
ActSort: An active-learning accelerated cell sorting
algorithm for large-scale calcium imaging datasets

Yiqi Jiang∗
Stanford

Hakki O. Akengin∗

Stanford
Ji Zhou∗,

Johns Hopkins

Mehmet A. Aslihak
UC San Diego

Yang Li
Stanford

Radosław Chrapkiewicz
Stanford

Oscar Hernandez
Stanford

Sadegh Ebrahimi
Stanford

Omar Jaidar
Stanford

Yanping Zhang
HHMI, Stanford

Hakan Inan
Meta

Christopher Miranda
Stanford

Fatih Dinc†
Stanford

Marta Blanco-Pozo†
Stanford

Mark J. Schnitzer†
HHMI, Stanford

Abstract
Recent advances in calcium imaging enable simultaneous recordings of up to a
million neurons in behaving animals, producing datasets of unprecedented scales.
Although individual neurons and their activity traces can be extracted from these
videos with automated algorithms, the results often require human curation to
remove false positives, a laborious process called cell sorting. To address this
challenge, we introduce ActSort, an active-learning algorithm for sorting large-
scale datasets, which integrates features engineered by domain experts together with
data formats with minimal memory requirements. By strategically bringing outlier
cell candidates near the decision boundary up for annotation, ActSort reduces
human labor to about 1–3% of cell candidates and improves curation accuracy by
mitigating annotator bias. To facilitate the algorithm’s widespread adoption among
experimental neuroscientists, we created a user-friendly software and conducted
a first-of-its-kind benchmarking study involving about 160,000 annotations. Our
tests validated ActSort’s performance across different experimental conditions and
datasets from multiple animals. Overall, ActSort addresses a crucial bottleneck
in processing large-scale calcium videos of neural activity and thereby facilitates
systems neuroscience experiments at previously inaccessible scales. (Link to our
Github: https://github.com/schnitzer-lab/ActSort-public)

1 Introduction
Systems neuroscience research has been revolutionized by large-scale Ca2+ imaging techniques,
which now regularly produce terabyte scale datasets [1, 2, 3, 4, 5, 6, 7, 8, 9]. This rapid increase
in neural data has necessitated automated methods for identifying neuronal sources, leading to
the development of cell extraction algorithms [10, 11, 12, 13]. These algorithms facilitate large-
scale analysis by detecting even up to a million neurons [9, 14, 15]. However, they can sometimes
misidentify non-neuronal elements as neuronal structures, potentially leading to erroneous biological
interpretations in downstream analyses [16, 17, 18].

To mitigate errors arising in automated cell extraction pipelines, experimental studies often perform
quality control processes, known as cell sorting, to validate and refine cell extraction outputs [10, 11,

∗These authors contributed equally to this work.
†These authors co-supervised this work.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/schnitzer-lab/ActSort-public

12, 13, 19]. In practice, researchers either laboriously annotate all cell candidates using specialized
software (See CIATAH, [20]) or employ “cell classifiers” that are trained on a subset of annotated
datasets to label the rest [10, 11, 20]. However, manual annotation is no longer practical given
the large data sizes in modern neuroscience [8, 14, 15, 21, 22]. As we show in this work, existing
automated methods still require substantial human labor to achieve desirable accuracy. Yet, human
annotations are known to develop undesirable biases ([23, 24, 25, 26, 27]) due to, e.g., getting tired
after long hours of repetitive work. Therefore, there is an urgent need for a scalable and robust
solution that minimizes human labor without compromising the accuracy of the cell sorting.

A potential solution may lie in the active learning paradigm, a branch of machine learning that
optimizes model performance while minimizing the need for annotated samples [28, 29, 30, 31, 32,
33, 34, 35]. In this paradigm, so-called query algorithms select the most informative and sparse
samples to be labeled by human annotators [36, 37, 38]. To date, active learning has improved
several scientific pipelines such as classifying pathological images [39, 40], detecting intracranial
hemorrhage [41], and segmenting melanoma [42]. Inspired by these successes, we set out to leverage
the active learning framework to accelerate the cell sorting process.

In this work, we introduce ActSort: an active learning accelerated cell sorting algorithm to process
large-scale Ca2+ imaging datasets. As a first step, we developed a memory-efficient and user-friendly
cell annotation software. Using this software, we designed an extensive cell annotation benchmark.
This benchmark contains roughly 160,000 annotations of 40,000 cells collected using one- and
two-photon mesoscopes across 5 mice, which we used to test and validate ActSort. Supported with
novel features engineered by expert neuroscientists and a novel query algorithm tailored for cell
sorting, ActSort matched human-level accuracies while reducing the required human labor to a
negligible fraction of the full samples (down to 3% when training from scratch, and 1% if ActSort is
initialized with previously annotated samples). In large-scale mesoscope movies, ActSort achieved
convergence by sorting few hundreds of cells (c.a. 1 hour of human labor). In contrast, to achieve the
same mark, labeling random subsets of representative datasets required sorting an order of magnitude
larger number of cells. Notably, our analysis also revealed significant disagreements among human
annotators, yet semi-automated classifiers mitigated this large variability across experimenters.
Overall, our findings suggest that ActSort can save experimentalists significant time, and improve the
reliability, robustness, standardization, and reproducibility of systems neuroscience research.

2 Results
Our cell sorting pipeline (ActSort) consists of three main components (Fig. 1): the preprocessing
module, the graphical user interface (GUI), and the active learning module. The full pipeline is
available to end-users with a point-click installation in our GitHub repository [43] and can be used
as an application or in Matlab-online without a license. In this section, we introduce ActSort and
validate it with several experiments on large-scale annotation benchmarks.

2.1 A large scale benchmark of 160,000 annotations sorted with a custom software
Only five years ago, a Ca2+ imaging movie with a 100 GB size was considered large [12]. Today,
neuroscientists routinely collect datasets several terabytes in size [44]. Given this rapid increase, we
start our work by designing a scalable software with a primary focus on memory efficiency. Without
keeping the full movie in RAM, the software needs to include essential information used by human
annotators to determine whether a sample is a cell: i) the shapes of cells’ extracted spatial footprints,
ii) their Ca2+ activity traces over time, and iii) the movie snapshots at the time of Ca2+ events (Fig.
S1; Appendix B). While earlier work often retained only the first two elements for memory efficiency
[10], we found that the spatiotemporal information provided by the Ca2+ movie snapshots was
crucial for human annotators, especially in edge cases, which are particularly important for the active
learning paradigm (see below). This design choice also aligns well with the newer Ca2+ imaging
processing pipelines (see the cell sorting module in CIATAH [20]), and can be incorporated with an
efficient data compression procedure without increasing dataset sizes significantly.

To achieve this design goal, as part of the preprocessing module (Fig. S2), we opted to compress
the movie and the cell extraction results jointly. We saved the variables in sparse formats whenever
applicable and retained only the relevant parts of the Ca2+ imaging movies where the cells had Ca2+
events (up to a pre-defined maximum; see Appendix B.1 for details). This approach allowed us to
compress the large inputs of the traditional cell sorting pipelines (Fig. 1), resulting in approximately
270± 90 MB/1,000 cells (mean ± std over 5 mice) data sizes. Thanks to the extreme compression

2

Figure 1: An active learning accelerated framework for rapid quality control of cell extraction
results. Left. A typical processing of Ca2+ imaging movies involves identification of cell candidates
by automated cell extraction algorithms. Middle. ActSort’s preprocessing module jointly compresses
the cell extraction results and the Ca2+ imaging movie to allow memory efficient cell sorting in
large-scale Ca2+ imaging movies, and computes quality metrics for each cell candidate. The selection
GUI allows human annotators to visually inspect the cell extraction results and annotate the true and
false positive cell candidates. The active learning module, working in closed-loop feedback with the
selection GUI, strategically selects next cell candidates to be annotated by the experimenter in order
to optimally reduce the human effort. Right. The resulting outputs from ActSort are probabilities and
binary labels (cell or not a cell) for each cell candidate.

of the movie and cell extraction data, we were able to develop a memory efficient and user-friendly
graphical user interface for cell sorting (Figs. S1, S2, and S3). This software does not require any
coding knowledge, utilizes buttons and sliders to operate, and can be used on laptops.

Most public Ca2+ imaging datasets share cells’ spatial profiles and Ca2+ activity traces, but not the
movies themselves due to large data sizes [45, 46]. Yet, motion artifacts and/or neuropil contamination
can often not be identified by simply looking at Ca2+ activity traces, but can alter biological
conclusions [13, 18]. Thanks to our memory-efficient data format, open-sourced datasets can now
include relevant movie snapshots without astronomical increases in data sizes, and the quality of the
Ca2+ activity traces can be probed with our software.

After coding the cell sorting software, we first searched for public datasets to validate the use of cell
classifiers and active learning paradigm as a viable method for automated cell sorting. Although there
are publicly available Ca2+ imaging movies with annotated cells, notably NeuroFinder challenge
[47], these datasets are often region specific and contain few hundreds of cells. Yet, we have designed
ActSort to process large-scale mesoscope movies. These modern movies simultaneously record large
populations of neurons across multiple brain regions, and are now regularly collected by neuroscience
labs [9, 14, 44]. To the best of our knowledge, no annotation dataset is publicly available with
brain-wide mesoscope movies.

To bridge this gap, we curated a total of five mesoscope movies: i) three one-photon Ca2+ imaging
movies spanning the hemisphere through a 7mm window (Table S1), ii) one Ca2+ imaging movie
from previous work ([44]) spanning several neocortical regions (Table S2), and iii) one two-photon
Ca2+ imaging movie capturing layer 2/3 cortical pyramidal neurons in mice primary visual cortex
(Table S3). We extracted an approximate total of 40,000 cells from these movies using the EXTRACT
cell extraction algorithm [13]. We then had 6 annotators independently perform cell sorting on these
movies, with 4 annotators per movie, totaling up to roughly 160,000 annotations (Methods; Appendix
C). We used this benchmark to perform validation experiments throughout this work.

2.2 Automated cell sorting with linear classifiers utilizing newly engineered features
Automated cell sorting pipelines rely on training cell classifiers to annotate the unlabeled cell
candidates [10, 20, 44]. These classifiers often use features derived from the cell extraction outputs
and, in some cases, from Ca2+ imaging movies [20]. The central hypothesis behind this automation
is that these derived features—such as the stereotypical shapes of cells’ spatial profiles—contain
sufficient information to distinguish false positives from real cells. However, relying on a select few
features overlooks a crucial aspect of cell sorting: human annotators incorporate information from
broad sources in their decisions. Consequently, we hypothesized that cell classifiers would benefit
from a broader class of features than those traditionally implemented in the literature.

3

Figure 2: Feature engineering improves
the accuracy of automated cell sorting
with linear classifiers. A The newly
engineered features increased classifiers’
ability to reject false-positives and led to
improved area under the receiver operat-
ing characteristic curve (Wilcoxon signed-
rank tests (***p < 10−3)). B We com-
puted the discriminability indices (d′) that
quantify how well each feature can sepa-
rate out cells from false-positives. C Many
features exhibited middle or strong effects
(d′ ≥ 0.5 or d′ ≥ 0.8, respectively),
whereas few features were not discrimi-
native for this particular dataset. Boxes
span the 25th to 75th percentiles, whiskers
1.5 times the inter-quartile range.

To test this hypothesis, we first designed a traditional feature set (Methods; Appendix B.1), which
aims to be a strong baseline representing the set of features used by existing cell extraction pipelines
[10, 12, 13, 20, 44]. With these features, we processed hemisphere Ca2+ imaging movies from
three mice, encompassing 28,010 cell candidates and 112,040 annotations (Table S1). For each
mouse, we trained cell classifiers using traditional features on half of the cell candidates and predicted
the identity of the other half. While the classifiers performed superbly in identifying true positives,
correctly accepting 97% of the cells (data not shown), they were suboptimal in rejecting false positives,
accurately rejecting only 67% of the candidates rejected by human annotators (Fig. 2A). Part of this
low accuracy may be due to the fact that only a small fraction of the samples (often <10%) are false
positives, and human annotators may struggle to remain consistent with their strategy for duplicate
selection and/or when deciding edge cases. Nevertheless, this observation was in line with our
prediction that there may be room for improvements in the feature sets used by cell classifiers.

To bridge this gap, we engineered 76 new features for the cell classifiers by mimicking the spa-
tiotemporal information human annotators pay attention to during cell sorting (see Appendix B.1
for the full list). This set includes traditional temporal features (e.g., number of spikes in a trace,
signal-to-noise ratio) and spatial features (e.g., mean pixel intensity, circumference), as well as
novel spatiotemporal features (e.g., severity of the non-Gaussian noise contamination). To ensure
memory-efficient computation, we derived these features solely from the compressed data format,
allowing feature extraction on demand or during the cell extraction routine. Re-analyzing the dataset
from Fig. 2A, we found that the new features increased the rejection accuracy to 72% (Fig. 2A)
without decreasing the accuracy of accepting true-positives (data not shown, 97%), leading to more
effective separation between cell and not cell samples in our benchmarks (Fig. 2B-C). We also
confirmed that this newly engineered set of features were more efficient and effective than features
extracted in an unsupervised manner from a ResNet-50 model (Fig. S4, Appendix A.1).

The question remains, however, how can we improve the cell classifiers further? We conjectured that
one of the reason behind the relatively low rejection accuracy (72% with the new features) may be the
inconsistency of human annotators, and thereby the imperfect “ground truth” evaluators. We studied
this question extensively in Appendix A.2, which revealed that individual human annotators were
indeed quite inconsistent. Though, cell classifiers trained on their annotations ended up being more
consistent (Fig. S5). Yet, if human annotators are inconsistent, how can we validate the accuracy
of ActSort, or in general, automated cell sorting? To address this, we designed a cross-validated
evaluation process that incorporated the fact that humans often disagree with each other (Fig. S6).
Specifically, to evaluate the active learning routines trained with a specific annotator, we created a
ground truth evaluator by taking the majority vote of the three held-out annotators. Fortunately, the
majority votes among the held-out human annotators had a good consistency quantified with the intra
class correlation (ICC) analysis (ICC = 0.79±0.05, mean ± std, two-way mixed, average measures
[48]), far outperforming the individual annotators (ICC = 0.56± 0.06, mean ± std, two-way mixed,
single rater ICC). Thus, throughout this work, the annotations performed by either the classifiers
and/or the experimenters are evaluated on these majority-voted held-out labels.

4

2.3 Discriminative-confidence active learning query algorithm for cell sorting
So far, we introduced our custom software for cell sorting, discussed how to utilize feature engineering
and cell classifiers to annotate unlabelled cell candidates, and established how to reliably and
consistently evaluate the cell sorting results via majority votes. Now, we introduce the final piece:
integrating the cell classifiers into the active learning framework with “query algorithms.”

In ActSort, the active learning query algorithm prompts human annotators to label specifically
selected samples. These samples are expected to improve the automated cell sorting accuracy, which
creates an online feedback loop between the annotator and classifier (Fig. 1). But how should the
samples be chosen for annotation? A straightforward approach is to annotate a random subset and
label the rest, as has been done in the literature to date [10, 20]. Yet, as we discuss below, better
alternatives exist.

When designing alternative query algorithms, we focused primarily on speed and scalability, as
sorting is performed on the spot and within seconds. Therefore, we considered query algorithms
that can train and predict rapidly. Two such strategies are confidence-based active learning (CAL)
[49, 50] and discriminative active learning (DAL) [51]. These query algorithms aim to mitigate
two distinct types of uncertainties: (i) uncertainty regarding the sample’s position relative to the
decision boundary of the current model (CAL), and (ii) uncertainty regarding whether labeled samples
faithfully represent the full dataset (DAL). Both query algorithms achieve these aims with rapidly
trainable linear classifiers (see Methods for details; Appendix B.3).

Briefly, CAL trains a cell classifier on the currently labeled samples and picks the unlabeled sample
closest to the decision boundary for annotation. DAL trains a secondary “label” classifier to discrim-
inate labeled cells from the unlabeled data and selects a sample most different from those labeled
subset. Evidently, an optimal solution should bring samples up for annotation that are close to the
final decision boundary (CAL). However, the query algorithm should approximate where the final
boundary is with sparse samples, which requires collecting diverse samples that represent, roughly,
the full dataset (DAL). Therefore, both approaches have their unique advantages.

To amplify the strengths of both approaches, we introduce a new query algorithm: discriminative-
confidence active learning (DCAL). DCAL selects samples for human annotation by considering
both the classifier’s uncertainty and the representation of samples in the unlabeled dataset. This
is achieved by training both cell and label classifiers and adaptively combining their scores with a
user-initialized weight w (Methods; Appendix B.3). As the number of samples increases, the weight
is adjusted based on the accuracy of the label classifiers. Specifically, DCAL gradually approximates
CAL, since the label classifiers tend to become random predictors due to the growing diversity of
annotated samples. Meanwhile, the DAL component is crucial in the early stages to identify outlier
data points (Fig. S7A). Thanks to the adaptive estimation process, DCAL depends minimally on the
initial choice of the trade-off weight (Fig. S7B), and is thereby practically parameter free.

2.4 Geometrical interpretation of discriminative-confidence queries
The query algorithms we consider in this work – random, CAL, DAL, and DCAL – have simple
geometric interpretations, which we discuss now using an example movie from our benchmark (Figs.
3 and S8). To illustrate the sample selection preferences by these query algorithms, we reduced the
dimension of the feature space from 76 down to 2 using a partial-least squares analysis and plotted in
Figs. 3A and S8.

Both random and DAL queries comprised of diverse samples covering the full spectrum, with the latter
showing increased diversity as expected. As a consequence, since there are for more true positive
samples in the full dataset, both of these approaches picked mostly real cells up for annotation (Fig.
3A and S8; random and DAL). In contrast, CAL primarily picked cell candidates that are close to
the decision boundary, leading to a more balanced selection of true and false positive annotations
(Fig. 3A and S8; CAL). Yet, especially for sparse annotations, CAL had a preference to sample from
higher density regions of the boundary (Fig. S8; CAL with 1%). DCAL, on the other hand, was
practically equivalent to CAL in large annotation limit, but also mitigated the dense sampling with
sparse annotation (Fig. 3A and S8; DCAL). In other words, DCAL picked outlier boundary cells,
providing a comprehensive coverage across the boundary.

Next, we quantified these observations by focusing on a subset of the dataset, which we termed
“boundary samples” (Methods; Appendix D.4). Here, we confirmed that both CAL and DCAL
selected a high percentage of boundary samples (Fig. 3A, B). These selections preferentially included

5

Figure 3: Discriminative-confidence active learning (DCAL) algorithm selects outlier boundary
samples. A Dimension reduction via supervised partial least squares (PLS) was applied to the 9,983
cell candidates from a representative annotation of one hemisphere dataset. For each query algorithm,
we sorted up to 3% cell candidates and visualized them in the PLS-reduced dimensions computed
from the majority-voted held-out labels. Blue dots, cells (as annotated by one human); red dots, false
positives; dashed black lines, (approximate) decision boundaries in the reduced feature space. The
fraction next to DCAL indicates its user-defined initial weight. B The average percentage of the
selected samples near the decision boundary (probabilities within [0.25, 0.75], Method; Appendix
D.4) when sorting 3% of cell candidates with each algorithm. C The fraction of cell candidate types,
based on annotators’ votes (0:4/4:0, 1:3/3:1, and 2:2), selected by each query algorithm normalized
with respect to the total number in that particular confidence pool. D The average cosine distance
between standardized features of boundary samples, the same samples that lie within the decision
boundary in (B). In (B-D), each dot represents a single annotation instance. Error bars: s.e.m. over
12 annotations. All tests are two-sided Wilcoxon signed-rank tests with Bonferroni-Holm corrections
(∗∗∗p < 10−3, ∗∗p < 10−2, ∗p < 0.05).

samples that were challenging for human annotators to agree on (Fig. 3C). In selecting these samples,
DCAL has shown significant improvements over DAL (Fig. 3B,C), which was expected since the
latter has no relevant incentive. Notably, DCAL also matched the performance of CAL in picking
boundary samples, an algorithm solely designed to do so, and had improved diversity in selected
boundary cells (Fig. 3A, D). Thereby, these results jointly confirmed that DCAL preferentially picked
samples lying on the decision boundary and those further from previously picked samples, leading to
broader coverage and better representation of the boundary (Figs. 3 and S8).

2.5 Performance evaluations of ActSort on the human annotated benchmarks
Though automated cell sorting is a necessity, work to date has not performed a clear validation of such
approaches in large scale benchmarks. Similarly, though active learning query algorithms may provide
improvements, existing approaches to date have focused on simple random sampling strategies. To
perform the first test of this paradigm, we ran several experiments on our benchmarks using the
cross-validated evaluation process (Fig. S6A). Specifically, we tested the cell classifiers and the active
learning query algorithms (random, CAL, DAL, and DCAL) with closed-loop simulated experiments,
which mimicked the real-time annotation that ActSort aims to facilitate (Fig. 4A).

As a first test, we processed individual Ca2+ imaging movies covering hemisphere from three distinct
mice (Table S1 and Fig. 4B-D). With as little as 5% annotations, DCAL achieved human level true
negative rates (Fig. 4D), whereas all algorithms except DAL and random sampling had an above
human level true positive rate of ≥ 95% with ≤ 1% annotated samples (Fig. 4C). As expected,
DCAL’s performance was mostly independent from the chosen weight due to the adaptive estimation
process (Appendix B.3), but also distinct (and better) compared to either DAL or CAL. Notably,

6

Figure 4: ActSort converges rapidly (at 5 − 10% data) and outperforms human annotators
(at 1 − 3%). We simulated online annotation scenarios using the hemisphere datasets from three
mice with 12 associated human annotations (Table S1), sorting up to 50% of cell candidates. A An
illustration of the ActSort workflow. (B) balanced accuracies, (C) true positive rates, and (D) true
negative rates as a function of the annotation percentages. Solid lines: means. Shaded areas: s.e.m.
over 12 annotators. Dashed line and gray area: mean and s.e.m. from 12 human annotations. See
Table S6 and Fig. S13B for additional details. E-G We re-ran the experiments in (B-D), but processed
multiple imaging datasets simultaneously. Dashed line and gray area: mean and s.e.m. from 64
augmented human annotations. See Table S7 and Fig. S13C for additional details.

ActSort with DCAL reached human-level balanced accuracy with annotating roughly 3% of the full
dataset and converged within < 10% beyond these levels, even though the classifiers were trained on
human outputs (Fig. 4B). In comparison, random sampling reached the same marks with roughly
10% and 50% annotated samples, respectively (Fig. 4B-D).

Next, we considered processing cell candidates from multiple animals in a single combined batch
(Fig. 4E-G). To test this scenario, we augmented 64 new annotators and corresponding evaluators by
selecting one annotator from each dataset (Fig. S6B). Consequently, each combined dataset contained
slightly more than 28,000 samples across three mice. In this experiment, with < 1% annotated
instances, DCAL reached human-level balanced accuracy, and had minimal improvements beyond
roughly 3% annotated samples (Fig. 4E). Surprisingly, both DAL and CAL massively underperformed
DCAL, offering little improvement over random sampling (Fig. 4E-G). These results underscore the

7

Figure 5: ActSort pre-trained with previously annotated datasets converges faster on new
animals. A To test ActSort’s generalization capacity, we trained cell classifiers on half of the cell
candidates from one mouse (representing pre-annotated datasets) and fine-tuned on samples from
another mouse (representing the new dataset that needs to be annotated) using the hemisphere dataset.
The GUI displays the current dataset, whereas the active learning module trains the cell classifiers
using both newly- and pre-annotated data in the background. The query algorithm then selects the
next candidates for human annotation, facilitating fine-tuning to the dataset of interest (Method;
Appendix D.5). B - D We created 6 pairs of mice, involving 16 augmented annotations per pair,
totaling 56,020 cell candidates and 224,080 annotations. The first dataset is sorted up to 50% of cell
candidates. Using the same query algorithm, the second dataset is sorted up to 20%. We evaluated
various query strategies - random, CAL, DAL, and DCAL - by computing (B) balanced accuracies,
(C) true positive rates, and (D) true negative rates by averaging over the 96 data-annotation pairs.
Solid lines: means. Shaded areas: s.e.m. over 96 augmented annotations pairs. Dashed line and gray
area: mean and s.e.m. from human annotations. See Table S8 and Fig. S13D for additional details.

importance of broader coverage and better representation of the decision space, especially when the
annotation dataset contains diverse cell candidates sampled from multiple imaging sessions.

The hemisphere-wide movies we considered so far can be considered as high quality cell extraction
results, with false-positive rates already as low as 5-10% per movie and high quality imaging and
experimental conditions. Next, we asked whether ActSort would be able to accurately process lower
quality imaging datasets. To test this, we processed one of the cortex-wide movies from [44] with
less stringent quality parameters in EXTRACT such that the resulting cell extraction output had many
false-positives, around 35%, by design (Fig. S9). We also tested ActSort on a two-photon Ca2+
imaging movie with residual motion (Fig. S10). In both datasets, DCAL outperformed all other
approaches. Hence, the low false positive rate in the cell candidates or the optimal imaging/processing
conditions cannot explain the success of ActSort in converging rapidly with few annotated samples.
We further confirmed that these results were robust to changes in hyperparameters, such as the
regularization parameter (Fig. S11) and classifier thresholds (Fig. S12).

As a test of ActSort’s generalization ability, we conducted additional experiments with a set of
pre-labeled samples using the three Ca2+ imaging movies of the hemisphere dataset. Specifically, we
pre-trained the cell classifier on one dataset using 50% of the pre-labeled samples. This classifier
was later fine-tuned using the real-time annotations on a new dataset from a different mouse. To
test this pre-labeling approach, we paired 3 movies with each other, creating six dataset pairs. Each
pair had 16 augmented annotations, pre-labels came from one of four annotators of the first movie,

8

fine-tuning was performed using one of four annotators of the second movie (Fig. 5A). The details of
the fine-tuning process can be found in Algorithm S2 and Appendix D.5.

Our results, illustrated in Fig. 5, demonstrate the effectiveness of combining pre-labeled samples with
DCAL. Notably, with pre-labels, DCAL achieved a human-level balanced accuracy with as little as
1% annotated samples and converged with roughly < 6% annotations (Fig. 5B). In contrast, random
sampling did not achieve human-level performance until c.a. 8% annotations and had not converged
even with the 20% samples (Fig. 5B). Similar to before, we found that DAL had similar performance
to random sampling in picking true positives (Fig. 5C), for which CAL was the better algorithm.
However, DAL outperformed CAL in the true negative rates (Fig. 5D). As their combination, DCAL
often outperformed or matched the accuracies of both of these approaches, highlighting its robustness
and effectiveness in sorting cells under varying conditions (Fig. 5).

In Fig. S13, we provide additional metrics from our analyses performed in the main text. Finally,
in Appendix A.3 and Fig. S14, we showcase how to apply ActSort to datasets processed with
another cell extraction algorithm utilizing independent component analysis [52] and that cell sorting
is necessary to cull out false positive signals that may correlate with animals’ behavior.

3 Discussion
ActSort is as a standalone quality control software, which can be used to probe the outputs of
cell extraction pipelines such as EXTRACT [13], Suite2p [10], ICA [52], CAIMAN [12], and
others [11, 19, 53, 54]. These cell extraction algorithms take the raw Ca2+ movie as their inputs,
correct the brain motion, perform simple transformations to standardize the Ca2+ imaging movies,
identify putative cells’ spatial profiles and temporal activities, and often perform primitive quality
controls to output the final set of neural activities. Historically, additional quality controls on the cell
extraction outputs would be performed with manual annotation, which was feasible for the small
neural recordings with up to thousands of neurons [20, 23, 24, 25, 26, 27]. Yet, with the advent of
large scale Ca2+ imaging techniques, now recording up to one million cells [9], manual review is no
longer realistic. Instead, the field of experimental neuroscience direly needs automated quality control
mechanisms that would correctly identify the true cell candidates while rejecting false positives
misidentified by the extraction algorithms.

ActSort is the first scalable and generalizable solution in this direction. Yet, previous works (as parts of
existing cell extraction pipelines [10, 12, 13]) had tackled this problem in specific instances: Suite2p
designed cell classifiers based on some basic features to increase the precision of the algorithm [10],
CAIMAN pre-trained a deep classifier for two-photon movies [12] (though not applicable to 1p Ca2+
imaging movies [55]), whereas EXTRACT performed thresholding on a set of quality metrics [13].
Notably, these existing automated methods with pre-trained cell classifiers often found success only
for high quality 2p Ca2+ imaging movies [10, 12], and even then underperformed human annotators
[12]. One-photon Ca2+ imaging datasets, on the other hand, are quite diverse in their imaging
(miniscope vs mesoscope) and experimental (head-fixed vs freely behaving) conditions and face
additional challenges due to low resolution and high background noise. With ActSort, we sought a
generalizable solution that does not target a specific modality or require substantial re-training, but
uses interpretable features that are robust across various behavioral experiments, Ca2+ indicators,
imaging conditions, and techniques.

To provide a baseline for existing methods in our benchmarks, we designed a feature set called
“traditional features” (Fig. 2), including features used by classifiers in prior works (See Appendix B.1).
These methods did not use active learning, instead annotating random subsets. In our experiments,
these prior methods are represented as the random sampling query algorithm, using the full feature
set for fair comparisons with active learning approaches. In all benchmarking experiments, active
learning (specifically DCAL) clearly outperformed random sampling, as is traditionally done in the
literature [20, 44]. Notably, classifier predictions showed significantly lower variability compared to
human annotations despite being trained on them (see, e.g., the differences between gray and colored
shaded regions in Figs. 4 and 5). These observations suggest that automation not only reduces human
labor but also standardizes it.

Though we performed extensive analysis to highlight the efficiency and effectiveness of ActSort, our
work is merely a first step for what may hopefully become a fruitful collaborative subfield comprising
of experimental neuroscientists and active learning researchers. There are several future directions
that future work could improve upon, which we will briefly summarize below.

9

Firstly, in this work, we used linear classifiers for rapid online training during cell sorting and
reproducibility of annotation results. This was mainly rooted in the fact that pre-training deep
networks required substantial data and standardization across various Ca2+ imaging movies. We
believe that with additional public datasets that may follow our lead, this direction can become reality
(as was the case for a different, yet relevant, problem of spike extraction [56]). Our results in this
work have set a strong baseline for such future deep-learning approaches.

One limitation of ActSort is that it functions as a quality control pipeline to existing cell extraction
approaches. Therefore, any mistakes in the cell extraction step would automatically propagate to cell
sorting. Yet, some of these mistakes can be mitigated or highlighted post hoc. For instance, future
ActSort versions could involve options for merging segmented or duplicated cells, or identifying
motion in activity traces and thereby notifying the user to improve their preprocessing steps.

Another important aspect requiring further exploration is the expertise level of the annotators. To
date, each Ca2+ imaging movie is often annotated by a single annotator, who unfortunately can tire
after long hours and become inconsistent as we have discussed above. This was the reason behind
our choice to have the movies in our benchmark be annotated by multiple researchers. Yet, the
human annotators had different levels of expertise in working with Ca2+ imaging datasets. Hence,
a potential moderation relationship can exist depending on the expertise of the annotator. To fully
explore this relationship requires further research with more annotators per dataset, by having the
same annotators sort the same cells in different times, and/or testing sorting effectiveness before and
after a standardized sorting training.

Finally, we validated ActSort for one-photon and two-photon Ca2+ imaging datasets and binary class
sorting. Yet, our framework is generally applicable to other modalities, barring additional feature
engineering performed by domain experts in those fields, or with a pre-trained deep network. For
instance, by replacing the logistic regression with a multinomial version and approximating CAL
scores with entropy instead of decoder scores, our work readily applies to multi-class datasets that
may jointly include, e.g., dendritic and somatic activities. With the right features, our framework
could potentially support emerging voltage imaging recordings, especially as the number of cells will
inevitably increase in such movies with the technological advances.

Overall, while human annotation was possible in datasets discussed in this work due to the manageable
number of cell candidates, data analysis and hypothesis testing at scale with millions of neurons will
require robust and automated cell sorting tools. In such cases, ActSort, and tools that will follow
its lead, are essential for filtering out non-neuronal artifacts that could otherwise compromise the
accuracy and reproducibility of neuroscience research.

4 Conclusion

In this work, we introduced ActSort, a quality control algorithm for processing large scale Ca2+
imaging datasets. We utilized real-time human feedback via a closed-loop active learning paradigm
to decrease the need for human annotation by two-orders of magnitude. We achieved this by first
engineering features that generalize across experimental and imaging conditions, and by developing
a simple, yet effective, active learning query algorithm. Finally, to support the development of active
learning algorithms in systems neuroscience, we introduced the first publicly available benchmark for
cell extraction quality control on both one- and two-photon large-scale Ca2+ imaging, comprising five
datasets: four one-photon and one two-photon Ca2+ imaging datasets, with approximately 40,000
cells and 160,000 annotations.

The potential impact of this work is two-fold: i) decreasing the number of hours humans spend
annotating modern Ca2+ imaging data sets, and ii) increasing the accuracy of cell classification by
mitigating the annotator biases. A paradigm requiring that merely 1-5% of cells be annotated by
a human can reduce cell sorting from several hours per Ca2+ imaging data set, to merely tens of
minutes. Through ActSort, researchers can reclaim tens of hours that would have otherwise been
spent labeling modern massive data sets. Importantly, increasing cell detection accuracy can be
largely beneficial to modern systems neuroscience, which relies on minimizing false positive cell
identification to avoid spurious results. Thus, removing the human element from repetitive tasks
that can be prone to errors can ultimately improve the reliability, robustness, and reproducibility of
systems neuroscience research.

10

Acknowledgements
We would like to thank Beyzanur Arican Dinc for suggesting the intraclass correlation analysis to
quantify the consistency among annotations. HOA acknowledges funding support from Ozyegin
University. JZ thanks Matlab’s Toolbox Trainee program for fostering a connecting to the EXTRACT
team at Schnitzerlab. CM acknowledges funding support from the Stanford University Wu Tsai
Neurosciences Institute Interdisciplinary Scholar Award. FD, YL, and YJ received funding from
Stanford University’s Mind, Brain, Computation and Technology program, which is supported by the
Stanford Wu Tsai Neuroscience Institute. MJS gratefully acknowledges funding from the Howard
Hughes Medical Institute, NIH Brain Initiative, Simons Collaboration on the Global Brain, and the
Vannevar Bush Faculty Fellowship Program of the U.S. Department of Defense.

Data and code availability
ActSort software and the benchmark used in this study are publicly at our Github repository:
https://github.com/schnitzer-lab/ActSort-public.

References
[1] Christine Grienberger and Arthur Konnerth. Imaging calcium in neurons. Neuron, 73(5):862–

885, 2012.

[2] Adam M Packer, Lloyd E Russell, Henry WP Dalgleish, and Michael Häusser. Simultaneous
all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.
Nature methods, 12(2):140–146, 2015.

[3] Nicholas James Sofroniew, Daniel Flickinger, Jonathan King, and Karel Svoboda. A large field
of view two-photon mesoscope with subcellular resolution for in vivo imaging. elife, 5:e14472,
2016.

[4] Malavika Murugan, Hee Jae Jang, Michelle Park, Ellia M Miller, Julia Cox, Joshua P Taliaferro,
Nathan F Parker, Varun Bhave, Hong Hur, Yupu Liang, et al. Combined social and spatial
coding in a descending projection from the prefrontal cortex. Cell, 171(7):1663–1677, 2017.

[5] Krishna V Shenoy and Jonathan C Kao. Measurement, manipulation and modeling of brain-wide
neural population dynamics. Nature communications, 12(1):633, 2021.

[6] Francesco Gobbo, Rufus Mitchell-Heggs, Dorothy Tse, Meera Al Omrani, Patrick A. Spooner,
Simon R. Schultz, and Richard G. M. Morris. Neuronal signature of spatial decision-making
during navigation by freely moving rats by using calcium imaging. Proceedings of the National
Academy of Sciences, 119(44):e2212152119, 2022.

[7] Lynne Chantranupong, Celia C Beron, Joshua A Zimmer, Michelle J Wen, Wengang Wang, and
Bernardo L Sabatini. Dopamine and glutamate regulate striatal acetylcholine in decision-making.
Nature, 621(7979):577–585, 2023.

[8] Tony Hyun Kim and Mark J Schnitzer. Fluorescence imaging of large-scale neural ensemble
dynamics. Cell, 185(1):9–41, 2022.

[9] Jason Manley, Sihao Lu, Kevin Barber, Jeffrey Demas, Hyewon Kim, David Meyer, Fran-
cisca Martı́nez Traub, and Alipasha Vaziri. Simultaneous, cortex-wide dynamics of up to 1
million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron, 2024.

[10] Marius Pachitariu, Carsen Stringer, Sylvia Schröder, Mario Dipoppa, L Federico Rossi, Matteo
Carandini, and Kenneth D Harris. Suite2p: beyond 10,000 neurons with standard two-photon
microscopy. BioRxiv, page 061507, 2016.

[11] Pengcheng Zhou, Shanna L Resendez, Jose Rodriguez-Romaguera, Jessica C Jimenez, Shay Q
Neufeld, Andrea Giovannucci, Johannes Friedrich, Eftychios A Pnevmatikakis, Garret D
Stuber, Rene Hen, et al. Efficient and accurate extraction of in vivo calcium signals from
microendoscopic video data. elife, 7:e28728, 2018.

[12] Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L Brown, Sue Ann
Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, Pengcheng Zhou, et al. Caiman an
open source tool for scalable calcium imaging data analysis. elife, 8:e38173, 2019.

[13] Fatih Dinc, Hakan Inan, Oscar Hernandez, Claudia Schmuckermair, Omer Hazon, Tugce Tasci,
Biafra O. Ahanonu, Yanping Zhang, Jerome Lecoq, Simon Haziza, Mark J. Wagner, Murat A.

11

https://github.com/schnitzer-lab/ActSort-public

Erdogdu, and Mark J. Schnitzer. Fast, scalable, and statistically robust cell extraction from
large-scale neural calcium imaging datasets. bioRxiv, 2024.

[14] Atika Syeda, Lin Zhong, Renee Tung, Will Long, Marius Pachitariu, and Carsen Stringer.
Facemap: a framework for modeling neural activity based on orofacial tracking. Nature
Neuroscience, pages 1–9, 2023.

[15] Aniruddha Das, Sarah Holden, Julie Borovicka, Jacob Icardi, Abigail O’Niel, Ariel Chaklai,
Davina Patel, Rushik Patel, Stefanie Kaech Petrie, Jacob Raber, et al. Large-scale recording
of neuronal activity in freely-moving mice at cellular resolution. Nature Communications,
14(1):6399, 2023.

[16] Ying Ma, Mohammed A Shaik, Sharon H Kim, Mariel G Kozberg, David N Thibodeaux,
Hanzhi T Zhao, Hang Yu, and Elizabeth MC Hillman. Wide-field optical mapping of neu-
ral activity and brain haemodynamics: considerations and novel approaches. Philosophical
Transactions of the Royal Society B: Biological Sciences, 371(1705):20150360, 2016.

[17] Jack Waters. Sources of widefield fluorescence from the brain. Elife, 9:e59841, 2020.

[18] Jeffrey L Gauthier, Sue Ann Koay, Edward H Nieh, David W Tank, Jonathan W Pillow, and
Adam S Charles. Detecting and correcting false transients in calcium imaging. Nature Methods,
pages 1–9, 2022.

[19] Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A Machado, Josh Merel,
David Pfau, Thomas Reardon, Yu Mu, Clay Lacefield, Weijian Yang, et al. Simultaneous
denoising, deconvolution, and demixing of calcium imaging data. Neuron, 89(2):285–299,
2016.

[20] Gregory Corder, Biafra Ahanonu, Benjamin F Grewe, Dong Wang, Mark J Schnitzer, and
Grégory Scherrer. An amygdalar neural ensemble that encodes the unpleasantness of pain.
Science, 363(6424):276–281, 2019.

[21] Anne E Urai, Brent Doiron, Andrew M Leifer, and Anne K Churchland. Large-scale neural
recordings call for new insights to link brain and behavior. Nature neuroscience, 25(1):11–19,
2022.

[22] Jeffrey Demas, Jason Manley, Frank Tejera, Kevin Barber, Hyewon Kim, Francisca Martı́nez
Traub, Brandon Chen, and Alipasha Vaziri. High-speed, cortex-wide volumetric recording of
neuroactivity at cellular resolution using light beads microscopy. Nature Methods, 18(9):1103–
1111, 2021.

[23] Christian Marzahl, Christof A Bertram, Marc Aubreville, Anne Petrick, Kristina Weiler, Agnes C
Gläsel, Marco Fragoso, Sophie Merz, Florian Bartenschlager, Judith Hoppe, et al. Are fast
labeling methods reliable? a case study of computer-aided expert annotations on microscopy
slides. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd
International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23, pages 24–32.
Springer, 2020.

[24] Massimo Salvi, Valentina Cerrato, Annalisa Buffo, and Filippo Molinari. Automated seg-
mentation of brain cells for clonal analyses in fluorescence microscopy images. Journal of
Neuroscience Methods, 325:108348, 2019.

[25] Jacopo Amidei, Paul Piwek, and Alistair Willis. Identifying annotator bias: A new irt-based
method for bias identification. In Proceedings of the 28th International Conference on Compu-
tational Linguistics, pages 4787–4797, 2020.

[26] Shanshan Wang, Cheng Li, Rongpin Wang, Zaiyi Liu, Meiyun Wang, Hongna Tan, Yaping Wu,
Xinfeng Liu, Hui Sun, Rui Yang, et al. Annotation-efficient deep learning for automatic medical
image segmentation. Nature communications, 12(1):5915, 2021.

[27] Mike Schaekermann, Graeme Beaton, Minahz Habib, Andrew Lim, Kate Larson, and Edith Law.
Understanding expert disagreement in medical data analysis through structured adjudication.
Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1–23, 2019.

[28] David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning.
In Machine learning proceedings 1994, pages 148–156. Elsevier, 1994.

[29] Andrew McCallum, Kamal Nigam, et al. Employing em and pool-based active learning for text
classification. In ICML, volume 98, pages 350–358. Citeseer, 1998.

12

[30] Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo
estimation of error reduction. ICML, Williamstown, 2:441–448, 2001.

[31] Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for
image classification. In 2009 ieee conference on computer vision and pattern recognition, pages
2372–2379. IEEE, 2009.

[32] Hieu T Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Proceedings of
the twenty-first international conference on Machine learning, page 79, 2004.

[33] Yuhong Guo. Active instance sampling via matrix partition. Advances in Neural Information
Processing Systems, 23, 2010.

[34] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agar-
wal. Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

[35] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. Advances in Neural Information
Processing Systems, 34:11933–11944, 2021.

[36] Jonathan Folmsbee, Xulei Liu, Margaret Brandwein-Weber, and Scott Doyle. Active deep
learning: Improved training efficiency of convolutional neural networks for tissue classification
in oral cavity cancer. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018), pages 770–773, 2018.

[37] Peng Liu, Hui Zhang, and Kie B. Eom. Active deep learning for classification of hyperspectral
images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
10(2):712–724, 2017.

[38] G Sayantan, PT Kien, and KV Kadambari. Classification of ecg beats using deep belief network
and active learning. Medical and Biological Engineering and Computing, 56(10):1887–1898,
2018.

[39] Michael Nalisnik, David A Gutman, Jun Kong, and Lee AD Cooper. An interactive learn-
ing framework for scalable classification of pathology images. In 2015 IEEE International
Conference on Big Data (Big Data), pages 928–935. IEEE, 2015.

[40] Ying Liu. Active learning with support vector machine applied to gene expression data for
cancer classification. Journal of chemical information and computer sciences, 44(6):1936–1941,
2004.

[41] Weicheng Kuo, Christian Häne, Esther Yuh, Pratik Mukherjee, and Jitendra Malik. Cost-
sensitive active learning for intracranial hemorrhage detection. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part III 11, pages 715–723. Springer, 2018.

[42] Marc Gorriz, Axel Carlier, Emmanuel Faure, and Xavier Giró-i Nieto. Cost-effective active
learning for melanoma segmentation. arXiv preprint arXiv:1711.09168, 2017.

[43] Schnitzerlab. ActSort-public. Github, 2024.

[44] Sadegh Ebrahimi, Jérôme Lecoq, Oleg Rumyantsev, Tugce Tasci, Yanping Zhang, Cristina
Irimia, Jane Li, Surya Ganguli, and Mark J Schnitzer. Emergent reliability in sensory cortical
coding and inter-area communication. Nature, 605(7911):713–721, 2022.

[45] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D Har-
ris. High-dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–
365, 2019.

[46] Allen Institute for Brain Science. Allen sdk documentation, 2024. Accessed: 2024-07-25.

[47] P Berens, L Theis, J Stone, N Sofroniew, A Tolias, M Bethge, and J Freeman. Standardizing and
benchmarking data analysis for calcium imaging. In Computational and Systems Neuroscience
Meeting (COSYNE 2017), pages 66–67, 2017.

[48] Kenneth O McGraw and Seok P Wong. Forming inferences about some intraclass correlation
coefficients. Psychological methods, 1(1):30, 1996.

[49] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction tasks.
In AAAI, volume 5, pages 746–751, 2005.

13

[50] Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling
tasks. In proceedings of the 2008 conference on empirical methods in natural language
processing, pages 1070–1079, 2008.

[51] Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint
arXiv:1907.06347, 2019.

[52] Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. Automated analysis of cellular
signals from large-scale calcium imaging data. Neuron, 63(6):747–760, 2009.

[53] Zhe Chen, Garrett J Blair, Changliang Guo, Jim Zhou, Juan-Luis Romero-Sosa, Alicia Izquierdo,
Peyman Golshani, Jason Cong, Daniel Aharoni, and Hugh T Blair. A hardware system for
real-time decoding of in vivo calcium imaging data. Elife, 12:e78344, 2023.

[54] Yaesop Lee, Jing Xie, Eungjoo Lee, Srijesh Sudarsanan, Da-Ting Lin, Rong Chen, and Shuvra S.
Bhattacharyya. Real-time neuron detection and neural signal extraction platform for miniature
calcium imaging. Frontiers in Computational Neuroscience, 14, June 2020.

[55] Flatiron Institute. Caiman demo pipeline for cnmf-e. https://github.com/
flatironinstitute/CaImAn/blob/main/demos/notebooks/demo_pipeline_cnmfE.
ipynb, 2024. Accessed: 2024-08-12.

[56] Peter Rupprecht, Stefano Carta, Adrian Hoffmann, Mayumi Echizen, Antonin Blot, Alex C
Kwan, Yang Dan, Sonja B Hofer, Kazuo Kitamura, Fritjof Helmchen, et al. A database and
deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging.
Nature Neuroscience, 24(9):1324–1337, 2021.

[57] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist
algorithm for cellular segmentation. Nature methods, 18(1):100–106, 2021.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[59] MathWorks. ResNet-50: Pretrained Deep Neural Network. MathWorks, Inc., Natick, MA,
USA, 2024. https://www.mathworks.com/help/deeplearning/ref/resnet50.html.

[60] Jones G Parker, Jesse D Marshall, Biafra Ahanonu, Yu-Wei Wu, Tony Hyun Kim, Benjamin F
Grewe, Yanping Zhang, Jin Zhong Li, Jun B Ding, Michael D Ehlers, et al. Diametric neural
ensemble dynamics in parkinsonian and dyskinetic states. Nature, 557(7704):177–182, 2018.

[61] Peter O’Connor. PeakSeek. https://www.mathworks.com/matlabcentral/
fileexchange/26581-peakseek, 2024. MATLAB Central File Exchange, Retrieved
August 21, 2024.

[62] Hakan Inan, Murat A Erdogdu, and Mark Schnitzer. Robust estimation of neural signals in
calcium imaging. Advances in neural information processing systems, 30, 2017.

[63] Oleg I Rumyantsev, Jérôme A Lecoq, Oscar Hernandez, Yanping Zhang, Joan Savall, Radosław
Chrapkiewicz, Jane Li, Hongkui Zeng, Surya Ganguli, and Mark J Schnitzer. Fundamental
bounds on the fidelity of sensory cortical coding. Nature, 580(7801):100–105, 2020.

[64] Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. Automated analysis of cellular
signals from large-scale calcium imaging data. Neuron, 63(6):747–760, 2009.

14

https://github.com/flatironinstitute/CaImAn/blob/main/demos/notebooks/demo_pipeline_cnmfE.ipynb
https://github.com/flatironinstitute/CaImAn/blob/main/demos/notebooks/demo_pipeline_cnmfE.ipynb
https://github.com/flatironinstitute/CaImAn/blob/main/demos/notebooks/demo_pipeline_cnmfE.ipynb
https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://www.mathworks.com/matlabcentral/fileexchange/26581-peakseek
https://www.mathworks.com/matlabcentral/fileexchange/26581-peakseek

A Additional results

A.1 Expert-engineered features set strong baselines against deep learning approaches
Deep learning approaches have seen recent success in relevant domains of our application [57]. In
regards to cell sorting, a cell extraction pipeline, CAIMAN [12], trained deep classifiers to cull out
false positives from two-photon calcium imaging datasets. These classifiers were trained solely
on cells’ spatial footprint, not using any temporal or spatiotemporal information often used by
human annotators. Consequently, this method was suboptimal compared to the consensus human
annotation (see Table 1 in [12]), and cannot process one-photon imaging movies [55]. As we show
in the main text, neither is true for ActSort thanks to the generalization of features across broad
imaging and experimental modalities. Yet, perhaps a better feature extraction may be performed in
an unsupervised manner using deep learning approaches. Thus, as another strong baseline, we next
investigated whether a pre-trained image model, a ResNet-50 architecture [58], could enhance the
unsupervised discovery of features.

To perform this test, we extracted features from cropped cell images and movie frames using the
pre-trained model (Methods; Appendix D.3). The movie frames, consisting of time-averaged
snapshots around the cell’s location during Ca2+ events, offered spatiotemporal information, which
was designed to provide a fair comparison to our engineered features. Using these images, we
extracted 2,000 features from the penultimate layer of ResNet-50 [58, 59]. Notably, though extracted
features led to increased true negative rate, on par with our engineered features, this came at the cost
of significantly decreased true positives (down to ∼ 90%, Fig. S4). Therefore, due to their superiority
(Figs. 2 and S4), we decided to use the newly engineered feature set in our ActSort pipeline.

A.2 Humans are inconsistent, but cell classifiers mitigate annotator biases
Can human annotations serve as ground truths for cell sorting? To answer this question, we tested
the possibility that human annotators may be inconsistent due to, e.g., personal biases. To quantify
this inconsistency, we performed intraclass correlation (ICC) analyses [48], a method commonly
used to assess the reliability of ratings in a scale (here, binary annotations), either by individual
raters or averaged across multiple raters. Since, in experimental scenarios, only one human annotator
typically handles a dataset, we computed a two-way mixed, single rater ICC [48], which measures
the consistency of individual annotators rather than the group average. Across all five mice, the
intraclass correlation scores for individual human annotators were ICC = 0.56± 0.06 (mean ± std),
indicating that human annotators often disagree, and are inconsistent, on what they may classify as
cells.

Next, we checked whether cell classifiers can mitigate individual biases and show higher consistency
when trained on human annotations. To quantify the classifiers’ consistency, we split the annotation
datasets into equal training and testing sets, trained the cell classifier on the former, and computed
the label on the latter (See Appendix D.1). The cell classifiers had higher correlation scores,
ICC = 0.64± 0.07 (mean ± std), showing improved consistency compared to individual human
annotations despite being trained on them.

As the final test, we trained and evaluated the cell classifiers by reanalyzing a published one-photon
Ca2+ imaging dataset covering the neocortex [44], which included 6,691 cell candidates and 26,764
annotations (Table S2). We once again computed the test probabilities from cell classifiers. These
probabilities were compared with the empirical probability computed from annotator agreements
(e.g., a vote of 2-2 corresponds to a 50% probability, Fig. S5). We found that annotator expertise was
crucial for the accuracy of the cell classifiers trained with these annotations. But, as an overall trend,
human annotators were overconfident in their choices. In contrast, the cell classifiers, especially those
trained with more experienced annotators, were better calibrated (Fig. S5). Thus, we confirmed that
cell classifiers with the newly engineered feature set can match or even surpass the consistency of
individual human annotators.

A.3 ActSort culls out non-neuronal signals that may correlate with behavior
Taken together, our benchmarking experiments demonstrate the critical role of active learning query
algorithms in automated cell sorting. DCAL, which optimally balances two canonical active learning
approaches, consistently outperformed human annotators, sometimes with as few as < 1% of
annotated samples. Yet, a final question remains: Is cell sorting truly necessary?

15

To address this, we re-analyzed previously published recordings from the dorsomedial striatum
of freely behaving mice [60]. Each dataset includes neural calcium activity recorded using the
fluorescent calcium indicator GCaMP6m in spiny projection neurons of either the direct (9 mice) or
indirect pathway (10 mice) of the basal ganglia (dSPNs and iSPNs, respectively). These datasets,
originally processed using an independent component analysis-based cell extraction algorithm (ICA,
[52]), contained 336 ± 132 (mean ± std) cell candidates, which were sorted by human annotators.
We re-sorted these datasets using ActSort, with human annotations as inputs and CAL as the query
algorithm due to the low diversity in cell candidates. Due to the dataset’s nature, the evaluation was
performed against a single annotator, yielding a balanced accuracy of 90 ± 4% (mean ± std) for
ActSort annotations, converging at 20% annotations.

As shown in Fig. S14, both human and ActSort-sorted dSPNs and iSPNs significantly predicted
animal speeds. Remarkably, ActSort achieved the same level of predictive accuracy with as little as
1% annotation, resulting in cells with nearly identical speed predictions (Fig. S14B-C). However,
even the rejected cell candidates contained residual information about the animals’ speeds, likely due
to brain motion artifacts. This highlights a crucial issue: non-neuronal signals in calcium imaging
movies can inadvertently correlate with animal behavior, leading to potentially misleading biological
conclusions. Thus, the false-positives should be culled out to prevent unsolicited information leakage
in the downstream analyses.

B Software details
In this work, we introduce ActSort, a user-friendly pipeline consisting of 3 modules: a preprocessing
module, a cell selection module, and an active learning module. The preprocessing module efficiently
reduces the data size associated with 10, 000 neurons down to few GBs, which includes not only cells’
Ca2+ activity traces, but also spatial profiles, and movie snapshots during Ca2+ events -allowing
end users to check the quality of the data-, together with the engineered features. This compact
representation allows the ActSort pipeline to be run locally in laptops, despite original movie sizes of
up to few hundred GBs. The joint compressing of the movie snapshots and cell extraction information
offers another key contribution to the neuroscience community with implications for sharing imaging
datasets publicly. The cell selection module features a custom design with an easy-to-use interface that
displays temporal, spatial, and spatiotemporal footprints, and incorporates a closed-loop online cell
classifier training system. During the annotation process, the software provides real-time feedback
by displaying predicted cell probabilities and the progress made by the human annotator as well
as the fraction of unlabelled cells that ActSort is confident about. This allows experimentalists to
monitor their work and make informed decisions regarding automated cell sorting outputs. The active
learning module works in the background, strategically selecting candidates for human annotations,
and trains cell classifiers with annotated candidates.

B.1 Preprocessing module
The preprocessing module is included within the GUI. This module reduces repetitive calculations by
precomputing all necessary components.

The inputs for the module are the Ca2+ imaging movie and the corresponding cell extraction output,
which includes spatial data for each cell in the dataset and trace activity data. This module performs
1) a joint compression of Ca2+ imaging movies and cell extraction results, 2) computes all the
visualization components, and 3) performs feature engineering. The output for the module is a
’sorting file’ that contains the necessary components for cell visualization in GUI, features for each
cell, and an ’info’ field that provides useful statistics.

To accommodate different system capabilities, the user can select whether data is loaded entirely
into memory or is read in chunks. Furthermore, for large datasets, parallel processing on both CPU
and GPU can be selected. Note that for small datasets, parallel processing might slow down this
process.

B.1.1 Joint compression of Ca2+ imaging movies and cell extraction results
For efficient handling of the growing sizes of cellular data on local laptops (with limited memory
capabilities), we designed a new method for compressing both imaging movies and cell extraction
results.

Compression of Ca2+ Imaging Movies Traditionally, cell sorter GUIs require the Ca2+ imaging
movie to be loaded along with cell extraction results. However, the growing size of these movies

16

makes it impractical to store and load them both on hard disk and RAM. To mitigate this, we imple-
mented Ca2+ event detection and snapshot capturing steps in our precomputation process.

1. Ca2+ Event Detection: Using the trace activity we obtain from the cell extraction algorithm,
we identify the five largest Ca2+ events for each cell that represent distinct high activity
moments. We utilize a publicly available spike detection algorithm (peakseek.m [61]) to
determine these Ca2+ events.

2. Snapshot Capturing: For each selected Ca2+ event, a cropped snapshot is extracted
comprising ten frames in a small window that includes neighboring cells during that time.
Only these movie snapshots are stored. This process eliminates the need to load or share the
entire movie file.

Compression of Cell Extraction Results ActSort requires two main components from the cell
extraction process: spatial filters and trace activities of each cell.

The spatial filters are typically stored in a three-dimensional array ([Height x Width x Number of
Cells]), where each layer contains the spatial filter of one cell. Given the small size of each cell,
this array is sparse and requires significant memory to store and load into RAM. To address this,
we convert the spatial filters array into a sparse matrix, which allows to save a great amount of
memory. All future code is organized to ensure this sparse matrix is never converted back to its full
form and computations are performed directly on the sparse matrix. Additionally, trace activities are
converted from ’double’ to ’single’ data type to save memory but still keep the precision at the same
time.

B.1.2 Visualization Components Calculation
On top of the Ca2+ imaging movie snapshots and the compressed spatiotemporal information from
the cell extraction algorithm, we also compute several components for visualization purposes in
GUI:

• Cell Centers: Stores the center coordinates of each cell.

• Ca2+ Event Indices: Indices of the five most informative Ca2+ events for each cell’s trace activity.

• Cell Boundaries: Contains the boundary coordinates of each cell in spatial data.

• Snapshots: Stores snapshot images taken from the movie.

• Snapshot Filters: Filters applied to the snapshots.

• Snapshot Traces: Traces corresponding to the snapshots, used for feature extraction.

• Snapshot Cell Boundaries: Boundary coordinates of cells in the snapshots.

• Snapshot Contrast Limits: Proper contrast limits to better visualize the snapshots.

• Neighbor Boundaries: Boundaries of neighboring cells in the snapshots.

• Maximum Projection: The maximum intensity projection of the movie, used as a background
image during cell label visualization.

B.1.3 Feature engineering
Below is the list of features we used for this work. We use subscript i to denote individual cell in the
following section. The traditional ones are colored in blue.

Features 1 to 36 are based on the Ca2+ trace activities (activity signals of the neurons
detected by the cell extraction algorithm, denoted as T ∈ Rncell×nt) of the given cell dataset,
where nt is the number of recorded frames of the Ca2+ movie.

Feature 1 calculates the signal-to-noise ratio for the given trace activity. A lower signal-to-noise
ratio indicates a noisy data, which is more likely to contain false positives. A higher ratio
indicates a higher quality data. This feature is taken from EXTRACT [13].

f1,i =
max(Ti)√
2σnoise,i

17

where σnoise,i is estimated using an algorithm that computes half the power in the high
frequency components of the Ca2+ activity traces. [13] has taken this approach to provide
accurate noise estimates despite non-negative and sparse nature of the signals, which prevents
computing noise as the standard deviation across the full spectrum unreliable. Below, we
briefly summarize the algorithm used to compute the noise:

Fi = FFT(Ti) (compute the discrete fourier transform)

Pi = |Fi|2 (compute the Power Spectrum)

Pi =
Pi

nt
(normalize the power spectrum before Parseval’s theorem)

P noise
i = Pi[nt/4 : nt/2] (extract half of the high frequency components)

σ2
noise,i =

1

nt/4 + 1

nt/2∑
k=nt/4

Pi[k] (compute the average power)

Feature 2 calculates how much a cell’s trace activity signal differs from its smoothed version. If the
difference is high after smoothing, then it is likely for the cell trace activity to contain a
good amount of noise. This feature is taken from EXTRACT [13].

Tsmoothed,i,t = median(Ti,t−1, Ti,t, Ti,t+1) (median-filtering)
α = 0.3×max

t
(Tsmoothed,i,t)

(set a threshold to identify signal regions where noise dominate)
Vi = {t | Tsmoothed,i,t − α > 0}

f2,i =
1

|Vi|
∑
t∈Vi

|Ti,t − Tsmoothed,i,t|
max(Ti,t, Tsmoothed, i, t)

Feature 3 calculates the number of weak Ca2+ events within the trace. We categorize the Ca2+
events as follows: We compute the 90th quantiles of the Ca2+ activity for each cell, and
divide them by half. Any Ca2+ event with lower Ca2+ amplitude is considered “weak,”
whereas the ones with higher Ca2+ amplitude are considered “strong Ca2+ events.”

f3,i = |{t | Tmaxnorm,i(t− 1) < Tmaxnorm,i(t) > Tmaxnorm,i(t+ 1)} and pi(t) < MPPi|

where Tmaxnorm,i(t) =
Ti,t

maxt Ti,t
, MPPi = max(0.5 × Q0.9(Tmaxnorm,i), 0.1) is the thresh-

old to determine whether a peak is prominent, Q0.9(Tmaxnorm,i) is the 90th percentile of
Tmaxnorm,i(t), and pi(t) is the prominence of each peak, defined as the difference with respect
to the baseline activity.

Feature 4 calculates the standard deviation of the upper top 10% of each Ca2+ activity trace, which
reveals the variability within the Ca2+ event amplitudes.

Tnorm,i = zscore(Ti) (zscore the temporal traces)
q0.9,i = Quantile(Tnorm,i, 0.9) (compute the 90th percentile value)

Si = {Tnorm,i,t | Tnorm,i,t ≥ q0.9,i} (define the set of top 10% values)
f4,i = std(Si)

Features 5 - 7 measures the average time interval between two consecutive strong Ca2+ events.
Constant and rapid spiking is often associated with motion artifacts and/or blood vessels.

Define Gi as a set of positions of the peaks with prominence ≥ MPPi, Ai as a set of positions
of all peaks, and Bi as a set of positions of peaks with prominence < MPPi.

18

f5,i =

∑|Gi|−1
k=1 (tk+1 − tk)

|Gi|
, Gi = {t1, t2, ...}

f6,i =

∑|Bi|−1
k=1 (tk+1 − tk)

|Gi|
, Bi = {t1, t2, ...}

f7,i =

∑|Ai|−1
k=1 (tk+1 − tk)

|Ai|
, Ai = {t1, t2, ...}

Feature 8 measures the average amplitude of all Ca2+ events in a trace activity.

We define the width of a peak happening at time k as the width at half height of the peak,
denoted as wi(k).

f8,i =
1

|Ai|
∑
k∈Ai

wi(k)

Feature 9 measures the average length of Ca2+ events. Stronger Ca2+ events are a good sign of
good candidates, while bad candidates tend to have Ca2+ events that last longer.

f9,i =
1

|Gi|
∑
k∈Gi

wi(k)

Feature 10 calculates the standard deviation of the Ca2+ event width within a trace of cell activity. A
more widely distributed Ca2+ event width can be a good indicator of noisy and less precise
activity.

f10,i = std ({wi(k) | k ∈ Ai})

Feature 11 calculates the standard deviation of the Ca2+ event width among the strong Ca2+ events.
This can serve as an indicator of their quality. A narrower distribution of Ca2+ event widths
suggests a higher level of consistency.

f11,i = std ({wi(k) | k ∈ Gi})

Feature 12 measures the proportion of total activity in a cell trace made up of significant Ca2+ events
rather than noise, referred to as relative power. This metric helps the distinction between
actual Ca2+ events (consistent signal energy) and the likelihood of noise.

We define a new array, T̃maxnorm,i = {Tmaxnorm,i,t | Tmaxnorm,i,t > σnoise,i}

f12,i =

∑
t

(
T̃maxnorm,i,t

)2
∑

t′ (Tmaxnorm,i,t′)
2

Feature 13 calculates the proportion of cell trace activity that surpasses the noise threshold. This
tells the frequency of cell activities that is distinguished from the background noise.

f13,i = avg
(
T̃maxnorm,i

)
Feature 14 counts the instances when the cell’s activity surpasses the noise threshold significantly.

This provides insights into the firing frequency or notable cell activities. The function
processes the input trace T̃maxnorm,i by first applying a median filter of length three to reduce
impulsive noise and then smoothing this result through convolution with a normalized

19

kernel to produce the smoothed trace T̃smooth,i. A dynamic threshold is defined as si =

σnoise,i ·max
(
T̃smooth,i

)
, and event detection is performed by identifying peaks in T̃smooth,i

that exceeds threshold si and are separated by at least three frames; these candidate events
are then refined by searching within a ±2-frame window around each detected peak in the
original trace T̃maxnorm,i to locate the precise local maxima, updating the event frames to
the times where T̃maxnorm,i is maximized, and discarding any events corresponding to zero
values in the original trace, resulting in the final set of significant event frames.

Features 15 - 29 are derived from different scales and threshold values: 3, 10, 30, and 100, denoted
as α, respectively— for the calculation of relative power (Feature 12), the proportion of the
cell trace activity that surpasses the noise level (Feature 13), and the number of strong Ca2+
events (Feature 14).

We define a new array, T̃maxnorm,i = {Tmaxnorm,i,t | Tmaxnorm,i,t > ασnoise,i}

f15,i =

∑
t

(
T̃maxnorm,i,t

)2
∑

t′ (Tmaxnorm,i,t′)
2

f16,i = avg
(
T̃maxnorm,i

)

f
(s)
17,i = same as Feature 14 but set the threshold as si = ασnoise,i ·max

(
T̃smooth,i

)
Features 30 - 34 calculate a quality score that indicates how much of a neuron’s activity occurs

within certain frequency ranges of the spectrum. A higher score indicates that the majority
of the neuron’s activity is happening within the specified frequency range, suggesting that
the data quality is good and that the neuron is reliably detected. The frequency ranges are
determined by lower and higher threshold parameters. In our work, the thresholds are set to
define four specific ranges within the frequency spectrum: the lowest 5% (0-0.05), the range
from the lowest 5% up to the highest 95% (0.05-0.95), the lower half (0-0.5), and the upper
half (0.5-1).

f30−34,i = count (PowerSpectrum(Ti) ∈ [flow, fhigh])

Feature 35 calculates for each cell the proportion of other cells in the dataset with which it has a
high correlation, using a similarity threshold of 70%. This essentially measures how similar
a cell’s activity is to the activity of the other cells in the dataset.

f35,i =
count (corr(Ti, Tj) > 0.7 | j = 1, . . . , ncells, j ̸= i)

ncells − 1

Feature 36 finds the total fluorescence that was caused by the highest 10% activity in a given cell
activity trace. This metric can be useful in detecting unusual neuron activity that doesn’t
reflect a common neuron behavior in the dataset.

f15,i = sum (Ti,k | Ti,k ≥ percentile90(Ti))

Features 37 to 46 are based on the spatial filters (the overall pictures of the cells according
to the cell extraction algorithm, denoted as S ∈ Rnx×ny×ncell , where nx × ny is the size of
the movie frames) in the given cell dataset.

Feature 37 calculates the total surface area of each cell in the movie. This helps identify cells that
are too large or too small, which may indicate outliers.

f37,i = surface area of cell i

20

Feature 38 finds the number of distinct bodies that a cell candidate has. Cells that are detected to
have more than one body tend to be false positives.

f38,i = number of distinct bodies of cell i

Feature 39 calculates the total sum of pixel values within each cell’s spatial filter, which is a measure
of the total activity or brightness. ’Bad’ cells tend to have unusually high or low activity.

f39,i = sum(Si)

Feature 40 measures the circumference of the cell. Typically, cells with too large or too small
circumference tend to be false positives.

f40,i = circumference of cell i

Feature 41 measures the distance from the cell center to the nearest edge of the movie’s field of view.
Cells that are located closer to the edges tend to be noise or artifacts due to disruptions in
the movie, such as boundary effects or uneven illumination.

f41,i = distance from center to nearest edge of field of view for cell i

Feature 42 computes the circularity of a given cell, which measures how closely its shape aligns with
a perfect circle. Cells with a higher degree of circularity are generally preferable candidates.
This feature is taken from EXTRACT [13].

f42,i =
(perimeter of cell i)2

4π × (area of cell i)

Feature 43 computes the eccentricity of a given cell, which indicates how stretched out a cell’s shape
is. Candidates with higher eccentricity values tend to be ‘bad’ cells. This feature is taken
from EXTRACT [13].

f43,i = eccentricity of cell i

Feature 44 computes the average pixel value of the given cell, which is a measure of the average
activity. ‘Bad’ cells tend to have unusually high or low activity.

f44,i = avg(Si)

Feature 45 calculates the spatial corruption, which is known as errors or inconsistencies within the
spatial filter of the cell by evaluating the local variance relative to the overall variance of the
cell image. This feature is taken from EXTRACT [13].

f45,i =
σ2

local,i

σ2
global,i

where σ2
global,i represents the global spatial corruption and is calculated as

σ2
global,i =

1

Ni

∑
k∈non-zero pixels

(Si,k − µglobal,i)
2
,

with µglobal,i as the mean intensity of non-zero pixels in cell i and Ni as the number of these
pixels.

The local spatial corruption σ2
local,i is obtained by applying a spatial filter to produce a locally

smoothed version of S, denoted Sfiltered,i, and is defined as

σ2
local,i =

1

Ni

∑
k∈non-zero pixels

(Si,k − Sfiltered,i,k)
2
.

21

Feature 46 calculates the maximum spatial correlation of each cell with all other cells in the movie.
This is helpful to identify cells that have similar activity patterns. This feature is taken from
EXTRACT [13].

f46,i = max
j ̸=i

(corr(Ti, Tj))

Features 47 to 76 are based on spatial filters and trace activities of the cells that are captured
by the cell extraction algorithm, along with key movie frames that correspond to the highest
points of cell activity. We call these spatiotemporal features.

Features 47 - 50 compute the probabilities of non-Gaussian contamination in the noise, as computed
using EXTRACT algorithm [13]. Feature 47 reports the mean probability across time points
for each cell, feature 48 the minimum, feature 49 the 10th percentile, and feature 50 the 20th
percentile.

Features 51 - 66 calculate the correlations of activity within the neuropil area -a dense network of
neurons and their components that can cause false positives when activated- by analyzing
the interactions between neighboring pixels in and around the cells. This feature is taken
from EXTRACT [13].

Features 67 - 76 calculates the correlation between the movie frames at the time of Ca2+ activities
and the extracted spatial profiles for each cell. This feature is used as a “trace quality metric”
for evaluating EXTRACT in [13], but is not used as a thresholding metric within EXTRACT
pipeline.

B.2 Graphical user interface (GUI)
We developed a user-friendly graphical user interface to visualize the cell data. We added many useful
tools to assist users in annotating cells. The memory optimization performed by the preprocessing
module allows to use of this GUI in practically any local computer.

Below is the list of functionalities within the ActSort GUI, which we illustrate in Fig. S3:

– Cell Navigation: Includes slider bars, buttons, and a number field to navigate through cells
within the dataset.

– Cell Stats: General statistics show the distribution of cells categorized as good or bad, as well
as the number of cells that have been labeled and those that remain unlabeled.

– Zooming Options: Includes a zoom slider and a zoom cursor for scanning and zooming into
specific areas.

– Contrast Sliders: There are sliders to adjust the minimum and maximum contrast values for
both the main map and snapshots.

– Cell Color Transparency: An option that allows the user to decide an appropriate contrast for
the cells’ spatial profiles.

– Cell Border Color Options: Depending on the dataset, providing an option to change the cell
border color can help users better visualize the cells on the main map.

– Hiding Cells: An option to hide sorted cells, both good and bad, which is helpful for visualiza-
tion especially when working with large datasets.

– Click to Select: An option to select cells by clicking on them in the map.

– Multiple Selection: An option that allows selecting multiple cells from the map.

– Sorting Unsorted Cells Only: An option, when selected, already sorted cells are no longer
shown to the user when moving back and forth with the slider.

– Classifier Threshold: An option to adjust the classifier threshold for prediction.

– Predict Cells Button: An option that predicts the identities of the cells based on the decision
thresholds (see below)

– Model selection: The user can change any of the active learning algorithms, CAL, DAL, or
DCAL.

22

Algorithm S1 ActSort

Data: L(0) = {(xi, yi)}
n
(0)
1

i=1 , U (0) = {xi}
n
(0)
2

i=1 ▷ Initial Labeling
for t = 1, . . . , T do

Train the cell classifier h(t)
θ using L(t)

Select x(t+1) based on the Query-Algorithm and h
(t)
θ

Human annotator label x(t+1) with y ∈ {0, 1}
L(t+1) = L(t) ∪ (x(t+1), y)
U (t+1) = U (t)\x(t+1)

end for

– ActSort Decisions: Whether ActSort labels the current annotation as a cell or not.

– ActSort Statistics: The probability of the current annotation being a cell, assigned by ActSort.

B.3 Active learning approaches
We define a binary cell classifier, hθ, between cell and not cell, with input data X ∈ RN×K and
binary ground truth labels Y ∈ RN , in which N is the total number of extracted putative neurons and
K = 76 is the dimension of the features. Second, we defined a label classifier, pϕ, between labeled
data, L(t) = {(xi, yi)} for i = 1, . . . , n

(t)
1 , and the unlabeled data, U (t) = {xi} for i = 1, . . . , n

(t)
2 ,

at a given iteration t such that n(t)
1 + n

(t)
2 = N , forming a new dataset D̃(t) = {(xi, 1)(xj , 0) |

∀xi ∈ U (t),∀xj ∈ L(t)}. The former classifier is responsible for both the final outputs and the query
algorithm, whereas the latter is used by the query algorithm only. To allow real-time training, and
owing to its already sufficient accuracy thanks to the new feature set (Fig. 2A, also see below), we
used logistic regression for both classifiers:

hθ(x) =
1

1 + e−θ⊤x
, pϕ(x) =

1

1 + e−ϕ⊤x
, x ∈ X , (S1)

which were trained using the loss function (same for both classifiers)

θ̂ = argmax
θ

ℓ(θ) = argmax
θ

n1∑
i=1

[yi log hθ(xi) + (1− yi) log(1− hθ(xi))] + λ||θ||1, (S2)

where λ is the L1 regularization strength3. The overall online closed-loop active learning pipeline is
explained in Algorithm S1.

In this work, we tested four strategies as query algorithms, random sampling, confidence-based
active learning (CAL) [49, 50]; discriminative active learning (DAL) [51]; the newly developed
discriminative-confidence based active learning (DCAL). The overall training structure is depicted in
Algorithm S1.

Traditional baselines
The random sampling algorithm randomly selects an unlabeled sample x(t) from U . After human
annotation, this sample is moved to the labeled set L(t+1) and the cell classifier is updated accordingly:

L(t+1) = L(t) ∪ {(x(t), y(t))}, (S3a)

U (t+1) = U (t)\x(t) (S3b)

Confidence-based active learning
The CAL algorithm selects a sample according to the uncertainty sampling decision rule, which
identifies unlabeled items that are near a decision boundary in the current cell classifier model. In a
multi-class setting, one can use entropy to define the uncertainty of the sample points in the unlabeled
dataset, which is how we shall motivate the CAL algorithm. Let H(·) represent the entropy of a set

3For the purpose of this work and real-time processing in the software, we used a fixed default value for the
regularization, which we validated in Fig. S11.

23

of samples. In round t+ 1, we want to choose the sample that produces the maximum reduction in
entropy given the trained cell classifier h(t)

θ in round t:

x(t+1) = argmax
x

H
(
U (t)|L(t)

)
−H

(
U (t+1)|L(t+1)

)
= argmin

x
H
(
U (t+1)|L(t+1)

)
= arg min

x∈U(t)
−h

(t)
θ (xi) log

(
h
(t)
θ (xi)

)
−
(
1− h

(t)
θ (xi)

)
log
(
1−

(
h
(t)
θ (xi)

))
= arg min

x∈U(t)
1− 2×

∣∣∣h(t)
θ (xi)− 0.5

∣∣∣ .
(S4)

In this work, since we are using only two classes, the probability distribution that maximizes the
entropy is the one where hθ is as close to 0.5 as possible. However, extension of ActSort to multi-class
problems, for example one that includes the identification of dendrites, could benefit from the more
general entropy minimization framework.

Discriminative active learning
The DAL algorithm considers a different type of uncertainty, i.e., how well a data point is represented
in the labeled pool [51]. Here, one constructs a new label space, Ỹ = {l, u}, that specifies whether the
data sample is from the labeled set or the unlabeled set. For example, in round t, the training dataset
becomes D̃ = {(xi, u), (xj , l) | ∀xi ∈ U (t),∀xj ∈ L(t)}. For each round of the active learning
process, we train a binary classifier, p(t)ϕ (ỹ|x), to predict whether the samples in D̃ are labeled or not.
Then, one selects the sample from the unlabeled set that satisfies

x(t+1) = arg max
x∈U(t)

p̂
(t)
ϕ (ỹ = u|D̃). (S5)

In this work, we modified the original DAL algorithm from [51] to improve its performance on
our benchmark by training the classifier pϕ(ỹ | x) with random oversampling of the minority class
samples in the dataset D̃.

Discriminative-confidence active learning
In order to achieve a query score for the DCAL algorithm, we define an uncertainty-score, c(t)i ,
and a discriminative-score, d(t)i , corresponding to the two types of uncertainty, for each iteration t
as:

c
(t)
i = 1− 2×

∣∣∣h(t)
θ

(
xi | L(t)

)
− 0.5

∣∣∣ and d
(t)
i = p

(t)
ϕ

(
xi | D̃(t)

)
. (S6)

Empirically, once the labeled set accurately represents the full data, annotating candidates at the
decision boundary yields the most significant improvements (See Fig. 3). Thus, we select the sample
that maximizes the adaptively weighted sum of the uncertainty and discriminative scores from the
unlabeled dataset:

x(t+1) = arg max
xi∈U(t)

w · d(t)i + (1− w) · c(t)i (S7)

where w is an adaptive weight defined as

w = w0 · 2×

(
1

N

N∑
i=1

I
ỹ
(t)
i =ˆ̃y

(t)
i

− 0.5

)
︸ ︷︷ ︸

rescaled accuracy of the label classifier

(S8)

where w0 is the pre-defined weight, ỹ(t)i is the ground truth label and ˆ̃y
(t)
i is the predicted label of

the label classifier for the sample i. This adaptive estimation of w, in which we multiply the original
weight w0 with the rescaled accuracy of the label classifier, allows DCAL to revert to CAL once
the discriminative classifier is just providing random labels. This leads to convergence to the same
performance between CAL and DCAL for larger t, and preferentially picks outlier boundary cells,
ignoring outlier cells that are not relevant for the classification. In this work, we refer to DCAL
algorithm with the initial pre-defined weight w0 as DCAL-w0.

24

C Benchmark details
We provide five large-scale Ca2+ imaging datasets, totaling 40,000 cells with 160,000 annotations.
These datasets include three one-photon Ca2+ movies spanning the hemisphere through a 7mm
window (Table S1), one one-photon Ca2+ movie spanning several neocortical regions (Table S2),
and one two-photon Ca2+ movie focused on layer 2/3 cortical pyramidal neurons (Table S3).

For the hemisphere dataset, we used triple transgenic GCaMP6f-tTA-dCre mice from Allen Institute
(Rasgrf2-2A-dCre/CaMK2a-tTA/ Ai93). To prepare mice for in vivo imaging sessions, we performed
surgeries while mice were mounted in a stereotaxic frame under anaesthesia. We created a cranial
window by removing a 7mm diameter skull flap over the right cortical area S1 and surrounding
cortical tissue. We covered the exposed cortical surface with a 7mm diameter glass coverslip. A
custom wide-field fluorescence macroscope with a field of view 7 mm covering the full cranial window,
macro-objective lens with NA=0.5, was used for neural activities imaging. For epifluorescence
illumination, we used a LED with spectrum centered 475 nm, power 10-40 mW. Using sCMOS
camera (Hamamatsu, Orca Fusion) we acquired Ca2+ videos of neural activity (50 Hz frame rate,
1, 708× 1, 708 pixels). We used EXTRACT to extract the neurons from these movies [13].

To test ActSort on datasets with inflated false-positive rates, we used previously published imaging
datasets imaging several neocortical brain regions [44]. We performed cell extraction with weak
quality checking [13, 62] on one of the sessions of roughly 20 min duration, which led to 2345
false-positive regions of interest.

To record the two-photon Ca2+ imaging movie, we employed a custom two-photon mesoscope
with a multi-foci illumination technique [63]. This system facilitated recordings over an extensive
field-of-view (2 × 2mm2) at a frame rate of 30 Hz and a resolution of 2 µm pixels (1024 × 1024
pixels). Utilizing this equipment, we captured a movie of layer 2/3 cortical pyramidal neurons from
the primary visual cortex in live triple transgenic mice from the Allen Institute. The movie was
extracted using the EXTRACT pipeline [13].

With this benchmark, we tested five different active learning algorithms: random, CAL, DAL, and
our newly developed algorithm, DCAL. We compared the performance of these algorithms on the
three types of datasets using the following methods: 1) the canonical active learning workflow (Fig.
4A-D), 2) batch processing (Fig. 4E-G), and 3) cross-mice fine-tuning (Algorithm S2, Fig. 5). We
evaluated performance using seven metrics: balanced accuracy, true positive rate, true negative rate,
area under the receiver operating characteristic curve, recall, precision, and F-score, as a function of
the percentage of human-annotated samples. The results for the canonical active learning using the
hemisphere dataset are shown in Fig. 4B-D and Fig. S13B (Table S1). Batch processing results for
the hemisphere dataset are presented in Fig. S4E-G and Fig. S13C, while the cross-mice fine-tuning
results are depicted in Fig. 5 and Fig. S13D. The results for canonical active learning using the
neocortical brain regions dataset (Table S2) and the two-photon microscope dataset (Table S3) are
shown in Fig. S9 and Fig. S10, respectively.

Moreover, for the three experiments on the hemisphere dataset, we also provided tables summarizing
the experiments’ performance for the canonical active learning (Table S6), batch processing (Table
S7), and cross-mice fine-tuning experiments (Table S8).

D Empirical experiments details
The experiments for large-scale Ca2+ imaging cell sorting were conducted on an Intel Core i9
processor, utilizing parallel for loops in MATLAB. These experiments took 5 days to sort 50% of
the cells across 3 datasets, each involving 4 annotators, with 10 repetitions. For batch processing
experiments, we used the same Intel Core i9 processor, running sequentially in MATLAB. This
process required 2 days to sort 3% of cells from a total of 28,000 samples, with 6 repetitions. The
cross-mice fine-tuning experiments were executed on Stanford Sherlock, utilizing MATLAB. These
experiments were run in parallel across different methods and took 3 days to complete, with 3
repetitions. All cell classifier is a logistic regression with hθ(x) ≥ 0.65 predicted as cell, and
hθ < 0.65 predicted as not cell, see Appendix D.2 for the justification.

D.1 Estimating cell candidates’ labels with cell classifier on full dataset
For a dataset containing N cell candidates, denoted as D = {x(1), x(2), ..., x(N)} and each cell
candidate has feature dimension d, i.e., x(i) ∈ Rd. To estimate the predicted categorical probability

25

for each cell candidate by the cell classifier hθ, we conducted an alternate train-test split. Firstly, we
split the dataset into set A and set B, each with 50% amount of data. Secondly, we train the cell
classifier hθ on dataset A and estimate the categorical probability for each cell candidate (phθ

(x(i)))
in set B. Next, we alternate set A and set B by training with data from set B and predict the label for
each cell candidate in set A. Combining the second and third steps, we obtain the estimation of the
categorical probability for each cell candidate without information leakage between the training and
testing datasets. The final estimated categorical probability for each cell is by averaging over the 10
repetitions.

D.2 Picking the cell classifier thresholds for classification
Human annotators are prone to reject candidates that lie on the decision boundary during the
annotation process. This tendency is due to the highly imbalanced nature of the dataset and the
annotators’ preference for avoiding artifacts, even if it means missing a few actual cells. Therefore,
using the default threshold of 0.5 does not accurately reflect the actual cell sorting process.

To find a threshold that aligns with human annotation criteria, we tested various threshold values
ranging from 0.1 to 0.95 as shown in Fig. S12 using the three hemisphere datasets. The cell classifier
labels a candidate x as cell if hθ(x) ≥ β, and as no cell if hθ(x) < β, where β is a predefined
threshold that can be selected by human annotators. A smaller β results in a higher true positive rate,
indicating more cells are correctly identified. On the other hand, a higher β results in a higher true
negative rate, indicating more artifacts are correctly excluded.

From Fig. S12B, E, and H we observe that, with 5% annotated samples, β < 0.8 is best for correctly
accepting all cells, while β > 0.65 is best for correctly removing all artifacts. The precision graph
(Fig S12K) shows that β = 0.65 most closely matches the human annotators’ inherent threshold.
Thus, we set the classifier threshold β to 0.65 for all our experiments to best reflect the human
annotation process.

D.3 Feature Extraction Experiments with ResNet-50 Model
Deep learning has shown great potential in representation learning across various fields. However,
training a deep neural network is time-consuming and heavily dependent on the size and diversity
of the training data, as well as the standardization across the data. Brain recordings, particularly
1-photon (1p) imaging videos, present significant challenges due to their diversity in background,
imaging and experimental conditions, and cell shapes/types/sizes. In this experiment, we compared
our expert-engineered features with those derived from a deep-learning approach.

We used ResNet-50 for feature extraction and classification on 1p calcium imaging snapshots.
Specifically, we provided the extracted cell profiles and the average cropped movie snapshot, resized
to 224×224 pixels and converted from grayscale to RGB, averaged over frames with cellular activity,
to ResNet-50. We then collected 2,000 features from the final layer.

Our engineered features outperformed the deep learning approach, which, although surprisingly effec-
tive at rejecting cells (and outperforming traditional features), did not surpass our engineered features
as shown in Fig. S4. The fact that deep learning-based feature extraction was less successful on 1p
movies aligns with conclusions from prior research [12, 56]. Additionally, even this relatively simple
experiment (extracting features from average movie frames with ResNet-50) took approximately 30
minutes for 10,000 cells using an NVIDIA RTX 4090 GPU, and around 2 hours without one, which
exceeds our design constraints.

We contend that our expert-engineered features, combined with the provided public dataset, establish
a valuable benchmark for the cell quality control process.

D.4 Definition of boundary samples
The boundary samples for a logistic regression classifier are defined as the samples that have predicted
probability between 0.25 and 0.75: {(x, y) | 0.25 < hθ(x) < 0.75}. The predicted probability for
each sample is estimated by an average of the test set’s predicted probability from 10 repeats. The
test set’s predicted probability is obtained by i) splitting the dataset equally into two sets: set 1 and
set 2 ii) training the classifier using set 1 and outputting the predicted probability for set 2, and vice
versa iii) eventually, after one iteration, we obtained the predicted probability for all samples, and we
repeat this for 10 times.

26

D.5 Cross-mice fine-tuning
We first sort 50% of the pretrained dataset, denoted as LT

p . Then we utilize the annotated labels and
features from the pretrained dataset together with the new dataset’s annotation to fine-tune the cell
classifier. The pretrained classifier is parameterized by θ. During the fine-tuning process, the classifier
is trained with oversampled concatenation of the pretrained dataset and the newly labeled dataset
L(T)
p ∪ L(T)

f at each iteration t to train the new dataset’s cell classifier, parameterized by θ′. After
training the cell classifier with oversampling techniques, we throw away one sample from the pre-
trained dataset L(T)

p that has the highest classifier uncertainty, defined as
(
1− 2×

∣∣∣h(t)
θ′ (x)− 0.5

∣∣∣).
The overall training structure for cross-mice fine-tuning is depicted in Algorithm S2.

Algorithm S2 Cross-mice fine-tuning

Pretrained data: L(0)
p = {(xi, yi)}

n
(0)
1

i=1 , U (0)
p = {xi}

n
(0)
2

i=1 ▷ Initial Labeling

Fine-tuned data: L(0)
f = {(xi, yi)}

n
(0)
1

i=1 , U (0)
f = {xi}

n
(0)
2

i=1 ▷ Initial Labeling
for t = 1, . . . , T do

Train the cell classifier h(t)
θ using L(t)

p

Select x(t+1) based on the Query-Algorithm and h
(t)
θ

Human annotator label x(t+1) with y ∈ {0, 1}
L(t+1)
p = L(t)

p ∪ (x(t+1), y)

U (t+1)
p = U (t)

p \x(t+1)

end for
Return L(T)

p

for t = 1, . . . , T ′ do
Train the cell classifier h(t)

θ′ using RandomOversampling(L(T)
p)

Remove (xk, yk) ∈ L(T)
p where xk = argmax

x∈L(T)
p

(
1− 2×

∣∣∣h(t)
θ′ (x)− 0.5

∣∣∣)
Select x(t+1) based on the Query-Algorithm and h

(t)
θ′

Human annotator label x(t+1) with y ∈ {0, 1}
L(t+1)
f = L(t)

f ∪ (x(t+1), y)

U (t+1)
f = U t

f\x(t+1)

end for

D.6 Speed decoding analysis with striatal neurons
To determine whether the quality control process, which aims to remove false-positive cell candidates
from the dataset, is essential for subsequent biological analysis, we analyzed calcium imaging data
previously acquired from the dorsomedial striatum of freely behaving mice using a head-mounted
epifluorescence miniature microscope [60]. We analyzed 9 such movies extracting the Direct Pathway
Striatal Projection Neurons (dSPNs, also noted as D1-type neurons) and 10 such movies extracting
the Indirect Pathway Striatal Projection Neurons (iSPNs, also noted as D2-type neurons). The cell
candidates for each movie are extracted by ICA [64] and have one human annotation for each cell
candidate. The speed of each mouse is smoothed with a moving average of window size 30. We
then did 1,000 train-test splits (70%-30%) and trained support vector machine regression models to
predict the smoothed speeds of the animal using human-annotated cells and ActSort-selected cells,
with ActSort trained on 1% of the human annotations. The support vector machine incorporates a
ℓ1 regularizor with the hyperparameter λ selected through a 5-fold cross-validation. We calculated
the Pearson correlation coefficient between the predicted speed and the ground truth speed for each
dataset using human-rejected candidates, human-selected candidates, and ActSort-selected candidates
separately.

E Resources for reproducibility
Most experiments performed in this work are performed on institution’s clusters, with MATLAB
2022b. Some experiments were performed on a desktop with an Intel(R) Core(TM) i9-10900X
CPU with 10 physical cores and an NVIDIA GeForce RTX 4070 Ti GPU, with MATLAB 2021b.

27

If accepted, we will be open-sourcing the software, the benchmark, and the reproduction code to
reproduce our results in this paper.

28

Table S1: The human annotation benchmark of one-photon (1p) hemisphere dataset, 3 mice
labeled by 4 human annotators each. The datasets include 28,010 cell candidates and 112,040
annotations. The rows stand for the annotators who were used as ground truth for evaluations,
whereas the columns stand for those who are being evaluated. Teal stands for the accuracy of
accepting cells that were accepted by the evaluator and red stands for the rejection. Evaluators
disagreed on several occasions, leading to average (balanced) accuracy of ∼ 80%. The movie images
and the label distributions can be found in Fig S13.

Eval.
Ann. Guinea pig Koala Lion Panda Dragon Cheetah

Guinea pig NA 0.91 0.92 0.91 0.88 0.97 0.80 0.92 0.91 0.97 0.69
Koala 0.99 0.39 NA 0.94 0.59 0.99 0.39 NA 0.98 0.48
Lion 0.99 0.40 0.93 0.63 NA 0.98 0.55 0.95 0.63 0.99 0.32

Panda 0.99 0.61 0.88 0.85 0.94 0.76 NA 0.92 0.88 NA
Dragon 0.99 0.45 NA 0.93 0.72 0.99 0.50 NA NA
Cheetah 0.98 0.56 0.95 0.70 0.87 0.89 NA NA NA

Average 0.99 0.48
0.74±0.04

0.92 0.78
0.85±0.05

0.92 0.77
0.84±0.05

0.98 0.56
0.77±0.07

0.93 0.81
0.87±0.06

0.98 0.50
0.74±0.07

Table S2: The human annotation benchmark of one-photon (1p) neocortex dataset with many
false positives (2,345 out of 6,691 cell candidates) and 26,764 annotations. The rows stand for
the annotators who were used as ground truth for evaluations, whereas the columns stand for those
who are being evaluated. Teal stands for the accuracy of acceptance, red stands for the accuracy of
rejection. Evaluators disagreed on several occasions, the balanced accuracy between annotators is
∼ 83%. The movie images and the label distribution can be found in Fig S9.

Eval.
Ann. Guinea pig Lion Dragon Cheetah

Guinea pig NA 0.641 0.972 0.831 0.873 0.790 0.956
Lion 0.988 0.432 NA 0.976 0.630 0.969 0.724

Dragon 0.959 0.592 0.730 0.963 NA 0.881 0.906
Cheetah 0.985 0.561 0.783 0.958 0.952 0.784 NA

Average 0.977 0.529
0.75±0.09

0.718 0.964
0.84±0.05

0.920 0.762
0.84±0.04

0.880 0.862
0.87±0.03

Table S3: The human annotation benchmark of two-photon (2p) Ca2+ movie with 5,276 cell
candidates and 21,104 annotations. The rows stand for the annotators who were used as ground
truth for evaluations, whereas the columns stand for those who are being evaluated. Teal stands for
the accuracy of acceptance, red stands for the accuracy of rejection. Evaluators disagreed on several
occasions, the balanced accuracy between annotators is ∼ 78%. The movie images and the label
distribution can be found in Fig S10.

Eval.
Ann. Cheetah Panda Koala Dragon

Cheetah NA 0.917 0.782 0.780 0.850 0.888 0.801
Panda 0.969 0.560 NA 0.802 0.783 0.921 0.770
Koala 0.975 0.343 0.949 0.441 NA 0.924 0.474

Dragon 0.971 0.492 0.953 0.660 0.807 0.722 NA

Average 0.971 0.465
0.72±0.1

0.940 0.628
0.78±0.07

0.796 0.785
0.80±0.01

0.911 0.682
0.80±0.06

29

Table S4: The significance levels for the Wilcoxon signed-rank tests with Bonferroni-Holm
corrections performed in Fig. 3B. Each query method had twelve data points (3 datasets and 4
annotators each). For each annotation, we computed the fraction of the boundary samples.

Method Random CAL DAL DCAL-0.3 DCAL-0.5 DCAL-0.7 DCAL-0.9
Random N/A 0.0103 0.4023 0.0098 0.0093 0.0088 0.0083

CAL N/A N/A 0.0078 1.0000 1.0000 0.1665 0.5195
DAL N/A N/A N/A 0.0073 0.0068 0.0063 0.0059

DCAL-0.3 N/A N/A N/A N/A 1.0000 0.3252 0.8813
DCAL-0.5 N/A N/A N/A N/A N/A 0.2686 0.4629
DCAL-0.7 N/A N/A N/A N/A N/A N/A 1.0000

Table S5: The significance levels for the Wilcoxon signed-rank tests with Bonferroni-Holm
corrections performed in Fig. 3D. Each query method had twelve data points (3 datasets and
4 annotators each). For each annotation, we computed the average cosine distances between
the boundary samples. To facilitate a fair comparison, for each query algorithm, we randomly
subsampled the number of boundary samples to match the query algorithm with the lowest number
of boundary samples.

Method Random CAL DAL DCAL-0.3 DCAL-0.5 DCAL-0.7 DCAL-0.9
Random N/A 1.0000 0.0103 1.0000 0.8145 0.6172 0.6460

CAL N/A N/A 0.0098 0.4702 0.0093 0.0146 0.0479
DAL N/A N/A N/A 0.0088 0.0083 0.0444 0.0078

DCAL-0.3 N/A N/A N/A N/A 0.7568 0.0820 0.2310
DCAL-0.5 N/A N/A N/A N/A N/A 0.3418 0.7764
DCAL-0.7 N/A N/A N/A N/A N/A N/A 0.8501

Table S6: ActSort performance after sorting 5% of the hemisphere Ca2+ datasets (across 3
mice). Rows, evaluation metrics, where ACC is balanced accuracy, TPR is true positive rate, TNR is
true negative rate, and AUC is the area under the curve. Columns, active learning method, where the
fraction next to DCAL refers to the corresponding weight. Each entry shows the average metric value
for sorting up to 5% across 12 annotators over three datasets. The entire sorting performance as a
function of the percentage of sorted cells up to 50% is illustrated in Figs. 4B-D and S13B.

Methods
Metrics. ACC TPR TNR Precision F-score AUC

Human 0.8354 0.9520 0.7189 0.9731 0.9614 NA
Random 0.8276 0.9476 0.7075 0.9720 0.9585 0.9353

CAL 0.8391 0.9649 0.7133 0.9728 0.9681 0.9423
DAL 0.8376 0.9508 0.7245 0.9735 0.9610 0.9426

DCAL-0.3 0.8396 0.9635 0.7156 0.9730 0.9675 0.9416
DCAL-0.5 0.8415 0.9641 0.7189 0.9733 0.9679 0.9421
DCAL-0.7 0.8390 0.9638 0.7141 0.9729 0.9675 0.9374
DCAL-0.9 0.8385 0.9638 0.7132 0.9728 0.9675 0.9364

30

Table S7: ActSort performance on 2% of the batch sorted cell candidates. Rows, evaluation
metrics, where ACC is balanced accuracy, TPR is true positive rate, TNR is true negative rate, and
AUC is the area under the curve. Columns, active learning method, where the fraction next to DCAL
refers to the corresponding weight. Each entry shows the average metric value for sorting up to 2%
across 64 augmented annotators. The entire sorting performance as a function of the percentage of
sorted cells up to 5% is illustrated in Figs. 4E-G and S13C.

Methods
Metrics. ACC TPR TNR Precision F-score AUC

Human 0.8354 0.9520 0.7189 0.9731 0.9614 NA
Random 0.8349 0.9545 0.7153 0.9733 0.9634 0.9391

CAL 0.8398 0.9715 0.7080 0.9730 0.9720 0.9434
DAL 0.8373 0.9601 0.7144 0.9733 0.9663 0.9453

DCAL-0.3 0.8431 0.9716 0.7146 0.9736 0.9723 0.9436
DCAL-0.5 0.8444 0.9713 0.7175 0.9738 0.9723 0.9439
DCAL-0.7 0.8465 0.9708 0.7222 0.9742 0.9723 0.9444
DCAL-0.9 0.8455 0.9703 0.7208 0.9741 0.9719 0.9433

Table S8: ActSort performance on fine-tuning experiment with 1% annotation. Rows, evaluation
metrics, where ACC is balanced accuracy, TPR is true positive rate, TNR is true negative rate, and
AUC is the area under the curve. Columns, active learning method, where the fraction next to DCAL
refers to the corresponding weight. Each entry shows the average metric value for sorting up to 1%
across 96 augmented annotators over 6 dataset pairs. The experimental details are described in Fig.
5 and the entire sorting performance as a function of the percentage of sorted cells up to 20% are
illustrated in Fig. 5 B-D and Fig. S13D.

Methods
Metrics. ACC TPR TNR Precision F-score AUC

Human 0.8354 0.9520 0.7189 0.9731 0.9614 NA
Random 0.8112 0.9363 0.6860 0.9702 0.9513 0.9208

CAL 0.8261 0.9551 0.6970 0.9714 0.9621 0.9131
DAL 0.8300 0.9346 0.7254 0.9735 0.9521 0.9335

DCAL-0.3 0.8323 0.9515 0.7130 0.9727 0.9608 0.9170
DCAL-0.5 0.8337 0.9509 0.7165 0.9730 0.9606 0.9186
DCAL-0.7 0.8346 0.9509 0.7183 0.9731 0.9607 0.9194
DCAL-0.9 0.8364 0.9503 0.7225 0.9735 0.9605 0.9211

31

Figure S1: ActSort has a user-friendly cell sorting software for experimental neuroscientists.
The user interface of ActSort offers options to watch movie snapshots, study Ca2+ activity traces,
zoom into the maximum projection image of the movie, and has several other controls detailed in
Appendix B. ActSort is available on MATLAB apps and can be used on personal laptop thanks to the
data compression module.

Figure S2: A visualization of ActSort’s preprocessing module. In response to the challenge of
managing rapidly increasing file sizes in Ca2+ imaging movies and cell extraction results —often
reaching TBs— the preprocessing module is crucial for enabling memory efficient real-time pro-
cessing. This module efficiently compresses the input data to just a few GBs, facilitating easy data
transfer and use on personal laptops. Left. The inputs to the preprocessing module include the Ca2+
imaging movie and the cell extraction results. Middle. The processed data are transformed into
GUI-compatible features such as spatial profiles, Ca2+ activity traces, and Ca2+ movie snapshots.
These features are then utilized by the GUI module to support human annotation decisions. Right.
The input data are converted into features, quality metrics that quantify the properties of individual
cells (Method; Appendix B.1). These features are essential for training the classifiers later in the
pipeline.

32

Figure S3: The control tabs within the ActSort software. A visualization highlighting the broad
functionalities of the ActSort software. Left. In the labeling tab, the user can navigate between cells
using a slider and make decisions by clicking on buttons. These can also be achieved by keyboard
shortcuts and by clicking on the cells from the cell map (Fig. S1). Middle. The tools tab allows the
user to zoom into the map, which can be performed via sliders or by clicking with the mouse. The
user also has the option to adjust the map/snapshot contrasts, perform multiple selections, and many
other utilies discussed in Appendix B. Right. The active learning tab allows the user to monitor the
progress of the active learning algorithm. The user has the option to let the active learning make
the decisions for the unsorted cells, which can be previewed on the cell map. Finally, the training
frequency of the decoders can be decreased for exceptionally large datasets to allow faster sorting.
This feature was designed mainly to allow scalability and further development, i.e., for future active
learning algorithms that may need more time to infer the next query.

Figure S4: Features derived from Resnet-50 failed to match the performance of expert-
engineered features. To test whether pre-trained deep networks can be used as cell classifiers,
we once again used the hemisphere dataset. We ran cropped Ca2+ imaging movie snapshots, av-
eraged across frames at the time of cells’ Ca2+ events, and cells’ extracted spatial footprints on a
pre-trained Resnet-50 model. We extracted the resulting 2,000 features from the penultimate layer,
which we term as “ResNet-50 features.” Left. Similar to Fig. 2A, we trained cell classifiers (Method;
Appendix D.1) on the engineered and ResNet-50 features. Expert-engineered features outperformed
ResNet-50 features, leading to higher area under the receiver operating curve. Middle. The true
negative rates obtained from the engineered or ResNet-50 features were mostly identical. Right. The
expert-engineered features led to higher true positive rates, whereas ResNet-50 features rejected 10%
of true cells, far below the human performance. Overall, our engineered features outperformed the
features extracted from the Resnet-50 model. Each dot corresponds to a single annotation instance.
All tests are two-sided Wilcoxon signed-rank tests (∗∗∗p < 10−3, ∗∗p < 10−2, ∗p < 0.05).

33

Figure S5: Cell classifiers can mitigate human annotator bias. We trained the cell classifier on
the neocortex datasets (Method; Appendix D.1) and predicted the test probabilities for each cell
candidate. The empirical probability for each cell is computed from annotator agreements (as discrete
values: 0, 0.25, 0.5, 0.75, 1). Each plot corresponds to an annotator. The performance for each
annotator can be found in Table S2. Each dot represents a single cell from the neocortical dataset
[44]. Red lines, median; purple dots, mean of the corresponding distribution; red cross, mean of the
corresponding human annotations’ distribution. The classifier shows a better-calibrated prediction,
while the human annotators (especially first two researchers) display strong biases.

Figure S6: A description of the evaluation methods we used in the main text for benchmarking.
A Our workflow for testing online classifier’ accuracies when trained with the labels from a distinct
annotator. The majority votes from the rest of the annotators are used in place of the ground
truth, which we call “evaluators.” This workflow is used in all the experiments in Section 2.5. For
experiments testing across mice generalization, the creation of annotator and evaluator is repeated
twice for both the pre-training stage and the fine-tuning stage. B When augmenting new annotators
for experiments involving multiple imaging datasets, we first computed the evaluators through the
majority vote for each annotator and concatenated both to obtain augmented annotators and evaluators.
This way of augmentation is used for Figs. 4E-G and S13C.

34

Figure S7: Adaptive estimation of the model parameter leads to improved true positive rates. To
study the role of the adaptive weight estimation in DCAL (Appendix B.3), we visualized the evolution
of the weight parameter throughout the sorting process of the hemisphere dataset and quantified
the effectiveness of the adaptive weight strategy. A The adaptive weight value was recorded as we
ran ActSort on the hemisphere dataset, sorting up to 20%. The sudden drop in the weight values
when only a few samples are sorted is due to insufficient training data, leading to class imbalance.
Fortunately, the adaptive estimation decreases the sensitivity to the initial choices of w. Solid lines:
means. Shaded areas: s.e.m. over 12 annotators. B We computed the precision and recall values
after running ActSort with DCAL (with and without adaptive estimation) on the hemisphere dataset,
sorting up to 3% cell candidates. The weights were initially swept within the interval [0.02, 0.98],
and later binned with a window size of 0.1 due to high variability and low number of annotations.
Solid lines: precision (blue) and recall (also known as true positive rate, red) values with adaptive
weight estimation. Dashed lines: The same, but without adaptive estimation. Without adaptive
weight estimation, DCAL became suboptimal with increased weight values, leading to decreased true
positive rates.

Figure S8: The distribution of selected samples from various query algorithms. This is an
extended visualization for Fig. 3A, but for 1%, 5%, and 10% annotated datasets.

35

Figure S9: ActSort improves cell sorting quality in movies with many false positives. To assess
the generalization ability of ActSort in one-photon Ca2+ imaging movies with many false positives,
we ran the active learning experiments on the neocortex dataset (Method; Appendix C). A Example
cell map of the neocortical brain regions [44]. Green lines indicate cell boundaries, while the red line
indicates false positives. B Supervised partial least squares (PLS) plots for all samples, similar to
Fig. 3A, illustrating the separability of true and false positives by the engineered features. C-H The
results of the active learning-based training on individual annotations. I Example precision-recall
(PR) curve for the best annotator’s annotation instance. The best annotator is selected as the one who
has the highest average accuracy from Table S2. Solid lines: means. Shaded areas: s.e.m. over four
annotators. Dashed lines and gray areas: mean and s.e.m. from four human annotations.

36

Figure S10: ActSort can process two-photon Ca2+ imaging movies with residual motion. With
ActSort, we processed an example two-photon Ca2+ imaging movie recording layer 2/3 pyramidal
cells in primary visual cortex (Method; Appendix C). The movie had uncorrected residual motion by
design, which led to several false positives in the form of duplicates. B-I Same as Fig. S9.

37

Figure S11: The insensitivity to the regularization strength allows rapid training without
cross-validation. Our emphasis on real-time training necessitated using a pre-defined regularization
strength, which was taken to be λdefault = 1/(Number of Samples). To validate this, we reanalyzed
the neocortex dataset with varying levels of regularization parameters for the cell classifiers. The first
row illustrates the area under the receiver operating curve (AUC) for the cell classifier’s predictions at
different stages of annotation—1%, 5%, and 20% of cell candidates—with λrelative = 1 corresponds
to the default value for the problem of interest. The second row shows the balanced accuracy of the
classifier’s predictions at these same annotation stages. Solid lines: means. Shaded areas: s.e.m. over
four annotators. Red dashed lines: performance metrics at the default regularization value.

38

Figure S12: ActSort performance on various classifier thresholds. A sampled collected from
the decision boundary should be equally likely to be true or false positive. In contrast, we found
that human annotators tend to reject cell candidates close to the decision boundary, diminishing the
efficacy of the default 0.5 threshold for the cell classifier. The need for real-time training compelled us
to establish a predefined classifier threshold. We conducted additional active learning experiments on
the hemisphere dataset and assessed the classifier’s balanced accuracy, true positive rate, true negative
rate, and precision at different annotation stages—1%, 5%, and 10%- under different classifier
threshold, ranging from 0.1 to 0.95. In almost all cases, a threshold between 0.6 and 0.7 aligned well
with human annotation preferences. Solid lines: means. Shaded areas: s.e.m. over 12 annotators.
Dashed lines and gray areas:, means and s.e.m. from human annotations.

39

Figure S13: ActSort performance on various types of experiments outperform human annota-
tors. A Example cell map from 7mm window hemisphere across three mice (Method; Appendix C).
Green lines, cell boundaries; red lines, false-positives. B-D The remaining evaluation metrics for (B)
Fig. 4B-D, (C) Fig. 4E-G, and (D) Fig. 5, including recall, precision, F-score, and area under the
receiver operating characteristic curve.

40

Figure S14: Culling false-positives is necessary to prevent spurious Ca2+ signals leaking into
data analysis. As a test of whether omitting cell sorting can lead to spurious biological conclusions,
we studied Ca2+ imaging data that was previously acquired in the dorsomedial striatum of freely
behaving mice using a head-mounted, epifluorescence miniature microscope [60]. To test whether the
human annotated and the ActSort predicted cells (trained with CAL and using only 1% annotation
for each mouse separately) provided similar levels of speed decoding, we trained support vector
machines to predict the (smoothed) speeds of the animals. A Visualization of speed decoding from
an example animal. B-C In both dSPNs (B) and iSPNs (C), after controlling for cell numbers, human
annotated cells provided better speed decoding compared to human rejected cells, and were equivalent
to ActSort sorted cells. More importantly, however, cells that were rejected by human annotators
were informative regarding the speed of the animal. This means that in brain regions not coding for
speed, cell extraction artifacts, likely due to brain motion, can encode animal’s behavior spuriously,
potentially leading to incorrect biological conclusions. In B, C, Each dot corresponds to results from
a single animal, averaged across 1,000 speed decoders trained from distinct train-test splits of the
data. All tests are two-sided Wilcoxon signed-rank tests (∗∗∗p < 10−3, ∗∗p < 10−2, ∗p < 0.05).

41

NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased in
a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best
judgment and write a justification to elaborate. All supporting evidence can appear either in the main
paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction listed the four main contributions, a unique set of
engineered features to aid classifier training; a benchmark of cell sorting for calcium imaging
dataset; a user-friendly publicly available cell sorting for calcium imaging dataset; the first
to introduce active learning paradigm to calcium imaging; and a novel active learning query
algorithm.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

42

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the discussion section, we talked about the limitations of cell classifier’s
architecture, the binding of ActSort with current existing cell extraction algorithms, and
annotators’ expertise are different.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

43

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of feature engineering, active learning algorithms, and experimental
designs are all described in details either in the main text or the appendix. The code and the
data can be found inside the public github repo.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We published all the dataset, code, and software with sufficient instructions
to reproduce the main experimental results. The dataset is processed following standard
strucutre and will be prepared with DCAT format for release. The code will be released with

44

detailed README, clear documentations, and both training and evaluating code. All can be
accessed through the github repo url we provided in the main text.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper describes the hyperparameters and threshold used on all experiments
in the appendix D Empirical experiments details.

Guidelines: We described the classifiers and query algorithms details in the appendix.

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The bar plots include the error bar as the standard error and the two-sided
Wilcoxon signed-rank test. All the curves include the standard error as the shaded area.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

45

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the computation resource in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: There is no potential harmful consequences in this research. This work aim to
assist experimentalists in system neuroscience.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

46

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We discussed the potential in decreasing human effort in the tedious cell
sorting process in the paper. The release of ActSort is able to decease human annotations
from hours to minutes, thus pushing the advancement in the related fields of work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

[NA]

Justification: This work includes no high risk for misuse. This work provides experimental-
ists software tools to curate extracted cell candidates.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

47

Answer: [Yes]

Justification: The dataset is created all within the lab. All assets are credited to either the
published paper or the author listed in this paper. The utilization of an open source github
repo developed within the lab is also credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We included the details of the dataset, including the structure and training, and
we published the dataset in our public github repo.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing or research on human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

48

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

49

	Introduction
	Results
	A large scale benchmark of 160,000 annotations sorted with a custom software
	Automated cell sorting with linear classifiers utilizing newly engineered features
	Discriminative-confidence active learning query algorithm for cell sorting
	Geometrical interpretation of discriminative-confidence queries
	Performance evaluations of ActSort on the human annotated benchmarks

	Discussion
	Conclusion
	Additional results
	Expert-engineered features set strong baselines against deep learning approaches
	Humans are inconsistent, but cell classifiers mitigate annotator biases
	ActSort culls out non-neuronal signals that may correlate with behavior

	Software details
	Preprocessing module
	Joint compression of Ca2+ imaging movies and cell extraction results
	Visualization Components Calculation
	Feature engineering

	Graphical user interface (GUI)
	Active learning approaches

	Benchmark details
	Empirical experiments details
	Estimating cell candidates' labels with cell classifier on full dataset
	Picking the cell classifier thresholds for classification
	Feature Extraction Experiments with ResNet-50 Model
	Definition of boundary samples
	Cross-mice fine-tuning
	Speed decoding analysis with striatal neurons

	Resources for reproducibility

