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ABSTRACT

Recent advancements in artificial intelligence (AI) have led to the development of
AI vision systems that closely resemble biological vision in terms of both behav-
ior and neural recordings. While prior research in modeling biological vision has
largely concentrated on comparing individual AI systems to a biological counter-
part, our study instead investigates the collective behavior of model populations.
We focus on inputs that generate the most divergent responses among a diverse
population of AI vision systems, as measured by their aggregate disagreement.
We would expect that the factors driving disagreement among AI systems are also
causes of misalignment between AI systems and human perception. We challenge
this expectation by demonstrating alignment between AI systems and humans at
the population level, even for images that generate divergent responses among AI
systems. This unexpected finding challenges our understanding of the relation-
ship between the limitations of AI systems and human perception, suggesting that
even the most challenging stimuli for AI systems are reflective of human percep-
tual difficulties.

1 INTRODUCTION

As artificial intelligence (AI) systems scale in complexity, they tend to exhibit increasingly simi-
lar behavior and representations (Li et al., 2015; Geirhos et al., 2021; Huang et al., 2021; Sorscher
et al., 2022), making it challenging to differentiate the unique computational properties of individ-
ual systems (Geirhos et al., 2018; Maheswaranathan et al., 2019; Han et al., 2023). Representational
convergence or universality is a natural consequence of standard machine learning training because
optimization of overparameterized systems on vast datasets leads to similar solutions despite imple-
mentational differences (Cao & Yamins, 2021; Huh et al., 2024; van Rossem & Saxe, 2024), with
behavioral convergence as a downstream consequence. However, despite convergence in the aggre-
gate, AI systems can disagree in their predictions for specific visual inputs, especially for artificial
stimuli produced from corruptions poorly represented in their training diet (Geirhos et al., 2020).

One might expect that the stimuli driving the most disagreement among AI systems are those that
cause these systems to deviate the most from human perception, with the intuition that these “dis-
agreeable” images are challenging cases in which AI systems struggle to reach a consensus due to
limitations in their training, architecture, or underlying assumptions about visual processing. This
expectation aligns with standard approaches for comparing internal representations of AI and biolog-
ical vision, such as representational similarity analysis (Kriegeskorte et al., 2008), which prescribe
computing similarities between model and biological activations aggregated over a large-scale and
often undifferentiated stimulus set. Moreover, this expectation is explicit in behavioral extrapolation
tests, which exploit intrinsic properties of AI systems to degrade their alignment to human behavior,
for example, translation invariance or sensitivity to adversarial perturbations (Geirhos et al., 2019;
Madan et al., 2020; Hendrycks et al., 2021; Ollikka et al., 2024).

In this work, we challenge the assumption that disagreement among AI systems is intrinsic to these
systems and unrelated to aspects of human visual processing. Instead, we aim to demonstrate that
disagreement among populations offers a valuable opportunity for comparative analysis between
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Figure 1: (Dis)agreement among AI vision systems is correlated to (dis)agreement among hu-
mans. A kernel density estimate plot of ObjectNet (Barbu et al., 2019) images corresponding to hu-
man and AI agreement levels. The y-axis indicates the label agreement level per Eq. (2) among 1032
AI systems (see Section (2.2)); the x-axis indicates the label agreement level per Eq. (2) among 42
human participants (see Section (2.4)); histograms along each axis reflect the proportion of images
at each marginal agreement level. We observe a positive correlation between model agreement and
human agreement, which demonstrates that the stimuli that cause the most (dis)agreement among
AI systems also cause the most (dis)agreement among humans.

artificial and human vision systems, as it accounts for the aggregation of individual differences in
visual processing that may be elicited by properties of individual stimuli.

Our contributions are as follows:

— We quantify disagreement among a large and diverse population of AI vision systems, com-
prising an order of magnitude more systems than comparable studies comparing artificial and
human vision (cf. Geirhos et al., 2021), and demonstrate a correspondence between model
disagreement and human disagreement; see Fig. (1) alongside later sections.

— We investigate the properties of naturalistic stimuli that elicit the most disagreement among
this model population, in contrast to prior studies that construct artificial stimuli with properties
tuned for particular aspects of artificial visual processing (cf. Geirhos et al., 2019; Hendrycks
et al., 2021).

— We provide evidence that disagreement among AI vision systems is driven by aspects of human
visual perception, particularly image difficulty as quantified by human behavioral data, suggest-
ing that individual differences in AI vision systems may reflect individual differences in human
visual processing rather than suboptimalities in artificial vision.

In conducting our study, we aim to uncover the factors that make certain images “disagreeable”
for both AI vision systems and humans, and ultimately, how this understanding can guide the de-
velopment of more robust and human-aligned vision systems, a problem of significant current inter-
est (Wichmann & Geirhos, 2023; Sucholutsky et al., 2023). Moreover, our study, and the converging
evidence for behavioral and representational convergence in the field at large, call for a rethinking
of model comparison away from the paradigm of one-to-many towards many-to-many comparisons
between artificial and biological vision.
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Figure 2: Survey of the AI vision system population by architecture family. Scatter plot com-
paring model performance (top-1 accuracy) on ObjectNet (y-axis) versus ImageNet (x-axis). Each
point indicates a single model, with colors indicating its architecture family (convolutional, feedfor-
ward, hybrid, recurrent, or transformer). Higher ImageNet accuracy corresponds to higher Object-
Net accuracy, irrespective of architecture family, consistent with representational convergence.

2 METHODS

2.1 VISUAL STIMULUS SETS

We conduct our analyses on a diverse set of images drawn from ImageNet (Deng et al., 2009) and
ObjectNet (Barbu et al., 2019), widely used benchmarks in computer vision research. ImageNet
provides a dataset of labeled natural images across thousands of object categories, while ObjectNet
introduces additional challenges by presenting objects in real-world scenarios with varied viewpoints
and occlusions and has a “no training” policy to preserve its status as a test set. These datasets were
chosen for their ability to test model performance across a wide range of object categories and
difficulty levels, allowing us to capture a spectrum of disagreement. We use the 50 000 images
among 1000 classes from the ILSVRC 2012–2017 validation set (Russakovsky et al., 2015) and the
50 000 images among 313 classes from the ObjectNet test set, for a total of 100 000 visual stimuli
among 1200 classes due to the partial class overlap of ImageNet and ObjectNet. We will henceforth
refer to these sets simply as “ImageNet” and “ObjectNet.”

2.2 A POPULATION OF AI SYSTEMS

We examined the behavior of 1032 AI vision systems, spanning different architectures, including
convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid architectures; see
Fig. (2) and Fig. (10). These systems varied in complexity, dataset size, and pre-training and fine-
tuning protocols, representing a comprehensive cross-section of early and state-of-the-art visual
recognition systems; see Appendix (A.1). We obtained the class label predictions of each system on
ImageNet and ObjectNet, enabling us to analyze patterns of agreement and disagreement at scale.

2.3 MEASURING DISAGREEEMENT WITH FLEISS’ κ

To quantify the level of agreement among the population of AI systems, we employ Fleiss’ κ
(“kappa”), a statistical measure used to assess the reliability of agreement between multiple raters
assigning categorical ratings to a set of items (Fleiss, 1971). In our context, each AI system or
human participant acts as a rater assigning a categorical label to each stimulus (image).

Formally, let M represent the number of raters (AI systems or humans), N the number of stimuli
(images), k the number of categories (class labels), and T the prediction matrix of size N×k, where
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Figure 3: One agreeable and three disagreeable ObjectNet images. One image from ObjectNet
that elicits the highest agreeement and three that elicit the highest disagreement (lowest per-stimulus
agreement per Eq. (2)) amongst the population of vision models described in Section (2.2). Analo-
gous images for ImageNet are provided in Appendix (A.5).

Tij represents the number of models that assign category j to stimulus i. For each stimulus i, the
total number of ratings is

ni =

k∑
j=1

Tij = M . (1)

We compute the per-stimulus agreement as

pagree,i =

∑k
j=1 Tij(Tij − 1)

ni(ni − 1)
=

∑k
j=1 Tij(Tij − 1)

M(M − 1)
. (2)

This value pagree,i represents the extent to which the models agree on stimulus i, ranging from 0 (no
agreement) to 1 (complete agreement). The observed agreement P is the average of all per-stimulus
agreements,

P =
1

N

N∑
i=1

pagree,i . (3)

We assume a uniform distribution over categories, which means the expected agreement by chance
is Pe =

1
k . Finally, Fleiss’ κ is computed as

κ =
P − Pe

1− Pe
. (4)

Eq. (4) quantifies the aggregate agreement among raters while adjusting for the agreement expected
by chance, and ranges from −1 (complete disagreement) to 1 (perfect agreement), with 0 indicating
no agreement beyond chance. Fleiss’ κ thus provides a measure of inter-rater reliability (agreement)
among a population of raters (AI systems or humans) across a set of stimuli (images), and acts as
a generalization of Cohen’s κ, the chance-corrected measure of pairwise agreement between two
systems most recently used by Geirhos et al. (2020) to compare individual AI systems to humans.

2.4 GROUNDING IN HUMAN BEHAVIORAL MEASURES

Mayo et al. (2023) collected a large dataset of human object recognition judgments consisting of
200 382 human responses from 2647 human participants for 4771 images, of which 2415 are from
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ObjectNet and 2356 from ImageNet. Images were presented at 6 different durations between 17ms
and 10s, with 42 responses collected per image (7 different subjects seeing each image at one of six
timings). In the next section, we compare population-level agreement with two human perceptual
measures derived from this dataset. The minimum viewing time is defined as the shortest duration
at which the majority of human participants (more than half) can correctly recognize an object in
an image. This metric serves as a proxy for image difficulty as longer times suggest that an image
is more challenging for humans to interpret quickly. The difficulty score is the total number of
incorrect responses out of the 42 presentations of each image. A higher difficulty score indicates
that more humans struggled with the image.

ImageNet-X (Idrissi et al., 2022) provides annotations for almost all images in the ImageNet dataset
(46 110 out of 50 000 images) across 16 factors of variation that capture how each image differs
from prototypical examples of its class. Annotations were made by comparing each image to three
class-prototypical images, with human inspection to categorize the differences into the 16 factors.
The annotations cover factors of variation like pose, background, color, texture, size, lighting, and
occlusion. While multiple factors could be selected, a top factor was also determined for each
image to identify the main factor of deviation from the class prototypes. We take the intersection
of images evaluated over models, humans and ImageNet-X annotated images which results in 2194
with agreement scores and annotations for both models and humans.

3 RESULTS

Dataset Minimum viewing time Difficulty score Human agreement
ImageNet −0.29 −0.33 0.30
ObjectNet −0.41 −0.45 0.44

Table 1: Correlation between model agreement and the human behavioral measures. Per-
stimulus model agreement (the y-axis of Fig. (1)) is negatively correlated with the human behav-
ioral measures of per-image difficulty described in Section (2.4), and positively correlated with
per-stimulus human agreement (the x-axis of Fig. (1)).

In this section, we investigate correspondences between model and human disagreement at the pop-
ulation level established in Fig. (1), as well as the human behavioral measures described in Sec-
tion (2.4). As a summary, Table (1) displays the correlation coefficients between model agreement
among AI vision models and the human behavioral measures across the two datasets, ImageNet
and ObjectNet. Overall, the correlations are stronger (more negative or positive) for the ObjectNet
dataset compared to ImageNet. ObjectNet contains images with more varied viewpoints, occlu-
sions, and real-world complexities, making them more challenging for both humans and AI models.
Examples of the lowest agreement images for ObjectNet are shown in Fig. (3).1

3.1 MINIMUM VIEWING TIME

The negative correlation in Table (1) means that as the minimum viewing time increases (i.e., the
image is harder for humans), the model agreement among AI systems decreases. In other words,
images that require longer viewing times for humans tend to be the ones where AI vision systems dis-
agree more. Fig. (4) demonstrates that many low-agreement images are associated with the longest
viewing time (10 seconds). This suggests that both humans and AI vision systems find these images
challenging, leading to lower agreement within both groups.

3.2 IMAGE DIFFICULTY

The negative correlation in Table (1) of agreement with difficulty score indicates that images with
higher difficulty scores (more challenging for humans) correspond to lower model agreement among
AI vision systems. This alignment implies that images difficult for humans are also difficult for AI
vision systems, leading to greater disagreement among the models. Fig. (6) visually reinforces this

1Additional images from both low-agreement and high-agreement sets for both ImageNet and ObjectNet
are available in Appendix (A.5).
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Figure 4: Disagreeable images take more time to recognize. Density estimate plots where images
are binned into different minimum viewing times (minimum duration at which an image is recog-
nized by a majority of humans (Mayo et al., 2023)). Human subjects tend to spend more time on
images with low agreement among both human and AI systems.

0.0 0.2 0.4 0.6 0.8 1.0
Human Agreement

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 A

gr
ee

m
en

t

(a) Per image agreement between a population of 102
ResNet-50 models and humans.
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(b) Scatter plot of ObjectNet (y-axis) versus Ima-
geNet (x-axis) accuracy.

Figure 5: Less diverse model population recovers the similar results A population of 102
ResNet-50 models trained on Imagenet with the only difference being the random seed used in
initialization is evaluated.
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Figure 6: Difficulty score and model agreement for ObjectNet. Two-dimensional histogram
illustrating the relationship between image difficulty for human participants, as measured by the
difficulty score described in Section (2.4), and model agreement on the ObjectNet dataset. The
x-axis represents the difficulty score for humans, with higher scores indicating more challenging
images. The y-axis shows the level of agreement among AI vision systems, where higher values
signify stronger consensus, and is analogous to the y-axis in Fig. (1). The color intensity represents
the density of images in each bin, with darker colors indicating a higher concentration of images.

relationship, displaying a clear downward trend in model agreement as the difficulty score increases.
The scatter plot demonstrates that as images become more challenging for humans (higher difficulty
scores), there is a corresponding decrease in agreement among AI vision systems. This visual rep-
resentation provides strong evidence for the alignment between human perceptual difficulties and
AI model disagreement, highlighting that both artificial and biological visual systems struggle with
similar types of challenging images.

Human agreement refers to the consistency of responses among human participants for each image
as calculated using Eq. (2). Higher values indicate that most humans agree on what the image
depicts. The positive correlation means that as human agreement increases, model agreement among
AI vision systems also increases. This suggests that when humans consistently agree on an image’s
content, AI vision systems are more likely to agree as well. Conversely, images that humans find
ambiguous or contentious lead to more disagreement among AI vision systems.

3.3 COUNTERFACTUAL LOW DIVERSITY MODEL POPULATION

To investigate the causal factors of variability within the model population leading to disagreement,
we train a population of 102 ResNet-50 models He et al. (2016) over ImageNet with the only differ-
ence between individual models being the random initialization seed. In contrast to the 1032 model
population collected, this population has no architecture variation or negligible performance varia-
tion (Section (3). The reproduction of the results shown in Fig. (1) by this low diversity population
as shown in Section (3) indicates the that architecture variability and training data/task variability
are not significant causal factors for population disagreement.

3.4 ANALYSIS OF LOW-AGREEMENT IMAGES

To investigate the probable causes of image difficulty and thus disagreement, we use additional
annotations of the data collected by (Mayo et al., 2023) and (Idrissi et al., 2022).
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Figure 7: Human labeled factors associated with disagreement. Bar chart of the relative propor-
tion of top factors among images from ImageNet-X that belong to low model agreement, low human
agreement and all image sets. Proportions are normalized within agreement categories (i.e., the blue
bars sum to 1, and similarly for the green and patterned bars). The threshold for low agreement
was set to 0.2 for both model and human populations, meaning that images with agreement levels
below this threshold were considered “low agreement.” Models deviate from humans substantially
in “background” and “pattern” variations.

3.4.1 USING HUMAN VIEWING TIME

The minimum viewing time data represents the minimum time necessary for a majority humans to
correctly classify an image. As shown in Fig. (4), disagreeable images take more time to recognize
among both the model and human populations.

3.4.2 USING HUMAN ANNOTATIONS

We make use of the annotations provided by the ImageNet-X dataset introduced in Section (2.4).
Fig. (7) displays the distribution of human-annotated visual attributes in ImageNet-X for three cate-
gories of images: those with low model agreement, those with low human agreement, and all images
in the ImageNet-X dataset that have agreement scores for both models and humans.

There are notable differences between AI vision systems and humans. The large gap in propor-
tion for “background” and “pattern” between models and humans suggests that AI systems might
be more sensitive to background variations than humans and human population are more likely to
disagree when pattern variations are present than models.

3.5 MODEL AGREEMENT PATTERNS ACROSS ACCURACY LEVELS

Lastly, we investigate how Fleiss’ κ is affected by the accuracy of model subpopulations in our
sample. Fig. (8) compares Fleiss’ κ scores across ImageNet and ObjectNet datasets as a function
of the mean accuracy of a subset of models from the overall model population. High agreement
images (the top 1000 images in agreement score) appear to exhibit perfect agreement, indicating
that the agreement level among models does not change over this set of images, presumably because
the images are easy and remain easy, continuing to be correctly classified as overall population
accuracy improves.

While overall Fleiss’ κ grows linearly over all images, images with low agreement (the bottom 1000
images in agreement score) among the whole population of models lack improvement in agreement
until the highest accuracy level. This indicates that the models are not making progress on these
examples until a certain level of competency over the full dataset is achieved. The acceleration of
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(a) ImageNet.
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(b) ObjectNet.

Figure 8: Comparison of Fleiss’ κ scores across ImageNet and ObjectNet datasets. We plot
model agreement patterns for model populations at different accuracy levels (x-axis) for (a) Ima-
geNet and (b) ObjectNet. Images over which Fleiss’ κ is evaluated over are partitioned into low-
agreement images and high-agreement images (cf. all images) according to Eq. (2) evaluated across
all models. Images at low agreement levels are producing significantly lower Fleiss’ κ than high
agreement and all images, even for models at high performance levels (tending to the right). This
deviation is more pronounced for (b) ObjectNet.
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Figure 9: Simulated reproduction of Fig. (8). Fleiss’ κ scores for a simulated population of
models with different accuracy levels. Our simulation makes the key assumption that once an image
is correctly recognized, it will always be correctly recognized by more accurate models.
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agreement of the low-agreement images also indicates that performant models are reaching consen-
sus over these images faster than most images in the dataset.

We test these hypotheses for low-agreement and high-agreement images using a simulated popula-
tion of models based on the assumption that any correctly classified image will always be correctly
classified by a more competent (accurate) population. More details of this simulation can be found
in Appendix (A.3). Fig. (9) demonstrates that our simulation does agree with the empirical lines
seen in both the low-agreement images and high-agreement images in Fig. (8).

4 RELATED WORK

Error analysis. Geirhos et al. (2020) introduced the concept of error consistency to vision model-
ing in order to better quantify the behavioral alignment of artificial vision systems to human vision.
Complementary to accuracy, their method quantifies whether two decision-making systems make
the same errors on the same visual stimuli, which provides further insights into the similarity of
processing strategies between different models or between models and humans. Rather than con-
centrating on error consistency between two systems, we turn our focus towards population-level
consistency by analyzing the inputs that generate the most divergent responses across a diverse pop-
ulation of AI vision systems. This approach allows us to explore the nature of model disagreement
and its relationship to human perception, even in cases in which individual models may not match
the errors of individual humans. Like a complete treatment of accuracy and error-consistency, our
analysis does not require any knowledge of the true label or the existence of one for a given stimuli,
making it suitable for unannotated data which may be more readily available.

Synthetic stimuli. In contrast to the approach of Golan et al. (2020), which synthesizes “con-
troversial” stimuli through an optimization procedure involving backpropagation through a vision
system, our work focuses on analyzing disagreement between models on naturalistic samples that
either already exist or are generated without optimization. This approach allows us to assess models’
inductive biases and generalization abilities under more realistic conditions, providing insights into
how the models might behave when deployed in the wild, where they may encounter novel stimuli
that are not purposefully crafted to expose their differences. Furthermore, many artificial pertur-
bations to stimuli impact the original labeling and features, which can no longer be used without
making assumptions about the nature of the perturbation (Ilyas et al., 2019).

Metamers. Metamers are distinct visual stimuli that are perceptually indistinguishable to a spe-
cific perceptual, often visual, system (Freeman & Simoncelli, 2011). In contrast, our study focuses
on identifying single stimuli that evoke divergent responses across a diverse population of AI vi-
sion models. While metamers explore how different inputs can be perceived uniformly by a single
system, our work examines how the same input can be interpreted variably by multiple systems.
This fundamental difference highlights two distinct dimensions of visual representation: invariance
within a system versus variability across systems.

5 CONCLUSION

Our study of disagreement among model and human populations in vision challenges the assumption
present in prior work that disagreement among AI systems is unrelated to human visual processing.
We demonstrate a correspondence between AI and human disagreement on naturalistic stimuli, re-
vealing that image difficulty drives disagreement in both populations, and we provide evidence that
the dominant factors driving disagreement in AI systems also cause disagreement in human visual
perception. Our results suggest that individual differences in AI vision systems may overlap with
those in human visual processing rather than being unique artificial limitations, which prescribes
more population-level comparisons between AI and human vision systems rather than model-to-
individual comparisons.

10
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Figure 10: Survey of the AI vision system population by release date. Evolution of ImageNet
accuracy over time (2014-2024, discretized by month) for the AI vision systems in the population
described in Section (2.2). The upward trend demonstrates consistent improvement in model per-
formance, with more recent architectures showing rapid progress in recent years.

A APPENDIX

A.1 AI SYSTEM INVENTORY

Below is a sample of the first 50 models by alphabetical model ID (which identifies hyperparameters
like architecture and pre-training and fine-tuning datasets) of the AI system population described in
Section (2.2); the complete identification of all models is given in the accompanying code repository.

model ID
bat resnext 26 256 classification imagenet 1k
beit base patch16 224 mim imagenet 21k ft classification imagenet 21k imagenet 1k
beit base patch16 384 mim imagenet 21k ft classification imagenet 21k imagenet 1k
beit large patch16 224 mim imagenet 21k ft classification imagenet 21k imagenet 1k
beit large patch16 384 mim imagenet 21k ft classification imagenet 21k imagenet 1k
beit large patch16 512 mim imagenet 21k ft classification imagenet 21k imagenet 1k
beitv2 base patch16 224 mim imagenet 1k ft classification imagenet 1k
beitv2 base patch16 224 mim imagenet 1k ft classification imagenet 21k imagenet 1k
beitv2 large patch16 224 mim imagenet 1k ft classification imagenet 1k
beitv2 large patch16 224 mim imagenet 1k ft classification imagenet 21k imagenet 1k
botnet 26 256 c1 imagenet 1k
caformer base 36 224 classification imagenet 1k
caformer base 36 224 classification imagenet 21k ft classification imagenet 1k
caformer base 36 384 classification imagenet 1k
caformer base 36 384 classification imagenet 21k ft classification imagenet 1k
caformer medium 36 224 classification imagenet 1k
caformer medium 36 224 classification imagenet 21k ft classification imagenet 1k
caformer medium 36 384 classification imagenet 1k
caformer medium 36 384 classification imagenet 21k ft classification imagenet 1k
caformer small 18 224 classification imagenet 1k
caformer small 18 224 classification imagenet 21k ft classification imagenet 1k
caformer small 18 384 classification imagenet 1k
caformer small 18 384 classification imagenet 21k ft classification imagenet 1k
caformer small 36 224 classification imagenet 1k
caformer small 36 224 classification imagenet 21k ft classification imagenet 1k
caformer small 36 384 classification imagenet 1k
caformer small 36 384 classification imagenet 21k ft classification imagenet 1k
cait medium 36 384 distillation imagenet 1k
cait medium 48 448 distillation imagenet 1k
cait small 24 224 distillation imagenet 1k
cait small 24 384 distillation imagenet 1k
cait small 36 384 distillation imagenet 1k
cait xsmall 24 384 distillation imagenet 1k
cait xxsmall 24 224 distillation imagenet 1k
cait xxsmall 24 384 distillation imagenet 1k
cait xxsmall 36 224 distillation imagenet 1k
cait xxsmall 36 384 distillation imagenet 1k
coat lite medium 224 classification imagenet 1k
coat lite medium 384 classification imagenet 1k
coat lite mini 224 classification imagenet 1k
coat lite small 224 classification imagenet 1k
coat lite tiny 224 classification imagenet 1k
coat mini 224 classification imagenet 1k
coat small 224 classification imagenet 1k
coat tiny 224 classification imagenet 1k
coatnet 224 sw imagenet 12k ft classification imagenet 1k
coatnet 224 sw imagenet 1k
coatnet bn 224 sw imagenet 1k
coatnet nano 224 sw imagenet 1k
coatnet rmlp 224 sw imagenet 12k ft classification imagenet 1k
coatnet rmlp 224 sw imagenet 1k
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A.2 DERIVATION OF FLEISS’ κ WITH INCREASING ACCURACY

We derive how Fleiss’ κ (Eq. (4)) changes for a population of raters with increasing performance.

Let:

• A: Accuracy of the AI systems (probability of correct classification).

Assume:

• Each model correctly classifies a stimulus with probability A.
• When incorrect, a model randomly selects one of the (k−1) incorrect categories with equal

probability.

For a given stimulus i, the expected number of models assigning category j is:

• Correct category: Ti,correct = M ×A

• Incorrect category (for each incorrect category j): Tij = M × 1−A
k−1

Using Eq. (2):

pagree,i =

∑k
j=1 Tij(Tij − 1)

M(M − 1)
(5)

Substituting Ti,correct and Tij :

pagree,i =
Ti,correct(Ti,correct − 1) + (k − 1)× Tij(Tij − 1)

M(M − 1)
(6)

=
[MA(MA− 1)] + (k − 1)

[
M 1−A

k−1

(
M 1−A

k−1 − 1
)]

M(M − 1)
(7)

Correct category term:
MA(MA− 1) = M2A2 −MA (8)

Incorrect categories term:

(k − 1)

[
M

1−A

k − 1

]2
−M

1−A

k − 1
=

M2(1−A)2

k − 1
−M(1−A) (9)

Total numerator:

(M2A2 −MA) +

(
M2(1−A)2

k − 1
−M(1−A)

)
(10)

Simplify combined numerator:

M2A2 +
M2(1−A)2

k − 1
−M(A+ 1−A) = M2A2 +

M2(1−A)2

k − 1
−M (11)

Denominator:
M(M − 1) = M2 −M (12)

Per-stimulus agreement:

pagree,i =
M2A2 + M2(1−A)2

k−1 −M

M2 −M
(13)

Divide numerator and denominator by m2:

pagree,i =
A2 + (1−A)2

k−1 −
1
M

1− 1
M

(14)
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We can use this formulation of agreement per image and substitute this term into Eq. (2) and Eq. (4)
to derive a formulation for Fleiss’ κ in terms of accuracy under the provided assumptions.

For large M we can approximate this to:

pagree,i ≈ A2 +
(1−A)2

k − 1
. (15)
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(b) ObjectNet

Figure 11: Comparison of empirical Fleiss’ κ to the Fleiss’ derived using Eq. (14)

The deviations of the empirical Fleiss’ κ from the derivation shown in Fig. (11) show that our
models do not follow the assumptions implied in the derivation. In particular, the consistent larger
agreement indicates that models are not agreeing in random uniform way across images in ImageNet
and ObjectNet.

A.3 FLEISS’ κ WITH WITH A SIMULATED POPULATION OF MODELS

We constructed a simulation of Fleiss’ κ among our population of models adding one additional
assumption: Image classifications are learned strictly in order. In particular, a model with 80%
classification accuracy will correctly classify all of the images that a 40% accuracy model gets right
plus and additional 40% of images in the set of images evaluated. We implemented this simulation
by simply giving N images a random unique learnability ranking from 1 to N . A simulated model
then correctly classifies the first C images where C/N matches the models average accuracy. The
models predictions for the remaining N − C predictions are random.

Running this simulation with the parameters N = 50 000, M = 1032, k = 50, sampling average
model accuracy randomly between 0 and 100, results in Fig. (9).
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Algorithm 1 Generation of model population with ordered learnability.

1: Initialize parameters
2: N ← 50000 // Number of images
3: M ← 1032 // Number of models
4: k ← 50 // Number of classes
5:
6: Assign ground truth labels to images
7: images per class← ⌊N/k⌋
8: remainder ← N mod k
9: GT labels← empty list

10: for class← 1 to k do
11: if class ≤ remainder then
12: n← images per class+ 1
13: else
14: n← images per class
15: end if
16: Append n instances of class to GT labels
17: end for
18: Randomly shuffle GT labels
19:
20: Assign unique learnability rankings to images
21: image indices← Random permutation of {1, 2, . . . , N}
22:
23: Assign random accuracies to models
24: for m← 1 to M do
25: accuracy[m]← Random value in [0.65, 0.90]
26: end for
27:
28: Generate predictions for each model
29: for m← 1 to M do
30: C ← Round (accuracy[m]×N)
31: correct indices← image indices[1 : C]
32: incorrect indices← image indices[C + 1 : N ]
33: for each i in correct indices do
34: predictions[m, i]← GT labels[i]
35: end for
36: for each i in incorrect indices do
37: incorrect classes← {1, 2, . . . , k} \ {GT labels[i]}
38: predictions[m, i]← Random choice from incorrect classes
39: end for
40: end for

A.4 HUMAN AGREEMENT VS. MODEL AGREEMENT

Fig. (12) compares the density plot of models versus human agreement for ImageNet and ObjectNet.
In ObjectNet, which contains more challenging natural images, AI models show stronger alignment
with human judgments on images that cause disagreement rather than agreement. This trend is
less pronounced in ImageNet. The dominant agreement in ImageNet is likely due to the model
population being trained or fine-tuned on ImageNet making this task easier than ObjectNet.

A.5 ADDITIONAL IMAGES SELECTED BASED ON AGREEMENT SCORE
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(b) ObjectNet

Figure 12: Comparison of agreement levels between AI vision models and humans for (a) Ima-
geNet and (b) ObjectNet datasets. Each point represents an image, with its position indicating the
agreement level among 1032 AI vision systems (y-axis) and 42 human participants (x-axis).
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Figure 13: Lowest agreement images from ObjectNet
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Figure 14: Lowest agreement images from ImageNet
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Figure 15: Highest agreement images from ObjectNet
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Figure 16: Highest Agreement Images from ImageNet
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