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Abstract

Significant advancements have been made in
the domain of dependency parsing, with re-
searchers introducing novel architectures to
enhance parsing performance. However, the
majority of these architectures have been eval-
uated predominantly in languages with a fixed
word order, such as English. Consequently, lit-
tle attention has been devoted to exploring the
robustness of these architectures in the context
of relatively free word-ordered languages. In
this work, we examine the robustness of graph-
based parsing architectures on 7 relatively free
word order languages. We focus on investi-
gating essential modifications such as data aug-
mentation and the removal of position encoding
required to adapt these architectures accord-
ingly. To this end, we propose a contrastive
self-supervised learning method to make the
model robust to word order variations. Further-
more, our proposed modification demonstrates
a substantial average gain of 3.03/2.95 points
in 7 relatively free word order languages, as
measured by the Unlabelled/Labelled Attach-
ment Score metric when compared to the best
performing baseline.

1 Introduction

Morphologically rich languages (MRLs) tend to
have sentences which follow a relatively free word
order. Instead of relying on the word ordering, such
languages prefer encoding the structural informa-
tion of a sentence using inflectional morphology.
Majority of the pretrained models tend to include
(relative or absolute) position encoding in their pre-
training stage, which may not be ideal for several of
the MRLs. Moreover, simply dropping the position
encoding of the encoder for such models, during
fine-tuning, often would lead to sub-optimal per-
formances for parsing tasks (Krishna et al., 2019;
Ghosh et al., 2024). In this work, we propose a self-
supervised contrastive learning based module that

makes a model agnostic to word order variations
within a sentence.

We propose a novel Contrastive Self-Supervised
Learning (CSSL) module, inspired by He et al.
(2020), to accommodate variations in word order
within the model architecture. Moreover, the mod-
ular nature of our approach allows for seamless
integration with any encoder architecture, without
necessitating alterations to pretraining decisions.
In self supervised contrastive learning, for a given
input, one needs to find positive samples, whose
embedding level similarity with the input needs
to be increased, and negative samples, whose em-
bedding similarity with the original input, needs
to be decreased. As shown in Figure 1, the orig-
inal sentence serves as an anchor point, while its
permutations represent positive examples, juxta-
posed with randomly generated sentences serving
as negative examples.
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aham vanam gacchami (I am gcimlg to the forest)

Figure 1: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

The self-supervised contrastive learning objec-
tive aims to minimize the distance between posi-
tive examples and the anchor point, while simul-



taneously maximizing the distance from negative
examples. In essence, this objective fosters the
robustness of the encoder to accommodate word
order variations. Our approach, to the best of our
knowledge, is the first to use a contrastive learn-
ing technique for dependency parsing to overcome
challenges caused by a lack of set word order and
limited data resources.

MRLs rely less on word order and instead use
morphological markers to encode structural infor-
mation of a sentence. Given the comprehensive
morphological marking system inherent in MRLs,
the core semantic essence of the sentence remains
unaltered, rendering the permuted counterpart as
a suitable positive pairing for contrastive learning.
Several MRLs have demonstrated that permuta-
tions of word order following weak projectivity
generally retain semantic equivalence of the origi-
nal (Sapir, 1921; Kulkarni et al., 2015; Kuboti et al.,
2013; Ghosh et al., 2024).

Moreover, preference for certain word order ty-
pology in these languages is often not due to the
limitations of the morphology, but are attributed to
cognitive, psycho-linguistic, and information the-
oretic aspects of communication (Krishna et al.,
2019; Clark et al., 2023; Dyer et al., 2023; Xu
and Futrell, 2024). For instance, Sanskrit, a classi-
cal language, predominantly consists of sentences
written as verses in its pre-classic and classic lit-
erature. Here, such sentences prefer to adherence
to metrical constraints in prosody over any word
ordering constructions, resulting in arbitrary word
orderings (Krishna et al., 2020, §2). In our experi-
ments, hence we treat the permutations of a given
sentences as their semantic equivalents.

Substantial progress has been made in depen-
dency parsing, including for low-resource lan-
guages and MRLs (Ji et al., 2021a,b; Dozat and
Manning, 2017; Kulmizev et al., 2019), aimed at
augmenting parsing efficacy. Our proposed ap-
proach is agnostic of the encoder architecture and
does not necessitate the need for changes in pre-
training. Moreover, our objective is to leverage re-
cent advancements in parsing literature and further
augment them by adding our CSSL module that
would make these models more robust to word or-
der variations. In this work, we start by examining
the robustness of graph-based parsing architectures
(Jietal., 2019; Mohammadshahi and Henderson,
2020, 2021) on 7 relatively free word order lan-
guages. We believe, graph-based parsing architec-
tures could be a natural choice to model flexible

word order. We then focus on investigating essen-
tial modifications such as data augmentation (Sahin
and Steedman, 2018) and the removal of position
encoding required to adapt these architectures ac-
cordingly. We finally show the efficacy of our ap-
proach on the best baseline (Mohammadshahi and
Henderson, 2021, RNGTr) model by integrating
CSSL with it and report an average performance
gain of 3.03/2.95 points (UAS/LAS) improvement
over 7 MRLs.
Our main contributions are as follows:

* We propose a novel contrastive self-
supervised learning (CSSL) module to make
dependency parsing robust for free word
order languages.

* Empirical evaluations of CSSL module affirm
its efficacy for 7 free word-ordered languages

* We demonstrate statistically significant im-
provements with an average gain of 3.03/2.95
points over the best baseline on 7 MRLs.

2 Contrastive Self-Supervised Learning

CSSL enables joint learning of representation, via
contrastive learning, with the standard classifica-
tion loss for dependency parsing. Here, via CSSL,
we identify sentences which are word-level per-
mutations of each other as similar sentences, and
others as dissimilar sentences. The similar sen-
tences are brought closer while pushing dissimilar
examples apart (van den Oord et al., 2019; Tian
et al., 2020). For a given input, when selecting a
dissimilar sample, we choose a random sentence
that clearly differs significantly from any permuta-
tion of the given sentence.

Formally, for a sentence X; (anchor example), its
representation should be similar to the permuted in-
stance X ;" as permutation does not alter the mean-
ing of a sentence belonging to MRL. However, the
representation will differ from a random sentence
X, (negative example). Therefore, the distance
between the appropriate representations of X; and
X ;“ is expected to be small. Thus, we can develop
a contrastive objective by considering (X;, X :r )a
positive pair and N — 1 negative pairs (X;, X, ) :

exp (z; - 2+ /7)
Zae]\[ €xp (zi : za/T)

Lcss = —log

where N represents a batch, z; represents the repre-
sentation vector of the anchor sample, z;" denotes
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Figure 2: Schematic illustration of the proposed ap-
proach. Starting from an input sentence (bottom) (Trans-
lation: “T am going to the forest.”), two embeddings are
produced: (1) original and (2) permuted sentence. Self-
contrastive loss is imposed on the embeddings (center).
A decoder uses a cross-entropy objective for predicting
the dependency tree.

the representation vector for the positive sample
(permuted sample), z, represents the representa-
tion vector for a sample in the batch (/V different
samples), and 7 is a temperature parameter that
controls the concentration of the distribution. We
employ pooled sentence embedding of the original
and permuted sentences for CSSL loss. Therefore,
our final loss is:

L= Ecssl + ﬁce (1)

The classification loss L. is applied only to token-
level labels of the original training input.

3 Experiment

3.1 Dataset and metric

As our primary benchmark dataset, we utilize the
Sanskrit Treebank Corpus (Kulkarni, 2013, STBC).
From STBC, we use a train and dev split of 2,800
and 1,000, respectively. Further, we employ a test
set comprising 300 sentences, drawn from the clas-
sical Sanskrit work, Sisupala-vadha (Ryali, 2016).

Moreover, from Universal Dependencies
(de Marneffe et al., 2021, UD-2.13), we choose
6 additional languages, namely, Turkish, Telugu,
Gothic, Hungarian, Ancient Hebrew, and Lithua-
nian.! Please note that all the seven languages
are chosen from diverse language families and
are typologically diverse. Our experiments are

'the statistics of each of the treebanks used for our experi-
ments is mentioned in Table 4 in the Appendix.

primarily focused on a low-resource setting. Here,
the largest training set size we use is of 3,435
sentences for Turkish. For Turkish, we simulate
a low-resource scenario by considering from the
Turkish-IMST treebank. We also experiment with
English which is a fixed-ordered high-resource
language. Here, we use a training set of 12,544
sentences. We use standard UAS/LAS metrics
(McDonald and Nivre, 2011) for evaluation.

Model | UAS LAS
G2GTr (Transition-based) | 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTTr (Graph-based) 89.62 87.43
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System (CSSL) 91.86 89.38
CSSL + DA | 9243 90.18

Table 1: Comparison of graph-based parsers on Sanskrit
STBC dataset. We modify the best baseline RNGTr by
integrating the proposed method (CSSL) to compare
against variants, removing position encoding (NoPos)
and data augmentation (DA). The best performances are
bold-faced. The results (CSSL vs DA) and (CSSL vs
DA+CSSL) are statistically significant as per the t-test
with a p-value < 0.01 for the LAS metric.

Baselines: We utilize Mohammadshahi and Hen-
derson (2020, G2GTr), a transition-based depen-
dency parser. Furthermore, we explore Ji et al.
(2019, GNN) a graph neural network-based model
that captures higher-order relations in dependency
trees. Finally, we examine Graph-to-Graph Non-
Autoregressive Transformer proposed by Moham-
madshahi and Henderson (2021, RNGTr) which
iteratively refines arbitrary graphs through recur-
sive operations.

Hyper-parameters: We implement our CSSL
module in RNGTr architecture which uses a pre-
trained mBERT model (110M parameters) from
Huggingface transformers (Wolf et al., 2020). For
RNGTr model, we use the same architecture as
Mohammadshahi and Henderson (2020) with pre-
trained mBERT as the encoder and an MLP and
biaffine followed by softmax for the decoder. We
adopt the RNGTr codebase with hyperparameter
settings as follows: the batch size is 16, the learning
rate as 2e-5, the number of transformer blocks as
12 and for the decoder 2 Feed Forward Layers with
dropout as 0.33 having bi-affine attention, and the
remaining hyperparameters are the same.



RNGTr RNGTr+ DA [ RNGTr + CSSL
Language UAS LAS UAS LAS UAS LAS
Turkish-IMST 7286 7199 | 7418 7296 | 7821  74.69
Telugu-MTG 90.02 8034 | 9186 8151 | 9379  85.67
Gothic-POIEL 86.59 8128 | 8861 8293 | 89.15 84.19
Hungarian-SZEGED 88.13 8493 90.02  86.65| 91.65  87.28
Ancient Hebrew-PTNK | 9076 8642 | 9143  87.12| 9235  88.68
Lithuanian-ALKSNIS 87.63 8327 8841 8479 | 89.82  86.45
English-EWT 9208 9023 | 9376 9216 | 9319  90.71

Table 2: Performance comparison on the RNGTr model, RNGTr + DA (Data Augmentation) and RNGTr + CSSL
module. The best performances are bold-faced. Our results (CSSL) are statistically significant compared to both
RNGTr and RNGTr + DA for each language as per the t-test with a p-value < 0.01 for the LAS metric

3.2 Results

In Table 1, we benchmark graph-based parsers on
the Sanskrit STBC dataset. Our proposed con-
trastive loss module is standalone and could be
integrated with any parser.> Thus, we modify the
best baseline RNGTr by integrating the proposed
method (CSSL) and comparing it against variants,
removing position encoding (NoPos), and augment-
ing data augmentation (DA). Table 1 illustrates
that the proposed framework adds a complemen-
tary signal making robust word order representa-
tions to RNGTr by improving 2.24/1.95 points in
UAS/LAS scores. The performance significantly
drops (8.8/9.0 UAS/LAS) when position embed-
dings are removed (vs. Pos kept) from RNGTr due
to train-test mismatch in pretraining and fine-tuning
steps. Moreover, our method outperforms data aug-
mentation technique (Sahin and Steedman, 2018)
by 1.48/0.92 points (UAS/LAS) when integrated
with the RNGTr baseline. We integrate CSSL on
top of an RNGTr+DA system and observe statisti-
cally significant improvements of 0.57/0.80 points
(UAS/LAS), suggesting the proposed method com-
plements the data-augmentation technique.

Results on multilingual experiments: In this
section, we investigate the efficacy of CSSL mod-
ule in multi-lingual settings. Table 2 reports re-
sults on 6 other morphologically rich languages
in low-resource settings. Our approach averages
3.16/3.12 higher UAS/LAS scores than the usual
cross-entropy-based RNGTr baseline. Our sys-
tem outperforms the rotation-based DA technique
with an average increase of 1.74/1.83 in UAS/LAS
scores. Here, as expected, our proposed CSSL ap-
proach outperforms the standard RNGTr and DA

’Refer to Appendix A.1 for empirical evidence.

approaches for all the languages, except English.
English is not an MRL and it relies heavily on con-
figurational information of the words to understand
sentence structure. The DA approach performs bet-
ter by 0.57/1.45 UAS/LAS scores than our frame-
work. However, it is interesting to note that CSSL
still outperforms the RNGTr baseline by 1.11/0.48
UAS/LAS, possibly due to robustness of permuta-
tion invariant representation learning we employ in
CSSL. As illustrated in Table 1, it is evident that
combining CSSL with DA surpasses CSSL alone
by approximately 0.5 points, exhibiting a 2-point
enhancement over DA.

4 Conclusion

In this work, we investigated the robustness of
graph-based parsing architectures across 7 lan-
guages characterized by relatively flexible word
order. We introduced a self-supervised contrastive
learning module aimed at making encoders insen-
sitive to variations in word order within sentences.
Additionally, the modular nature of our approach
enables seamless integration with any encoder ar-
chitecture without necessitating modifications to
pretraining decisions. To the best of our knowl-
edge, our approach represents the first utilization
of contrastive learning techniques for dependency
parsing to address challenges arising from vari-
able word order in low-resource settings. Finally,
we demonstrate the effectiveness of our approach
by integrating it with the RNGTr model (Moham-
madshahi and Henderson, 2021), reporting an aver-
age performance improvement of 3.03/2.95 points
(UAS/LAS) across the 7 MRLs.

Limitations We could not evaluate on complete
UD due to limited available compute resources
(single GPU); hence, we selected 7 representative



languages for our experiments.

Ethics Statement We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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A Appendix

A.1 Integration of CSSL with another
encoder

The modular nature of CSSL framework allows for
seamless integration with any encoder architecture,
without necessitating alterations to pretraining de-
cisions. We have shown its effectiveness for the
best-performing baseline. We are also showing re-
sults with one more baseline (for Sanskrit). Our
supplementary results indicate that activating con-
trastive loss for the G2GTr baseline on the STBC
treebank for Sanskrit leads to an approximate 2-
point enhancement in performance measured by
UAS/LAS.

CE CSSL
UAS | LAS | UAS | LAS
G2GTr | 87.16 | 85.68 | 89.05 | 87.05

Table 3: Contrastive Loss with G2GTr on STBC dataset.

A.2 Treebank Statistics

Table 4 provides the detailed statistics for the lan-
guages used in the experiments.

A.3 Related Work

Contrastive learning has been the pinnacle of re-
cent successes in sentence representation learn-
ing. In order to optimize the appropriately de-
signed contrastive loss functions, (Gao et al., 2021;
Zhang et al., 2022) uses the entailment sentences
in NLI as positive pairs, significantly improving
upon the prior state-of-the-art results. To this end,
a number of methods have been put forth recently
in which the augmentations are obtained through
back-translation (Fang et al., 2020), dropout (Yan
et al., 2021; Gao et al., 2021), surrounding con-
text sampling (Logeswaran and Lee, 2018; Giorgi
et al., 2021), or perturbations carried out at dif-
ferent semantic-level (Wu et al., 2020; Yan et al.,
2021).
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Treebank Language Family | train dev test
Sanskrit-STBC Indo-Aryan 2,800 | 1,000 | 300
UD-Turkish_IMST Turkic 3,435 | 1,100 | 1,100
UD-Gothic_Proeil Germanic 3,387 985 | 1,029
UD-Telugu_MTG Dravidian 1,051 131 146
UD-Hungarian_Szeged Uralic 910 441 449
UD-Ancient_Hebrew PTNK Semitic 730 439 410
UD-Lithuanian_ ALKSNIS Baltic 2,341 617 684
UD-English EWT Roman 12,544 | 2,001 | 2,077

Table 4: Treebank Statistics. The number of sentences in train, dev and test for each language.
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