M-RAG: Reinforcing Large Language Model Performance through
Retrieval-Augmented Generation with Multiple Partitions

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) en-
hances Large Language Models (LLMs) by
retrieving relevant memories from an exter-
nal database. However, existing RAG meth-
ods typically organize all memories in a whole
database, potentially limiting focus on crucial
memories and introducing noise. In this pa-
per, we introduce a multiple partition paradigm
for RAG (called M-RAG), where each database
partition serves as a basic unit for RAG exe-
cution. Based on this paradigm, we propose
a novel framework that leverages LLMs with
Multi-Agent Reinforcement Learning to opti-
mize different language generation tasks ex-
plicitly. Through comprehensive experiments
conducted on seven datasets, spanning three
language generation tasks and involving three
distinct language model architectures, we con-
firm that M-RAG consistently outperforms vari-
ous baseline methods, achieving improvements
of 11%, 8%, and 12% for text summarization,
machine translation, and dialogue generation,
respectively.

1 Introduction

Introduced by (Lewis et al., 2020), Retrieval-
Augmented Generation (RAG) represents a
paradigm within the domain of Large Language
Models (LLMs) to augment generative tasks. More
specifically, RAG incorporates an initial retrieval
step where LLLMs query an external database to
acquire relevant information before progressing to
answer questions or generate text. This process not
only guides the subsequent generation step but also
guarantees that the responses are firmly anchored
in the retrieved information (referred to as memo-
ries). Consequently, it enhances LLM performance,
and has attracted growing research interests (Gao
et al., 2023) in recent years.

While the majority of existing studies (Asai et al.,
2023; Cheng et al., 2023b; Ma et al., 2023) adopt
a retrieval approach that considers a database as

a whole, which tends to yield a coarse-grained re-
trieval. The collective organization of all mem-
ories may hinder the focus on crucial memories
and introduce noise, particularly due to the inher-
ent challenges of Approximate k-Nearest Neighbor
(AKNN) search when applied to large datasets. In
this context, we investigate a retrieval approach that
aims to search within a partition of the database,
corresponding retrieval at a fine-grained level,
which is designed to enhance the generation pro-
cess by targeting specific memories. Moreover, in
quite a few vector database systems, database parti-
tions are regarded as fundamental units for analysis.
This facilitates the construction and maintenance
of index structures (Pan et al., 2023), ensures the
protection of user privacy data (stored in specific
partitions with access rights) (Xue et al., 2017),
and supports distributed architectures (Guo et al.,
2022). Therefore, in this work, we propose to take
a partition as a basic entity in the execution of
RAG, which is less explored in current methods.

We discuss our proposal with a motivating ex-
periment illustrated in Figure 2. We investigate
various strategies for partitioning a database (elab-
orated in Section 3.1), and perform RAG with vary-
ing the number of partitions for three generation
tasks: summarization, translation, and dialogue
generation, where we explore all partitions for the
retrieval, and the best result (assessed based on a
development set) across different partitions is re-
ported. We observe that the optimal performance
is typically not achieved through retrieval based
on the entire database (#Partitions = 1). This ob-
servation inspires us to investigate a novel RAG
setting with multiple partitions. To achieve this,
the task should address three significant challenges,
summarized below. (1) Determining a strategy for
partitioning a database and the number of partitions.
(2) Developing a method for selecting a suitable
partition for a given input query to discover ef-
fective memories. (3) Enhancing memory quality,



including inherent issues such as hallucination, or
irrelevant context, which can impact the grounding
of LLM generation.

Building upon the aforementioned discussion,
we introduce a new solution called M-RAG, de-
signed to facilitate RAG across multiple partitions
of a database. M-RAG addresses all of the three
challenges. For (1), we draw insights from the
literature on vector database management (Pan
et al., 2023; Han et al., 2023) and assess various
strategies, namely Randomization (Indyk and Mot-
wani, 1998), Clustering (Jegou et al., 2010), Index-
ing (Malkov et al., 2014; Malkov and Yashunin,
2018), and Category (Gollapudi et al., 2023),
through empirical studies. The effectiveness of
these strategies, along with the corresponding num-
ber of partitions, is evaluated across different gener-
ative tasks on a development set in our experiments.
For (2), with multiple partitions at play, we for-
mulate partition selection as a multi-armed bandit
problem (Slivkins et al., 2019). In this context, an
agent, denoted as Agent-S, iteratively selects one
among several partitions. The characteristics of
each partition are only partially known at the time
of selection, and Agent-S gains a better understand-
ing over time by maximizing cumulative rewards in
the environment. To optimize the decision policy,
we leverage reinforcement learning with a carefully
designed Markov Decision Process (MDP). For (3),
after selecting a partition and obtaining memories
for generation, we introduce another agent, denoted
as Agent-R. This agent generates a pool of candi-
date memories iteratively through the use of LLMs.
Once a candidate is selected, Agent-R evaluates its
quality by demonstrating it to generate a hypothesis.
The identification of a high-quality hypothesis de-
termined by a specific performance metric, triggers
a boosting process, where it signals the exploration
and replacement of the previous memory with a
superior one, and continues the process. Further,
we integrate the efforts of Agent-S and Agent-R
through multi-agent reinforcement learning. With
a shared objective of enhancing text generation
for a given input query, they are jointly optimized
through end-to-end training.

Our contributions can be summarized as follows:
(1) we propose a multiple partition paradigm for
RAG, aiming to facilitate fine-grained retrieval and
concentrate on pivotal memories to enhance overall
performance. In addition, the utilization of multiple
partitions benefits other aspects of RAG, including

facilitating the construction and maintenance of
indices, protecting user privacy data within spe-
cific partitions, and supporting distributed paral-
lel processing across different partitions. (2) We
introduce M-RAG, a new solution based on multi-
agent reinforcement learning that tackles the three
challenges in executing RAG across multiple parti-
tions. We show that the training objective of M-RAG
is well aligned with that of text generation tasks.
(3) We conduct extensive experiments on seven
datasets for three generation tasks on three distinct
language model architectures, including a recent
Mixture of Experts (MoE) architecture (Jiang et al.,
2024). The results demonstrate the effectiveness
of M-RAG across diverse RAG baselines. In com-
parison to the best baseline approach, M-RAG ex-
hibits improvements of 11%, 8%, and 12% for text
summarization, machine translation, and dialogue
generation tasks, respectively.

2 Related Work

2.1 Retrieval-Augmented Generation

We review the literature of Retrieval-Augmented
Generation (RAG) in terms of (1) Naive RAG, (2)
Advanced RAG, and (3) Modular RAG. For (1),
Naive RAG follows a standard process including
indexing, retrieval, and generation (Ma et al., 2023).
However, its quality faces significant challenges
such as low precision, hallucination, and redun-
dancy during the process. For (2), Advanced RAG
is further developed to overcome the shortcomings
of Naive RAG. Specifically, during the indexing
stage, the objective is to enhance the quality of the
indexed content by optimizing data embedding (Li
et al., 2023). During the retrieval stage, the focus
is on identifying the appropriate context by calcu-
lating the similarity between the query and chunks,
where the techniques involve fine-tuning embed-
ding models (Xiao et al., 2023), or learning dy-
namic embeddings for different context (Karpukhin
et al., 2020). During the generation stage, it merges
the retrieved context with the query as an input
into large language models (LLMs), where it ad-
dresses challenges posed by context window limits
with re-ranking the most relevant content (Jiang
et al., 2023; Zhuang et al., 2023), or compressing
prompts (Litman et al., 2020; Xu et al., 2023). In
addition, Self-RAG (Asai et al., 2023) is proposed
to identify whether retrieval is necessary, or the
retrieved context is relevant, which helps language
models to produce meaningful generation (Asai
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Figure 1: Illustration of M-RAG training in a summarization task: The M-RAG initiates training with multiple partitions
(Section 3.1), it then selects a partition to perform retrieval via Agent-S (Section 3.2), and refines the memories
within the selected partition via Agent-R (Section 3.3). Both agents are collaboratively trained to enhance generation
capabilities through multi-agent reinforcement learning (Section 3.4).

et al., 2023). For (3), Modular RAG diverges from
the traditional Naive RAG structure by incorporat-
ing external modules to further enhance the per-
formance, including search module (Wang et al.,
2023), memory module (Wang et al., 2022; Cheng
et al., 2023b), tuning module (Lin et al., 2023),
and task adapter (Cheng et al., 2023a; Dai et al.,
2023). Specifically, Selfmem (Cheng et al., 2023b)
incorporates a retrieval-enhanced generator to it-
eratively create a memory pool, it then trains a
selector to choose one of the memories from the
pool to generate responses. The work (Gao et al.,
2023) provides a comprehensive survey of RAG
for LLMs. Our work differs from existing RAG
studies in two aspects. First, we introduce a mul-
tiple partition setting, where each partition serves
as a fundamental entity for retrieval, rather than
retrieving from the entire database. Second, we
introduce an M-RAG framework built upon multi-
agent reinforcement learning, which tackles three
distinct challenges posed by this novel setting.

2.2 Reinforcement Learning for LLMs

Recently, reinforcement learning has seen broad
applications across a variety of language-related
tasks for Large Language Models (LLMs). This in-
cludes tasks such as text summarization (Wu et al.,
2021), machine translation (Kreutzer et al., 2018),
dialogue systems (Jaques et al., 2019; Yi et al,,
2019), semantic parsing (Lawrence and Riezler,
2018), and review generation (Cho et al., 2018).
For example, WebGPT (Nakano et al., 2021) in-
corporates a reinforcement learning framework to
autonomously train the GPT-3 model using a search
engine during the text generation process. Further,
InstructGPT (Ouyang et al., 2022) collects a dataset
containing desired model outputs provided by hu-

man labelers. Subsequently, it employs Reinforce-
ment Learning from Human Feedback (RLHF) to
fine-tune GPT-3 (Brown et al., 2020). In addition,
R3 (Ma et al., 2023) introduces a Rewrite-Retrieve-
Read process, where the LLM performance serves
as a reinforcement learning incentive for a rewrit-
ing module. This approach empowers the rewriter
to enhance retrieval queries, consequently improv-
ing the reader’s performance in downstream tasks.
In this work, we propose a novel multi-agent rein-
forcement learning framework utilizing two agents
to collaboratively optimize text generation tasks.
To our best knowledge, this is the first of its kind.

3 Methodology

A task involving M-RAG can be formulated below.
Given a database D = {(z;, yi)}yz‘l for a language
generation task (e.g., summarization), where each
pair (x,y) represents a document and its corre-
sponding summary stored in ). The M-RAG ini-
tiates the process by partitioning D into multiple
partitions. This can be achieved through meth-
ods like clustering or by leveraging inherent cat-
egory labels in the data. The resulting partitions
are denoted as D = {Dm}m 1» Where each D,
(1 < m < M) supports an independent RAG
process (Section 3.1). The M-RAG framework com-
prises both training and inference processes, as
outlined in Algorithm 1. For training, Agent-S
learns to select a specific D,,, for an input text pair
(Section 3.2). Subsequently, Agent-R refines the
retrieved memories, represented as (Z,9) € Dy,
within the selected partition D,,, (Section 3.3). Fi-
nally, the two agents are collaboratively trained
with multi-agent reinforcement learning (see Sec-
tion 3.4). Figure 1 illustrates the training process
of M-RAG. For inference, the refined D is utilized to



support an LLM in generating hypotheses, where a
D,, is selected by the trained Agent-S.

3.1 Discussion on Partitioning a Database

As M-RAG relies on multiple partitions for RAG
operations, we investigate various strategies to par-
tition an external database (typically the training
corpus). The results of these strategies are then
validated through empirical studies. We review
the literature, including recent vector database sur-
veys (Pan et al., 2023; Han et al., 2023), and iden-
tify the following strategies: namely (1) Random-
ization (Indyk and Motwani, 1998), (2) Cluster-
ing (Jegou et al., 2010), (3) Indexing (Malkov et al.,
2014; Malkov and Yashunin, 2018) and (4) Cate-
gory (Gollapudi et al., 2023). Specifically, for (1),
it targets the utilization of probability amplifica-
tion techniques, such as locality-sensitive hashing
(LSH), to hash similar items (data vectors) into
the same bucket with a high probability. For (2),
it involves clustering data vectors using K-means,
where this clustering concept is widely applied in
Inverted File Index (IVF) for tasks like Approxi-
mate k-Nearest Neighbor (AKNN) search. For (3),
navigable graph indexes, such as HNSW (Malkov
and Yashunin, 2018) or NSW (Malkov et al., 2014),
are designed to facilitate easy traversal of differ-
ent regions within a vector database. To achieve
effective partitions, we employ graph partitioning
with spectral clustering on a navigable graph. For
(4), it involves assigning data vectors to partitions
based on their respective categories. For example,
in the DailyDialog dataset (Li et al., 2017), which
includes 7 emotion categories (e.g., joy, anger) and
10 topic categories (e.g., work, health), vectors
are partitioned according to their category labels.
We note that a single vector may be assigned to
multiple partitions, due to the characteristics of the
dataset, where a dialogue spans multiple categories.

In Figure 2, we perform experiments on a de-
velopment set, manipulating the number of par-
titions wrt the 4 strategies across three language
generation tasks (summarization, translation, and
dialogue generation). The results demonstrate the
effectiveness of the strategies, and we conclude
the selected strategies with the number of parti-
tions as follows. We choose Indexing (4 partitions),
Randomization (3 partitions), and Category (10
partitions) for the summarization, translation, and
dialogue generation tasks, respectively. In addi-
tion, as shown in Figure 2 (a) and (b), we observe

that both Top-1 and Top-3 retrieval methods exhibit
comparable performance. For enhanced efficiency,
we default to Top-1 retrieval in the rest of the paper.

3.2 Agent-S: Selecting a Database Partition

During the training process of an Agent-S to select
a partition from D, the environment is naturally
modeled as a bandit setting. In this context, when
a random partition is selected, the language model
generates a response for the query with feedback
(typically based on a specific performance metric),
and concludes the episode. The selection process
can be formulated as a Markov Decision Process
(MDP), involving states, actions, and rewards.
States. Given a training pair (z,y) and a set of
database partitions D = {Dm}mﬂl, the state 5(5)
is defined by assessing the semantic relevance, typ-
ically quantified by measures such as cosine sim-
ilarity sim(-, -), between the input (z,y) and the
stored memories (Z,7) within each D,,.

|M|
m=1’

ey

where & denotes the concatenation operation, and
o(+) denotes an embedded model utilized to obtain
text representations, such as the CPT-Text (Nee-
lakantan et al., 2022). We consider the Top-1 re-
trieved memories to construct the state.

Actions. Let (%) represent an action undertaken
by Agent-S. The design of actions corresponds to
that of the state s(%). Specifically, the actions are
defined as follows:

s ={ max sim(o(z @ 7),0(z®y))}
(2,9)€Dm

a® =m@1<m<M), Q)

where action a®) = m means to select the D,,, for
subsequent the generation task.

Rewards. The reward is denoted by (%), When
the action a(®) involves exploring a partition, the
reward cannot be immediately observed, as no re-
sponse has been received for the query x. However,
when the action involves selecting a partition for
Agent-R to refine the memories within the partition,
the stored response 3 is updated, and some reward
signal can be obtained (for example, by measuring
the difference between the results on the original
memory and that on the refined memory). There-
fore, we make Agent-S and Agent-R are trained
with multi-agent reinforcement learning, since they
cooperate towards the same objective of learning
a policy that produces a response (hypothesis) as
similar as possible to the reference y for the x.



3.3 Agent-R: Refining Memories in the
Selected Partition

Next, we formulate the task of refining the retrieved
memories carried out by Agent-R within a selected
partition. To accomplish this, Agent-R explores
potential responses denoted by ¢ through LLMs
for the retrieved Z, and generates a candidate pool
C={gx LLM(ic)}‘,fS1 for selection, where K
denotes the number of candidates. Upon select-
ing a candidate, Agent-R evaluates its quality by
demonstrating the new memory (Z, ) to generate
a hypothesis h <— LLM(z & (Z, gk )). In summary,
a high-quality hypothesis h benefits from superior
memory, which can be then refined through the pro-
duced hypothesis for subsequent selections. Con-
sequently, Agent-R iterates in a boosting process
optimized via reinforcement learning, where the
states, actions, and rewards are detailed below.
States. The state s(/) is defined to assess the se-
mantic relevance between the produced hypothesis
h and the selected g, from the pool C. The ratio-
nale is to identify a memory that closely resembles
the hypothesis, which aligns with the human intu-
ition that a superior demonstration sample often
leads to better generation results, that is

s = {sim(o(h), (@)}, O

where o(-) denotes an embedded model, and K
governs the constructed state space.

Actions. Let (") represent an action taken by
Agent-R. The design is consistent with the state
s(B) | which involves selecting a candidate memory
from the pool, that is

P =k (1<k<K). 4)

Rewards. We denote the reward of Agent-R as

TER) which corresponds to the transition from the

(R) (R)

current state s, to the next state s," | after taking

action ag ), Specifically, when a memory (Z, J)

is updated, the hypothesis changes from h to b’
accordingly. We remark that the best hypothesis
(denoted as h') identified at state s is maintained
according to a specific metric A(+, ) (e.g., ROUGE
for text summarization, BLEU for machine transla-
tion, BLEU and Distinct for dialogue generation),
and the reward is defined as:

T’(R) = A(h/, y) - A(h) y)7 (5)

Algorithm 1: The M-RAG Framework
Require : a database D; a frozen LLM(-)
1 obtain D = {D,, }llL |1 via a partitioning strategy

2 initialize Ag-S mp(a'|s9), Ag-R 7y (a ) |sB)
3 while not converged on a validation set do

4 sample a text pair (z,y) from the training set
5 construct s1 ) with (z,y) on Dby Eq 1
6 fori=1,2,...do
7 sample m = a!® ~ 74(a|s!®)
8 <S) «~0
9 h + LLM(z & (Z,9) € D)
10 construct sg ) with h on

= {gk + LLM(2)};}, by Eq 3
1 forj =1,2,...do
12 sample k = a;R) ~ 7r¢(a|s§R))
13 R+ LLM(z & (Z,9x))
14 if A(R',y) > A(h,y) then

(R) ’

15 ri 7 AR y) — A(h,y)
16 Dy qj < Gr, h < R
17 else
18 ‘ (R) 0
19 construct s;- +)1 with h on a new C
20 TZ(S) <S) + r(R>
21 construct 51 +1 by updating (Z,¥) and (z,y)
22 | optimize 7y and 74 via DQN

23 generate final hypotheses via LLM(+) on D (where
the trained Ag-S selects a partition)

where y denotes the reference result. In this re-
ward definition, we observe that the objective
of the Markov Decision Process (MDP), which
aims to maximize cumulative rewards, aligns with
Agent-R’s goal of discovering the best hypothe-
sis among the memories. To illustrate, we con-
sider the process through a sequence of states:
SER) sg ), ..,55\1,%), concluding at 55\?). The re-
wards received at these states, except for the termi-
nation state, can be denoted as r( ) gR), e 7“](\1,%_)1.
When future rewards are not dlscounted, we have:

ZrﬁRi—Z (Alhoy) = Alhurw))

t=2

= A(hy,y) — A(h1,y),

where A(hy, y) corresponds to the highest hypoth-
esis value found throughout the entire iteration, and
A(hy,y) represents an initial value that remains
constant. Therefore, maximizing cumulative re-
wards is equivalent to maximizing the discovered
hypothesis value. Finally, the cumulative reward
is shared with Agent-S to align with the training
objective, that is

T(S) = A(thy) — A(hl,y). (7N



3.4 The M-RAG Framework

Policy Learning via DQN. In a MDP, the primary
challenge lies in determining an optimal policy that
guides an agent to select actions at states, with the
aim of maximizing cumulative rewards. Given that
the states within our MDPs are continuous, we em-
ploy Deep Q-Networks (DQN) with replay mem-
ory (Mnih et al., 2013) to learn the policy, denoted
as mp(al¥)|s9) for Agent-S (resp. my(alV)]s()
for Agent-R). The policy samples an action a(*)
(resp. a(R)) at a given state 5(9) (resp. s(R)) via
DQN, with parameters denoted by 6 (resp. ¢).

Combining Agent-S and Agent-R. We present
the M-RAG framework in Algorithm 1, which com-
bines the functionalities of Agent-S and Agent-
R on multiple partitions (line 1). The algorithm
comprises two main phases: training and infer-
ence. During the training phase (lines 2-22), we
randomly sample text pairs from the training set
(line 4). For each pair, we generate episodes to iter-
atively train Agent-S and Agent-R, with the MDPs
outlined in (lines 6-21) and (lines 11-20), respec-
tively. Experiences of (SES), ags) , TES), sgi)l) and

(ng), agR) , rﬁR), sgf)l) are stored during the itera-

tion, and a minibatch is sampled to optimize the
two agents via DQN (line 22). During the inference
phase (line 23), final hypotheses are generated via
LLM based on the refined D, where a partition is
selected by the trained Agent-S.

4 [Experiments

4.1 Experimental Setup

Datasets. By following (Cheng et al., 2023b),
we conduct experiments on seven datasets for
three generation tasks: (1) text summariza-
tion (XSum (Narayan et al., 2018) and Big-
Patent (Sharma et al., 2019)), (2) machine transla-
tion (JRC-Acquis (Steinberger et al., 2006) with
Es—En, En—Es, De—En, and En—De), and (3)
dialogue generation (DailyDialog (Li et al., 2017)).
Specifically, XSum comprises single-document
summaries for highly abstractive articles sourced
from BBC news. BigPatent comprises 1.3 million
records of U.S. patent documents accompanied by
human-written abstractive summaries. JRC-Acquis
serves as a collection of parallel legislative texts of
European Union Law, commonly employed as a
benchmark in machine translation tasks. DailyDia-
log comprises multi-turn dialogues centered around
daily life topics. The detailed statistics for these

datasets are available in (Cheng et al., 2023b).
Baselines. We carefully review the literature in-
cluding a recent survey paper (Gao et al., 2023),
and identify the following RAGs, namely Naive
RAG (Ma et al., 2023), Self-RAG (Asai et al.,
2023), and Selfmem (Cheng et al., 2023b), which
correspond to three kinds of RAG techniques as
described in Section 2. In addition, we incorpo-
rate the RAGs into three typical language model
architectures, namely Mixtral 8 x7B (Jiang et al.,
2024), Llama 2 13B (Touvron et al., 2023), and
Phi-2 2.7B (Abdin et al., 2023) for the evaluation.
Evaluation Metrics. We evaluate the effectiveness
of M-RAG in terms of the three generation tasks by
following (Cheng et al., 2023b). (1) For summa-
rization, ROUGE (R-1/2/L) (Lin, 2004) is used.
(2) For machine translation, BLEU (Post, 2018) is
used. (3) For dialogue generation, BLEU (B-1/2)
and Distinct (D-1/2) (Li et al., 2016, 2021) are used.
Overall, a higher evaluation metric (i.e., ROUGE,
BLEU, Distinct) indicates a better result.
Implementation Details. We implement M-RAG
and other baselines in Python 3.7 and Llamalndex.
The experiments are conducted on a server with
32 cores of Intel(R) Xeon(R) Gold 6151 CPU @
3.00GHz 512.0GB RAM and 8 Nvidia RTX3090
GPU (24GB memory). The Agent-S (resp. Agent-
R) is instantiated through a two-layered feedfor-
ward neural network. The first layer consists of
25 neurons using the tanh activation function, and
the second layer comprises M (resp. K') neurons
corresponding to the action space with a linear ac-
tivation function. The hyperparameters M and K
are empirically set to 4 and 3, respectively. During
training, we randomly sample 10% of text pairs
from the training set, while the remaining data is
utilized for constructing the database with multiple
partitions. The MDP iterations are determined by
performance evaluation on a validation set. Evalua-
tion metrics, such as ROUGE, BLEU, and Distinct,
are obtained from (Cheng et al., 2023b). The lan-
guage models with 4-bit quantization, including
Mixtral 8 x 7B, Llama 2 13B, and Phi-2 2.7B, are
available for download via the link !.

4.2 Experimental Results

(1) Effectiveness evaluation (partitioning strate-
gies). We conduct experiments to evaluate various
partitioning strategies across text summarization
(XSum), machine translation (Es—En), and dia-

"https://huggingface.co/TheBloke
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Figure 2: Comparison with database partitioning strategies for language generation tasks.

Table 1: Text summarization.

XSum BigPatent
LM RAG R-1 R-2 R-L | R-1 R-2 R-L
Mixtral 8 x 7B None 2540 639 1830 | 4741 16.63 25.14
Mixtral 8 x 7B Naive 43.82 22.07 37.44 | 60.11 3833 43.44
Mixtral 8 x 7B | Selfmem | 44.67 22.38 37.86 | 64.12 39.21 46.21
Mixtral 8 x 7B | Self-RAG | 44.01 2226 37.51 | 63.59 38.65 45.25
Mixtral 8 x 7B M-RAG | 48.13 24.66 39.43 | 71.34 42.24 47.22
Llama 2 13B M-RAG 37.18 18.02 26.44 | 60.31 37.33 33.47
Phi-2 2.7B M-RAG 30.70 11.57 26.20 | 31.25 14.72 1898

logue generation (DailyDialog) tasks with Mixtral
8 x 7B. The best results, based on a development
set across different partitions, are reported. As
shown in Figure 2, we observe that retrieval based
on the entire database generally fails to achieve
optimal performance. Moreover, the performance
slightly decreases as the number of partitions in-
creases. This is attributed to the AKNN search,
where a smaller partition size recalls more similar
memories, which may not align well with the LLM
preferences and impede the focus on crucial mem-
ories. Additionally, we observe that the RAG with
Top-1 retrieval exhibits faster runtime compared
to the Top-3 due to a shorter input length for the
LLM, while maintaining comparable performance.

(2) Effectiveness evaluation (text summariza-
tion). We compare the performance of the M-RAG
against alternative RAG methods on three distinct
language models: Mixtral 8 x 7B, Llama 2 13B, and
Phi-2 2.7B. The corresponding results are outlined
in Table 1. We observe consistent improvement in
language models when utilizing the RAG frame-
work (e.g., Naive) compared to models without
RAG (e.g., None). In addition, the recent MoE
architecture Mistral 8 x 7B generally outperforms
the typical Llama 2 13B in the summarization task.
Specifically, when considering Mistral 8 x 7B as a
base model, the performance of M-RAG outperforms
that of other baseline models on both datasets. For
example, it achieves better results than the best
baseline model Selfmem, by 8% and 11% in terms
of R-1 on XSum and BigPatent, respectively.

(3) Effectiveness evaluation (machine transla-
tion). We further conduct experiments to evaluate
the performance of M-RAG for machine translation,
and the results are reported in Table 2. We observe
that a consistent improvement in the performance
of translation tasks with M-RAG across four datasets
and three architectures. Notably, it surpasses the
Selfmem by 8% in the Es—En translation task.

(4) Effectiveness evaluation (dialogue genera-
tion). As shown in Table 3, M-RAG further enhances
the language model performance for dialogue gen-
eration tasks. It outperforms the Selfmem by 12%
in terms of B-1. Notably, we can also use the Dis-
tinct score as the performance metric for optimizing
the two agents, denoted by M-RAG(D), and it results
in a more diverse dialogue.

(5) Ablation study. To evaluate the effectiveness
of the two agents in M-RAG, we conduct an ablation
study on XSum. We remove Agent-S and utilize
the entire database for RAG; we replace Agent-R
with a greedy rule to select a candidate memory
from the pool according to Equation 3; and we
remove both agents, which degrades to the Naive
RAG. The results are presented in Table 4, demon-
strating that both agents contribute to performance
improvement. Specifically, removing Agent-S re-
sults in a significant decline in R-1 from 48.13 to
44.20. This underscores the role of the multiple
partition setting in enhancing overall performance.
Moreover, removing Agent-R leads to a reduction
in R-1 from 48.13 to 45.75. This decline is at-
tributed to the effectiveness of Agent-R in learning



Table 2: Machine translation.

Es—En En—Es De—En En—De
LLM RAG Dev  Test | Dev  Test | Dev Test | Dev  Test
Mixtral 8 x 7B None 3434 3481 | 32.60 28.32 | 43.75 44.09 | 43.78 42.24
Mixtral 8 x 7B Naive 36.64 36.22 | 33.18 30.70 | 47.84 46.77 | 45.83 44.23
Mixtral 8 x 7B | Selfmem | 37.65 37.11 | 34.12 31.86 | 48.08 47.31 | 51.38 49.81
Mixtral 8 x 7B | Self-RAG | 37.17 36.82 | 33.80 31.61 | 47.99 47.27 | 50.10 48.75
Mixtral 8 x 7B M-RAG 39.11 39.98 | 35.18 32.70 | 49.16 48.15 | 53.76 50.75
Llama 2 13B M-RAG 30.41 30.03 | 26.40 22.03 | 41.10 4222 | 45.98 42.58
Phi-2 2.7B M-RAG 22.83 2422 | 17.64 16.60 | 3421 34.71 | 40.01 37.08
Table 3: Dialogue generation. Table 5: Impacts of the number of M in Agent-S.
DailyDialog M 1 2 3 4 5
LLM RAG B-1 B-2 D-1 D-2 R-1 44.20 44.53 46.27 48.13 47.21
Mix. 8 x 7B| None [15.52 7.05 61.49 89.51 Index constr. (s)| 299 278 257 246 227
Mix. 8 x 7B| Naive [37.44 29.16 89.42 92.55 Retrieval (s) | 0.61 1.09 1.54 2.19 2.59
Mix. 8 x 7B| Selfmem |38.16 29.92 89.23 95.23 Generation (s) [83.59 84.88 82.81 82.89 86.64

Mix. 8 x 7B |Self-RAG|37.76 29.79 88.24 95.34

Mix. 8 x 7B| M-RAG |42.61 32.97 88.82 95.74
Llama 2 13B| M-RAG |31.29 17.63 63.19 88.20
Phi-2 2.7B M-RAG |7.71 3.93 44.21 82.86

Mix. 8 x 7B|M-RAG(D) |39.14 30.98 93.14 98.34

Table 4: Ablation study.

R-1 R-2 R-L
48.13 24.66 39.43
4420 22.72 37.40
45.75 23.21 38.28
43.82 22.07 37.44

Components
M-RAG
w/o Agent-S (single DB)
w/o Agent-R (greedy)
w/o Agent-S and Agent-R

memory selection dynamically, as opposed to rely-
ing on a fixed rule for decision-making.

(6) Parameter study (Agent-S state space M).
We study the effect of parameter M, which con-
trols the state space of Agent-S and corresponds to
the number of partitions. In Table 5, we observe
that setting M = 4 yields the best effectiveness
while maintaining reasonable runtime in terms of
index construction, retrieval, and generation. This
is consistent with empirical studies illustrated in
Figure 2 (a). When M = 1, it reduces to a single
database for RAG. As M increases, index con-
struction accelerates on smaller partitions, while
retrieval time sightly increases due to the additional
time required for constructing states by querying
each partition. As expected, the retrieval time is
much smaller than the language generation time.
(7) Parameter study (Agent-R state space K).
We study the effect of parameter K in Agent-R,
representing the state space of Agent-R, to choose
one memory from a candidate pool with a size of
K. In Table 6, we observe a performance improve-
ment as K increases from 1 to 3, and then remains

Table 6: Impacts of the number of K in Agent-R.
K 1 2 3 4 5
R-1 45.81 46.54 48.13 48.18 48.25
Pool gen. (s)| 76 191 267 290 359

stable. Particularly, when K = 1, M-RAG exhibits
the worst performance, possibly due to the limited
exploration of potential memories for generating
improved hypotheses. We choose the setting of
K = 3, as it demonstrates effective performance,
and runs reasonably fast for generating the pool.

5 Conclusion and Limitations

In this paper, we propose a multiple partition
paradigm for RAG, which aims to refine retrieval
processes and emphasize pivotal memories to im-
prove overall performance. Additionally, we intro-
duce M-RAG, a novel framework grounded in multi-
agent reinforcement learning, which addresses key
challenges inherent in executing RAG across mul-
tiple partitions. The training objective of M-RAG
is well aligned with that of text generation tasks,
showcasing its potential to enhance system perfor-
mance explicitly. Through extensive experiments
conducted on seven datasets for three language
generation tasks, we validate the effectiveness of
M-RAG. For limitations, we conduct experiments
with quantized versions of language models due to
computational constraints. However, the observed
effectiveness gains are expected to remain consis-
tent across different model sizes and should not
significantly impact the overall trends of various
RAG methods. In future work, we intend to ex-
plore the incorporation of larger language models
to further enhance effectiveness.
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