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Abstract

Cross-domain few-shot learning (CDFSL) aims to
transfer knowledge from a data-sufficient source
domain to data-scarce target domains. Although
Vision Transformer (ViT) has shown superior ca-
pability in many vision tasks, its transferability
against huge domain gaps in CDFSL is still under-
explored. In this paper, we find an intriguing
phenomenon: during the source-domain train-
ing, prompt tuning, as a common way to train
ViT, could be harmful for the generalization of
ViT in target domains, but setting them to ran-
dom noises (i.e., random registers) could consis-
tently improve target-domain performance. We
then delve into this phenomenon for an interpre-
tation. We find that learnable prompts capture
domain information during the training on the
source dataset, which views irrelevant visual pat-
terns as vital cues for recognition. This can be
viewed as a kind of overfitting and increases the
sharpness of the loss landscapes. In contrast, ran-
dom registers are essentially a novel way of per-
turbing attention for the sharpness-aware mini-
mization, which helps the model find a flattened
minimum in loss landscapes, increasing the trans-
ferability. Based on this phenomenon and inter-
pretation, we further propose a simple but effec-
tive approach for CDFSL to enhance the perturba-
tion on attention maps by adding random registers
on the semantic regions of image tokens, improv-
ing the effectiveness and efficiency of random
registers. Extensive experiments on four bench-
marks validate our rationale and state-of-the-art
performance. Codes and models are available at
https://github.com/shuaiyi308/REAP.
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Figure 1. (a) Vision Transformer (ViT) takes the CLS token, image
tokens, and learnable prompts as input for both the source-domain
training and the target-domain testing. (b) We replace the learnable
prompts with random noises (i.e., random prompts) on the source
domain, which are then dropped on the target-domain phase. (c)
We find an intriguing phenomenon: unlike other tasks, prompts
learned on the source domain harm the target-domain performance,
while random prompts (both deep and shallow types) improve it.

1. Introduction

Large models achieve great success in many tasks due to
their power in learning from large-scale datasets (Zou et al.,
2022; Chen et al., 2023b), with large vision models majorly
taking the VIT-based architectures (Zhang et al., 2022a;
Noori et al., 2024; Zou et al., 2024b). However, the general-
ization of ViT under the extreme cross-domain data-scarce
scenarios still needs to be explored since collecting suffi-
cient data for every domain does not always hold in the
real world (Tseng et al., 2020; Naseer et al., 2021). To this
end, Cross-Domain Few-Shot Learning (CDFSL) has been
proposed to transfer general knowledge from the source
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domain (e.g., ImageNet (Krizhevsky et al., 2017)) with
numerous nature images to target domains (e.g., medical
datasets (Codella et al., 2019)) with only a few labeled ex-
amples (Guo et al., 2020; Zou et al., 2021). Huge domain
gaps between source and target domains make it difficult
to transfer source-domain-trained ViT to target domains for
few-shot learning (Zou et al., 2024a).

To handle this task, we focus on a common way of training
the ViT model: the Visual Prompt Tuning (Jia et al., 2022)
method (Fig. 1a), which concatenates additional learnable
prompts to the input sequence of ViT. We train the ViT
model on the source-domain dataset with learnable prompts
and evaluate the target-domain performance through the
prototype-based method (Snell et al., 2017). However, we
find such a common way of ViT training causes signifi-
cant performance degradation on the target domain datasets
(Fig. 1c). Instead, interestingly, we directly abandon the
learning of prompts and randomize these prompts with Gaus-
sian noises (Fig. 1b), and find this operation would consis-
tently improve target-domain performance when increas-
ing the number of prompts, for both the shallow and deep
prompts. Surprisingly, the highest performance is achieved
when the prompt number reaches the maximum that the
GPU memory can hold.

In this paper, we delve into this phenomenon for an interpre-
tation. As shallow prompts show higher performance and
are simpler, we mainly target this kind of prompt, and we
call it Register following (Darcet et al., 2024). We first find
attention maps on target domains always fail to find seman-
tic objects, indicating a poorly transferred attention network
of ViT. Then, we measure the transferability of attentions
through the sharpness of loss landscapes (Foret et al., 2021;
Zou et al., 2024a) against the perturbation on attentions,
and quantitatively verify learnable registers decrease the
transferability while random registers increase it. Inspired
by this, we interpret random registers as a novel way of
perturbing attention to conducting the sharpness-aware
minimization (Foret et al., 2021), therefore improving the
transferred attention on target domains. In contrast, we find
learnable registers capture domain information during the
training on source datasets, represented as viewing irrele-
vant visual patterns (e.g., background) as important cues for
recognition. This can be viewed as a kind of overfitting to
the source dataset, thereby increasing the sharpness.

Based on the above interpretations, we further propose a
simple but effective method to boost ViT’s transferability
to target domains, by improving the effectiveness and effi-
ciency of random registers (so that the number of appended
random registers can be small). During the source-domain
phase, since the core of the random registers is perturbing at-
tention maps by prompts (tokens), we add random registers
to semantic regions of the input image tokens, by randomly

replacing clustered image patches with random noises. This
operation increases the ratio of perturbed information in the
attention maps, which increases the efficiency of random
registers. During the target-domain phase, we maintain all
tokens as input and append learnable registers as prompts
for finetuning to take advantage of their absorption of do-
main information. Experiments on four datasets validate
our rationale for the interpretations and prove that we can
outperform state-of-the-art works.

In summary, our contributions can be listed as follows.

* To the best of our knowledge, we are the first to find
that prompt learning on the source domain harms the
transferability to target domains, but utilizing random
registers would consistently improve it.

* We delve into this phenomenon for an interpretation:
the learnable registers absorb domain information, rep-
resented as the focus on regions irrelevant to recogni-
tion, while random registers novelly perturb attention
maps for sharpness-aware minimization.

* Based on the interpretation, we propose a novel method
to enhance perturbations on attention maps, which adds
random registers to semantic regions of image tokens,
therefore improving the effectiveness and efficiency of
random registers and enhancing model transferability.

» Extensive experiments on four benchmark datasets val-
idate our rationale and state-of-the-art performance.

2. Delve into the Registers in ViT-based
Cross-Domain Few-Shot Learning

2.1. Preliminaries

Cross-Domain Few-Shot Learning (CDFSL) requires the
model to learn from a source-domain dataset with sufficient
training samples, and then transfer to the downstream tasks,
aiming to recognize the target-domain datasets by only a few
training data (Wang & Deng, 2021; Li et al., 2022). Specifi-
cally, the source-domain and the target-domain datasets are
denoted as D* = {I?, yf}j-vzsl with class labels y € C*,
and DT = {IjT,ij ;V:TI with class labels y € C7 respec-
tively. Source and target classes are disjoint: C° (| CT = (),
and large domain gaps exist between them. During the train-
ing on source domain D, the goal is to train the whole
model by minimizing the cross-entropy loss

N

where f(-) denotes a feature extractor (e.g., ViT) and ¢(-)
denotes a fully connected (FC) layer (i.e., classifier). Then
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Figure 2. Visualization of the model’s attention in the last block,
indicating learnable registers make the model unable to recognize
semantic regions on target domains. In contrast, random registers
effectively guide the model’s attention to the object.

f() is transferred to target-domain datasets D’, where
only 1 or 5 samples are available for each class. Following
current works (Chen et al., 2021; Fu et al., 2021), n-way
k-shot episodes are sampled for target-domain training and
evaluation. It means each episode consists of a support
set {17yl it j—1 With n classes and k samples in each
class for training and a query set {1 qT } for evaluation. The
classification is conducted by the distance between class
prototypes and samples

it = argmind( Y SR IUD), @
J

where d(-, -) denotes the Euclidean distance function. We
follow StyAdv (Fu et al., 2023) to use the Vision Trans-
former (ViT) with the DINO pretrained as our backbone
network. Since in Fig. 1 the shallow prompt shows more
significant changes in performance, below we mainly target
to study this kind of prompt learning', which adds learnable
tokens to the input token sequence (similar to the [CLS]
token). Following (Darcet et al., 2024), we term it registers.
Then, the ViT takes the [CLS] token, image tokens, and
learnable registers as inputs P fed into feature extractor f(-)
later, written as

f(P):f(O(chT(I)aTRlvTR27"' ?TRﬁ)), (3)

where the [CLS] token is denoted as T7¢ € R?, image
tokens as T'(I) € R™ *?, and registers as T® € R%, 7
is the register number, C/(+,-) means the concatenation of
different tokens (Fig. 1a). In the following, we will explore

why random registers improve target-domain performance.

'For its deep version, please refer to the Appendix, which
shows similar results to the shallow one.
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Figure 3. (a) When the data is shifted from the training data, the
originally effective weights or representations (i.e., minima in
the loss landscape) may not be in low loss (blue point), whereas
the increase of loss (i.e., sharpness) measures the vulnerability to
domain shifts. (b) The model with learned registers consistently
shows higher sharpness than others, indicating lower robustness to
domain shifts. In contrast, the lower sharpness of random registers
verifies that the attention is more transferable across domains.

2.2. How do registers affect the attention?

As ViTs are prevailing for their self-attention mechanism,
we first visualize the attention map of the model with learn-
able or random registers on the target domain in Fig. 2. As
the CLS token feature from the last ViT block is utilized as
the final output of the backbone network, we visualize the
attention maps of the CLS token against image tokens in the
last block. In visualizations, the red color indicates large
attention scores while blue indicates small ones.

From Fig. 2, we can see the baseline model struggles to cap-
ture semantic regions when transferred to target domains.
Adding learnable registers further intensifies the model’s
focus on irrelevant regions, while random registers help the
model focus on semantic objects in target domains. There-
fore, we hypothesize the attention network, as the core of
ViT, may not be well transferred to target domains.

To verify our hypothesis, we quantitatively measure the
transferability of the attention network by the sharpness of
loss landscapes (Foret et al., 2021; Zou et al., 2024a). Specif-
ically, given a well-trained model from the source domain,
each weight (Foret et al., 2021) or representation (Zou et al.,
2024a) for the source-domain input data can be viewed as
a point associated with a loss value, where each minima
point represents a good weight or representation (Fig. 3a).
Sharpness measures how the loss value changes when the
data shifts from the source domain, with lower loss change
indicating better robustness to domain shifts.

To evaluate the sharpness of the attention network, we add
perturbations to the attention map by Gaussian noises

Sharpness = mazxe [L(A+¢€) — L(A)], e~ N(0,0) 4

where A denotes the attention map, € controls the perturba-
tion level. As can be seen in Fig. 3b, all models experience
arise in loss when subjected to these perturbations. How-
ever, the model with learnable registers consistently shows a
much higher sharpness than others, indicating they push the
model to be less robust to domain shifts. The model with
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Figure 4. Adding learnable registers consistently decreases the do-
main similarity, indicating registers contain domain information
only valid on the source dataset, increasing the sharpness. Mean-
while, random registers consistently improve the domain similarity,
demonstrating the model is pushed to learn domain-agnostic infor-
mation, as is interpreted as sharpness-aware minimization.

random registers exhibits a smaller increase than the base-
line model, quantitatively verifying that random registers
improve the transferability of attention.

2.3. Why do registers contribute to transferability?

Based on the above analysis, we interpret random registers
as a kind of sharpness-aware minimization (SAM (Foret
et al., 2021), please refer to the appendix for more details)
as follows. Following (Foret et al., 2021), SAM can be
formulated as

Lsay = min [ max L(w+ e)] + 2w, 5
w el <p

where w refers to the components vulnerable to data shifts.

In contrast, adding random registers to the input sequence

can be reflected in the attention maps as

eQiK T
A= 5 =T (6)
" > het QKL 4 D ket @i

where n is the total patch number in an image and 7 is the
number of registers we add to the input sequence fed into
ViT. For each image token or CLS token, its query @Q); will
be multiplied with a randomized key K = TR W from
random registers T, Therefore, the term $_7* | ¢@*Ki
will also be a random noise. Denote such a noise as €?, we
can rewrite SAM in Eq. 5 as

Lsan = min [mazcL(A+eM)] + A(w]3). 1)

As the attention is verified to be vulnerable in Fig. 2, it is
reasonable to add noise to the attention map. In all, adding
random registers can be regarded as a novel way to add per-
turbations to the attention maps and can be viewed as a
kind of SAM, which helps the model to find a more flattened
minimum and be well transferred to target domains.

Image Baseline

Learnable Registers Random Registers

Figure 5. The attention on the source dataset. Learnable registers
make the model concentrate on regions irrelevant to the object,
which can be viewed as a kind of overfitting. In contrast, random
registers effectively guide the model’s attention to the object.

2.4. Why do registers influence sharpness?

Then, we delve into why registers influence sharpness and
transferability. Since the domain gap is the most important
challenge for transferability in CDFSL, we follow (Oh et al.,
2022; Davari et al., 2022) to take the CKA (Kornblith et al.,
2019) similarity as a tool to measure the domain similar-
ity between source and target datasets. Specifically, after
the backbone network is trained on the source datasets, we
extract features of images from different domains and then
compute the CKA similarity. A higher value means a higher
similarity between the source and target domains, repre-
senting more domain-agnostic information in the backbone
network. As shown in Fig. 4, we can see:

(1) Adding learnable registers trained on the source domain
can significantly drop the CKA similarity, indicating the reg-
isters contain domain information learned from the source
datasets. With the increase of the register number in Fig. 1,
more domain information is absorbed by registers, guiding
the model to learn more domain-specific information that is
only valid on source-domain classification.

(2) Random registers, added as random Gaussian noises, can
consistently increase the CKA similarity, and more random
registers in Fig. 1 are more beneficial to the model. Since
random registers are abandoned during the target-domain
phase, this result means random registers push the model to
learn domain-agnostic information valid across domains, as
is explained as sharpness-aware minimization.

Based on it, we interpret the increased sharpness as a
result of absorbed domain information, which is only
effective for the source domain. Therefore, when the data
is shifted from the source domain, such a model cannot
extract effective features from the shifted data, leading to a
significant increase in the loss, i.e., larger sharpness.
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To further understand how the domain information is re-
flected in the pattern learning, we visualize the attention
map of the model with learnable and random registers on
the source domain in Fig. 5. We can see that by adding
learnable registers, the model captures more regions irrel-
evant to the recognition of the object (e.g., patterns in the
background), while random registers help the model focus
more on the object. For learnable registers, this result means
the model takes these irrelevant regions as crucial clues
for classification. This phenomenon essentially represents
the model’s overfitting to the source domain since these re-
gions are class-irrelevant and can be source-domain-specific,
i.e., they may be useful for the source domain but invalid
for other domains. For random registers, this result means
the model is pushed to focus less on regions irrelevant to
the object, e.g., patterns outside the object, which are more
likely to be class-relevant and transferable across domains.
That is, the model is pushed to learn domain-agnostic infor-
mation, consistent with the analysis above.

2.5. Conclusion and Discussion

Based on these, we interpret as follows: By applying learn-
able registers, the model focuses more on the regions irrele-
vant to the object recognition. This can be viewed as a kind
of overfitting to the source domain, which contains more
domain information and increases the sharpness of the loss
landscapes, i.e., harms the generalization to target domains.
Applying random registers is an efficient and novel way to
perturb the attention maps fed into the model and can be
viewed as a kind of sharpness-aware minimization. There-
fore, the model is trained to find a flattened minimum in loss
landscapes and of good transferability to target domains. As
a result, the model focuses less on the regions outside the
object and generalizes better to target domains.

3. Method

Based on the above analysis and interpretation, we further
develop a simple but effective approach called Random
Registers Enhanced Attention Perturbation (REAP) for the
CDFSL task by improving the effectiveness and efficiency
of random registers, so as to boost the model’s transferability.
Meanwhile, according to the characteristics of these two
types of registers, we further propose a two-stage training
strategy for the model, as shown in Fig. 6.

During the source-domain stage, we design an improved
random-register-based method to improve both the effective-
ness and efficiency of random registers, which encourages
the model to learn a flattened minimum in loss landscapes
on the source domain. During the target-domain stage, in-
stead of random registers that perturb domain information,
we come back to the regular learnable registers for their
absorption of domain information, to help the model adapt
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Figure 6. Overview of our framework, which consists of two stages.
(a) In the source-domain stage, we randomly drop clustered image
tokens and replace dropped tokens with random registers (vectors
of Gaussian noises), which improves the effectiveness and effi-
ciency of random registers, thereby encouraging the model to learn
domain-agnostic information. (b) In the target-domain stage, we
activate the additional registers to the learnable state to help the
model adapt to target domains with only scarce data.

to target domains with scarce data.

3.1. Random Registers Enhanced Attention
Perturbation (REAP)

In Fig. 1, the random register can be effective only when the
number of it is very large, reaching the limit that the GPU
memory can hold, which is ineffective and inefficient.

To handle this problem, we think about the ratio of perturbed
information that random registers can bring to the attention
map of the model. Specifically, the reason why we need a
large number of random registers is that the attention maps
has already captured rich information from input images,
therefore we need a strong perturbation from random reg-
isters to mitigate the influence of already-captured patterns
on attention maps.

An intuitive way to strengthen the perturbation is to add
more random registers, making random registers inefficient.
What if we add random registers to hinder the original atten-
tion maps Y7, K% in Eq. 62 This would perturb the
already captured information and intensify the perturbation
that random registers bring. Based on this insight, we then
design a kind of perturbation method on the input image
tokens that contain rich semantic regions and contribute
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most to attention maps, reflected in the attention maps as

T
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where m is the remaining number of original image patches,
and n — m is the number of perturbed image patches. Fol-
lowing (Naseer et al., 2021), ViT is highly robust to severe
occlusions (e.g., random patch perturbations). Adding per-
turbations to random patches seems ill-advised. However,
as the core mechanism of ViT, the attention map tends to
rely on capturing patterns from continuous regions in the
image (Wei et al., 2024). This inspires us to first cluster
image tokens, then replace clusters with random registers to
increase the perturbation to the attention maps.

Specifically, as shown in Fig. 6a, given an input image / and
its patches X € R"*¢ where X is the average of pixels in
the 7th patch (¢ € n), we randomly select a large portion of
patches a (60%n < a<n) for every image as the anchors
A (e.g., the jth patch is selected as the anchor A; = X,
7 € a). Then, we compute the anchors’ distance with image
patches by leveraging the cosine similarity

XZAJ

cos( X &) = T AT

©))
A cluster is defined as consisting of an anchor patch A; and
corresponding patches within the similarity threshold sim

Cluster 5, = {X; | cos(X;, Aj) > sim, X; € X}, (10)

where the sim is automatically computed to guarantee the
drop ratio is stable. Then, we replace the clusters with ran-
dom registers. The random registers are randomly sampled
from Gaussian distribution N (0, 1) -7 where 7 is a learnable
parameter, written as

TR ~ N(0,7%) (1)

i =

~ X, X; & Cluster
T —
T X; € Cluster

We add additional random registers at the end of the input
token sequence (Fig. 6), but the number of additionally
added registers is small (verified in Fig. 10b). So the input

of the model fed into the feature extractor is written as
f(P):f(C(TCaTb'"vT’ruTRl?"' 7TR;L))1 (12)

By multiplied with randomized keys from random registers,
the term 37— 7" e@ ¥ K in Eq. 8 will also be the noise. So
it can also be regarded as SAM.

3.2. Source-domain stage

In this stage, our goal is to help the model learn domain-
agnostic information on the source domain. Based on the

above analysis and interpretation. We utilize REAP to fully
dig out the potential of random registers, helping the model
learn more domain-agnostic information and find the flat-
tened minimum in the loss landscape. Therefore, later the
model can be well transferred to the target domain. The
goal of our model in the source-domain stage is

1 & 3
L=+ Xj:chs(sb(f(O(TC,T, T),yF),  (13)

3.3. Target-domain stage

In this stage, our goal is to help the model adapt to target
domains with only scarce data. Since the random register
reduces the learning of domain information, it is not suitable
at this stage. Therefore, we revisit the learnable register for
its tendency to learn domain information, which will help
the model in the few-shot adaptation to target domains. So
we activate the additional registers to the learnable state
(e.g., T™), as shown in Fig. 6b, and finetune the model on
the support set with a classifier for each episode as

N
e D LTI ) 9

4. Experiments
4.1. Implementation Details

Following current works (Oh et al., 2022), our model is
trained on the minilmageNet dataset (Vinyals et al., 2016)
as the source domain and then transferred to four target-
domain datasets, including CropDiseases (Mohanty et al.,
2016), EuroSAT (Helber et al., 2019), ISIC2018 (Codella
et al., 2019), and ChestX (Wang et al., 2017), using the
k-way n-shot classification.

During the training on the source domain, we take ViT-S as
the backbone network and DINO pretraining on ImageNet
as the initialization following (Zhang et al., 2022b; Fu et al.,
2023). We set the ratio of anchor number and minimum
drop ratio to 70% for cluster-dropping to the images, and
replace them with Random Registers. We use the learnable
standard deviation to generate random Gaussian noise and
the initial value we set is 0.1. In addition, we also concate-
nate an additional 16 random registers to the reconstructed
patches as the input sequence of the model. Our model has
trained with the Adam (Kingma & Ba, 2017) optimizer for
50 epochs with a learning rate of 10~° for the backbone
network and 1073 for the classifier respectively. During
the few-shot evaluation on target domains, we provide the
image with the same number(16) of learnable registers as
the input of the ViT and set a learning rate of 10~2 for regis-
ters especially for absorbing target-domain domain-specific
information.
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Table 1. Comparison with state-of-the-art works based on ViT-S on target domains.

Method Shot FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
MEM-FS (Walsh et al., 2023) 1 X TIP-23 22.76 32.97 68.11 81.11 51.24
StyleAdv (Fu et al., 2023) 1 X CVPR-23 22.92 33.05 72.15 81.22 52.34
FLoR (Zou et al., 2024a) 1 X CVPR-24 22.78 34.20 72.39 81.81 52.80
DAMIM (Ma et al., 2024) 1 X AAAI-25 22.97 34.66 72.87 82.34 53.21
CD-CLS (Zou et al., b) 1 X Neur[PS-24 2293 34.21 74.08 83.51 53.68
AttnTemp (Zou et al., a) 1 X NeurIPS-24  23.19 34.92 74.35 84.02 54.12
REAP 1 X Ours 23.62 37.21 74.69 84.04 54.89
PMF (Shell Xu, 2022) 1 v CVPR-22 21.73 30.36 70.74 80.79 50.91
FLoR (Zou et al., 2024a) 1 v CVPR-24 23.26 35.49 73.09 83.55 53.85
StyleAdv (Fu et al., 2023) 1 v CVPR-23 22.92 33.99 74.93 84.11 53.99
DAMIM (Ma et al., 2024) 1 v AAAI-25 23.38 36.35 73.61 83.90 54.31
CD-CLS (Zou et al., b) 1 v NeurIPS-24  23.39 35.56 74.97 84.54 54.62
AttnTemp (Zou et al., a) 1 v NeurIPS-24  23.63 38.05 75.09 84.78 55.39
REAP 1 v Ours 24.17 38.67 75.97 85.33 56.04
MEM-FS + RDA™ (Walsh et al., 2023) 1 v TIP-23 23.85 37.07 75.91 83.74 55.14
DAMIM" (Ma et al., 2024) 1 v AAAI-25 23.91 38.07 77.23 86.74 56.49
CD-CLS (Zou et al., b) 1 v NeurIPS-24  23.88 37.20 78.41 87.39 56.72
AttnTemp (Zou et al., a) 1 v NeurIPS-24  23.96 40.13 77.40 87.58 57.23
REAP" 1 v Ours 24.49 39.53 79.13 89.33 58.12
MEM-FS (Walsh et al., 2023) 5 X TIP-23 26.67 47.38 86.49 93.74 63.57
StyleAdv (Fu et al., 2023) 5 X CVPR-23 26.97 47.73 88.57 94.85 64.53
FLoR (Zou et al., 2024a) 5 X CVPR-24 26.71 49.52 90.41 95.28 65.48
DAMIM (Ma et al., 2024) 5 X AAAI-25 27.28 50.76 89.50 95.52 65.77
CD-CLS (Zou et al., b) 5 X NeurIPS-24  27.23 50.46 91.04 95.68 66.10
AttnTemp (Zou et al., a) 5 X NeurIPS-24  27.72 53.09 90.13 95.53 66.62
REAP 5 X Ours 27.98 52.80 90.53 95.68 66.75
PMF (Shell Xu, 2022) 5 v CVPR-22 27.27 50.12 85.98 92.96 64.08
StyleAdv (Fu et al., 2023) 5 v CVPR-23 26.97 51.23 90.12 95.99 66.08
FLoR (Zou et al., 2024a) 5 v CVPR-24 27.02 53.06 90.75 96.47 66.83
DAMIM (Ma et al., 2024) 5 v AAAI-25 27.82 54.86 91.18 96.34 67.55
CD-CLS (Zou et al., b) 5 v NeurIPS-24  27.66 54.69 91.53 96.27 67.54
AttnTemp (Zou et al., a) 5 v NeurIPS-24  28.03 5491 90.82 96.66 67.61
REAP 5 v Ours 28.34 55.28 91.79 96.71 68.03
MEM-FS + RDA™ (Walsh et al., 2023) 5 v TIP-23 27.98 51.02 88.77 95.04 65.70
DAMIM" (Ma et al., 2024) 5 v AAAI-25 28.10 55.44 91.08 96.49 67.78
CD-CLS" (Zou et al., b) 5 v NeurIPS-24  28.25 55.66 91.68 96.62 68.05
AttnTemp” (Zou et al., a) 5 v NeurIPS-24 2841 55.22 91.34 96.74 67.93
REAP* 5 v Ours 28.80 56.07 91.92 96.74 68.38

4.2. Comparison with State-of-the-Art Works

Comparisons with the state-of-the-art works are listed in
Tab. 1, taking the ViT-S backbone for both 1-shot and 5-shot
settings on four target-domain datasets. We group work
by whether finetuning (FT) or utilizing the transductive (*)
setting for fairness, following (Zou et al., a;b). As shown in
Tab. 1, our works achieve the top average performance in all
settings, demonstrating that the approach could consistently
outperform current works. Please refer to the appendix for
more comparisons (e.g., CNN-based SOTASs).

4.3. Ablation Study

The ablation study of each module is reported in Tab. 2.

We can see both the random and image perturbation in

Table 2. Ablation study of source-domain training by 5-shot.

Method CropDisease  EuroSAT  ISIC2018  ChestX Ave.
Baseline 94.61+0.17 89.29+017  46.16+023  26.21+017  64.07
+ Random Registers 95.14x0.16 89.44+016  48.92x023  26.68+017  65.05
+ REAP 95.68+0.15 90.53+015  52.80+024  27.98+018  66.75
(a) Random-mask 91.23+0.19 84424022 43.89+022  24.06+016  60.90
(b) Cluster-mask 94.61+0.18 89.59+021 47334023 26.38+018  64.29

Eq. 8 contribute to the performance of target domains. We
further make a comparison between our approaches with
other similar works to validate the rationale of our designs.

4.3.1. IMAGE PERTURBATION BY CLUSTERING

To study the contribution of clustering, we randomly select
the anchors in the image and mask these anchors in Tab. 2a.
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Table 3. Ablation study of target-domain finetuning by 1-shot.

Method CropDisease  EuroSAT ~ ISIC2018  ChestX Ave.
Regular Finetuning 83.61x019  74.50+021  36.52+025 23.36+020 54.50
Random Registers 83.13+017  74.01+02¢  35.53+021  23.34+017  54.00
Learnable Registers 85.33+0.417 75971025 38.67+019 24.17+018  56.04

For a fair comparison, we keep the same masking ratio in
both clustering and random approaches. We can see the
performance is even much lower than the baseline, which
means the random type would harm the model, and verifying
the image perturbation by clusters is crucial.

4.3.2. REPLACING WITH RANDOM REGISTERS

We study the contribution of replacing the clusters with ran-
dom registers. We directly remove the clusters (Tab. 2b).
The performance is lower than ours, indicating that replac-
ing the clusters with random registers is an effective way to
help the model be more transferable.

4.3.3. TARGET-DOMAIN FINETUNING

To study the contribution to target-domain finetuning, we
compare the regular finetuning operation, finetuning with
random registers, and finetuning with learnable registers. As
shown in Tab. 3, finetuning with learnable registers could
improve the model’s performance on the target domains
while random registers decrease it, which further verifies
the absorption and perturbation of domain information in
learnable and random registers, respectively.

4.4. Verification of model generalization
4.4.1. QUANTITATIVE STUDY

As shown in Fig. 7, we calculate the domain similarity of
the features extracted from the trained backbone network
between source and target domains by the CKA similarity.
We can see our model significantly increases the domain
similarity, indicating our method encourages the model to
learn domain-agnostic information of well transferability.

4.4.2. QUALITATIVE STUDY

The visualization of the attention maps in our model on
both the source and target domain is shown in Fig. 8. Com-
pared to the dispersed attention observed in the baseline,
our model focuses on more valid and concentrated regions
within the image, verifying that our approach improves the
generalization to target domains.

4.5. Sensitivity Study of Hyper-parameters

We study the hyper-parameters in Fig. 9, 10, 11 and see that:

(1) The input layer is effective. In Fig. 9a, only applying
our approach in the first block (input layer) could signifi-
cantly improve the model’s performance on target domains,

0.8
0.6
0.4
0.2
o M | | | |
CropDiseases  EuroSAT 1S1C2018 ChestX Ave.
M Baseline " Random Registers ' REAP (Ours)

Domain Similarity measured by the CKA

Figure 7. Utilizing our approaches significantly increases the do-
main similarity, proving that utilizing our approach makes the
model more domain-agnostic.

Baseline Ours

Tmage Baseline Ours Image

(b) Baseline vs. Ours on the Source domain

Figure 8. (a) The heatmap on target domains proves that our ap-
proaches effectively improve target-domain performance. (b) The
heatmap on the source domain demonstrates that our approach
effectively avoids overfitting on the source domain.

proving that the information in the image is the most repre-
sentable and influence the whole attention maps than others.

(2) A high anchor ratio is better, but too high harm. From
Fig. 9b, the ratio of anchor number sets between 40% and
80% significantly improves performance. A rising anchor
number means that more continual areas tend to be replaced,
but too much will destroy important information.

(3) A high replaced ratio is better, but cannot be too high.
As we can see in Fig. 10a, setting the replaced ratio higher
could see a steady rise in the performance on target domains
before 70%. After that, the performance drops sharply.
The same situation happens with the anchor number ratio,
indicating that a higher replaced ratio could help perturb
more on the attention maps, while a ratio that is too high
may likely throw away too much information for learning.

(4) Additional random registers are beneficial. In Fig. 10b,
after replacing the clusters with random registers, concate-
nating some random registers further improves the perfor-
mance on the target domain. Setting the extra register num-
ber to 16 is better than less and more. Notably, this number
of registers is much smaller than that in Fig. 1b.
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Figure 9. (a) Applying our approach only on the first block (input
layer) can improve the performance. (b) A high anchor ratio can
effectively improve performance.
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Figure 10. (a) A high replaced ratio can effectively improve perfor-
mance, but too high would harm. (b) Additional random registers
are beneficial, and the number is much smaller than that in Fig. 1b.
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(5) Moderate perturbation helps. In Fig. 11, when we set a
consistent number of random registers (e.g., 16) and grad-
ually increase the standard deviation of their normal dis-
tribution, the model’s performance initially rises and then
declines, attesting to the necessity of a moderate level of
perturbation to the attention map, neither too slight nor
excessive.

4.6. Applying Our Method to Other Backbones

We also implement our approach on different backbones,
like ViT pretrained by iBOT(Zhou et al., 2021), ViT-
Base(Zhang et al., 2022b) pretrained by DINO, and ViT-
Base pretrained by CLIP(Radford et al., 2021). The results
can be seen in Tab. 4. Specifically, iBOT represents the
iBOT-pretrained ViT baseline, DINO-ViT-Base corresponds
to the ViT-Base pretrained by DINO baseline and CLIP cor-
responds to the ViT-Base pretrained by CLIP baseline. It
is clarified from the average performance of four target do-
mains that our approach shows considerable improvement
among all backbones in a 5-way 5-shot setting.

5. Related Work

Cross-Domain Few-Shot Learning (CDFSL) was pro-
posed in FWT (Tseng et al., 2020) and has a new benchmark
in BSCD-FSL (Guo et al., 2020). Recently, it has been stud-
ied by several works (Oh et al., 2022; Zhang et al., 2022c;
Xu et al., 2023; 2024), which focuses on training a model on
the source domain that can generalize well to target domain
with limited examples. Current works can be grouped into
two types: meta-learning based approaches (Fu et al., 2022;
Hu & Ma, 2022), learning task-agnostic knowledge to learn
new tasks efficiently (Guo et al., 2020), and transfer learn-
ing based approaches (Zhou et al., 2023; Zou et al., 2024a),
reusing the model trained on the base classes dataset. How-
ever, there has been insufficient in-depth research into the
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Noise std vs. 5-shot performance

Figure 11. Setting the random registers with a standard deviation
of intermediate magnitude is optimal, demonstrating that the distur-
bance to attention maps should neither be too weak nor too strong.

Table 4. Ablation study of our method with more backbones.

Method CropDiseases EuroSAT ~ ISIC2018  ChestX Ave.

CLIP 93.08+0.18 74.34+025 41294023 23.98+016  58.17
CLIP + Ours 93.93+0.16 81.10+023  44.90+024  23.78+016  60.93
iBOT 94.01+017 88.80+017  43.88+023  25.32+016  63.00
iBOT + Ours 94.88-+0.17 89.18+017  46.71+023 26.36+0.17  64.28
DINO-ViT-Base 95.39+0.15 89.29+016  47.98+024 26.29+007  64.74

DINO-ViT-Base + Ours  96.11+0.14 89.77+016  50.88+024  26.70+017  65.87

performance of ViT in extreme cross-domain scenarios.

Prompts are widely used in natural language process-
ing (Yao et al., 2023), which refers to a given one or se-
ries of text inputs intended to guide or trigger the model
to produce a specific output or response (Liu et al., 2023).
As large language models progress, Prompt has played an
important role (White et al., 2023). In computer vision, ViT
has been widely used as a backbone. The CLS token of
ViT (Liu et al., 2021) is also a special kind of prompt of
vital importance for the classification (Zhang et al., 2022a).
Recently, prompt-based approaches (Yao et al., 2023; Wang
et al., 2023; Sohn et al., 2023) are developed for various
downstream vision tasks, like (Darcet et al., 2024) extend
the input sequence with prompts without adding any infor-
mation and drop before the output, successfully avoiding
collateral side effects. ProD (Ma et al., 2023) uses two paral-
lel prompts to disentangle the domain-general and domain-
specific knowledge to alleviate the domain gap. However, it
merely utilizes prompts without considering or explaining
the overfitting problem in prompt tuning within the source
domain. In all, prompt learning under large domain gaps is
still under-explored.

6. Conclusion

In this paper, we find a phenomenon that providing addi-
tional learning registers is detrimental to the CDFSL per-
formance while adding random noise to registers improves
it. We delve into this phenomenon for an interpretation
and find that the learnable registers naturally absorb domain
information, while random registers perturb it and help the
model find a flattened minimum in the loss landscapes of
well transferability. Based on these, we further propose a
method to make random registers more effective and effi-
cient. Experiments validate our rationale and effectiveness.
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Appendix for Random Registers for Cross-Domain Few-Shot Learning

A. Detailed Dataset Description

minilmageNet

7 the Source-domain Dataset
Figure 12. Samples of the source-domain minilmageNet dataset.

minilmageNet (Vinyals et al., 2016) is a widely used dataset
in the field of meta-learning and few-shot learning. It is de-
rived from ImageNet (Deng et al., 2009) dataset but with a
smaller scale. The minilmageNet dataset contains a total of
60,000 natural images in 100 categories, each with 600 sam-
ples and each image size 84 x 84 pixels. As shown in Fig. 12,
the images in the minilmageNet dataset come from various
scenes, including but not limited to social scenes, some
of which include human objects, while others are photos
taken in real scenes, displaying diverse content and features.
Following the current works (Oh et al., 2022; Tseng et al.,
2020), we split it into 64 base classes as the source-domain
dataset for training. Additionally, as depicted in Fig. 13, we
utilize datasets from four distinct domains as target-domain
datasets, including plant disease, surface satellite imagery,
skin disease, and chest X-ray images respectively. We’ll
introduce them sequentially below.

CropDiseases (Mohanty et al., 2016) is an essential re-
source for agricultural disease identification. It is composed
of high-resolution and highly similar original images of
similar crop diseases. Specifically, it consists of 38 distinct
classes and a total of 43,456 images, which are natural im-
ages but are very specialized, including various infected
crops, healthy plants, and their corresponding disease cate-
gory labels.

EuroSAT (Helber et al., 2019) is a remote sensing image
dataset for land use and cover classification, containing a
total of 27,000 satellite images of the Earth categorized into
10 distinct classes. The images in the EuroSAT are less sim-
ilar to images in minilmageNet since they lack perspective
distortion, but still color images of natural scenes.
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Figure 13. Samples of target-domain datasets: CropDiseases, Eu-
roSAT, ISIC2018, and ChestX.

ISIC2018 (Codella et al., 2019) is an important skin disease
image dataset for the classification of dermoscopic images,
encompassing 10,015 medical images for skin lesion clas-
sification across 7 different classes. It is even less similar
to the minilmageNet as it could not even represent natural
scenes.

ChestX (Wang et al., 2017) is a medical imaging dataset
containing 25,847 frontal X-ray images distributed across
7 distinct classes. The dataset is the most dissimilar to
the minilmageNet in three orthogonal criteria. Apart from
the two factors mentioned above, losing 2 color channels
appears in the ChestX.

B. Detailed Descriptions of the CKA

Following current works (e.g., (Oh et al., 2022)), the domain
similarity is measured by comparing the distance between
two batches of images, where each batch is sampled from a
single domain. We follow (Kornblith et al., 2019) to take it
as the similarity function.

The CKA is the abbreviation of the Centered Kernel Align-
ment, measuring the similarity between feature representa-
tions. Based on the idea of kernel function, CKA measures
the similarity between samples in two feature spaces by
calculating their kernel matrix. However, unlike traditional
kernel functions, CKA also introduces centralized opera-
tions to ensure that the contribution of each sample is taken
into account when aligned. The detailed process of CKA
(Central-core Alignment) analysis consists of the following
steps and formulas:
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Table 5. Comparison with more state-of-the-art works based by 5-way 1-shot accuracy.

Method Backbone FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
GNN + FT (Tseng et al., 2020) ResNet10 X ICLR-20 22.00 30.22 55.53 60.74 42.12
MN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 22.11 32.32 61.28 60.71 44.10
GNN + ATA (Wang & Deng, 2021) ResNet10 X IJCAI-21 22.10 33.21 61.35 67.47 46.53
GNN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 22.92 33.21 63.12 67.61 46.97
LDP-net (Zhou et al., 2023) ResNet10 X CVPR-23 23.01 33.97 65.11 69.64 47.18
FLoR (Zou et al., 2024a) ResNet10 X CVPR-24 23.11 38.11 62.90 73.64 49.69
MEM-FES (Walsh et al., 2023) ViT-S X TIP-23 22.76 32.97 68.11 81.11 51.24
StyleAdv (Fu et al., 2023) ViT-S X CVPR-23 22.92 33.05 72.15 81.22 52.34
FLoR (Zou et al., 2024a) ViT-S X CVPR-24 22.78 34.20 72.39 81.81 52.80
DAMIM (Ma et al., 2024) ViT-S X AAAI-25 22.97 34.66 72.87 82.34 53.21
CD-CLS (Zou et al., b) ViT-S X NeurIPS-24 2293 3421 74.08 83.51 53.68
AttnTemp (Zou et al., a) ViT-S X NeurIPS-24  23.19 34.92 74.35 84.02 54.12
REAP ViT-S X Ours 23.62 37.21 74.69 84.04 54.89
PMF (Shell Xu, 2022) ViT-S v CVPR-22 21.73 30.36 70.74 80.79 50.91
FLoR (Zou et al., 2024a) ViT-S v CVPR-24 23.26 35.49 73.09 83.55 53.85
StyleAdv (Fu et al., 2023) ViT-S v CVPR-23 22.92 33.99 74.93 84.11 53.99
DAMIM (Ma et al., 2024) ViT-S v AAAI-25 23.38 36.35 73.61 83.90 54.31
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  23.39 35.56 74.97 84.54 54.62
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24 23.63 38.05 75.09 84.78 55.39
REAP ViT-S v Ours 24.17 38.67 75.97 85.33 56.04
LDP-net” (Zhou et al., 2023) ResNet10 v CVPR-23 22.21 33.44 73.25 81.24 52.54
TPN + ATA" (Wang & Deng, 2021) ResNet10 v 1JCAI-21 22.45 35.55 70.84 82.47 52.83
RDC" (Li et al., 2022) ResNet10 v CVPR-22 22.32 36.28 70.51 85.79 53.73
MEM-FS + RDA" (Walsh et al., 2023) ViT-S v TIP-23 23.85 37.07 75.91 83.74 55.14
DAMIM”™ (Ma et al., 2024) ViT-S v AAAI-25 23.91 38.07 77.23 86.74 56.49
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  23.88 37.20 78.41 87.39 56.72
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24  23.96 40.13 77.40 87.58 57.23
REAP* ViT-S v Ours 24.49 39.53 79.13 89.33 58.12

Create a Gram matrix: First, for the given two sets of fea-
tures representing X and Y, compute their Gram matrices
K and L. These Gram matrices are obtained by calculating
the inner product between feature representations, i.e. K =
X-XTand L=Y -YT. Centralized Gram matrix: Next,
the Gram matrices K and L are centralized to eliminate the
impact of the average value of the data on the results. Cal-
culate Hilbert-Schmidt independence criterion (HSIC): Use
vectorization operation (vec(-)) to process the centralized
Gram matrix, and then calculate the HSIC value. HSIC is
calculated as follows

vec(K) - vec(L)

HSIC(K, L) = — -1

15)
Where vec(-) represents the vectorization operation and N
is the number of input samples. Final calculation of CKA:
Finally, CKA calculates the similarity between two sets
of feature representations by standardizing the HSIC. The
calculation formula of CKA is as follows

HSIC(XxXT yyT)
VHSIC(XXT XXT)HSIC(YYT,YYT)
(16)
CKA is a standardized metric that represents the similarity
of two Gram matrices K and L. Since the Gram matrix
reflects the feature relationship between the sample pairs,

CKA(XY) =

)
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CKA can be interpreted as the similarity of the relationship
between the features in X and Y from different domains.

Therefore, we quantitatively measure the domain distance
between source and target datasets by the CKA similarity
following (Davari et al., 2022). Specifically, given a back-
bone network, we extract features from images in different
domains and then calculate the CKA similarity by align-
ing the channel dimension. Suppose a model is completely
overfitted to one domain, given other domains’ images, the
extracted features could be just random noises, therefore
the domain similarity will be downgraded to 0. Therefore,
following current works (e.g., (Kim & Han, 2023)), we hold
that the larger domain similarity indicates the less domain
information.

C. Sharpness-Aware Minimization

Due to the domain shift between source and target domains,
the training loss value on source-domain datasets offers lim-
ited assurances regarding the model’s generalization ability.
Therefore, merely optimizing the training loss value can
steadily result in suboptimal model quality. Theoretically,
from the sharpness of the loss landscapes, the sharper the
minimum is the more vulnerable against the domain gaps
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Table 6. Comparison with more state-of-the-art works by 5-way 5-shot accuracy.

Method Backbone FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
MN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 23.18 39.88 69.63 80.07 53.19
GNN + FT (Tseng et al., 2020) ResNet10 X ICLR-20 24.28 40.87 78.02 87.07 57.06
GNN + ATA (Wang & Deng, 2021) ResNet10 X TJCAI-21 24.32 4491 83.75 90.59 60.39
LDP-net (Zhou et al., 2023) ResNet10 X CVPR-23 26.67 48.06 82.01 89.40 61.29
GNN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 25.02 46.01 85.58 88.06 61.67
FLoR (Zou et al., 2024a) ResNet10 X CVPR-24 26.70 51.44 80.87 91.25 62.32
MEM-FS (Walsh et al., 2023) ViT-S X TIP-23 26.67 47.38 86.49 93.74 63.57
StyleAdv (Fu et al., 2023) ViT-S X CVPR-23 26.97 47.73 88.57 94.85 64.53
FLoR (Zou et al., 2024a) ViT-S X CVPR-24 26.71 49.52 90.41 95.28 65.48
DAMIM (Ma et al., 2024) ViT-S X AAAI-25 27.28 50.76 89.50 95.52 65.77
CD-CLS (Zou et al., b) ViT-S X NeurIPS-24  27.23 50.46 91.04 95.68 66.10
AttnTemp (Zou et al., a) ViT-S X NeurIPS-24  27.72 53.09 90.13 95.53 66.62
REAP ViT-S X Ours 27.98 52.80 90.53 95.68 66.75
PMF (Shell Xu, 2022) ViT-S v CVPR-22 27.27 50.12 85.98 92.96 64.08
StyleAdv (Fu et al., 2023) ViT-S v CVPR-23 26.97 51.23 90.12 95.99 66.08
FLoR (Zou et al., 2024a) ViT-S v CVPR-24 27.02 53.06 90.75 96.47 66.83
DAMIM (Ma et al., 2024) ViT-S v AAAI-25 27.82 54.86 91.18 96.34 67.55
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  27.66 54.69 91.53 96.27 67.54
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24 28.03 54.91 90.82 96.66 67.61
REAP ViT-S v Ours 28.34 55.28 91.79 96.71 68.03
ConFeSS™ (Das et al., 2022) ResNet10 v ICLR-2022  27.09 48.85 84.65 88.88 62.37
LDP-net" (Zhou et al., 2023) ResNet10 v CVPR-23 26.88 48.44 84.05 91.89 62.82
RDC" (Li et al., 2022) ResNet10 v CVPR-22 25.07 49.91 84.29 93.30 63.14
TPN + ATA" (Wang & Deng, 2021)  ResNet10 v IJCAI-21 24.74 49.83 85.47 93.56 63.40
MEM-FS + RDA" (Walsh et al., 2023) ViT-S v TIP-23 27.98 51.02 88.77 95.04 65.70
DAMIM" (Ma et al., 2024) ViT-S v AAAI-25 28.10 55.44 91.08 96.49 67.78
CD-CLS" (Zou et al., b) ViT-S v NeurIPS-24  28.25 55.66 91.68 96.62 68.05
AttnTemp* (Zou et al., a) ViT-S v NeurIPS-24 28.41 55.22 91.34 96.74 67.93
REAP” ViT-S v Ours 28.80 56.07 91.92 96.74 68.38

Table 7. Comparison study of Our method with the baseline, image-
perturbation, feature perturbation, weight perturbation, and atten-
tion maps direct perturbation by the 5-way 5-shot accuracy.

Method  CropDiseases EuroSAT  ISIC2018 ChestX Ave.

Baseline  94.61+0.17 89.294017 46.16+023 26.21+017  64.07
imgp 95.14+0.15 89.73+017  46.30+023 26.54+017 64.43
feayp 94.78+0.16 88.76+017  47.68+023 26.80x017 64.51
weight,  95.12+0.16 89.73+017 46.42+023 26.36+017  64.41
attn,, 94.90+0.16 89.03+017  46.09+023  25.90+017 63.98
Ours 95.68+0.15 90.53+015  52.80+024 27.98+0.18  66.75

model will be. Specifically, the sharpness is measured as

a7)

where w refers to the model weights, e refers to the perturba-
tion with the radius p. With this criterion, the generalization
can be bounded as follows

Lp(w) < maxHE“?SpLs((w +¢)

Sharpness = mazx |, <, [L(w + €) — L(w)],

2 ~
klog(1 + 12 (1 + | /tegtmy2) 4+ 410g 2 + O(1)

n—1

+

)

(18)
For any p > 0 and any distribution D, with probability
1 — 4 over the choice of the training set S ~ §, where
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n = |5/, k is the number of parameters and we assumed
Lp(w) < Eeno,p) [Lp(w + €)]. Following this criterion,
we measure the sharpness given perturbations on different
model weights to compare the optimal loss achieved by
those methods. In the meantime, Sharpness Aware Mini-
mization (SAM (Foret et al., 2021)) is introduced to improve
the model’s generalization ability, simultaneously minimiz-
ing loss value and loss sharpness

L(w)

Loss Value

Lsam = max)c),<p [L(w + €) — L(w)] + (19)

Sharpness

The term enclosed in square brackets quantifies the sharp-
ness by assessing how rapidly the training loss escalates
when transitioning from w to a neighboring parameter value.
The whole term aims at seeking parameters that reside in
neighborhoods with uniformly low loss values rather than
solely focusing on parameters with low loss values them-
selves, written as

MiNw Lsap = Ming, [maccﬂenzgpl)(w + 6)] (20)

To minimize Lg 4z, various perturbation approaches have
been proposed and divided into three types: image perturba-
tion (Foret et al., 2021), feature perturbation (Li et al., 2020),
and weight perturbation (Liang et al., 2022). Image pertur-
bation works by adding perturbation to the image ignoring
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Figure 14. The heatmap on target domains proves that our approaches effectively improve the model’s target-domain performance.

the model’s structure. Feature perturbation is not limited to
the first layer, but can be flexibly used in every layer of the
model, while weight perturbation is directly adding pertur-
bations to the model parameters. We compare our methods
with these three classical methods in Tab. 7. Due to ignoring
the idiosyncrasies of ViT, which is highly robust to severe
occlusions (Naseer et al., 2021) (e.g., random patch pertur-
bations), all these perturbations are a little useful but not
effective enough when compared with the baseline. The
core structure of the ViT is the attention mechanism, which
plays an essential role in the whole architecture (Chen et al.,
2023a). Instead of perturbing the whole weight parame-
ters, mainly focusing on the attention maps may be a good
idea. However, directly adding perturbations to the attention
maps harms the performance. Our method, working as a
new perturbation to attention maps indirectly, is proved to
alleviate the domain shift problem in Tab. 7.

D. More Experiments
D.1. Comparison with more SOTAs

As illustrated in Tab. 5 and Tab. 6, we conduct a thorough
comparison of various ViT and CNN-based approaches on
CDFSL tasks. Our proposed methods consistently surpass
all other approaches, achieving optimal performance. These
findings emphasize the efficacy of our approach.

D.2. More Visualization of the attention maps

The visualization of the attention maps in our model on
the target domain is shown in Fig. 14. Compared to the
dispersed attention observed in the baseline, our model fo-
cuses on more valid and concentrated regions within the
image, verifying that our approach improves the generaliza-
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tion from source domains to target domains.

D.3. Applying the Learnable Registers to different
layers of the model
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Figure 15. The model applied the learnable registers in the first
block have the poorest performance on target domains, validating
that due to the registers’ location, the model tends to view the
registers in the shallow layer (especially the input layer) as a kind
of domain-relevant pattern.

In Fig. 15, when we keep the registers number equal to 4,
the model applied the learnable registers in the first block
(input layer) performs poorest on target domains, proving
that due to the registers’ location, the model tends to view
the registers in the shallow layer (especially the input layer)
as a kind of domain-relevant pattern.

D.4. Similar Impact on deep prompts

As shown in the Fig. 16, the model with deep prompts shows
similar trends towards sharpness with the shallow types,
quantitatively verifying that random registers improve the
transferability of attention in both deep types or shallow

types.
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Figure 16. The model that applies deep registers has a similar im-
pact on sharpness.
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Figure 17. The model applies shallow random registers from the
input layer and retains them until the final layer has the best per-
formance on target domains.

As depicted in the Fig. 17, we uniformly set the number of
random registers to 1024 and add them at the end of the
token sequence using both deep and shallow approaches
before feeding them into the ViT blocks. The shallow regis-
ters without an asterisk (*) denote adding random registers
starting from the nth layer, while those with an asterisk
(*) indicate removal after the nth layer. Among these, the
approach of adding shallow random registers from the in-
put layer and retaining them until the final layer yields the
optimal performance.

Table 8. Validations of REAP in both deep and shallow prompts
of source-domain training by 5-shot.

Method CropDisease  EuroSAT  ISIC2018  ChestX Ave.
Baseline 94.61+0.17 89.29+017  46.16+023  26.21x017  64.07
REAP w/ deep random prompts 95.04+014 88.05+018  53.40+023 27.83:018  66.08

REAP w/ shallow random prompts ~ 95.68:015  90.53+015  52.80+024  27.98:018  66.75

As illustrated in Tab. 8, our method effectively enhances
performance regardless of whether prompts are utilized in
deep or shallow mode.
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