei
Huang, and Kewei Tu. 2021. Structural knowledge distillation: Tractably distilling information
for structured predictor. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 550-564, Online. Association for Computational
Linguistics.

Yuqing Xie, Yi-An Lai, Yuanjun Xiong, Yi Zhang, and Stefano Soatto. 2021. Regression bugs
are in your model! measuring, reducing and analyzing regressions in NLP model updates. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 6589-6602.

12

https://doi.org/10.18653/v1/2021.acl-long.46
https://doi.org/10.18653/v1/2021.acl-long.46

Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang, Siqi Deng, Meng Wang, Wei Xia, and Stefano
Soatto. 2021. Positive-congruent training: Towards regression-free model updates. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14299-14308.

Kyra Yee, Yann Dauphin, and Michael Auli. 2019. Simple and effective noisy channel modeling
for neural machine translation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 5696-5701.

Pengcheng Yin and Graham Neubig. 2019. Reranking for neural semantic parsing. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 4553-4559.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020. Please mind the root: Decoding arborescences
for dependency parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4809—4819.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2021a. Efficient computation of expectations under
spanning tree distributions. Transactions of the Association for Computational Linguistics, 9:675—
690.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2021b. On finding the k-best non-projective depen-
dency trees. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1324-1337.

13

https://doi.org/10.1162/tacl_a_00391
https://doi.org/10.1162/tacl_a_00391

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section/[7]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? The data used in
this paper is publicly available. We will release our code upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section[6.1]and Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section@

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section [6]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Preliminaries
	Prediction Flips in Structured Prediction
	Dependency Parsing
	Conversational Semantic Parsing

	Measuring Model Update Regression
	Model Update Settings
	Dependency Parsing
	Conversational Semantic Parsing
	Discussions

	Reducing Model Update Regression
	Model Ensemble
	Knowledge Distillation
	Backward-Congruent Re-ranking

	Experiments
	Setup
	Results on Dependency Parsing
	Results on Conversational Semantic Parsing
	Analysis of BCR

	Conclusions
	Results on Dependency Parsing (Labeled Metrics)
	Impact of Ensemble Size
	Oracle Re-rank (deepbiafstackptr)

