
M-RAG: Reinforcing Large Language Model Performance through
Retrieval-Augmented Generation with Multiple Partitions

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) en-001
hances Large Language Models (LLMs) by002
retrieving relevant memories from an exter-003
nal database. However, existing RAG meth-004
ods typically organize all memories in a whole005
database, potentially limiting focus on crucial006
memories and introducing noise. In this pa-007
per, we introduce a multiple partition paradigm008
for RAG (called M-RAG), where each database009
partition serves as a basic unit for RAG exe-010
cution. Based on this paradigm, we propose011
a novel framework that leverages LLMs with012
Multi-Agent Reinforcement Learning to opti-013
mize different language generation tasks ex-014
plicitly. Through comprehensive experiments015
conducted on seven datasets, spanning three016
language generation tasks and involving three017
distinct language model architectures, we con-018
firm that M-RAG consistently outperforms vari-019
ous baseline methods, achieving improvements020
of 11%, 8%, and 12% for text summarization,021
machine translation, and dialogue generation,022
respectively.023

1 Introduction024

Introduced by (Lewis et al., 2020), Retrieval-025

Augmented Generation (RAG) represents a026

paradigm within the domain of Large Language027

Models (LLMs) to augment generative tasks. More028

specifically, RAG incorporates an initial retrieval029

step where LLMs query an external database to030

acquire relevant information before progressing to031

answer questions or generate text. This process not032

only guides the subsequent generation step but also033

guarantees that the responses are firmly anchored034

in the retrieved information (referred to as memo-035

ries). Consequently, it enhances LLM performance,036

and has attracted growing research interests (Gao037

et al., 2023) in recent years.038

While the majority of existing studies (Asai et al.,039

2023; Cheng et al., 2023b; Ma et al., 2023) adopt040

a retrieval approach that considers a database as041

a whole, which tends to yield a coarse-grained re- 042

trieval. The collective organization of all mem- 043

ories may hinder the focus on crucial memories 044

and introduce noise, particularly due to the inher- 045

ent challenges of Approximate k-Nearest Neighbor 046

(AKNN) search when applied to large datasets. In 047

this context, we investigate a retrieval approach that 048

aims to search within a partition of the database, 049

corresponding retrieval at a fine-grained level, 050

which is designed to enhance the generation pro- 051

cess by targeting specific memories. Moreover, in 052

quite a few vector database systems, database parti- 053

tions are regarded as fundamental units for analysis. 054

This facilitates the construction and maintenance 055

of index structures (Pan et al., 2023), ensures the 056

protection of user privacy data (stored in specific 057

partitions with access rights) (Xue et al., 2017), 058

and supports distributed architectures (Guo et al., 059

2022). Therefore, in this work, we propose to take 060

a partition as a basic entity in the execution of 061

RAG, which is less explored in current methods. 062

We discuss our proposal with a motivating ex- 063

periment illustrated in Figure 2. We investigate 064

various strategies for partitioning a database (elab- 065

orated in Section 3.1), and perform RAG with vary- 066

ing the number of partitions for three generation 067

tasks: summarization, translation, and dialogue 068

generation, where we explore all partitions for the 069

retrieval, and the best result (assessed based on a 070

development set) across different partitions is re- 071

ported. We observe that the optimal performance 072

is typically not achieved through retrieval based 073

on the entire database (#Partitions = 1). This ob- 074

servation inspires us to investigate a novel RAG 075

setting with multiple partitions. To achieve this, 076

the task should address three significant challenges, 077

summarized below. (1) Determining a strategy for 078

partitioning a database and the number of partitions. 079

(2) Developing a method for selecting a suitable 080

partition for a given input query to discover ef- 081

fective memories. (3) Enhancing memory quality, 082

1

including inherent issues such as hallucination, or083

irrelevant context, which can impact the grounding084

of LLM generation.085

Building upon the aforementioned discussion,086

we introduce a new solution called M-RAG, de-087

signed to facilitate RAG across multiple partitions088

of a database. M-RAG addresses all of the three089

challenges. For (1), we draw insights from the090

literature on vector database management (Pan091

et al., 2023; Han et al., 2023) and assess various092

strategies, namely Randomization (Indyk and Mot-093

wani, 1998), Clustering (Jegou et al., 2010), Index-094

ing (Malkov et al., 2014; Malkov and Yashunin,095

2018), and Category (Gollapudi et al., 2023),096

through empirical studies. The effectiveness of097

these strategies, along with the corresponding num-098

ber of partitions, is evaluated across different gener-099

ative tasks on a development set in our experiments.100

For (2), with multiple partitions at play, we for-101

mulate partition selection as a multi-armed bandit102

problem (Slivkins et al., 2019). In this context, an103

agent, denoted as Agent-S, iteratively selects one104

among several partitions. The characteristics of105

each partition are only partially known at the time106

of selection, and Agent-S gains a better understand-107

ing over time by maximizing cumulative rewards in108

the environment. To optimize the decision policy,109

we leverage reinforcement learning with a carefully110

designed Markov Decision Process (MDP). For (3),111

after selecting a partition and obtaining memories112

for generation, we introduce another agent, denoted113

as Agent-R. This agent generates a pool of candi-114

date memories iteratively through the use of LLMs.115

Once a candidate is selected, Agent-R evaluates its116

quality by demonstrating it to generate a hypothesis.117

The identification of a high-quality hypothesis de-118

termined by a specific performance metric, triggers119

a boosting process, where it signals the exploration120

and replacement of the previous memory with a121

superior one, and continues the process. Further,122

we integrate the efforts of Agent-S and Agent-R123

through multi-agent reinforcement learning. With124

a shared objective of enhancing text generation125

for a given input query, they are jointly optimized126

through end-to-end training.127

Our contributions can be summarized as follows:128

(1) we propose a multiple partition paradigm for129

RAG, aiming to facilitate fine-grained retrieval and130

concentrate on pivotal memories to enhance overall131

performance. In addition, the utilization of multiple132

partitions benefits other aspects of RAG, including133

facilitating the construction and maintenance of 134

indices, protecting user privacy data within spe- 135

cific partitions, and supporting distributed paral- 136

lel processing across different partitions. (2) We 137

introduce M-RAG, a new solution based on multi- 138

agent reinforcement learning that tackles the three 139

challenges in executing RAG across multiple parti- 140

tions. We show that the training objective of M-RAG 141

is well aligned with that of text generation tasks. 142

(3) We conduct extensive experiments on seven 143

datasets for three generation tasks on three distinct 144

language model architectures, including a recent 145

Mixture of Experts (MoE) architecture (Jiang et al., 146

2024). The results demonstrate the effectiveness 147

of M-RAG across diverse RAG baselines. In com- 148

parison to the best baseline approach, M-RAG ex- 149

hibits improvements of 11%, 8%, and 12% for text 150

summarization, machine translation, and dialogue 151

generation tasks, respectively. 152

2 Related Work 153

2.1 Retrieval-Augmented Generation 154

We review the literature of Retrieval-Augmented 155

Generation (RAG) in terms of (1) Naive RAG, (2) 156

Advanced RAG, and (3) Modular RAG. For (1), 157

Naive RAG follows a standard process including 158

indexing, retrieval, and generation (Ma et al., 2023). 159

However, its quality faces significant challenges 160

such as low precision, hallucination, and redun- 161

dancy during the process. For (2), Advanced RAG 162

is further developed to overcome the shortcomings 163

of Naive RAG. Specifically, during the indexing 164

stage, the objective is to enhance the quality of the 165

indexed content by optimizing data embedding (Li 166

et al., 2023). During the retrieval stage, the focus 167

is on identifying the appropriate context by calcu- 168

lating the similarity between the query and chunks, 169

where the techniques involve fine-tuning embed- 170

ding models (Xiao et al., 2023), or learning dy- 171

namic embeddings for different context (Karpukhin 172

et al., 2020). During the generation stage, it merges 173

the retrieved context with the query as an input 174

into large language models (LLMs), where it ad- 175

dresses challenges posed by context window limits 176

with re-ranking the most relevant content (Jiang 177

et al., 2023; Zhuang et al., 2023), or compressing 178

prompts (Litman et al., 2020; Xu et al., 2023). In 179

addition, Self-RAG (Asai et al., 2023) is proposed 180

to identify whether retrieval is necessary, or the 181

retrieved context is relevant, which helps language 182

models to produce meaningful generation (Asai 183

2

(12)

Partition
Forward

Category

Indexing

Randomization

Document SummaryTraining pair

State

Action

Document SummaryMemory

Agent-S

Agent-R

Document

LLM

Summary

Summary

Summary

LLM
(11)

SummaryGeneration

Summary Summary

Refine

Reward

Step 2: Select a partition to retrieve

1
2
3

4Clustering

1

3

2

4

Step 3: Refine memories in the selected partition

(2) Summary

Retrieve

Action

State

Reward

Step 1: Partition a database

Update

Backward

Performance metric

(1) (3)

(4)

(5)

(6) (7) (8) (9)

(10)

(13)

(13)

(14)

(15)

(16)

Concatenation

Figure 1: Illustration of M-RAG training in a summarization task: The M-RAG initiates training with multiple partitions
(Section 3.1), it then selects a partition to perform retrieval via Agent-S (Section 3.2), and refines the memories
within the selected partition via Agent-R (Section 3.3). Both agents are collaboratively trained to enhance generation
capabilities through multi-agent reinforcement learning (Section 3.4).

et al., 2023). For (3), Modular RAG diverges from184

the traditional Naive RAG structure by incorporat-185

ing external modules to further enhance the per-186

formance, including search module (Wang et al.,187

2023), memory module (Wang et al., 2022; Cheng188

et al., 2023b), tuning module (Lin et al., 2023),189

and task adapter (Cheng et al., 2023a; Dai et al.,190

2023). Specifically, Selfmem (Cheng et al., 2023b)191

incorporates a retrieval-enhanced generator to it-192

eratively create a memory pool, it then trains a193

selector to choose one of the memories from the194

pool to generate responses. The work (Gao et al.,195

2023) provides a comprehensive survey of RAG196

for LLMs. Our work differs from existing RAG197

studies in two aspects. First, we introduce a mul-198

tiple partition setting, where each partition serves199

as a fundamental entity for retrieval, rather than200

retrieving from the entire database. Second, we201

introduce an M-RAG framework built upon multi-202

agent reinforcement learning, which tackles three203

distinct challenges posed by this novel setting.204

2.2 Reinforcement Learning for LLMs205

Recently, reinforcement learning has seen broad206

applications across a variety of language-related207

tasks for Large Language Models (LLMs). This in-208

cludes tasks such as text summarization (Wu et al.,209

2021), machine translation (Kreutzer et al., 2018),210

dialogue systems (Jaques et al., 2019; Yi et al.,211

2019), semantic parsing (Lawrence and Riezler,212

2018), and review generation (Cho et al., 2018).213

For example, WebGPT (Nakano et al., 2021) in-214

corporates a reinforcement learning framework to215

autonomously train the GPT-3 model using a search216

engine during the text generation process. Further,217

InstructGPT (Ouyang et al., 2022) collects a dataset218

containing desired model outputs provided by hu-219

man labelers. Subsequently, it employs Reinforce- 220

ment Learning from Human Feedback (RLHF) to 221

fine-tune GPT-3 (Brown et al., 2020). In addition, 222

R3 (Ma et al., 2023) introduces a Rewrite-Retrieve- 223

Read process, where the LLM performance serves 224

as a reinforcement learning incentive for a rewrit- 225

ing module. This approach empowers the rewriter 226

to enhance retrieval queries, consequently improv- 227

ing the reader’s performance in downstream tasks. 228

In this work, we propose a novel multi-agent rein- 229

forcement learning framework utilizing two agents 230

to collaboratively optimize text generation tasks. 231

To our best knowledge, this is the first of its kind. 232

3 Methodology 233

A task involving M-RAG can be formulated below. 234

Given a database D = {(xi, yi)}|D|i=1 for a language 235

generation task (e.g., summarization), where each 236

pair (x, y) represents a document and its corre- 237

sponding summary stored in D. The M-RAG ini- 238

tiates the process by partitioning D into multiple 239

partitions. This can be achieved through meth- 240

ods like clustering or by leveraging inherent cat- 241

egory labels in the data. The resulting partitions 242

are denoted as D = {Dm}|M |
m=1, where each Dm 243

(1 ≤ m ≤ M) supports an independent RAG 244

process (Section 3.1). The M-RAG framework com- 245

prises both training and inference processes, as 246

outlined in Algorithm 1. For training, Agent-S 247

learns to select a specific Dm for an input text pair 248

(Section 3.2). Subsequently, Agent-R refines the 249

retrieved memories, represented as (x̃, ỹ) ∈ Dm, 250

within the selected partition Dm (Section 3.3). Fi- 251

nally, the two agents are collaboratively trained 252

with multi-agent reinforcement learning (see Sec- 253

tion 3.4). Figure 1 illustrates the training process 254

of M-RAG. For inference, the refined D is utilized to 255

3

support an LLM in generating hypotheses, where a256

Dm is selected by the trained Agent-S.257

3.1 Discussion on Partitioning a Database258

As M-RAG relies on multiple partitions for RAG259

operations, we investigate various strategies to par-260

tition an external database (typically the training261

corpus). The results of these strategies are then262

validated through empirical studies. We review263

the literature, including recent vector database sur-264

veys (Pan et al., 2023; Han et al., 2023), and iden-265

tify the following strategies: namely (1) Random-266

ization (Indyk and Motwani, 1998), (2) Cluster-267

ing (Jegou et al., 2010), (3) Indexing (Malkov et al.,268

2014; Malkov and Yashunin, 2018) and (4) Cate-269

gory (Gollapudi et al., 2023). Specifically, for (1),270

it targets the utilization of probability amplifica-271

tion techniques, such as locality-sensitive hashing272

(LSH), to hash similar items (data vectors) into273

the same bucket with a high probability. For (2),274

it involves clustering data vectors using K-means,275

where this clustering concept is widely applied in276

Inverted File Index (IVF) for tasks like Approxi-277

mate k-Nearest Neighbor (AKNN) search. For (3),278

navigable graph indexes, such as HNSW (Malkov279

and Yashunin, 2018) or NSW (Malkov et al., 2014),280

are designed to facilitate easy traversal of differ-281

ent regions within a vector database. To achieve282

effective partitions, we employ graph partitioning283

with spectral clustering on a navigable graph. For284

(4), it involves assigning data vectors to partitions285

based on their respective categories. For example,286

in the DailyDialog dataset (Li et al., 2017), which287

includes 7 emotion categories (e.g., joy, anger) and288

10 topic categories (e.g., work, health), vectors289

are partitioned according to their category labels.290

We note that a single vector may be assigned to291

multiple partitions, due to the characteristics of the292

dataset, where a dialogue spans multiple categories.293

In Figure 2, we perform experiments on a de-294

velopment set, manipulating the number of par-295

titions wrt the 4 strategies across three language296

generation tasks (summarization, translation, and297

dialogue generation). The results demonstrate the298

effectiveness of the strategies, and we conclude299

the selected strategies with the number of parti-300

tions as follows. We choose Indexing (4 partitions),301

Randomization (3 partitions), and Category (10302

partitions) for the summarization, translation, and303

dialogue generation tasks, respectively. In addi-304

tion, as shown in Figure 2 (a) and (b), we observe305

that both Top-1 and Top-3 retrieval methods exhibit 306

comparable performance. For enhanced efficiency, 307

we default to Top-1 retrieval in the rest of the paper. 308

3.2 Agent-S: Selecting a Database Partition 309

During the training process of an Agent-S to select 310

a partition from D, the environment is naturally 311

modeled as a bandit setting. In this context, when 312

a random partition is selected, the language model 313

generates a response for the query with feedback 314

(typically based on a specific performance metric), 315

and concludes the episode. The selection process 316

can be formulated as a Markov Decision Process 317

(MDP), involving states, actions, and rewards. 318

States. Given a training pair (x, y) and a set of 319

database partitions D = {Dm}|M |
m=1, the state s(S) 320

is defined by assessing the semantic relevance, typ- 321

ically quantified by measures such as cosine sim- 322

ilarity sim(·, ·), between the input (x, y) and the 323

stored memories (x̃, ỹ) within each Dm. 324

s(S) = { max
(x̃,ỹ)∈Dm

sim(σ(x̃⊕ ỹ), σ(x⊕ y))}|M |
m=1,

(1)

325

where ⊕ denotes the concatenation operation, and 326

σ(·) denotes an embedded model utilized to obtain 327

text representations, such as the CPT-Text (Nee- 328

lakantan et al., 2022). We consider the Top-1 re- 329

trieved memories to construct the state. 330

Actions. Let a(S) represent an action undertaken 331

by Agent-S. The design of actions corresponds to 332

that of the state s(S). Specifically, the actions are 333

defined as follows: 334

a(S) = m (1 ≤ m ≤M), (2) 335

where action a(S) = m means to select the Dm for 336

subsequent the generation task. 337

Rewards. The reward is denoted by r(S). When 338

the action a(S) involves exploring a partition, the 339

reward cannot be immediately observed, as no re- 340

sponse has been received for the query x. However, 341

when the action involves selecting a partition for 342

Agent-R to refine the memories within the partition, 343

the stored response ỹ is updated, and some reward 344

signal can be obtained (for example, by measuring 345

the difference between the results on the original 346

memory and that on the refined memory). There- 347

fore, we make Agent-S and Agent-R are trained 348

with multi-agent reinforcement learning, since they 349

cooperate towards the same objective of learning 350

a policy that produces a response (hypothesis) as 351

similar as possible to the reference y for the x. 352

4

3.3 Agent-R: Refining Memories in the353

Selected Partition354

Next, we formulate the task of refining the retrieved355

memories carried out by Agent-R within a selected356

partition. To accomplish this, Agent-R explores357

potential responses denoted by ŷ through LLMs358

for the retrieved x̃, and generates a candidate pool359

C = {ŷk ← LLM(x̃)}|K|
k=1 for selection, where K360

denotes the number of candidates. Upon select-361

ing a candidate, Agent-R evaluates its quality by362

demonstrating the new memory (x̃, ŷk) to generate363

a hypothesis h← LLM(x⊕ (x̃, ŷk)). In summary,364

a high-quality hypothesis h benefits from superior365

memory, which can be then refined through the pro-366

duced hypothesis for subsequent selections. Con-367

sequently, Agent-R iterates in a boosting process368

optimized via reinforcement learning, where the369

states, actions, and rewards are detailed below.370

States. The state s(R) is defined to assess the se-371

mantic relevance between the produced hypothesis372

h and the selected ŷk from the pool C. The ratio-373

nale is to identify a memory that closely resembles374

the hypothesis, which aligns with the human intu-375

ition that a superior demonstration sample often376

leads to better generation results, that is377

s(R) = {sim(σ(h), σ(ŷk))}
|K|
k=1, (3)378

where σ(·) denotes an embedded model, and K379

governs the constructed state space.380

Actions. Let a(R) represent an action taken by381

Agent-R. The design is consistent with the state382

s(R), which involves selecting a candidate memory383

from the pool, that is384

a(R) = k (1 ≤ k ≤ K). (4)385

Rewards. We denote the reward of Agent-R as386

r
(R)
t , which corresponds to the transition from the387

current state s
(R)
t to the next state s

(R)
t+1 after taking388

action a
(R)
t . Specifically, when a memory (x̃, ŷk)389

is updated, the hypothesis changes from h to h′390

accordingly. We remark that the best hypothesis391

(denoted as h′) identified at state s(R) is maintained392

according to a specific metric ∆(·, ·) (e.g., ROUGE393

for text summarization, BLEU for machine transla-394

tion, BLEU and Distinct for dialogue generation),395

and the reward is defined as:396

r(R) = ∆(h′, y)−∆(h, y), (5)397

Algorithm 1: The M-RAG Framework
Require : a database D; a frozen LLM(·)

1 obtain D = {Dm}|M|
m=1 via a partitioning strategy

2 initialize Ag-S πθ(a
(S)|s(S)), Ag-R πϕ(a

(R)|s(R))
3 while not converged on a validation set do
4 sample a text pair (x, y) from the training set
5 construct s(S)

1 with (x, y) on D by Eq 1
6 for i = 1, 2, ... do
7 sample m = a

(S)
i ∼ πθ(a|s(S)

i)

8 r
(S)
i ← 0

9 h← LLM(x⊕ (x̃, ỹ) ∈ Dm)

10 construct s(R)
1 with h on

C = {ŷk ← LLM(x̃)}|K|
k=1 by Eq 3

11 for j = 1, 2, ... do
12 sample k = a

(R)
j ∼ πϕ(a|s(R)

j)

13 h′ ← LLM(x⊕ (x̃, ŷk))
14 if ∆(h′, y) > ∆(h, y) then
15 r

(R)
j ← ∆(h′, y)−∆(h, y)

16 Dm.ỹ ← ŷk, h← h′

17 else
18 r

(R)
j ← 0

19 construct s(R)
j+1 with h on a new C

20 r
(S)
i ← r

(S)
i + r

(R)
j

21 construct s(S)
i+1 by updating (x̃, ỹ) and (x, y)

22 optimize πθ and πϕ via DQN

23 generate final hypotheses via LLM(·) on D (where
the trained Ag-S selects a partition)

where y denotes the reference result. In this re- 398

ward definition, we observe that the objective 399

of the Markov Decision Process (MDP), which 400

aims to maximize cumulative rewards, aligns with 401

Agent-R’s goal of discovering the best hypothe- 402

sis among the memories. To illustrate, we con- 403

sider the process through a sequence of states: 404

s
(R)
1 , s

(R)
2 , ..., s

(R)
N , concluding at s

(R)
N . The re- 405

wards received at these states, except for the termi- 406

nation state, can be denoted as r(R)
1 , r

(R)
2 , ..., r

(R)
N−1. 407

When future rewards are not discounted, we have: 408

N∑
t=2

r
(R)
t−1 =

N∑
t=2

(∆(ht, y)−∆(ht−1, y))

= ∆(hN , y)−∆(h1, y),

(6) 409

where ∆(hN , y) corresponds to the highest hypoth- 410

esis value found throughout the entire iteration, and 411

∆(h1, y) represents an initial value that remains 412

constant. Therefore, maximizing cumulative re- 413

wards is equivalent to maximizing the discovered 414

hypothesis value. Finally, the cumulative reward 415

is shared with Agent-S to align with the training 416

objective, that is 417

r(S) = ∆(hN , y)−∆(h1, y). (7) 418

5

3.4 The M-RAG Framework419

Policy Learning via DQN. In a MDP, the primary420

challenge lies in determining an optimal policy that421

guides an agent to select actions at states, with the422

aim of maximizing cumulative rewards. Given that423

the states within our MDPs are continuous, we em-424

ploy Deep Q-Networks (DQN) with replay mem-425

ory (Mnih et al., 2013) to learn the policy, denoted426

as πθ(a(S)|s(S)) for Agent-S (resp. πϕ(a(R)|s(R))427

for Agent-R). The policy samples an action a(S)428

(resp. a(R)) at a given state s(S) (resp. s(R)) via429

DQN, with parameters denoted by θ (resp. ϕ).430

Combining Agent-S and Agent-R. We present431

the M-RAG framework in Algorithm 1, which com-432

bines the functionalities of Agent-S and Agent-433

R on multiple partitions (line 1). The algorithm434

comprises two main phases: training and infer-435

ence. During the training phase (lines 2-22), we436

randomly sample text pairs from the training set437

(line 4). For each pair, we generate episodes to iter-438

atively train Agent-S and Agent-R, with the MDPs439

outlined in (lines 6-21) and (lines 11-20), respec-440

tively. Experiences of (s(S)t , a
(S)
t , r

(S)
t , s

(S)
t+1) and441

(s
(R)
t , a

(R)
t , r

(R)
t , s

(R)
t+1) are stored during the itera-442

tion, and a minibatch is sampled to optimize the443

two agents via DQN (line 22). During the inference444

phase (line 23), final hypotheses are generated via445

LLM based on the refined D, where a partition is446

selected by the trained Agent-S.447

4 Experiments448

4.1 Experimental Setup449

Datasets. By following (Cheng et al., 2023b),450

we conduct experiments on seven datasets for451

three generation tasks: (1) text summariza-452

tion (XSum (Narayan et al., 2018) and Big-453

Patent (Sharma et al., 2019)), (2) machine transla-454

tion (JRC-Acquis (Steinberger et al., 2006) with455

Es→En, En→Es, De→En, and En→De), and (3)456

dialogue generation (DailyDialog (Li et al., 2017)).457

Specifically, XSum comprises single-document458

summaries for highly abstractive articles sourced459

from BBC news. BigPatent comprises 1.3 million460

records of U.S. patent documents accompanied by461

human-written abstractive summaries. JRC-Acquis462

serves as a collection of parallel legislative texts of463

European Union Law, commonly employed as a464

benchmark in machine translation tasks. DailyDia-465

log comprises multi-turn dialogues centered around466

daily life topics. The detailed statistics for these467

datasets are available in (Cheng et al., 2023b). 468

Baselines. We carefully review the literature in- 469

cluding a recent survey paper (Gao et al., 2023), 470

and identify the following RAGs, namely Naive 471

RAG (Ma et al., 2023), Self-RAG (Asai et al., 472

2023), and Selfmem (Cheng et al., 2023b), which 473

correspond to three kinds of RAG techniques as 474

described in Section 2. In addition, we incorpo- 475

rate the RAGs into three typical language model 476

architectures, namely Mixtral 8×7B (Jiang et al., 477

2024), Llama 2 13B (Touvron et al., 2023), and 478

Phi-2 2.7B (Abdin et al., 2023) for the evaluation. 479

Evaluation Metrics. We evaluate the effectiveness 480

of M-RAG in terms of the three generation tasks by 481

following (Cheng et al., 2023b). (1) For summa- 482

rization, ROUGE (R-1/2/L) (Lin, 2004) is used. 483

(2) For machine translation, BLEU (Post, 2018) is 484

used. (3) For dialogue generation, BLEU (B-1/2) 485

and Distinct (D-1/2) (Li et al., 2016, 2021) are used. 486

Overall, a higher evaluation metric (i.e., ROUGE, 487

BLEU, Distinct) indicates a better result. 488

Implementation Details. We implement M-RAG 489

and other baselines in Python 3.7 and LlamaIndex. 490

The experiments are conducted on a server with 491

32 cores of Intel(R) Xeon(R) Gold 6151 CPU @ 492

3.00GHz 512.0GB RAM and 8 Nvidia RTX3090 493

GPU (24GB memory). The Agent-S (resp. Agent- 494

R) is instantiated through a two-layered feedfor- 495

ward neural network. The first layer consists of 496

25 neurons using the tanh activation function, and 497

the second layer comprises M (resp. K) neurons 498

corresponding to the action space with a linear ac- 499

tivation function. The hyperparameters M and K 500

are empirically set to 4 and 3, respectively. During 501

training, we randomly sample 10% of text pairs 502

from the training set, while the remaining data is 503

utilized for constructing the database with multiple 504

partitions. The MDP iterations are determined by 505

performance evaluation on a validation set. Evalua- 506

tion metrics, such as ROUGE, BLEU, and Distinct, 507

are obtained from (Cheng et al., 2023b). The lan- 508

guage models with 4-bit quantization, including 509

Mixtral 8×7B, Llama 2 13B, and Phi-2 2.7B, are 510

available for download via the link 1. 511

4.2 Experimental Results 512

(1) Effectiveness evaluation (partitioning strate- 513

gies). We conduct experiments to evaluate various 514

partitioning strategies across text summarization 515

(XSum), machine translation (Es→En), and dia- 516

1https://huggingface.co/TheBloke

6

1 2 3 4 5
#Partitions

44

46

48

50

52

RO
UG

E-
1

Randomization (Top-1)
Indexing (Top-1)
Clustering (Top-1)
Indexing (Top-3)

1 2 3 4 5
#Partitions

0

100

200

300

400

500

Ru
nt

im
e

(s
)

Indexing (Top-1)
Indexing (Top-3)

1 2 3 4 5
#Partitions

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

BL
EU

Randomization (Top-1)
Indexing (Top-1)
Clustering (Top-1)

1 4 7 10
#Partitions

14

16

18

20

22

24

26

28

BL
EU

-1

Category (Top-1)

(a) Summ. (ROUGE-1) (b) Summ. (Runtime) (c) Machine translation (d) Dialogue generation
Figure 2: Comparison with database partitioning strategies for language generation tasks.

Table 1: Text summarization.

LLM RAG
XSum BigPatent

R-1 R-2 R-L R-1 R-2 R-L
Mixtral 8 × 7B None 25.40 6.39 18.30 47.41 16.63 25.14
Mixtral 8 × 7B Naive 43.82 22.07 37.44 60.11 38.33 43.44
Mixtral 8 × 7B Selfmem 44.67 22.38 37.86 64.12 39.21 46.21
Mixtral 8 × 7B Self-RAG 44.01 22.26 37.51 63.59 38.65 45.25
Mixtral 8 × 7B M-RAG 48.13 24.66 39.43 71.34 42.24 47.22
Llama 2 13B M-RAG 37.18 18.02 26.44 60.31 37.33 33.47
Phi-2 2.7B M-RAG 30.70 11.57 26.20 31.25 14.72 18.98

logue generation (DailyDialog) tasks with Mixtral517

8 × 7B. The best results, based on a development518

set across different partitions, are reported. As519

shown in Figure 2, we observe that retrieval based520

on the entire database generally fails to achieve521

optimal performance. Moreover, the performance522

slightly decreases as the number of partitions in-523

creases. This is attributed to the AKNN search,524

where a smaller partition size recalls more similar525

memories, which may not align well with the LLM526

preferences and impede the focus on crucial mem-527

ories. Additionally, we observe that the RAG with528

Top-1 retrieval exhibits faster runtime compared529

to the Top-3 due to a shorter input length for the530

LLM, while maintaining comparable performance.531

(2) Effectiveness evaluation (text summariza-532

tion). We compare the performance of the M-RAG533

against alternative RAG methods on three distinct534

language models: Mixtral 8×7B, Llama 2 13B, and535

Phi-2 2.7B. The corresponding results are outlined536

in Table 1. We observe consistent improvement in537

language models when utilizing the RAG frame-538

work (e.g., Naive) compared to models without539

RAG (e.g., None). In addition, the recent MoE540

architecture Mistral 8 × 7B generally outperforms541

the typical Llama 2 13B in the summarization task.542

Specifically, when considering Mistral 8 × 7B as a543

base model, the performance of M-RAG outperforms544

that of other baseline models on both datasets. For545

example, it achieves better results than the best546

baseline model Selfmem, by 8% and 11% in terms547

of R-1 on XSum and BigPatent, respectively.548

(3) Effectiveness evaluation (machine transla- 549

tion). We further conduct experiments to evaluate 550

the performance of M-RAG for machine translation, 551

and the results are reported in Table 2. We observe 552

that a consistent improvement in the performance 553

of translation tasks with M-RAG across four datasets 554

and three architectures. Notably, it surpasses the 555

Selfmem by 8% in the Es→En translation task. 556

(4) Effectiveness evaluation (dialogue genera- 557

tion). As shown in Table 3, M-RAG further enhances 558

the language model performance for dialogue gen- 559

eration tasks. It outperforms the Selfmem by 12% 560

in terms of B-1. Notably, we can also use the Dis- 561

tinct score as the performance metric for optimizing 562

the two agents, denoted by M-RAG(D), and it results 563

in a more diverse dialogue. 564

(5) Ablation study. To evaluate the effectiveness 565

of the two agents in M-RAG, we conduct an ablation 566

study on XSum. We remove Agent-S and utilize 567

the entire database for RAG; we replace Agent-R 568

with a greedy rule to select a candidate memory 569

from the pool according to Equation 3; and we 570

remove both agents, which degrades to the Naive 571

RAG. The results are presented in Table 4, demon- 572

strating that both agents contribute to performance 573

improvement. Specifically, removing Agent-S re- 574

sults in a significant decline in R-1 from 48.13 to 575

44.20. This underscores the role of the multiple 576

partition setting in enhancing overall performance. 577

Moreover, removing Agent-R leads to a reduction 578

in R-1 from 48.13 to 45.75. This decline is at- 579

tributed to the effectiveness of Agent-R in learning 580

7

Table 2: Machine translation.

LLM RAG
Es→En En→Es De→En En→De

Dev Test Dev Test Dev Test Dev Test
Mixtral 8 × 7B None 34.34 34.81 32.60 28.32 43.75 44.09 43.78 42.24
Mixtral 8 × 7B Naive 36.64 36.22 33.18 30.70 47.84 46.77 45.83 44.23
Mixtral 8 × 7B Selfmem 37.65 37.11 34.12 31.86 48.08 47.31 51.38 49.81
Mixtral 8 × 7B Self-RAG 37.17 36.82 33.80 31.61 47.99 47.27 50.10 48.75
Mixtral 8 × 7B M-RAG 39.11 39.98 35.18 32.70 49.16 48.15 53.76 50.75
Llama 2 13B M-RAG 30.41 30.03 26.40 22.03 41.10 42.22 45.98 42.58
Phi-2 2.7B M-RAG 22.83 24.22 17.64 16.60 34.21 34.71 40.01 37.08

Table 3: Dialogue generation.

LLM RAG
DailyDialog

B-1 B-2 D-1 D-2
Mix. 8 × 7B None 15.52 7.05 61.49 89.51
Mix. 8 × 7B Naive 37.44 29.16 89.42 92.55
Mix. 8 × 7B Selfmem 38.16 29.92 89.23 95.23
Mix. 8 × 7B Self-RAG 37.76 29.79 88.24 95.34
Mix. 8 × 7B M-RAG 42.61 32.97 88.82 95.74
Llama 2 13B M-RAG 31.29 17.63 63.19 88.20
Phi-2 2.7B M-RAG 7.71 3.93 44.21 82.86
Mix. 8 × 7B M-RAG(D) 39.14 30.98 93.14 98.34

Table 4: Ablation study.
Components R-1 R-2 R-L

M-RAG 48.13 24.66 39.43
w/o Agent-S (single DB) 44.20 22.72 37.40

w/o Agent-R (greedy) 45.75 23.21 38.28
w/o Agent-S and Agent-R 43.82 22.07 37.44

memory selection dynamically, as opposed to rely-581

ing on a fixed rule for decision-making.582

(6) Parameter study (Agent-S state space M).583

We study the effect of parameter M , which con-584

trols the state space of Agent-S and corresponds to585

the number of partitions. In Table 5, we observe586

that setting M = 4 yields the best effectiveness587

while maintaining reasonable runtime in terms of588

index construction, retrieval, and generation. This589

is consistent with empirical studies illustrated in590

Figure 2 (a). When M = 1, it reduces to a single591

database for RAG. As M increases, index con-592

struction accelerates on smaller partitions, while593

retrieval time sightly increases due to the additional594

time required for constructing states by querying595

each partition. As expected, the retrieval time is596

much smaller than the language generation time.597

(7) Parameter study (Agent-R state space K).598

We study the effect of parameter K in Agent-R,599

representing the state space of Agent-R, to choose600

one memory from a candidate pool with a size of601

K. In Table 6, we observe a performance improve-602

ment as K increases from 1 to 3, and then remains603

Table 5: Impacts of the number of M in Agent-S.
M 1 2 3 4 5
R-1 44.20 44.53 46.27 48.13 47.21

Index constr. (s) 299 278 257 246 227
Retrieval (s) 0.61 1.09 1.54 2.19 2.59

Generation (s) 83.59 84.88 82.81 82.89 86.64

Table 6: Impacts of the number of K in Agent-R.
K 1 2 3 4 5

R-1 45.81 46.54 48.13 48.18 48.25
Pool gen. (s) 76 191 267 290 359

stable. Particularly, when K = 1, M-RAG exhibits 604

the worst performance, possibly due to the limited 605

exploration of potential memories for generating 606

improved hypotheses. We choose the setting of 607

K = 3, as it demonstrates effective performance, 608

and runs reasonably fast for generating the pool. 609

5 Conclusion and Limitations 610

In this paper, we propose a multiple partition 611

paradigm for RAG, which aims to refine retrieval 612

processes and emphasize pivotal memories to im- 613

prove overall performance. Additionally, we intro- 614

duce M-RAG, a novel framework grounded in multi- 615

agent reinforcement learning, which addresses key 616

challenges inherent in executing RAG across mul- 617

tiple partitions. The training objective of M-RAG 618

is well aligned with that of text generation tasks, 619

showcasing its potential to enhance system perfor- 620

mance explicitly. Through extensive experiments 621

conducted on seven datasets for three language 622

generation tasks, we validate the effectiveness of 623

M-RAG. For limitations, we conduct experiments 624

with quantized versions of language models due to 625

computational constraints. However, the observed 626

effectiveness gains are expected to remain consis- 627

tent across different model sizes and should not 628

significantly impact the overall trends of various 629

RAG methods. In future work, we intend to ex- 630

plore the incorporation of larger language models 631

to further enhance effectiveness. 632

8

References633

Marah Abdin, Jyoti Aneja, ebastien Bubeck, and634
Caio Cesar Teodoro Mendes et al. 2023. Phi-2:635
The surprising power of small language models.636
https://www.microsoft.com/en-us/research/blog/phi-637
2-the-surprising-power-of-small-language-models.638

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and639
Hannaneh Hajishirzi. 2023. Self-rag: Learning to640
retrieve, generate, and critique through self-reflection.641
CoRR, abs/2310.11511.642

Tom Brown, Benjamin Mann, Nick Ryder, Melanie643
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind644
Neelakantan, Pranav Shyam, Girish Sastry, Amanda645
Askell, et al. 2020. Language models are few-shot646
learners. NeurIPS, 33:1877–1901.647

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng648
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Furu649
Wei, Weiwei Deng, and Qi Zhang. 2023a. UPRISE:650
universal prompt retrieval for improving zero-shot651
evaluation. In EMNLP, pages 12318–12337.652

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,653
Dongyan Zhao, and Rui Yan. 2023b. Lift yourself654
up: Retrieval-augmented text generation with self655
memory. ACL.656

Woon Sang Cho, Pengchuan Zhang, Yizhe Zhang, Xiu-657
jun Li, Michel Galley, Chris Brockett, Mengdi Wang,658
and Jianfeng Gao. 2018. Towards coherent and cohe-659
sive long-form text generation. CoRR.660

Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo661
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B.662
Hall, and Ming-Wei Chang. 2023. Promptagator:663
Few-shot dense retrieval from 8 examples. In ICLR.664

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,665
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,666
Meng Wang, and Haofen Wang. 2023. Retrieval-667
augmented generation for large language models: A668
survey. CoRR, abs/2312.10997.669

Siddharth Gollapudi, Neel Karia, Varun Sivashankar,670
Ravishankar Krishnaswamy, Nikit Begwani, Swapnil671
Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro,672
Premkumar Srinivasan, et al. 2023. Filtered-diskann:673
Graph algorithms for approximate nearest neighbor674
search with filters. In WWW, pages 3406–3416.675

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan,676
Xiaomeng Yi, Jigao Luo, Qianya Cheng, Weizhi Xu,677
Jiarui Luo, Frank Liu, et al. 2022. Manu: a cloud678
native vector database management system. PVLDB,679
15(12):3548–3561.680

Yikun Han, Chunjiang Liu, and Pengfei Wang. 2023. A681
comprehensive survey on vector database: Storage682
and retrieval technique, challenge. CoRR.683

Piotr Indyk and Rajeev Motwani. 1998. Approximate684
nearest neighbors: towards removing the curse of685

dimensionality. In Proceedings of the thirtieth an- 686
nual ACM symposium on Theory of computing, pages 687
604–613. 688

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen 689
Shen, Craig Ferguson, Agata Lapedriza, Noah Jones, 690
Shixiang Gu, and Rosalind Picard. 2019. Way off- 691
policy batch deep reinforcement learning of implicit 692
human preferences in dialog. CoRR. 693

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 694
2010. Product quantization for nearest neighbor 695
search. TPAMI, 33(1):117–128. 696

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, 697
and Arthur Mensch et al. 2024. Mixtral of experts. 698
CoRR, abs/2401.04088. 699

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 700
Yang, and Lili Qiu. 2023. Llmlingua: Compressing 701
prompts for accelerated inference of large language 702
models. In EMNLP, pages 13358–13376. 703

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 704
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, 705
and Wen-tau Yih. 2020. Dense passage retrieval for 706
open-domain question answering. In EMNLP (1), 707
pages 6769–6781. 708

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and 709
Stefan Riezler. 2018. Can neural machine translation 710
be improved with user feedback? CoRR. 711

Carolin Lawrence and Stefan Riezler. 2018. Improving 712
a neural semantic parser by counterfactual learning 713
from human bandit feedback. CoRR. 714

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 715
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 716
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 717
täschel, et al. 2020. Retrieval-augmented genera- 718
tion for knowledge-intensive nlp tasks. NeurIPS, 719
33:9459–9474. 720

Jinpeng Li, Yingce Xia, Rui Yan, Hongda Sun, Dongyan 721
Zhao, and Tie-Yan Liu. 2021. Stylized dialogue gen- 722
eration with multi-pass dual learning. In NeurIPS, 723
pages 28470–28481. 724

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, 725
and Bill Dolan. 2016. A diversity-promoting ob- 726
jective function for neural conversation models. In 727
HLT-NAACL, pages 110–119. 728

Xinze Li, Zhenghao Liu, Chenyan Xiong, Shi Yu, 729
Yu Gu, Zhiyuan Liu, and Ge Yu. 2023. Structure- 730
aware language model pretraining improves dense 731
retrieval on structured data. In ACL (Findings), pages 732
11560–11574. 733

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang 734
Cao, and Shuzi Niu. 2017. Dailydialog: A manually 735
labelled multi-turn dialogue dataset. In IJCNLP(1), 736
pages 986–995. Asian Federation of Natural Lan- 737
guage Processing. 738

9

Chin-Yew Lin. 2004. ROUGE: A package for automatic739
evaluation of summaries. In Text Summarization740
Branches Out, pages 74–81.741

Xi Victoria Lin, Xilun Chen, Mingda Chen, Wei-742
jia Shi, Maria Lomeli, Rich James, Pedro Ro-743
driguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis,744
Luke Zettlemoyer, and Scott Yih. 2023. RA-DIT:745
retrieval-augmented dual instruction tuning. CoRR,746
abs/2310.01352.747

Ron Litman, Oron Anschel, Shahar Tsiper, Roee Lit-748
man, Shai Mazor, and R. Manmatha. 2020. SCAT-749
TER: selective context attentional scene text recog-750
nizer. In CVPR, pages 11959–11969.751

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,752
and Nan Duan. 2023. Query rewriting for retrieval-753
augmented large language models. EMNLP, pages754
5303–5315.755

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient756
and robust approximate nearest neighbor search using757
hierarchical navigable small world graphs. TPAMI,758
42(4):824–836.759

Yury Malkov, Alexander Ponomarenko, Andrey Logvi-760
nov, and Vladimir Krylov. 2014. Approximate near-761
est neighbor algorithm based on navigable small762
world graphs. Information Systems, 45:61–68.763

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,764
Alex Graves, Ioannis Antonoglou, Daan Wierstra,765
and Martin Riedmiller. 2013. Playing atari with deep766
reinforcement learning. CoRR.767

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, and768
Jeff Wu et al. 2021. Webgpt: Browser-assisted769
question-answering with human feedback. CoRR,770
abs/2112.09332.771

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.772
2018. Don’t give me the details, just the summary!773
topic-aware convolutional neural networks for ex-774
treme summarization. In EMNLP, pages 1797–1807.775

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-776
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,777
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.778
2022. Text and code embeddings by contrastive pre-779
training. CoRR.780

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,781
Carroll Wainwright, Pamela Mishkin, Chong Zhang,782
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.783
2022. Training language models to follow instruc-784
tions with human feedback. NeurIPS, 35:27730–785
27744.786

James Jie Pan, Jianguo Wang, and Guoliang Li. 2023.787
Survey of vector database management systems.788
CoRR.789

Matt Post. 2018. A call for clarity in reporting BLEU790
scores. In WMT, pages 186–191.791

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG- 792
PATENT: A large-scale dataset for abstractive and 793
coherent summarization. In ACL (1), pages 2204– 794
2213. 795

Aleksandrs Slivkins et al. 2019. Introduction to multi- 796
armed bandits. Foundations and Trends® in Machine 797
Learning, 12(1-2):1–286. 798

Ralf Steinberger, Bruno Pouliquen, Anna Widiger, 799
Camelia Ignat, Tomaz Erjavec, Dan Tufis, and Dániel 800
Varga. 2006. The jrc-acquis: A multilingual aligned 801
parallel corpus with 20+ languages. In LREC, pages 802
2142–2147. European Language Resources Associa- 803
tion (ELRA). 804

Hugo Touvron, Louis Martin, Kevin Stone, and Peter Al- 805
bert et al. 2023. Llama 2: Open foundation and 806
fine-tuned chat models. CoRR, abs/2307.09288. 807

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, 808
Siqi Sun, Ruochen Xu, Chenguang Zhu, and Michael 809
Zeng. 2022. Training data is more valuable than you 810
think: A simple and effective method by retrieving 811
from training data. In ACL (1), pages 3170–3179. 812

Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing 813
Liang, Qianyu He, Zhouhong Gu, Yanghua Xiao, 814
and Wei Wang. 2023. Knowledgpt: Enhancing large 815
language models with retrieval and storage access on 816
knowledge bases. CoRR, abs/2308.11761. 817

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti- 818
ennon, Ryan Lowe, Jan Leike, and Paul Christiano. 819
2021. Recursively summarizing books with human 820
feedback. CoRR. 821

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xin- 822
grun Xing. 2023. Lm-cocktail: Resilient tuning 823
of language models via model merging. CoRR, 824
abs/2311.13534. 825

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. 826
RECOMP: improving retrieval-augmented lms with 827
compression and selective augmentation. CoRR, 828
abs/2310.04408. 829

Wenzhuo Xue, Hui Li, Yanguo Peng, Jiangtao Cui, and 830
Yu Shi. 2017. Secure k nearest neighbors query 831
for high-dimensional vectors in outsourced environ- 832
ments. IEEE Transactions on Big Data, 4(4):586– 833
599. 834

Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessan- 835
dra Cervone, Tagyoung Chung, Behnam Hedayatnia, 836
Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani- 837
Tur. 2019. Towards coherent and engaging spoken 838
dialog response generation using automatic conversa- 839
tion evaluators. CoRR. 840

Shengyao Zhuang, Bing Liu, Bevan Koopman, and 841
Guido Zuccon. 2023. Open-source large language 842
models are strong zero-shot query likelihood models 843
for document ranking. In EMNLP (Findings), pages 844
8807–8817. 845

10

