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ABSTRACT

Recent advancements in artificial intelligence (Al) have led to the development of
Al vision systems that closely resemble biological vision in terms of both behav-
ior and neural recordings. While prior research in modeling biological vision has
largely concentrated on comparing individual Al systems to a biological counter-
part, our study instead investigates the collective behavior of model populations.
We focus on inputs that generate the most divergent responses among a diverse
population of Al vision systems, as measured by their aggregate disagreement.
We would expect that the factors driving disagreement among Al systems are also
causes of misalignment between Al systems and human perception. We challenge
this expectation by demonstrating alignment between Al systems and humans at
the population level, even for images that generate divergent responses among Al
systems. This unexpected finding challenges our understanding of the relation-
ship between the limitations of Al systems and human perception, suggesting that
even the most challenging stimuli for Al systems are reflective of human percep-
tual difficulties.

1 INTRODUCTION

As artificial intelligence (AI) systems scale in complexity, they tend to exhibit increasingly simi-
lar behavior and representations (Li et al., 2015; Geirhos et al., 2021; Huang et al., 2021; Sorscher
et al., 2022), making it challenging to differentiate the unique computational properties of individ-
ual systems (Geirhos et al., 2018; Maheswaranathan et al., 2019; Han et al., 2023). Representational
convergence or universality is a natural consequence of standard machine learning training because
optimization of overparameterized systems on vast datasets leads to similar solutions despite imple-
mentational differences (Cao & Yamins, 2021; Huh et al., 2024; van Rossem & Saxe, 2024), with
behavioral convergence as a downstream consequence. However, despite convergence in the aggre-
gate, Al systems can disagree in their predictions for specific visual inputs, especially for artificial
stimuli produced from corruptions poorly represented in their training diet (Geirhos et al., 2020).

One might expect that the stimuli driving the most disagreement among Al systems are those that
cause these systems to deviate the most from human perception, with the intuition that these “dis-
agreeable” images are challenging cases in which Al systems struggle to reach a consensus due to
limitations in their training, architecture, or underlying assumptions about visual processing. This
expectation aligns with standard approaches for comparing internal representations of Al and biolog-
ical vision, such as representational similarity analysis (Kriegeskorte et al., 2008), which prescribe
computing similarities between model and biological activations aggregated over a large-scale and
often undifferentiated stimulus set. Moreover, this expectation is explicit in behavioral extrapolation
tests, which exploit intrinsic properties of Al systems to degrade their alignment to human behavior,
for example, translation invariance or sensitivity to adversarial perturbations (Geirhos et al., 2019;
Madan et al., 2020; Hendrycks et al., 2021; Ollikka et al., 2024).

In this work, we challenge the assumption that disagreement among Al systems is intrinsic to these
systems and unrelated to aspects of human visual processing. Instead, we aim to demonstrate that
disagreement among populations offers a valuable opportunity for comparative analysis between
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Figure 1: (Dis)agreement among Al vision systems is correlated to (dis)agreement among hu-
mans. A kernel density estimate plot of ObjectNet (Barbu et al., 2019) images corresponding to hu-
man and Al agreement levels. The y-axis indicates the label agreement level per Eq. (2) among 1032
Al systems (see Section (2.2)); the z-axis indicates the label agreement level per Eq. (2) among 42
human participants (see Section (2.4)); histograms along each axis reflect the proportion of images
at each marginal agreement level. We observe a positive correlation between model agreement and
human agreement, which demonstrates that the stimuli that cause the most (dis)agreement among
Al systems also cause the most (dis)agreement among humans.

artificial and human vision systems, as it accounts for the aggregation of individual differences in
visual processing that may be elicited by properties of individual stimuli.

Our contributions are as follows:

— We quantify disagreement among a large and diverse population of Al vision systems, com-
prising an order of magnitude more systems than comparable studies comparing artificial and
human vision (¢f. Geirhos et al., 2021), and demonstrate a correspondence between model
disagreement and human disagreement; see Fig. (1) alongside later sections.

— We investigate the properties of naturalistic stimuli that elicit the most disagreement among
this model population, in contrast to prior studies that construct artificial stimuli with properties
tuned for particular aspects of artificial visual processing (c¢f. Geirhos et al., 2019; Hendrycks
etal., 2021).

— We provide evidence that disagreement among Al vision systems is driven by aspects of human
visual perception, particularly image difficulty as quantified by human behavioral data, suggest-
ing that individual differences in Al vision systems may reflect individual differences in human
visual processing rather than suboptimalities in artificial vision.

In conducting our study, we aim to uncover the factors that make certain images “disagreeable”
for both Al vision systems and humans, and ultimately, how this understanding can guide the de-
velopment of more robust and human-aligned vision systems, a problem of significant current inter-
est (Wichmann & Geirhos, 2023; Sucholutsky et al., 2023). Moreover, our study, and the converging
evidence for behavioral and representational convergence in the field at large, call for a rethinking
of model comparison away from the paradigm of one-to-many towards many-to-many comparisons
between artificial and biological vision.
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Figure 2: Survey of the Al vision system population by architecture family. Scatter plot com-
paring model performance (top-1 accuracy) on ObjectNet (y-axis) versus ImageNet (z-axis). Each
point indicates a single model, with colors indicating its architecture family (convolutional, feedfor-
ward, hybrid, recurrent, or transformer). Higher ImageNet accuracy corresponds to higher Object-
Net accuracy, irrespective of architecture family, consistent with representational convergence.

2 METHODS

2.1 VISUAL STIMULUS SETS

We conduct our analyses on a diverse set of images drawn from ImageNet (Deng et al., 2009) and
ObjectNet (Barbu et al., 2019), widely used benchmarks in computer vision research. ImageNet
provides a dataset of labeled natural images across thousands of object categories, while ObjectNet
introduces additional challenges by presenting objects in real-world scenarios with varied viewpoints
and occlusions and has a “no training” policy to preserve its status as a test set. These datasets were
chosen for their ability to test model performance across a wide range of object categories and
difficulty levels, allowing us to capture a spectrum of disagreement. We use the 50000 images
among 1000 classes from the ILSVRC 2012-2017 validation set (Russakovsky et al., 2015) and the
50000 images among 313 classes from the ObjectNet test set, for a total of 100 000 visual stimuli
among 1200 classes due to the partial class overlap of ImageNet and ObjectNet. We will henceforth
refer to these sets simply as “ImageNet” and “ObjectNet.”

2.2 A POPULATION OF AI SYSTEMS

We examined the behavior of 1032 Al vision systems, spanning different architectures, including
convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid architectures; see
Fig. (2) and Fig. (10). These systems varied in complexity, dataset size, and pre-training and fine-
tuning protocols, representing a comprehensive cross-section of early and state-of-the-art visual
recognition systems; see Appendix (A.1). We obtained the class label predictions of each system on
ImageNet and ObjectNet, enabling us to analyze patterns of agreement and disagreement at scale.

2.3 MEASURING DISAGREEEMENT WITH FLEISS’ k

To quantify the level of agreement among the population of Al systems, we employ Fleiss’
(“kappa”), a statistical measure used to assess the reliability of agreement between multiple raters
assigning categorical ratings to a set of items (Fleiss, 1971). In our context, each Al system or
human participant acts as a rater assigning a categorical label to each stimulus (image).

Formally, let M represent the number of raters (Al systems or humans), N the number of stimuli
(images), k the number of categories (class labels), and 7" the prediction matrix of size IV X k, where
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Figure 3: One agreeable and three disagreeable ObjectNet images. One image from ObjectNet
that elicits the highest agreeement and three that elicit the highest disagreement (lowest per-stimulus
agreement per Eq. (2)) amongst the population of vision models described in Section (2.2). Analo-
gous images for ImageNet are provided in Appendix (A.5).

T;; represents the number of models that assign category j to stimulus . For each stimulus 7, the
total number of ratings is

ni=y Tij=M. M

We compute the per-stimulus agreement as
k k
2 BTy = 1) 2 Ty(T — 1)
pagree,z nl(nz _ 1) M(M _ 1)

This value pygree,; represents the extent to which the models agree on stimulus ¢, ranging from 0 (no
agreement) to 1 (complete agreement). The observed agreement P is the average of all per-stimulus
agreements,

(@)

1 N
P= N z'zzgpagreeﬂ‘ . 3)

We assume a uniform distribution over categories, which means the expected agreement by chance
is P. = . Finally, Fleiss’ x is computed as

K= P-F . 4)

1-PF,

Eq. (4) quantifies the aggregate agreement among raters while adjusting for the agreement expected
by chance, and ranges from —1 (complete disagreement) to 1 (perfect agreement), with 0 indicating
no agreement beyond chance. Fleiss’ « thus provides a measure of inter-rater reliability (agreement)
among a population of raters (Al systems or humans) across a set of stimuli (images), and acts as
a generalization of Cohen’s x, the chance-corrected measure of pairwise agreement between two
systems most recently used by Geirhos et al. (2020) to compare individual Al systems to humans.

2.4 GROUNDING IN HUMAN BEHAVIORAL MEASURES

Mayo et al. (2023) collected a large dataset of human object recognition judgments consisting of
200 382 human responses from 2647 human participants for 4771 images, of which 2415 are from
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ObjectNet and 2356 from ImageNet. Images were presented at 6 different durations between 17ms
and 10s, with 42 responses collected per image (7 different subjects seeing each image at one of six
timings). In the next section, we compare population-level agreement with two human perceptual
measures derived from this dataset. The minimum viewing time is defined as the shortest duration
at which the majority of human participants (more than half) can correctly recognize an object in
an image. This metric serves as a proxy for image difficulty as longer times suggest that an image
is more challenging for humans to interpret quickly. The difficulty score is the total number of
incorrect responses out of the 42 presentations of each image. A higher difficulty score indicates
that more humans struggled with the image.

ImageNet-X (Idrissi et al., 2022) provides annotations for almost all images in the ImageNet dataset
(46 110 out of 50000 images) across 16 factors of variation that capture how each image differs
from prototypical examples of its class. Annotations were made by comparing each image to three
class-prototypical images, with human inspection to categorize the differences into the 16 factors.
The annotations cover factors of variation like pose, background, color, texture, size, lighting, and
occlusion. While multiple factors could be selected, a top factor was also determined for each
image to identify the main factor of deviation from the class prototypes. We take the intersection
of images evaluated over models, humans and ImageNet-X annotated images which results in 2194
with agreement scores and annotations for both models and humans.

3 RESULTS

Dataset | Minimum viewing time | Difficulty score | Human agreement
ImageNet —0.29 —0.33 0.30
ObjectNet —0.41 —0.45 0.44

Table 1: Correlation between model agreement and the human behavioral measures. Per-
stimulus model agreement (the y-axis of Fig. (1)) is negatively correlated with the human behav-
ioral measures of per-image difficulty described in Section (2.4), and positively correlated with
per-stimulus human agreement (the z-axis of Fig. (1)).

In this section, we investigate correspondences between model and human disagreement at the pop-
ulation level established in Fig. (1), as well as the human behavioral measures described in Sec-
tion (2.4). As a summary, Table (1) displays the correlation coefficients between model agreement
among Al vision models and the human behavioral measures across the two datasets, ImageNet
and ObjectNet. Overall, the correlations are stronger (more negative or positive) for the ObjectNet
dataset compared to ImageNet. ObjectNet contains images with more varied viewpoints, occlu-
sions, and real-world complexities, making them more challenging for both humans and Al models.
Examples of the lowest agreement images for ObjectNet are shown in Fig. (3).!

3.1 MINIMUM VIEWING TIME

The negative correlation in Table (1) means that as the minimum viewing time increases (i.e., the
image is harder for humans), the model agreement among Al systems decreases. In other words,
images that require longer viewing times for humans tend to be the ones where Al vision systems dis-
agree more. Fig. (4) demonstrates that many low-agreement images are associated with the longest
viewing time (10 seconds). This suggests that both humans and Al vision systems find these images
challenging, leading to lower agreement within both groups.

3.2 IMAGE DIFFICULTY

The negative correlation in Table (1) of agreement with difficulty score indicates that images with
higher difficulty scores (more challenging for humans) correspond to lower model agreement among
Al vision systems. This alignment implies that images difficult for humans are also difficult for Al
vision systems, leading to greater disagreement among the models. Fig. (6) visually reinforces this

! Additional images from both low-agreement and high-agreement sets for both ImageNet and ObjectNet
are available in Appendix (A.5).
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Figure 4: Disagreeable images take more time to recognize. Density estimate plots where images
are binned into different minimum viewing times (minimum duration at which an image is recog-
nized by a majority of humans (Mayo et al., 2023)). Human subjects tend to spend more time on

images with low agreement among both human and Al systems.
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Figure 5: Less diverse model population recovers the similar results A population of 102
ResNet-50 models trained on Imagenet with the only difference being the random seed used in

initialization is evaluated.
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Figure 6: Difficulty score and model agreement for ObjectNet. Two-dimensional histogram
illustrating the relationship between image difficulty for human participants, as measured by the
difficulty score described in Section (2.4), and model agreement on the ObjectNet dataset. The
x-axis represents the difficulty score for humans, with higher scores indicating more challenging
images. The y-axis shows the level of agreement among Al vision systems, where higher values
signify stronger consensus, and is analogous to the y-axis in Fig. (1). The color intensity represents
the density of images in each bin, with darker colors indicating a higher concentration of images.

relationship, displaying a clear downward trend in model agreement as the difficulty score increases.
The scatter plot demonstrates that as images become more challenging for humans (higher difficulty
scores), there is a corresponding decrease in agreement among Al vision systems. This visual rep-
resentation provides strong evidence for the alignment between human perceptual difficulties and
Al model disagreement, highlighting that both artificial and biological visual systems struggle with
similar types of challenging images.

Human agreement refers to the consistency of responses among human participants for each image
as calculated using Eq. (2). Higher values indicate that most humans agree on what the image
depicts. The positive correlation means that as human agreement increases, model agreement among
Al vision systems also increases. This suggests that when humans consistently agree on an image’s
content, Al vision systems are more likely to agree as well. Conversely, images that humans find
ambiguous or contentious lead to more disagreement among Al vision systems.

3.3 COUNTERFACTUAL LOW DIVERSITY MODEL POPULATION

To investigate the causal factors of variability within the model population leading to disagreement,
we train a population of 102 ResNet-50 models He et al. (2016) over ImageNet with the only differ-
ence between individual models being the random initialization seed. In contrast to the 1032 model
population collected, this population has no architecture variation or negligible performance varia-
tion (Section (3). The reproduction of the results shown in Fig. (1) by this low diversity population
as shown in Section (3) indicates the that architecture variability and training data/task variability
are not significant causal factors for population disagreement.

3.4 ANALYSIS OF LOW-AGREEMENT IMAGES

To investigate the probable causes of image difficulty and thus disagreement, we use additional
annotations of the data collected by (Mayo et al., 2023) and (Idrissi et al., 2022).
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Figure 7: Human labeled factors associated with disagreement. Bar chart of the relative propor-
tion of top factors among images from ImageNet-X that belong to low model agreement, low human
agreement and all image sets. Proportions are normalized within agreement categories (i.e., the blue
bars sum to 1, and similarly for the green and patterned bars). The threshold for low agreement
was set to 0.2 for both model and human populations, meaning that images with agreement levels
below this threshold were considered “low agreement.” Models deviate from humans substantially
in “background” and “pattern” variations.

3.4.1 USING HUMAN VIEWING TIME

The minimum viewing time data represents the minimum time necessary for a majority humans to
correctly classify an image. As shown in Fig. (4), disagreeable images take more time to recognize
among both the model and human populations.

3.4.2 USING HUMAN ANNOTATIONS

We make use of the annotations provided by the ImageNet-X dataset introduced in Section (2.4).
Fig. (7) displays the distribution of human-annotated visual attributes in ImageNet-X for three cate-
gories of images: those with low model agreement, those with low human agreement, and all images
in the ImageNet-X dataset that have agreement scores for both models and humans.

There are notable differences between Al vision systems and humans. The large gap in propor-
tion for “background” and “pattern” between models and humans suggests that Al systems might
be more sensitive to background variations than humans and human population are more likely to
disagree when pattern variations are present than models.

3.5 MODEL AGREEMENT PATTERNS ACROSS ACCURACY LEVELS

Lastly, we investigate how Fleiss’ & is affected by the accuracy of model subpopulations in our
sample. Fig. (8) compares Fleiss’ x scores across ImageNet and ObjectNet datasets as a function
of the mean accuracy of a subset of models from the overall model population. High agreement
images (the top 1000 images in agreement score) appear to exhibit perfect agreement, indicating
that the agreement level among models does not change over this set of images, presumably because
the images are easy and remain easy, continuing to be correctly classified as overall population
accuracy improves.

While overall Fleiss’ x grows linearly over all images, images with low agreement (the bottom 1000
images in agreement score) among the whole population of models lack improvement in agreement
until the highest accuracy level. This indicates that the models are not making progress on these
examples until a certain level of competency over the full dataset is achieved. The acceleration of
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Figure 8: Comparison of Fleiss’ « scores across ImageNet and ObjectNet datasets. We plot
model agreement patterns for model populations at different accuracy levels (x-axis) for (a) Ima-
geNet and (b) ObjectNet. Images over which Fleiss’ & is evaluated over are partitioned into low-
agreement images and high-agreement images (cf. all images) according to Eq. (2) evaluated across
all models. Images at low agreement levels are producing significantly lower Fleiss’ « than high
agreement and all images, even for models at high performance levels (tending to the right). This
deviation is more pronounced for (b) ObjectNet.
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Figure 9: Simulated reproduction of Fig. (8). Fleiss’ « scores for a simulated population of
models with different accuracy levels. Our simulation makes the key assumption that once an image
is correctly recognized, it will always be correctly recognized by more accurate models.
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agreement of the low-agreement images also indicates that performant models are reaching consen-
sus over these images faster than most images in the dataset.

We test these hypotheses for low-agreement and high-agreement images using a simulated popula-
tion of models based on the assumption that any correctly classified image will always be correctly
classified by a more competent (accurate) population. More details of this simulation can be found
in Appendix (A.3). Fig. (9) demonstrates that our simulation does agree with the empirical lines
seen in both the low-agreement images and high-agreement images in Fig. (8).

4 RELATED WORK

Error analysis. Geirhos et al. (2020) introduced the concept of error consistency to vision model-
ing in order to better quantify the behavioral alignment of artificial vision systems to human vision.
Complementary to accuracy, their method quantifies whether two decision-making systems make
the same errors on the same visual stimuli, which provides further insights into the similarity of
processing strategies between different models or between models and humans. Rather than con-
centrating on error consistency between two systems, we turn our focus towards population-level
consistency by analyzing the inputs that generate the most divergent responses across a diverse pop-
ulation of Al vision systems. This approach allows us to explore the nature of model disagreement
and its relationship to human perception, even in cases in which individual models may not match
the errors of individual humans. Like a complete treatment of accuracy and error-consistency, our
analysis does not require any knowledge of the true label or the existence of one for a given stimuli,
making it suitable for unannotated data which may be more readily available.

Synthetic stimuli. In contrast to the approach of Golan et al. (2020), which synthesizes “con-
troversial” stimuli through an optimization procedure involving backpropagation through a vision
system, our work focuses on analyzing disagreement between models on naturalistic samples that
either already exist or are generated without optimization. This approach allows us to assess models’
inductive biases and generalization abilities under more realistic conditions, providing insights into
how the models might behave when deployed in the wild, where they may encounter novel stimuli
that are not purposefully crafted to expose their differences. Furthermore, many artificial pertur-
bations to stimuli impact the original labeling and features, which can no longer be used without
making assumptions about the nature of the perturbation (Ilyas et al., 2019).

Metamers. Metamers are distinct visual stimuli that are perceptually indistinguishable to a spe-
cific perceptual, often visual, system (Freeman & Simoncelli, 2011). In contrast, our study focuses
on identifying single stimuli that evoke divergent responses across a diverse population of Al vi-
sion models. While metamers explore how different inputs can be perceived uniformly by a single
system, our work examines how the same input can be interpreted variably by multiple systems.
This fundamental difference highlights two distinct dimensions of visual representation: invariance
within a system versus variability across systems.

5 CONCLUSION

Our study of disagreement among model and human populations in vision challenges the assumption
present in prior work that disagreement among Al systems is unrelated to human visual processing.
We demonstrate a correspondence between Al and human disagreement on naturalistic stimuli, re-
vealing that image difficulty drives disagreement in both populations, and we provide evidence that
the dominant factors driving disagreement in Al systems also cause disagreement in human visual
perception. Our results suggest that individual differences in Al vision systems may overlap with
those in human visual processing rather than being unique artificial limitations, which prescribes
more population-level comparisons between Al and human vision systems rather than model-to-
individual comparisons.

10
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Figure 10: Survey of the Al vision system population by release date. Evolution of ImageNet
accuracy over time (2014-2024, discretized by month) for the Al vision systems in the population
described in Section (2.2). The upward trend demonstrates consistent improvement in model per-
formance, with more recent architectures showing rapid progress in recent years.

A APPENDIX

A.1 AI SYSTEM INVENTORY

Below is a sample of the first 50 models by alphabetical model ID (which identifies hyperparameters
like architecture and pre-training and fine-tuning datasets) of the Al system population described in
Section (2.2); the complete identification of all models is given in the accompanying code repository.

model ID

bat._resnext_26.256_classification.imagenet_lk

beitbase_patchl6.224 mim_.imagenet.2lk.ft_classification.imagenet_2lk_imagenet._1k
beit_base_patchl6_384 mim_imagenet_2lk_ft_classification_.imagenet_2lk_imagenet_lk
beit_large_patchl6.224 mim_imagenet_21lk_ft_classification.imagenet_2lk.imagenet_lk
beit_large_patchl6.384.mim_-imagenet.21lk_ft_classification.imagenet_21lk_imagenet._lk
beit_large_patchl6.512.mim_imagenet_21k_ft_classification.imagenet_2lk_imagenet_lk
beitv2 basepatchl6.224 mim_imagenet_lk_ft_classification.imagenet._lk
beitv2_basepatchl6.224.mim-imagenet.lk_.ft_classification.imagenet_2lk.imagenet.lk
beitv2_large_patchl6.224.mim_imagenet_lk_ft_classification.imagenet_lk
beitv2_large_patchl6.224 mim_imagenet.lk.ft_classification.imagenet_2lk.imagenet_lk
botnet_26.256_cl.imagenet_lk

caformer_base_36.224_classification.imagenet_lk
caformer_base.36.224_classification.imagenet_2lk_ft_.classification_.imagenet_.lk
caformer_base.36.384_classification.imagenet.lk
caformer_base.36.384_classification.imagenet_21lk_ft_classification_imagenet._lk
caformermedium.-36.224_classification-imagenet_1k
caformermedium.36.224_classification.imagenet_2lk_ft_classification_imagenet_lk
caformermedium.36.384_classification.imagenet_lk
caformermedium-36.384._classification-imagenet_21lk_ft.classification_-imagenet.lk
caformer_small_18_224_classification.imagenet_lk

caformer_.small_18.224 _classification.imagenet_2lk_ft_classification.imagenet.lk
caformer_small_18.384_classification.imagenet_lk

caformer_small_18.384 _classification.imagenet_21k_ft_classification_imagenet_lk
caformer_small_36.224_classification.imagenet_lk
caformer_.small._36.224_classification.imagenet_21lk_ft_classification.imagenet.lk
caformer_small_36_384_classification.imagenet_lk
caformer_small_36.384_classification.imagenet_2lk_ft_classification.imagenet.lk
caitmedium_36.384_distillation_imagenet_lk

caitmedium.48_448_ distillation.imagenet._lk
cait-small_24.224_distillation-imagenet.1k
cait.small_24_384_distillation_-imagenet_lk
cait.small_36.384_distillation.imagenet.lk
cait-xsmall_24.384.distillation-imagenet.lk

cait_xxsmall_24.224 distillation.imagenet_lk
cait.xxsmall.24.384_distillation.imagenet_lk
cait-xxsmall_36.224_distillation-imagenet.lk
cait.xxsmall_36.384_distillation.imagenet_lk
coat-litemedium.-224.classification.-imagenet_1k
coat_litemedium.384_classification.imagenet_lk
coat_.litemini_.224_classification_.imagenet_lk
coat-lite_small.224_classification.imagenet_lk
coat_lite_tiny.224_classification_imagenet_lk
coat.mini_224_classification.imagenet.lk
coat-small_224_classification_-imagenet.lk
coat_tiny_224_classification_imagenet_lk
coatnet._224_sw.imagenet.12k_ft_classification.imagenet.lk
coatnet_224_sw.imagenet_lk

coatnet. bn_224_sw.imagenet_lk

coatnet_nano-224_sw_-imagenet_lk
coatnet_rmlp_224_sw_imagenet_12k_ft_classification_imagenet_lk
coatnet_rmlp.224_sw.imagenet_lk
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A.2 DERIVATION OF FLEISS’ K WITH INCREASING ACCURACY

We derive how Fleiss’ x (Eq. (4)) changes for a population of raters with increasing performance.

Let:
* A: Accuracy of the Al systems (probability of correct classification).
Assume:

» Each model correctly classifies a stimulus with probability A.

* When incorrect, a model randomly selects one of the (k— 1) incorrect categories with equal

probability.
For a given stimulus ¢, the expected number of models assigning category j is:

* Correct category: T; comect = M x A

1-A

* Incorrect category (for each incorrect category j): T;; = M x =

Using Eq. (2):
k
2= BTy - 1)
pagree,z - M(M _ 1)

Substituting 75 correct and T5;:
Ti,correct(Ti,conect - 1) + (k - 1) X Tij (Tl] - 1)

Dagree,i = M(M — 1)
IMAMA- D)+ (k- 1) [ME= (M3 - 1)
B M(M —1)
Correct category term:
MA(MA —1) = M?A? - MA
Incorrect categories term:
1—A7? 1—A  M2(1-— A)?
k—1)|M — = -M(1-A
( ) { k— 1} k—1 k—1 ( )
Total numerator: ) e
M=(1 -
(M?A% — MA) + <1(€1) - M(1- A))
Simplify combined numerator:
M?(1— A)? M?2(1 — A)?
M2A2+¥—M(A+1—A):M2A2+ ( o m
k-1 k—1
Denominator:
M(M—-1)=M*-M
Per-stimulus agreement:
M?(1-A)?
omzar g MEA
pagree,z - M2 _ M

Divide numerator and denominator by m?:

(=42 _ 1
A+ 5w
1— 5

Pagree,i =

14

&)

(6)

(7

®)

9

(10)

(11

(12)

13)

(14)
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We can use this formulation of agreement per image and substitute this term into Eq. (2) and Eq. (4)
to derive a formulation for Fleiss’ « in terms of accuracy under the provided assumptions.

For large M we can approximate this to:

2
2, (1-4)
Dagree,i ~ A + L 1 . (15)
12 12
All Images All Images
Theory Kappa Theory Kappa
1.0 1.0
0.8 0.8
© ©
Q Q
Q Q
T T
X 0.6 X 0.6
& &
9 9
i i
0.4 0.4
0.2 0.2
0.0 0.0
0.65 0.70 0.75 0.80 0.85 0.90 0.1 0.2 0.3 0.4 0.5 0.6
Bin Mean Accuracy Bin Mean Accuracy
(a) ImageNet (b) ObjectNet

Figure 11: Comparison of empirical Fleiss’ « to the Fleiss’ derived using Eq. (14)

The deviations of the empirical Fleiss’ « from the derivation shown in Fig. (11) show that our
models do not follow the assumptions implied in the derivation. In particular, the consistent larger
agreement indicates that models are not agreeing in random uniform way across images in ImageNet
and ObjectNet.

A.3 FLEISS’ kK WITH WITH A SIMULATED POPULATION OF MODELS

We constructed a simulation of Fleiss’ x among our population of models adding one additional
assumption: Image classifications are learned strictly in order. In particular, a model with 80%
classification accuracy will correctly classify all of the images that a 40% accuracy model gets right
plus and additional 40% of images in the set of images evaluated. We implemented this simulation
by simply giving N images a random unique learnability ranking from 1 to N. A simulated model
then correctly classifies the first C' images where C'/N matches the models average accuracy. The
models predictions for the remaining N — C predictions are random.

Running this simulation with the parameters N = 50000, M = 1032, k = 50, sampling average
model accuracy randomly between 0 and 100, results in Fig. (9).
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Algorithm 1 Generation of model population with ordered learnability.

1: Initialize parameters

N <+ 50000 // Number of images
M <+ 1032 // Number of models
k + 50 // Number of classes

Assign ground truth labels to images
images_per_class < | N/k]
remainder <— N mod k

9: GT labels < empty list
10: for class <~ 1to k do

11:  if class < remainder then

12: n < itmages_per_class + 1

13:  else

14: n < images_per_class

15:  endif

16:  Append n instances of class to GT _labels

17: end for

18: Randomly shuffle GT'_labels

19:

20: Assign unique learnability rankings to images
21: image_indices < Random permutation of {1,2,..., N}
22:

23: Assign random accuracies to models

24: for m < 1to M do

25:  accuracy[m] < Random value in [0.65, 0.90]
26: end for

28: Generate predictions for each model

29: for m < 1to M do

30:  C < Round (accuracy[m] x N)

31:  correct_indices < image_indices[l : C]

32 incorrect_indices < image_indices[C + 1 : N]
33:  for each ¢ in correct_indices do

34: predictions[m, i] < GT _labels]i]

35:  end for

36:  for each ¢ in incorrect_indices do

37: incorrect_classes < {1,2,...,k} \ {GT labels[i]}

38: predictions[m, i] < Random choice from incorrect_classes
39:  end for

40: end for

A.4 HUMAN AGREEMENT VS. MODEL AGREEMENT

Fig. (12) compares the density plot of models versus human agreement for ImageNet and ObjectNet.
In ObjectNet, which contains more challenging natural images, Al models show stronger alignment
with human judgments on images that cause disagreement rather than agreement. This trend is
less pronounced in ImageNet. The dominant agreement in ImageNet is likely due to the model
population being trained or fine-tuned on ImageNet making this task easier than ObjectNet.

A.5 ADDITIONAL IMAGES SELECTED BASED ON AGREEMENT SCORE
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Figure 12: Comparison of agreement levels between Al vision models and humans for (a) Ima-
geNet and (b) ObjectNet datasets. Each point represents an image, with its position indicating the
agreement level among 1032 Al vision systems (y-axis) and 42 human participants (x-axis).
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Figure 13: Lowest agreement images from ObjectNet
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Figure 14: Lowest agreement images from ImageNet
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Figure 16: Highest Agreement Images from ImageNet
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