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ABSTRACT

In this work, we address the limitations of traditional Transformers in graph tasks.
While some approaches predominantly leverage local attention mechanisms akin
to Graph Neural Networks (GNNs), often neglecting the global attention capabil-
ities inherent in the Transformer model. Conversely, other methods overly focus
on the global attention aspect of the Transformer, ignoring the importance of local
attention mechanisms in the context of graph structure. To this end, we propose
a novel Message Passing Transformer with strategic modifications to the original
Transformer, significantly enhancing its performance on graph tasks by improv-
ing the handling of local attention. Building on this, we further propose a novel
Dual-Block Graph Transformer that synergistically integrates local and global at-
tention mechanisms. This architecture comprises two distinct blocks inside each
head: the Message Passing Block, designed to emulate local attention, and a sec-
ond block that encapsulates the global attention mechanism, mirroring the original
Transformer model. This dual-block design inside each head enables our model to
capture both fine-grained local and high-level global interactions in graph tasks,
leading to a more comprehensive and robust graph representation. We empiri-
cally validate our model on node classification tasks, particularly on heterophilic
graphs, and graph classification tasks. The results demonstrate that our Dual-
Block Graph Transformer significantly outperforms both GNN and Graph Trans-
former models. Remarkably, this superior performance is achieved without the
necessity for complex positional encoding strategies, underscoring the efficacy of
our approach.

1 INTRODUCTION

The Transformer model, introduced by Vaswani et al. (2017), has revolutionized the field of natural
language processing with its innovative attention mechanism, known as the self-attention or global
attention. This mechanism allows the model to weigh the importance of different elements in a
sequence, thereby capturing long-range dependencies and complex patterns. Despite its success
in sequence-based tasks, the application of the Transformer model to graph-based tasks remains
challenging due to the inherent differences between sequences and graphs.

Graph Transformers, an extension of the traditional Transformer model, have been proposed to
address the challenges of processing graph-structured data (Battaglia et al., 2018). These models
adapt the Transformer’s self-attention mechanism to handle graph data, enabling them to capture
complex patterns in the graph structure (Rong et al., 2021). By doing so, Graph Transformers can
effectively model the dependencies between nodes in a graph, which is crucial for many tasks such
as node classification, link prediction, and graph classification (Zhang & Chen, 2018; Wu et al.,
2019).

Traditional Graph Transformer models are primarily designed to leverage local attention mecha-
nisms, reminiscent of those found in Graph Neural Networks (GNNs). This design choice enables
them to optimize message passing effectively and capture intricate local attentions within graphs
(Rong et al., 2021; Thakoor et al., 2022; Bo et al., 2023), often neglecting the global attention ca-
pabilities inherent in the Transformer model. However, in contrast, certain methodologies place an

1



Under review as a conference paper at ICLR 2024

excessive emphasis on the global attention capabilities inherent in the Transformer model (Chen
et al., 2023; Ma et al., 2023; Zhao et al., 2023). While these approachs aims to capture global de-
pendencies within the graph, it often undervalues the critical role of local attention mechanisms in
understanding the nuanced context of graph structures.

In this work, we initially propose a novel Message Passing Transformer with Considered modifica-
tions to the original Transformer, significantly enhancing its performance on graph tasks through a
more sophisticated handling of local attention.. Building upon this, we further develop a Dual-Block
Graph Transformer that effectively integrates both local and global attention mechanisms. This ar-
chitecture comprises two distinct blocks: the first, based on our Message Passing Transformer, is
designed to emulate local attention akin to Message Passing GNNs, and the second encapsulates the
global attention mechanism, mirroring the original Transformer model. This dual-block design en-
ables our model to capture both fine-grained local and high-level global interactions in graph tasks,
leading to a more comprehensive and robust graph representation. Potential future work could ex-
plore different ways to combine the outputs of the multiple blocks, or investigate the use of diverse
attention mechanisms for each block.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have emerged as a powerful tool for processing and analyzing
graph-structured data, leading to a surge of research and advancements in this field. GNNs have
shown their versatility by being applicable across various domains, such as social network analysis,
biological network interpretation, and many more. This wide range of applications is a testament to
their ability to capture and process the complex relationships inherent in graph data (Kipf & Welling,
2016). A significant development in this area is the Graph Attention Network (GAT) (Veličković
et al., 2018). GATs leverage a local attention mechanism to optimize message passing within graph
structures, allowing them to focus on the most relevant nodes and edges during computation. This
approach has proven effective in many tasks. However, traditional GNNs (Zhang et al., 2021),
tend to focus primarily on local node interactions. This local focus often results in these models
overlooking the global context of the graph. This limitation can hinder their effectiveness in tasks
that require a broader understanding of the entire graph structure.

2.2 GRAPH TRANSFORMERS

In parallel to the developments in GNNs, the Transformer model has made significant strides in the
field of natural language processing. Introduced by Vaswani et al. (2017), the Transformer model
utilizes a self-attention mechanism that allows it to weigh the importance of different elements in a
sequence. This mechanism enables the model to capture complex patterns and long-range depen-
dencies in sequence-based tasks, making it particularly effective for tasks like machine translation
and text summarization.

However, applying the Transformer model to graph-based tasks presents a unique set of challenges
(Mialon et al., 2021), primarily due to the inherent differences between sequences and graphs. Un-
like sequences, graphs do not have a fixed order of elements, which complicates the direct applica-
tion of the Transformer’s self-attention mechanism (Ying et al., 2021). Previous work, Dwivedi &
Bresson (2021) use transformer to capture neighbour attention of graph, Rong et al. (2021) try to
emerge Message-passing module into transformer as embedding, Ying et al. (2021) Ma et al. (2023)
use structure information as bias in transformer for graph tasks, although these methodologies excel
at capturing local graph structures, they frequently omit the potential of the Transformer model’s
inherent global attention capabilities.

Contrarily, there exist methodologies that place an excessive emphasis on the global attention capa-
bilities inherent in the Transformer model Zhu et al. (2023) preprocess graph data as a hierarchical
sequence for the Transformer, Zhao et al. (2023) explore the deep of transformer layers, Jain et al.
(2021) incorporates the Transformer as a post-GNN module to capture global attention of graph
features, Chen et al. (2023) preprocess the node features as sequence for the transformer. These ap-
proaches, while aiming to capture global dependencies within the graph, often underplay the pivotal
role of local attention mechanisms. The nuanced context of graph structures necessitates a balanced
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focus on local attention mechanisms, a facet frequently undervalued in these methodologies. This
imbalance underscores the need for a model that effectively integrates both local and global attention
mechanisms.

To address this, we introduce an impactful modification to the original Transformer model in our
design. We maintain both local and global attention mechanisms but arrange them in a parallel
configuration. This design aims to more effectively capture the complex relationships present in
graph data.

3 BACKGROUND

A graph G is a mathematical structure used to model pairwise relations between objects. It is defined
as an ordered pair G = (V, E), where V is the set of vertices or nodes, and E is the set of edges.
Each edge is a 2-element subset of V .

The adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix
indicate whether pairs of vertices are adjacent or not in the graph. For a graph with N nodes, the
adjacency matrix A is an N ×N matrix where the entry Aij is 1 if there is an edge from node i to
node j, and 0 otherwise.

3.1 TRANSFORMERS

The Transformer model (Vaswani et al. (2017)) is based on the self-attention mechanism, which is
often described in terms of query, key, and value (QKV) vectors. Given a sequence of input vectors
X = (x1,x2, ...,xn) inRn×d, the self-attention mechanism first computes the QKV vectors as
follows:

Q = XWQ, K = XWK , V = XWV (1)

Where WQ, WK , and WV ∈Rd×dk are the weight matrices to be learned. Finally the self-attention
mechanism then computes the output matrix Y as follows:

Y = softmax

(
QK⊤
√
dk

)
V (2)

Here, dk is the dimensionality of the key vectors, and the division by
√
dk is a scaling factor that

was found to improve performance in the original Transformer paper.

3.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) operate on graph-structured data represented as G = (V, E), where
V ∈ RN×k is the set of nodes and E is the set of edges. Each node vi ∈ V is associated with a
feature vector xi. The goal of GNNs is to learn a function f : V → Rd that maps nodes to feature
vectors, capturing the graph structure.

A common approach in GNNs is to update the feature vector of each node based on its neighbors’
feature vectors. For instance, the Graph Convolutional Network (GCN) (Kipf & Welling, 2016)
updates the feature vector of node vi as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(3)

where A ∈ RN×N is the adjacency matrix of the graph, Ã = A + I is the adjacency matrix with
added self-connections, I is the identity matrix, D̃ is the diagonal node degree matrix of Ã, H(l)

is the matrix of node features at layer l, W(l) is a learnable weight matrix at layer l, and σ is a
non-linear activation function.

3



Under review as a conference paper at ICLR 2024

Figure 1: The model of Message-Passing Transformer (MPT) and Dual-block Graph Transformer
(DBGT). Left: Message-Passing Transformer (MPT) fully leverages local attention. Right: DBGT
model processes feature embeddings and an adjacency matrix through two blocks: a Global-block
for global attention, and a Local-block (MPT block) for local attention. The outputs are concatenated
and passed through a linear feed-forward network with a residual connection.

4 OUR APPROACH

Recognizing the challenges inherent in applying the Transformer model to graph-structured data,
where some methodologies tend to overly concentrate on either local or global attention mecha-
nisms, we propose a novel, two-pronged solution. Initially, our approach focuses on the devel-
opment of a graph transformer that fully leverages local attention. This model, which we term
the Message-Passing Transformer (MPT) as shown in 1, is designed to emulate the entire graph
message-passing process in whole graph attention networks (GAT), effectively serving as a local
attention Graph Transformer. Subsequently, we expand this model by integrating a fully global at-
tention block as Dual-Block Graph Transformer (DBGT), thereby creating a comprehensive system
that balances both local and global attention mechanisms. This progressive approach allows us to
harness the strengths of both attention mechanisms, potentially leading to more robust and effective
graph-structured data processing.

4.1 MESSAGE PASSING TRANSFORMER

In the Message-Passing Transformer (MPT) model, the attention mechanism is first applied. The
input features X of each node are transformed into query, key, and value vectors by WQ, WK , and
WV , the attention mechanism then computes the output matrix M as follows:

M =
QK⊤
√
dk

(4)

where M is the attention matrix and dk is the dimensionality of the key vectors. The division by√
dk is a scaling factor that was found to improve performance in the original Transformer paper.

In order to ensure that the attention mechanism does not consider non-adjacent nodes, we apply a
Neglation operation to the attention scores before the softmax operation. Specifically, we replace
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the scores corresponding to non-adjacent node pairs (i.e., pairs of nodes for which the adjacency
matrix entry is zero) with a large negative value (i.e., -9e15). This effectively forces the softmax of
these scores to be near zero, ensuring that the attention mechanism does not consider non-adjacent
nodes. Mathematically, this operation can be represented as follows:

M′ = Negation(M) : where{if Mij == 0,Mij = −∞, Mij = Mij otherwise} (5)

The adjacency matrix A is then used to compute a weighted sum of the value vectors which make
the message passing of local attention:

Z = softmax(A⊙M′)V (6)

Where ⊙ represents the dot product, its application in conjunction with the adjacency matrix A
serves a crucial role. Specifically, A functions akin to a mask, selectively highlighting neighbor
nodes while obscuring all others. Upon multiplication with V, this mechanism effectively restricts
the self-attention mechanism to focus solely on each node’s neighbouring local attention. The output
matrix Z is then passed through a linear feed-forward layer:

H = ReLU(W1Z+ b1) (7)

W1 and b1 are the parameters of the feed-forward network. The output of the feed-forward network
is then combined with the original features through a residual connection:

Y = H+X (8)

This operation ensures that the original features are preserved while being refined by the aggregated
information. The combined features are then normalized to stabilize the learning process. The
layer-wise operation is repeated in the following layer, allowing the model to capture higher-order
neighborhood information. In other words, the model can aggregate information from neighbors of
neighbors, and so on, effectively capturing a larger local graph structure around each node with each
layer.

4.2 DUAL-BLOCK GRAPH TRANSFORMER (DBGT)

Having obtained the local attention via our MPT, the subsequent challenge lies in effectively dealing
with the global attention within the graph transformer in a manner that coheres with our proposed
local attention model, MPT. Rather than utilizing the transformer as an isolated module, we adapt it
to function synergistically with the local attention in MPT as a dual-block within each head. This
approach not only ensures a seamless integration of local and global attention mechanisms but also
enhances the overall effectiveness of the model.

To this end, We propose the Dual-Block Graph Transformer (DBGT) as shown in Figure 1, a novel
extension of our MPT. The DBGT model integrates both local and global attention mechanisms by
incorporating two distinct ’blocks’: a Graph Attention block and a Transformer block. The Graph
Attention block focuses on local attention, capturing the local graph structure around each node. It
operates similarly to the attention mechanism in the MPT model, computing a weighted sum of the
value vectors of the neighboring nodes for each node:

ZL = softmax(A⊙Negation(
QLKL

⊤
√
dk

))VL (9)

where A is the adjacency matrix of the graph, and negation is the operation of equation (5). The
Transformer block, on the other hand, captures global attention, considering all nodes in the graph
when computing the attention weights:

ZG = softmax

(
QGKG

⊤
√
dk

)
VG (10)
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The outputs of the two blocks are then concatenated to form the final output of the DBGT model:

Z = Concat(αLZ
L, αGZ

G) (11)

where αL and αG are two learned parameters, and we set αL= (1− αG). Furthermore, we extend
the DBGT model to have N heads of Dual-blocks, allowing the model to capture a richer set of
local and global dependencies in the graph. This makes the DBGT model a versatile tool for graph
representation learning, capable of focusing on both local and global graph structures.

5 EXPERIMENTS

To validate the effectiveness of our proposed models, Message-Passing Graph Transformer (MPT)
and Dual-Block Graph Transformer (DBGT), we conduct extensive experiments on both node clas-
sification and graph classification tasks. These tasks serve as benchmarks in the field of graph-
structured data analysis and allow us to compare the performance of our models with existing state-
of-the-art methods of GNNs and Graph Transformers.

5.1 DATASETS

For node classification tasks, we employ a variety of widely-used datasets. The Cora dataset is a
citation network where nodes represent scientific papers and edges represent citation relationships
(McCallum et al., 2000). The WikiCS dataset is a network of Wikipedia articles about computer
science, with nodes representing articles and edges indicating hyperlinks between them (Zhang et al.,
2020). The Actor dataset is a co-occurrence network of actors, with nodes representing actors and
edges indicating that two actors appeared in the same movie (State et al., 2014). The Chameleon
dataset is a hyperlinked document dataset, where nodes represent documents and edges represent
hyperlinks (Rozemberczki et al., 2020). Lastly, the Wisconsin, Texas, and Cornell datasets are web
page datasets, where nodes represent web pages and edges represent hyperlinks (Yang et al., 2015).
Each of these datasets offers a unique context for evaluating our models, providing a comprehensive
assessment of their performance across different domains and structures.

We utilize a variety of benchmark datasets for graph classification tasks. MUTAG predicts the
mutagenicity of nitroaromatic compounds (Debnath et al., 1991). PROTEINS classifies proteins into
enzymes or non-enzymes based on amino acid proximity (Dobson & Doig, 2003). NCI1 predicts the
anti-cancer activity of chemical compounds (Wale et al., 2008). PTC determines the carcinogenicity
of tested compounds (Toivonen et al., 2003). These datasets allow a thorough evaluation of our
model’s versatility in handling diverse graph classification tasks.

5.2 BASELINE

In our node classification and graph classification experiments, we compare our proposed models
against a diverse set of baselines, which fall into two main categories: Graph Neural Networks
(GNNs) and Graph Transformers.

Graph Neural Networks We selected a variety of GNN models that have shown strong perfor-
mance on graph-based tasks including heomophlic graph tasks and heterophilic graph tasks. These
include Graph Convolutional Networks (GCN) (Kipf & Welling, 2016), Graph Attention Networks
(GAT) (Veličković et al., 2018), GIN (Xu et al., 2019), SAGE (Hamilton et al., 2017), GPR-GNN
(Chien et al., 2021), Shadow-GCN (Zeng et al., 2021), JacobiConv (Wang & Zhang, 2022), BGRL
(Thakoor et al., 2022), and GREET (Liu et al., 2023). These models employ different mechanisms
for information propagation and aggregation, providing a comprehensive comparison for our pro-
posed models.

Graph Transformers We also compare our models against several Graph Transformer models,
which integrate the self-attention mechanism of Transformers with the propagation mechanism of
GNNs. These include the basic Transformer model (Vaswani et al., 2017), Graphormer (Ying et al.,
2021), GT (Yun et al., 2019), Graphi (Mialon et al., 2021), SAT (Chen et al., 2022), GRPE (Park
et al., 2022), SpecFormer (Bo et al., 2023), Deepgraph (Zhao et al., 2023), NAGphormer (Chen et al.,
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Table 1: Test accuracy results for the Graph node classification task. The highest and second highest
results are highlighted in bold and underlined, respectively.

Cora Wikics photo Actor Cham. Wis. Texas Cornell

GCN 80.04 76.21 92.35 31.06 38.11 57.03 58.43 52.15
GAT 83.28 77.37 92.64 28.16 43.71 55.76 57.96 50.58
GPR-GNN 74.51 79.00 92.42 31.06 60.72 78.26 79.28 78.40
Shadow-GCN 81.69 79.11 91.68 32.33 56.89 64.05 61.80 62.59
Jcobiconv (Wang & Zhang, 2022) 81.70 76.28 92.26 31.26 63.89 76.64 66.58 65.00
BGRL (Thakoor et al., 2022) 81.38 78.89 93.24 30.89 48.08 52.59 60.00 57.53
GREET (Liu et al., 2023) 83.81 80.68 92.85 36.20 63.70 81.90 87.00 75.10

GT 71.54 73.41 91.16 30.32 52.67 72.86 71.85 71.16
Graphormer 70.47 68.08 89.67 29.33 56.92 71.60 74.25 72.04
Graphi 78.44 74.70 90.70 32.68 59.99 68.21 68.43 66.91
SAT (Chen et al., 2022) 81.51 75.87 91.28 34.67 64.66 75.20 74.81 75.02
GRPE (Park et al., 2022) 80.12 75.28 90.41 33.51 64.71 76.60 74.07 73.17
SpecFormer (Bo et al., 2023) 80.46 78.99 92.36 34.49 64.74 77.06 78.06 76.45
Deepgraph (Zhao et al., 2023) 79.49 77.52 91.22 31.48 62.65 74.09 75.30 71.28
NAGphormer (Chen et al., 2023) 80.79 78.70 90.04 34.11 59.24 76.07 76.76 75.86
AGT (Ma et al., 2023) 81.57 78.93 92.68 35.19 75.06 80.67 79.83 76.10

MPT 81.71 82.90 93.86 36.63 65.53 78.63 86.49 80.82
DBGT 81.01 81.07 94.12 37.14 66.36 83.88 89.19 81.89

2023) and AGT (Ma et al., 2023). These models represent popular and state-of-the-art approaches
in the field of Graph Transformers, serving as a challenging benchmark for our proposed models.

5.3 SETTINGS

Node Classification For the node classification task, we followed the settings described in the AGT
paper (Ma et al., 2023). We conducted 10 independent runs for each dataset using the standard split,
with each run consisting of 100 epochs. The final results are reported as the average over these 10
runs. This approach ensures that our results are robust and not dependent on a particular random
seed or initial conditions.

Graph Classification For the graph classification task, we employed a 10-fold cross-validation
strategy for each model. This involves splitting the dataset into 10 equal parts, or ’folds’, and then
training the model 10 times, each time using 9 folds for training and the remaining fold for testing.
The final results are reported as the average over these 10 folds. This strategy provides a robust
estimate of the model’s performance, as it reduces the variance associated with a single train-test
split.All the experiments are running on NVIDIA TITAN RTX 24G.

5.4 RESULTS

Table 1 presents the performance comparison of various Graph Neural Networks (GNNs), Graph
Transformers, and our proposed models (MPT and DBGT) on multiple datasets for node classi-
fication tasks.In the GNNs category, GREET achieves the highest accuracy on the Cora dataset.
GREET also shows impressive performance on the Wikics, Actor, and Wisconsin datasets. However,
our proposed models, MPT and DBGT, outperform or are competitive with these models across all
datasets. In the Graph Transformers category, AGT stands out with the highest accuracy on the Cham
dataset. However, our proposed models again demonstrate superior performance. MPT outperforms
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Table 2: Test accuracy results for the Graph classification task. The highest and second highest
results are highlighted in bold and underlined, respectively

MUTAG PROTEINS NCI1 PTC

GCN 74.6 ± 7.7 73.1 ± 3.8 76.2 ± 4.1 60.4 ± 3.2
SAGE 74.9 ± 8.7 73.4 ± 3.3 71.7 ± 3.1 58.8 ± 4.2
GIN 85.4 ± 7.7 72.1 ± 5.2 78.6 ± 2.9 66.4 ± 6.6

GT 75.5 ± 7.9 68.4 ± 3.3 67.7 ± 4.3 55.6 ± 5.2
Graphormer 74.4 ± 7.4 68.4 ± 3.7 64.9 ± 3.7 56.7 ± 5.5
SAT (Chen et al., 2022) 81.4 ± 8.2 71.7 ± 3.5 70.2 ± 3.5 61.3 ± 4.0
GRPE (Park et al., 2022) 82.5 ± 8.0 72.3 ± 3.5 74.7 ± 5.6 63.1 ± 3.4
SpecFormer (Bo et al., 2023) 83.7 ± 8.0 72.0 ± 4.9 76.7 ± 4.2 63.2 ± 4.7
Deepgraph (Zhao et al., 2023) 80.5 ± 8.1 70.5 ± 3.8 74.4 ± 5.3 62.5 ± 4.8
AGT (Ma et al., 2023) 82.8 ± 8.2 73.2 ± 4.5 76.1 ± 3.5 63.4 ± 4.1

MPT 84.3 ± 8.4 75.4 ± 3.1 74.5 ± 3.6 64.0 ± 3.6
DBGT 88.6 ± 7.2 76.9 ± 3.3 79.4 ± 2.6 65.4 ± 4.8

all Graph Transformers on the Wikics and Actor datasets, while DBGT achieves the highest accu-
racy on the Wikics, Actor, photos, Wisconsin, Texas, and Cornell datasets and the second-highest
on the Chameleon dataset.

Table 2 showcases the performance on graph classification tasks.In the GNNs category, GIN
achieves the highest accuracy on the MUTAG, NCI1 and PTC dataset. However, our proposed
models, MPT and DBGT, outperform or are competitive with these models. In the Graph Trans-
formers category, AGT stands out with the highest accuracy on the PROTEINS, NCI1 and PTC
dataset. However, our proposed models again demonstrate superior performance. DBGT achieves
the highest accuracy on the MUTAG, PROTEINS and NCI1, and the second-highest on the PTC
dataset.

Our proposed Message Passing Transformer (MPT) demonstrates superior performance compared
to most Graph Neural Networks (GNNs) and Graph Transformers across several datasets. This indi-
cates the effectiveness of our strategic modifications to the original Transformer model in handling
local attention. Furthermore, with the integration of global attention, our Dual-Block Transformer
(DBGT) outperforms nearly all existing models, highlighting the strength of a balanced attention
mechanism. However, it’s worth noting that our approach shows room for improvement on the
homophilic dataset Cora, despite performing well on Wikics and Photo datasets. Particularly on
heterophilic datasets, our approach shows significant improvement, underscoring the importance of
global information in these contexts.

5.5 ABLATION STUDY

Table 3 presents the results of an ablation study conducted on our DBGT model, examining the
effects of removing either the local or global attention block in each dataset. The study reveals that in
homophilic datasets such as Cora and Wikics, the presence of global attention has a negative impact.
Conversely, for heterophilic datasets and graph classification tasks, the role of global attention proves
to be crucial. When focusing on local attention, which constitutes the main part of graph message
passing, the absence of this component leads to a substantial decrease in performance across all
graph tasks.
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Figure 2: Visualization of two-layer local and global attention maps on two samples from the MU-
TAG dataset. The top panel represents the local attention map in each layer, capturing the local
attention of each node, while the bottom panel represents the global attention map in each layer,
capturing the global attention of each node.

Table 3: Test accuracy results of ablation study for graph tasks. w/o means without.

MUTAG PROTEINS NCI1 PTC Cora Wikics Wis. Texas

DBGT 88.6 ± 7.2 76.9 ± 3.3 79.4 ± 2.6 65.4 ± 4.8 81.0 ± 0.3 81.1 ± 0.2 83.9 ± 0.4 89.2 ± 0.2
DBGT w/o Global 84.3 ± 8.4 75.4 ± 3.1 74.5 ± 3.6 64.0 ± 3.6 81.7 ± 0.2 82.9 ± 0.3 78.6 ± 3.6 86.5 ± 1.6
DBGT w/o Local 67.1 ± 7.5 62.6 ± 3.4 61.3 ± 3.8 52.2 ± 2.9 66.5 ± 0.5 67.1 ± 0.6 59.2 ± 2.1 56.5 ± 4.2

Figure 2 provides a visualization of the dual block attention map in our DBGT model. We selected
two samples from the MUTAG dataset to illustrate the local and global attention mechanisms after a
fully trained, two-layer DBGT model. The visualization clearly highlights the differences between
the local and global attention maps. This not only demonstrates the effectiveness of the global
attention mechanism, which is often neglected by traditional Graph Transformers and GNNs, but
also underscores the unique contribution of our DBGT model in addressing this oversight.

6 FUTURE WORK

Despite the promising results of our Message-passing Transformer and Dual-Block Graph Trans-
former, it presents some limitations, particularly in terms of scalability. This issue, inherent to the
global attention mechanism, results in a high computational cost, especially for large-scale graphs.
Future work should focus on addressing this challenge. Additionally, potential future work could
explore different ways to combine the outputs of the multiple blocks, or investigate the use of diverse
attention mechanisms for each block. These areas of improvement present exciting opportunities for
further advancements in graph-based machine learning.

7 CONCLUSION

In conclusion, this work presents an impactful modification to the Transformer architecture that
leverages both local and global attention mechanisms, yielding substantial improvements in graph
tasks performance. Our findings pave the way for future research in developing more sophisticated
and efficient graph transformer models, thereby pushing the frontier of graph-based machine learn-
ing.
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scale representation learning on graphs via bootstrapping. In International Conference on Learn-
ing Representations, 2022.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statistical
evaluation of the predictive toxicology challenge 2000-2001. In Bioinformatics, volume 19, pp.
1183–1193. Oxford Univ Press, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.
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