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Abstract

Significant advancements have been made in001
the domain of dependency parsing, with re-002
searchers introducing novel architectures to003
enhance parsing performance. However, the004
majority of these architectures have been eval-005
uated predominantly in languages with a fixed006
word order, such as English. Consequently, lit-007
tle attention has been devoted to exploring the008
robustness of these architectures in the context009
of relatively free word-ordered languages. In010
this work, we examine the robustness of graph-011
based parsing architectures on 7 relatively free012
word order languages. We focus on investi-013
gating essential modifications such as data aug-014
mentation and the removal of position encoding015
required to adapt these architectures accord-016
ingly. To this end, we propose a contrastive017
self-supervised learning method to make the018
model robust to word order variations. Further-019
more, our proposed modification demonstrates020
a substantial average gain of 3.03/2.95 points021
in 7 relatively free word order languages, as022
measured by the Unlabelled/Labelled Attach-023
ment Score metric when compared to the best024
performing baseline.025

1 Introduction026

Morphologically rich languages (MRLs) tend to027

have sentences which follow a relatively free word028

order. Instead of relying on the word ordering, such029

languages prefer encoding the structural informa-030

tion of a sentence using inflectional morphology.031

Majority of the pretrained models tend to include032

(relative or absolute) position encoding in their pre-033

training stage, which may not be ideal for several of034

the MRLs. Moreover, simply dropping the position035

encoding of the encoder for such models, during036

fine-tuning, often would lead to sub-optimal per-037

formances for parsing tasks (Krishna et al., 2019;038

Ghosh et al., 2024). In this work, we propose a self-039

supervised contrastive learning based module that040

makes a model agnostic to word order variations 041

within a sentence. 042

We propose a novel Contrastive Self-Supervised 043

Learning (CSSL) module, inspired by He et al. 044

(2020), to accommodate variations in word order 045

within the model architecture. Moreover, the mod- 046

ular nature of our approach allows for seamless 047

integration with any encoder architecture, without 048

necessitating alterations to pretraining decisions. 049

In self supervised contrastive learning, for a given 050

input, one needs to find positive samples, whose 051

embedding level similarity with the input needs 052

to be increased, and negative samples, whose em- 053

bedding similarity with the original input, needs 054

to be decreased. As shown in Figure 1, the orig- 055

inal sentence serves as an anchor point, while its 056

permutations represent positive examples, juxta- 057

posed with randomly generated sentences serving 058

as negative examples.

Figure 1: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

059
The self-supervised contrastive learning objec- 060

tive aims to minimize the distance between posi- 061

tive examples and the anchor point, while simul- 062

1



taneously maximizing the distance from negative063

examples. In essence, this objective fosters the064

robustness of the encoder to accommodate word065

order variations. Our approach, to the best of our066

knowledge, is the first to use a contrastive learn-067

ing technique for dependency parsing to overcome068

challenges caused by a lack of set word order and069

limited data resources.070

MRLs rely less on word order and instead use071

morphological markers to encode structural infor-072

mation of a sentence. Given the comprehensive073

morphological marking system inherent in MRLs,074

the core semantic essence of the sentence remains075

unaltered, rendering the permuted counterpart as076

a suitable positive pairing for contrastive learning.077

Several MRLs have demonstrated that permuta-078

tions of word order following weak projectivity079

generally retain semantic equivalence of the origi-080

nal (Sapir, 1921; Kulkarni et al., 2015; Kuboň et al.,081

2013; Ghosh et al., 2024).082

Moreover, preference for certain word order ty-083

pology in these languages is often not due to the084

limitations of the morphology, but are attributed to085

cognitive, psycho-linguistic, and information the-086

oretic aspects of communication (Krishna et al.,087

2019; Clark et al., 2023; Dyer et al., 2023; Xu088

and Futrell, 2024). For instance, Sanskrit, a classi-089

cal language, predominantly consists of sentences090

written as verses in its pre-classic and classic lit-091

erature. Here, such sentences prefer to adherence092

to metrical constraints in prosody over any word093

ordering constructions, resulting in arbitrary word094

orderings (Krishna et al., 2020, §2). In our experi-095

ments, hence we treat the permutations of a given096

sentences as their semantic equivalents.097

Substantial progress has been made in depen-098

dency parsing, including for low-resource lan-099

guages and MRLs (Ji et al., 2021a,b; Dozat and100

Manning, 2017; Kulmizev et al., 2019), aimed at101

augmenting parsing efficacy. Our proposed ap-102

proach is agnostic of the encoder architecture and103

does not necessitate the need for changes in pre-104

training. Moreover, our objective is to leverage re-105

cent advancements in parsing literature and further106

augment them by adding our CSSL module that107

would make these models more robust to word or-108

der variations. In this work, we start by examining109

the robustness of graph-based parsing architectures110

(Ji et al., 2019; Mohammadshahi and Henderson,111

2020, 2021) on 7 relatively free word order lan-112

guages. We believe, graph-based parsing architec-113

tures could be a natural choice to model flexible114

word order. We then focus on investigating essen- 115

tial modifications such as data augmentation (Şahin 116

and Steedman, 2018) and the removal of position 117

encoding required to adapt these architectures ac- 118

cordingly. We finally show the efficacy of our ap- 119

proach on the best baseline (Mohammadshahi and 120

Henderson, 2021, RNGTr) model by integrating 121

CSSL with it and report an average performance 122

gain of 3.03/2.95 points (UAS/LAS) improvement 123

over 7 MRLs. 124

Our main contributions are as follows: 125

• We propose a novel contrastive self- 126

supervised learning (CSSL) module to make 127

dependency parsing robust for free word 128

order languages. 129

• Empirical evaluations of CSSL module affirm 130

its efficacy for 7 free word-ordered languages 131

• We demonstrate statistically significant im- 132

provements with an average gain of 3.03/2.95 133

points over the best baseline on 7 MRLs. 134

2 Contrastive Self-Supervised Learning 135

CSSL enables joint learning of representation, via 136

contrastive learning, with the standard classifica- 137

tion loss for dependency parsing. Here, via CSSL, 138

we identify sentences which are word-level per- 139

mutations of each other as similar sentences, and 140

others as dissimilar sentences. The similar sen- 141

tences are brought closer while pushing dissimilar 142

examples apart (van den Oord et al., 2019; Tian 143

et al., 2020). For a given input, when selecting a 144

dissimilar sample, we choose a random sentence 145

that clearly differs significantly from any permuta- 146

tion of the given sentence. 147

Formally, for a sentence Xi (anchor example), its 148

representation should be similar to the permuted in- 149

stance X+
i as permutation does not alter the mean- 150

ing of a sentence belonging to MRL. However, the 151

representation will differ from a random sentence 152

X−
i (negative example). Therefore, the distance 153

between the appropriate representations of Xi and 154

X+
i is expected to be small. Thus, we can develop 155

a contrastive objective by considering (Xi, X+
i ) a 156

positive pair and N − 1 negative pairs (Xi, X−
i ) : 157

LCSSL = − log
exp (zi · zi+/τ)∑
a∈N exp (zi · za/τ)

158

where N represents a batch, zi represents the repre- 159

sentation vector of the anchor sample, z+i denotes 160
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Figure 2: Schematic illustration of the proposed ap-
proach. Starting from an input sentence (bottom) (Trans-
lation: “I am going to the forest.”), two embeddings are
produced: (1) original and (2) permuted sentence. Self-
contrastive loss is imposed on the embeddings (center).
A decoder uses a cross-entropy objective for predicting
the dependency tree.

the representation vector for the positive sample161

(permuted sample), za represents the representa-162

tion vector for a sample in the batch (N different163

samples), and τ is a temperature parameter that164

controls the concentration of the distribution. We165

employ pooled sentence embedding of the original166

and permuted sentences for CSSL loss. Therefore,167

our final loss is:168

L = Lcssl + Lce (1)169

The classification loss Lce is applied only to token-170

level labels of the original training input.171

3 Experiment172

3.1 Dataset and metric173

As our primary benchmark dataset, we utilize the174

Sanskrit Treebank Corpus (Kulkarni, 2013, STBC).175

From STBC, we use a train and dev split of 2,800176

and 1,000, respectively. Further, we employ a test177

set comprising 300 sentences, drawn from the clas-178

sical Sanskrit work, Śiśupāla-vadha (Ryali, 2016).179

Moreover, from Universal Dependencies180

(de Marneffe et al., 2021, UD-2.13), we choose181

6 additional languages, namely, Turkish, Telugu,182

Gothic, Hungarian, Ancient Hebrew, and Lithua-183

nian.1 Please note that all the seven languages184

are chosen from diverse language families and185

are typologically diverse. Our experiments are186

1the statistics of each of the treebanks used for our experi-
ments is mentioned in Table 4 in the Appendix.

primarily focused on a low-resource setting. Here, 187

the largest training set size we use is of 3,435 188

sentences for Turkish. For Turkish, we simulate 189

a low-resource scenario by considering from the 190

Turkish-IMST treebank. We also experiment with 191

English which is a fixed-ordered high-resource 192

language. Here, we use a training set of 12,544 193

sentences. We use standard UAS/LAS metrics 194

(McDonald and Nivre, 2011) for evaluation. 195

Model UAS LAS
G2GTr (Transition-based) 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTr (Graph-based) 89.62 87.43
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System (CSSL) 91.86 89.38
CSSL + DA 92.43 90.18

Table 1: Comparison of graph-based parsers on Sanskrit
STBC dataset. We modify the best baseline RNGTr by
integrating the proposed method (CSSL) to compare
against variants, removing position encoding (NoPos)
and data augmentation (DA). The best performances are
bold-faced. The results (CSSL vs DA) and (CSSL vs
DA+CSSL) are statistically significant as per the t-test
with a p-value < 0.01 for the LAS metric.

Baselines: We utilize Mohammadshahi and Hen- 196

derson (2020, G2GTr), a transition-based depen- 197

dency parser. Furthermore, we explore Ji et al. 198

(2019, GNN) a graph neural network-based model 199

that captures higher-order relations in dependency 200

trees. Finally, we examine Graph-to-Graph Non- 201

Autoregressive Transformer proposed by Moham- 202

madshahi and Henderson (2021, RNGTr) which 203

iteratively refines arbitrary graphs through recur- 204

sive operations. 205

Hyper-parameters: We implement our CSSL 206

module in RNGTr architecture which uses a pre- 207

trained mBERT model (110M parameters) from 208

Huggingface transformers (Wolf et al., 2020). For 209

RNGTr model, we use the same architecture as 210

Mohammadshahi and Henderson (2020) with pre- 211

trained mBERT as the encoder and an MLP and 212

biaffine followed by softmax for the decoder. We 213

adopt the RNGTr codebase with hyperparameter 214

settings as follows: the batch size is 16, the learning 215

rate as 2e-5, the number of transformer blocks as 216

12 and for the decoder 2 Feed Forward Layers with 217

dropout as 0.33 having bi-affine attention, and the 218

remaining hyperparameters are the same. 219
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RNGTr RNGTr + DA RNGTr + CSSL
Language UAS LAS UAS LAS UAS LAS
Turkish-IMST 72.86 71.99 74.18 72.96 78.21 74.69
Telugu-MTG 90.02 80.34 91.86 81.51 93.79 85.67
Gothic-POIEL 86.59 81.28 88.61 82.93 89.15 84.19
Hungarian-SZEGED 88.13 84.93 90.02 86.65 91.65 87.28
Ancient Hebrew-PTNK 90.76 86.42 91.43 87.12 92.35 88.68
Lithuanian-ALKSNIS 87.63 83.27 88.41 84.79 89.82 86.45
English-EWT 92.08 90.23 93.76 92.16 93.19 90.71

Table 2: Performance comparison on the RNGTr model, RNGTr + DA (Data Augmentation) and RNGTr + CSSL
module. The best performances are bold-faced. Our results (CSSL) are statistically significant compared to both
RNGTr and RNGTr + DA for each language as per the t-test with a p-value < 0.01 for the LAS metric

3.2 Results220

In Table 1, we benchmark graph-based parsers on221

the Sanskrit STBC dataset. Our proposed con-222

trastive loss module is standalone and could be223

integrated with any parser.2 Thus, we modify the224

best baseline RNGTr by integrating the proposed225

method (CSSL) and comparing it against variants,226

removing position encoding (NoPos), and augment-227

ing data augmentation (DA). Table 1 illustrates228

that the proposed framework adds a complemen-229

tary signal making robust word order representa-230

tions to RNGTr by improving 2.24/1.95 points in231

UAS/LAS scores. The performance significantly232

drops (8.8/9.0 UAS/LAS) when position embed-233

dings are removed (vs. Pos kept) from RNGTr due234

to train-test mismatch in pretraining and fine-tuning235

steps. Moreover, our method outperforms data aug-236

mentation technique (Şahin and Steedman, 2018)237

by 1.48/0.92 points (UAS/LAS) when integrated238

with the RNGTr baseline. We integrate CSSL on239

top of an RNGTr+DA system and observe statisti-240

cally significant improvements of 0.57/0.80 points241

(UAS/LAS), suggesting the proposed method com-242

plements the data-augmentation technique.243

Results on multilingual experiments: In this244

section, we investigate the efficacy of CSSL mod-245

ule in multi-lingual settings. Table 2 reports re-246

sults on 6 other morphologically rich languages247

in low-resource settings. Our approach averages248

3.16/3.12 higher UAS/LAS scores than the usual249

cross-entropy-based RNGTr baseline. Our sys-250

tem outperforms the rotation-based DA technique251

with an average increase of 1.74/1.83 in UAS/LAS252

scores. Here, as expected, our proposed CSSL ap-253

proach outperforms the standard RNGTr and DA254

2Refer to Appendix A.1 for empirical evidence.

approaches for all the languages, except English. 255

English is not an MRL and it relies heavily on con- 256

figurational information of the words to understand 257

sentence structure. The DA approach performs bet- 258

ter by 0.57/1.45 UAS/LAS scores than our frame- 259

work. However, it is interesting to note that CSSL 260

still outperforms the RNGTr baseline by 1.11/0.48 261

UAS/LAS, possibly due to robustness of permuta- 262

tion invariant representation learning we employ in 263

CSSL. As illustrated in Table 1, it is evident that 264

combining CSSL with DA surpasses CSSL alone 265

by approximately 0.5 points, exhibiting a 2-point 266

enhancement over DA. 267

4 Conclusion 268

In this work, we investigated the robustness of 269

graph-based parsing architectures across 7 lan- 270

guages characterized by relatively flexible word 271

order. We introduced a self-supervised contrastive 272

learning module aimed at making encoders insen- 273

sitive to variations in word order within sentences. 274

Additionally, the modular nature of our approach 275

enables seamless integration with any encoder ar- 276

chitecture without necessitating modifications to 277

pretraining decisions. To the best of our knowl- 278

edge, our approach represents the first utilization 279

of contrastive learning techniques for dependency 280

parsing to address challenges arising from vari- 281

able word order in low-resource settings. Finally, 282

we demonstrate the effectiveness of our approach 283

by integrating it with the RNGTr model (Moham- 284

madshahi and Henderson, 2021), reporting an aver- 285

age performance improvement of 3.03/2.95 points 286

(UAS/LAS) across the 7 MRLs. 287

Limitations We could not evaluate on complete 288

UD due to limited available compute resources 289

(single GPU); hence, we selected 7 representative 290
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languages for our experiments.291
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A Appendix 465

A.1 Integration of CSSL with another 466

encoder 467

The modular nature of CSSL framework allows for 468

seamless integration with any encoder architecture, 469

without necessitating alterations to pretraining de- 470

cisions. We have shown its effectiveness for the 471

best-performing baseline. We are also showing re- 472

sults with one more baseline (for Sanskrit). Our 473

supplementary results indicate that activating con- 474

trastive loss for the G2GTr baseline on the STBC 475

treebank for Sanskrit leads to an approximate 2- 476

point enhancement in performance measured by 477

UAS/LAS.

CE CSSL
UAS LAS UAS LAS

G2GTr 87.16 85.68 89.05 87.05

Table 3: Contrastive Loss with G2GTr on STBC dataset.
478

A.2 Treebank Statistics 479

Table 4 provides the detailed statistics for the lan- 480

guages used in the experiments. 481

A.3 Related Work 482

Contrastive learning has been the pinnacle of re- 483

cent successes in sentence representation learn- 484

ing. In order to optimize the appropriately de- 485

signed contrastive loss functions, (Gao et al., 2021; 486

Zhang et al., 2022) uses the entailment sentences 487

in NLI as positive pairs, significantly improving 488

upon the prior state-of-the-art results. To this end, 489

a number of methods have been put forth recently 490

in which the augmentations are obtained through 491

back-translation (Fang et al., 2020), dropout (Yan 492

et al., 2021; Gao et al., 2021), surrounding con- 493

text sampling (Logeswaran and Lee, 2018; Giorgi 494

et al., 2021), or perturbations carried out at dif- 495

ferent semantic-level (Wu et al., 2020; Yan et al., 496

2021). 497
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Treebank Language Family train dev test
Sanskrit-STBC Indo-Aryan 2,800 1,000 300

UD-Turkish_IMST Turkic 3,435 1,100 1,100
UD-Gothic_Proeil Germanic 3,387 985 1,029
UD-Telugu_MTG Dravidian 1,051 131 146

UD-Hungarian_Szeged Uralic 910 441 449
UD-Ancient_Hebrew_PTNK Semitic 730 439 410
UD-Lithuanian_ALKSNIS Baltic 2,341 617 684

UD-English_EWT Roman 12,544 2,001 2,077

Table 4: Treebank Statistics. The number of sentences in train, dev and test for each language.
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