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Abstract

Various adaptation methods, such as LoRA, prompts, and adapters, have been
proposed to enhance the performance of pre-trained vision-language models in
specific domains. As test samples in real-world applications usually differ from
adaptation data, studying the robustness of these adaptation methods against distri-
bution shifts is essential. In this study, we assess the robustness of 11 widely-used
adaptation methods across 4 vision-language datasets under multimodal corrup-
tions. Concretely, we introduce 7 benchmark datasets, including 96 visual and 87
textual corruptions, to investigate the robustness of different adaptation methods,
the impact of available adaptation examples, and the influence of trainable parame-
ter size during adaptation. Our analysis reveals that: 1) Adaptation methods are
more sensitive to text corruptions than visual corruptions. 2) Full fine-tuning does
not consistently provide the highest robustness; instead, adapters can achieve better
robustness with comparable clean performance. 3) Contrary to expectations, our
findings indicate that increasing the number of adaptation data and parameters does
not guarantee enhanced robustness; instead, it results in even lower robustness.
We hope this study could benefit future research in developing robust multimodal
adaptation methods. The benchmark, code, and dataset used in this study can be
accessed at https://adarobustness.github.io.

1 Introduction

Employing large-scale pre-training of vision-language (VL) models has become the standard for work
on VL tasks [38, 70, 39, 71, 70, 2, 71, 77]. These models are typically trained in a self-supervised
manner on unlabeled web-scale datasets in a general domain [54, 1]. To address the domain-specific
challenges and improve performance on downstream tasks, various model adaptation methods have
been proposed [29, 46, 43, 33, 36, 25, 63, 76, 30].

Although adaptation methods can achieve promising results on various VL benchmark datasets,
real-world applications often introduce various distribution shifts that differ from the conditions
encountered during model adaptation [44]. For instance, these shifts can manifest as variations in
lighting conditions in images and typos in texts. Therefore, it is critical to ensure model robustness
against distribution shifts, particularly in safety-critical applications where unexpected wrong deci-
sions can have severe consequences, such as self-driving systems [67, 56, 44] and clinical diagnostics
[35, 47]. However, robustness research for multimodal models is still rare, leaving many essential
questions unanswered: Which adaptation methods perform better on which tasks in terms of both
performance and robustness? How robust are the various multimodal adaptation methods against
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Figure 1: Multimodal adaptation methods are sensitive to image and text corruptions. The two rows
show image captioning and visual question answering predicted by Adapter [29], respectively. Blue
boxes contain the original image and query text. Orange boxes present the corrupted images, texts
and model output.

visual corruptions, language corruptions, or both? Will more examples or more trainable parameters
assure better robustness?

To this end, this work investigates the robustness of various adaptation methods on VL models to
answer the above research questions. Concretely, we introduce a diverse set of 96 visual corruptions,
including impulse noise, snow etc., and 87 textual corruptions encompassing text addition, back
translation, etc. Moreover, extensive experiments have been conducted on 11 adaptation methods
across 4 VL datasets, including VQAv2 [20], GQA [31], NLVR2 [61] and MSCOCO Caption [5].
While several studies have explored the robustness of VL models, our work represents a significant
advancement as it provides the first large-scale benchmark robustness analysis of existing adaptation
methods on VL models. We limit the models and tasks to those related to images, specifically,
multimodal-to-text models, e.g., CLIP-BART [62]. Video-language models are outside the scope of
this research.

Our analysis reveals several interesting findings: 1) Adaptation methods demonstrate a higher degree
of sensitivity towards text corruptions compared to visual corruptions. 2) Full fine-tuning does not
consistently yield the best relative robustness, whereas an adapter can achieve better robustness with
comparable performance. 3) Surprisingly, our experiments reveal that a large quantity of adaptation
data and model parameters do not guarantee improved robustness. In fact, increasing the amount of
adaptation data might even lead to decreased robustness. 4) There is no single adaptation method that
surpasses others across all tasks and corruptions. To summarize, our contributions are as follows:

• We construct a suite of 7 large-scale robustness benchmark datasets including 96 visual
corruptions and 87 textual corruption methods.

• We evaluate the robustness of 11 adaption methods on VL models based on massive experi-
ments.

• We release the benchmark, code, as well as a leaderboard to the community to facilitate
future research on the robustness of multimodal adaptation methods.

2 Related Work

Vision-language Models. Pre-trained VL models [41, 60, 7, 45, 40, 64, 13, 79] have shown out-
standing performance on various VL tasks. Some use contrastive learning to align visual features
with language representations and achieve surprising zero-shot performance [42, 54]. However,
contrastive learning-based methods are limited to close-ended tasks and are inflexible. Another line of
work follows BERT’s [11] pretrain-then-finetune paradigm [41, 60, 7, 64]. They treat object features
extracted using pre-trained object detectors [18] as visual words sent to language models [11]. For
example, VL-BART [7] uses BART [37] or T5 [55] as the text encoder and Faster-RCNN [18] as
the visual backbone. Unlike other methods, VL-BART unifies VL tasks via a single text generation
task. CLIP-BART [62] follows the same idea as VL-BART but adopts the CLIP [54] image encoder
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to extract pixel-level features. Recent approaches [66, 14, 1] follow such a unified view and freeze
large language models (LLMs) to utilize the in-context learning ability of LLMs. However, as shown
in [62], LM fine-tuning is still crucial to achieve competitive performance on various downstream
VL tasks. In this study, we follow the work in [62] that benchmarks model adaptation methods.
CLIP-BART [62] is selected as our VL model, given its generation flexibility and unified architecture.

Model Adaptation Methods. To enhance the performance of pre-trained VL models on downstream
tasks and avoid infeasible computation, various adaptation methods have been proposed. Existing
methods can be classified into three categories [62]: (1) adding a few trainable parameters while
freezing other model parts [29, 46, 43, 33, 36]; (2) updating a few model parameters sparsely [25, 63,
76]; and (3) low-rank factorization of parameters to be updated, such as in LoRA [30]. Adapters [29]
belong to the first category and have been widely used in vision, language, and multimodal models
[29, 78, 6]. Other representative methods in the first category include Hyperformers [46], Compacters
[33], and prompt-tuning [36, 3]. Although numerous adaptation methods have been proposed and
widely adopted, their robustness against distribution shifts remains understudied.

Natural Robustness. The robustness of deep learning models against distribution shifts is critical
for real-world applications [17, 26, 16]. Regarding vision robustness, researchers have investigated
image classification models [26, 16, 28, 57, 21, 22], semantic segmentation [32, 24], object detection
[48], video classification [75], and transformer-based architectures [12, 51, 52, 23, 73]. In the field of
natural language processing (NLP), many robustness analysis toolboxes [58, 59, 72, 19], and various
methods [15, 10, 50, 9] are available. The robustness investigation on multimodal models is gaining
more attention but related studies are lacking. The literature includes the robustness of multimodal
fusion models [74], audio-visual models [65], text-to-image generative models [8], text-to-video
retrieval models [4], as well as image-text models [53].

In contrast to all the works above, our study focuses on the robustness of adaptation methods
integrated into large pre-trained vision-language models. Understanding their robustness on different
VL tasks will facilitate the design of more robust adaptation methods for multimodal models.

3 Preliminaries of Model Adaptation Methods

The pretrain-then-finetune paradigm on large models has shown dominant performance on multimodal
tasks [41, 11, 54], yet the prohibitive costs of full fine-tuning have spurred intensive research efforts
towards developing parameter-efficient adaptation methods [62, 30, 36, 29, 46, 33]. As the transformer
architecture [68] is used for most state-of-the-art large pre-trained models, adaptation methods mainly
focus on tweaking the input or the intermediate layers of the attention layers inside the large models.
Formally, given a pre-trained large-scale model F parameterized by θ, we need to adapt F on a
task-specific dataset D, e.g., a VQA dataset, to get the adapted model F ′. Then, we can obtain the
output y = F ′(x;θ) by providing an input x = {x1, . . . , xn} with n tokens from D. Adaptation
methods differ in how they interact with F (x;θ) (Fig. 2). In general, full fine-tuning updates all θ.
Prompt [36] concatenates the input x with an extra prefix. LoRA [30] introduces modifications to
the update mechanism of the model parameters θ and adapters [29, 46, 33] modify the intermediate
output and input of θ.

Full fine-tuning directly updates the whole θ on D and becomes prohibitive due to the rapidly
growing model size. Therefore, the following adaptation methods have been developed to achieve
comparable performance while optimizing only a few parameters.

Prompt-based adaptation concatenates the input x with either a trainable prefix (soft prompt) [36] or
a manually designed prefix [3]. For the given input x = {x1, . . . , xn} with n tokens, the pre-trained
model will first form an embedding matrix X ∈ Rn×d where d is the dimension of the embedding
space. Soft-prompts [36] are then represented as a learnable parameter P ∈ Rp×d, where p is the
length of the prompt. Next, P is concatenated with the original embedded input X to form a new
single matrix defined as [P : X] ∈ R(p+n)×d. During adaptation, the model is trained to maximize
the probability of the desired output while only updating P.

LoRA [30] utilizes low-rank decomposition matrices to update parameters. For intermediate model
parameters θ0 ∈ Rd×k, such as the parameters from a self-attention module in the transformer archi-
tecture, its update ∆θ0 is represented by a low-rank decomposition ∆θ0 = BA,B ∈ Rd×r,A ∈
Rr×k, r ≪ min(d, k). During adaptation, θ0 is frozen while B and A are updated.
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Figure 2: Illustration of adaptation methods used in our study. Green areas indicate trainable
parameters whereas frozen parameters are in blue. The input is the concatenation of image and text
embedding [embimg : embtext] and the output is the generated text.

Adapter-based adaptation inserts sub-networks with a few learnable parameters into the large
model. Adapter [29] consists of a pair of downsampling and upsampling layers as well as a
residual connection. Suppose the original input to an intermediate layer θ0 in model F is x0 ∈ Rd0 ,
adapters insert a downsampling layer θD ∈ Rd0×d1 and an upsampling layer θU ∈ Rd1×d0 , where
d0, d1 are dimensions of the hidden embeddings, respectively. The output after injecting adapters
is defined as h = fθU (σ (fθD (x0))) + x0, where fθU denotes a function parameterized by θU

and σ(·) is an activation function such as GELU [27]. To further reduce redundant parameters in
adapters, Compacter [33] decomposes parameter matrices. It introduces parameterized hypercomplex
multiplication (PHM) layers θD =

∑k
i=1 Ai ⊗Bi,Ai ∈ Rk×k,Bi ∈ R

d0
k × d1

k , which decompose
the layer in the adapter by Kronecker products. Compacter also shares the parameter of Ai across all
layers and decomposes Bi even further with low-rank decomposition. However, as found in [62], such
sharing and further decomposition severely decreases the VL performance. In our study, we only use
PHM layers. Hyperformer [46] relies on a hyper-network shared across tasks to generate the weights
in adapters given a task index and a layer index. The hyperformer maintains learnable embeddings for
each task and each layer. For NT tasks and NL layers, the learnable embeddings in the hyperformer
is denoted as t1, . . . , tNT

∈ Rde and l1, . . . , lNL
∈ Rde , respectively. The hyperformer consists of a

task projector θT ∈ R(de+de)×dp and a hyper-network θH ∈ Rdp×(d0×d1+d1×d0), and generates an
adapter’s weights in the ith layer for the jth task following

[
θD,θU

]
= fθH (fθT ([tj , li])).

Adaptation shared over tasks [62] further reduces redundant parameters by exploiting similar
information shared across multiple tasks. In a multi-VL-task setting, an intuitive way is to train the
adaptation modules per task using: Multiple Adapters, Multiple Compacters, Multiple LoRA,
and Multiple Prompts. Additionally, We can train only one set of adapter layers for all tasks,
and we have Single Adapter, Single Compacter, Single LoRA, and Single Prompt. Besides,
Half-shared adapter [62] only shares the upsampling layers or downsampling layers across different
tasks. Detailed information is presented in Appendix B.2.

4 Corruption Methods

Image Corruptions. We use the corruption methods from ImageNet-C [26] and [4, 53]. A blank
method is also added, which is used to examine the importance of visual information to VL models.
Blank corruption turns the original image into a blank picture by setting all pixel values to 255. All
image corruptions can be categorized into five groups: noise, blur, weather, digital, and extra.
Specifically, we use 20 image corruption methods, (1) noise: impulse noise, Gaussian noise, shot
noise, speckle noise; (2) blur: zoom blur, defocus blur, motion blur, frosted glass blur, Gaussian blur;
(3) digital: JPEG compression, contrast, elastic, spatter, saturate, pixelate; (4) weather: snow, frost,
fog, brightness; and (5) extra: blank. We follow the severity convention in ImageNet-C [26] and
define 5 levels of severity for each method, except for blank corruption. In total, we have 96 types of
visual corruption and we leave the details in the Appendix A.1. By applying all image corruptions to
4 datasets used in this study, i.e., VQAv2 [20], GQA [31], NLVR2 [61] and MSCOCO Caption [5],
we construct 4 out-of-distribution (OOD) benchmark datasets.
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Table 1: Dataset Statistics.
VQAv2 GQA NLVR2 MSCOCO Caption

The Number of Images QA pairs Images QA pairs Images QA pairs Images Captions
Training set 113.2K 605.1K 72.1K 943.0K 103.2K 86.4K 113.2K 566.8K

Validation set 5.0K 26.7K 10.2K 132.1K 8.1K 7.0K 5.0K 5.0K
Test set 5.0K 26.3K 398 12.6K 8.1K 7.0K 5.0K 5.0K

Text Corruptions. In addition to visual feature shifts, text corruptions are also essential for evaluating
the robustness of vision-language models [4, 53]. We have incorporated a total of 35 corruption
methods, inspired by the approaches presented in [72, 53, 4]. These methods can be categorized
into three groups based on the level of corruption: character-level, word-level, and sentence-level.
Furthermore, they are further subdivided into six sub-categories, namely character modification,
text style modification, text addition, dropping text based on POS, positional drop, and text swap.
To name a few examples, the category text style transforms sentences to desired styles such as
passive, formal, or double negative. Text addition inserts extra words, like adverbs in InsertAdv.
Text drop modifies words based on POS tagging, dropping nouns (DropNN) or verbs (DropVB). For
detailed information, please refer to Appendix A.2 . In addition to the above corruptions, Qiu et
al. proposed in [53] that we should ensure that the corrupted text has the same semantics as the
original one to make sure the image-text pairs remain meaningful. We follow this setting and use
the same fidelity guarantee mechanism as [53]. Various severity levels for text corruptions are also
introduced in the benchmark, including 5 severity levels on character-level corruptions and some
word-level corruptions. For sentence-level corruptions, only one perturbation is available. In total,
we have 87 different perturbations. After applying all text corruptions on VQAv2 [20], GQA [31],
and NLVR2 [61], we construct another 3 OOD benchmark datasets. In the end, we have constructed
7 OOD robustness benchmark datasets to fully investigate the robustness of adaptation methods on
vision-language models.

5 Experimental Settings

Tasks and Datasets. The popular representative VL tasks (visual question answering, visual rea-
soning, and image captioning) and 4 well-known VL datasets are applied in this work. For visual
question answering, VQAv2 [20] and GQA [31] are adopted. Additionally, we incorporate NLVR2

[61] for visual reasoning and MSCOCO [5] for image captioning. The statistics are shown in Table 1.

Models. CLIP-BART (T5) [62] serves as our base model. Because the model adaptation on
VL models is mainly on language model components and the encoder-decoder architecture can
tackle VL tasks via a unified text-generation task [62]. CLIP-BART (T5) utilizes a single-stream
fusion scheme, where the language model takes the concatenation of visual representations and text
representations as input. The single-stream approach enables the model to effectively integrate visual
and textual information, leveraging the complementary strengths of both modalities. Specifically,
CLIP-ResNet101 [54] is the vision encoder that receives resized 224×224 images, and representations
from the last convolutional layer are extracted as the visual features. BARTbase [37] and T5base [55]
deal with the downstream text generation task.

Model Adaptation Methods. We investigate the robustness of four mainstream adaptation methods:
full fine-tuning, soft prompt [36], LoRA [30], and adapter-based methods, including Adapter [29],
Hyperformer [46], and Compacter [33]. To better understand their robustness, shared adaptation
methods are also investigated. Specifically, for soft prompt, i.e., LoRA, and Compacters, we conduct
experiments in both single and multiple manners and the half-shared manner for Adapter (Section 3).
See Appendix B.2 for detailed information, e.g., training strategy and hyperparameters.

VL Task Evaluation Metrics. Accuracy on the Karpathy-test split is evaluated for VQAv2. For
GQA, accuracy on the test-dev split is evaluated, and accuracy on the test-P split is used for NLVR2.
In image captioning, we use CIDEr [69] on the Karpathy-test split.

Robustness Evaluation Protocol. The model performance PI on DI (i.e., in-distribution test
datasets) and PO on DO (i.e., out-of-distribution test datasets) are first evaluated, where P is the
corresponding evaluation metric for each task, such as CIDEr [69] for image caption. Then, the

5



Table 2: Clean performance and relative robustness (RR) of adaptation methods based on CLIP-
BART against image (up) and text (down) corruptions. RR and the corresponding standard deviation
are averaged and calculated over all image or text corruption methods. The percentage of trainable
parameters for each adaptation method is also reported. We strike out those high RRs with quite low
performance. The best RR for each column is in bold.
Adaptation method Updated VQAv2 GQA NLVR2 MSCOCO Caption
Image Corruptions Params Acc (%) RR (%) Acc (%) RR (%) Acc (%) RR (%) CIDEr RR (%)

Full Fine-tuning 100% 66.75 84.86±5.17 55.04 89.20±0.04 73.01 90.34±0.04 115.03 68.40±0.14

Multiple Adapters 12.22% 65.30 85.33±4.90 53.39 86.16±0.04 69.41 92.02±0.04 114.47 68.72±0.14

Half-shared Adapters 8.36% 65.20 85.18±5.01 52.96 89.37±0.04 70.03 91.72±0.04 114.50 68.45±0.14

Single Adapter 4.18% 65.35 85.76±5.32 54.14 82.49±0.04 73.89 90.04±0.05 115.04 68.68±0.14

Hyperformer 5.79% 65.38 85.38±4.84 52.52 90.05±0.04 72.21 90.13±0.05 114.89 68.74±0.14

Multiple Compacters 7.05% 64.91 85.65±4.81 52.75 88.89±0.04 69.45 91.33±0.04 115.16 68.67±0.13

Single Compacter 2.70% 64.47 85.47±4.96 52.90 82.62±0.04 69.94 92.04±0.04 113.06 69.92±0.13

Multiple LoRA 17.72% 65.44 84.78±4.86 52.05 91.15±0.04 51.32 – 115.41 68.47±0.14

Single LoRA 5.93% 65.34 84.78±4.81 53.19 82.58±0.04 73.58 90.05±0.04 114.54 69.26±0.13

Multiple Prompts 4.53% 46.81 – 34.01 – 49.87 – 108.62 67.70±0.14

Single Prompt 2.00% 44.00 – 37.54 – 51.95 – 103.70 68.56±0.13

Adaptation method Updated VQAv2 GQA NLVR2

Text Corruptions Params Acc (%) RR (%) Acc (%) RR (%) Acc (%) RR (%)

Full Fine-tuning 100% 66.75 73.65±22.38 55.04 66.92±24.14 73.01 87.06±11.00

Multiple Adapters 12.22% 65.30 76.62±20.66 53.39 66.93±22.43 69.41 90.14±10.19

Half-shared Adapters 8.36% 65.20 76.78±20.79 52.96 68.20±24.78 70.03 89.16±10.12

Single Adapter 4.18% 65.35 77.64±21.09 54.14 67.47±20.03 73.89 88.49±10.87

Hyperformer 5.79% 65.38 75.06±21.29 52.52 70.30±23.13 72.21 87.27±11.27

Multiple Compacters 7.05% 64.91 77.10±20.85 52.75 67.39±23.29 69.45 90.00±9.76

Single Compacter 2.70% 64.47 77.17±20.40 52.90 67.90±20.33 69.94 90.10±9.81

Multiple LoRA 17.72% 65.44 74.04±21.97 52.05 68.77±22.76 51.32 –
Single LoRA 5.93% 65.34 74.50±21.42 53.19 63.94±20.99 73.58 87.64±11.04

Multiple Prompts 4.53% 46.81 – 34.01 – 49.87 –
Single Prompt 2.00% 44.00 – 37.54 – 51.95 –

Relative Robustness RR = 1 −∆P/PI [53, 4] is computed based on the clean performance PI

and corrupted performance PO, where ∆P = (PI − PO). RR is a score ranging from 0 to 1, where
RR = 1 indicates that F is totally robust and R = 0 means that F is not robust at all. The RR with
severity 5 is reported across the main paper; detailed scores on others are in Supplementary.

6 Results and Analysis

Sec. 6.1 examines the robustness of each adaptation method and tries to answer the first question:
Which adaptation methods perform better on which tasks with respect to both performance and
robustness? Sec. 6.2 compares the robustness sensitivity on image and text corruptions and looks for
the answer to how robust are the various multimodal adaptation methods against visual corruptions,
language corruptions, or both? In Section 6.3, we analyze the influence on robustness given different
sizes of adaptation data and trainable parameters. Especially, we aim to answer will more examples
or more parameters ensure better adaptation robustness?

6.1 Robustness of Multimodal Adaptation Methods

Full fine-tuning, prompt-tuning, LoRA, and adapter-based methods are four types of adaptation
methods investigated in this study, and their relative robustness against image and text corruptions
are presented in Table 2 .The reported relative robustness is the average value across all images or
text corruption methods. Although full fine-tuning generally achieves higher clean performance,
our analysis reveals that its robustness is comparatively weaker than other adaptation methods.
In many cases, the adapter and hyperformer achieve better robustness with much fewer parameters
and comparable clean performance. For instance, full fine-tuning’s RR against text corruptions on the
VQAv2 dataset is the smallest, for both CLIP-BART and CLIP-T5. Prompt tuning, despite exhibiting
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high robustness, fails to perform well on the clean test dataset. The same conclusions can be drawn
on corrupted data with different corruption levels, as shown in Supplementary. Please note that we
have excluded robustness scores associated with very low task performance in Table 2.

Single Adapter vs Full Fine-tuning. Previous research [62] has shown that a single adapter can
achieve comparable performance on the four tasks with significantly fewer parameters than full
fine-tuning. When it comes to robustness, a single adapter is comparable to or slightly better than
full fine-tuning on VQAv2, NLVR2, and MSCOCO Caption given image corruptions. The same goes
for text corruption. For example, as shown in the 4th row and 1st row in Table 2 (lower panel), a
single adapter on CLIP-BART achieves an average RR of 77.64% against text corruptions on VQAv2,
while full fine-tuning’s RR is 73.65%. However, on GQA, a single adapter is less robust than full
fine-tuning. Full fine-tuning achieves an average RR of 89.20% against image corruptions, while the
RR of a single adapter is only 82.49%. Also, a single adapter’s clean accuracy on GQA is lower than
full fine-tuning’s 55.04%. In contrast, multiple and half-shared adapters have more parameters but
achieve better robustness on the four tasks than a single adapter. In conclusion, a single adapter can
achieve similar or better robustness on VQAv2, NLVR2, and MSCOCO Caption compared to
full fine-tuning. On GQA, multiple and half-shared adapters are better.

Adapter-based Methods. Although training multiple tasks with one set of adapter layers has the
least number of parameters, such a single setting might hinder the robustness on certain tasks. For
instance, Single Adapter’s robustness on GQA against image corruptions (82.49%) is lower than
that of the half-shared (89.37%) and multiple settings (86.16%). This also applies to Single LoRA
and Single Compacter. An explanation could be that the half-shared mechanism does not only learn
more general representation across tasks; it also maintains task-specific knowledge. On GQA, Single
LoRA’s robustness against image corruptions is lower by 8.57% compared to Multiple LoRA’s, and
the robustness against text corruptions is lower by 4.83%. However, compared with multiple settings
of LoRA and Adapter, the Hyperformer has relatively fewer parameters but achieves comparable or
better robustness. Hyperformer on CLIP-T5 also obtains the best robustness results against image
corruptions on all four tasks.

Figure 3: The accuracy results on VQA-RAD [34] which include 11
adaptation methods on CLIP-BART (left) and 6 on CLIP-T5 (right).

Robustness against Natu-
ral Dataset Distribution
Shift. To provide a more re-
alistic assessment of the ro-
bustness, an additional natu-
ral distribution shift corrup-
tion is included in our work.
VQA-RAD [34] is a man-
ually constructed dataset
where clinicians asked nat-
urally occurring questions
about radiology images and
provided reference answers.
The images in VQA-RAD
are shown neither in model pre-training nor in adaptation and can be seen as a natural out-of-
distribution dataset. Results in Fig. 3 are relatively low but adapters perform relatively well, such
as the Single Adapter in CLIP-BART and Multiple Adapters in CLIP-T5. Full finetuning fails to
generalize well in CLIP-BART compared to other adaptation methods whereas the performance of
CLIP-T5 with full finetuning is the second best.

Vision-language Tasks. Among all datasets, MSCOCO Caption is the most vulnerable one against
image corruptions, where all adaptation methods have decreased on average more than 30%. This
is plausible as it only relies on visual information, whereas other tasks provide both visual and
language information. Besides, GQA is the task with the lowest robustness performance against text
corruptions. Moreover, on GQA, the extreme single-module setting fails to achieve good robustness,
such as Single Adapter, Single LoRA, and Single Compacter. This indicates that information
sharing with the other two datasets may hinder the robustness on GQA. To overcome such an
issue, one can adopt the multiple-module manner or Hyperformer. Adaptation methods show better
robustness on NLVR2 compared to the other three tasks on both corruptions.
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Figure 4: Relative robustness (%) of adaptation methods based on CLIP-BART (left) and CLIP-T5
(middle) against blank corruption. We group MSCOCO Caption results from CLIP-BART and
CLIP-T5 together in the right sub-figure. We omit two bars in NLVR2 from the middle figure as
multiple adapters and multiple compacters did not perform well.

6.2 Robustness Sensitivity to Image Corruptions and Text Corruptions

This work introduces both image and text corruptions to examine the robustness of various adaptation
methods. Our experimental findings suggest a potential vulnerability of adaptation methods
on multimodal VL models to text corruptions, particularly those at the character level. Across
all three tasks, the adaptation methods exhibit lower robustness indicators against text corruptions.
For instance, Single Adapter based on CLIP-BART has the best robustness result of 85.76% against
image corruptions on VQAv2. However, although it is still the most robust adaptation method against
text corruptions, the relative robustness is 77.64%. Among image corruptions, zoom blur drops the
robustness the most, and within text corruptions, char-level methods are most challenging to these
VL adaptation methods. Detailed analysis is in Supplementary Section 6.

Blank Image Corruption. Blank corruption evaluates the influence on the robustness of visual
information in VL tasks. All datasets used in this study rely on visual information and only the
MSCOCO Caption contains no language information. In blank corruption, we set the pixel values
of testing image data to 255, i.e. transforming the original image into a blank image. The results
are shown in Fig. 4. The relative robustness on MSCOCO Caption is the lowest among all four
datasets. This is plausible since image captioning relies only on visual information and is not
supposed to perform well given a blank image. Apart from image captioning, adaptation methods
on all three datasets could secure relative robustness exceeding 50% in the absence of useful visual
information. Several questions within the VL tasks can be accurately answered without relying on
visual information, suggesting that language information plays a more significant role than visual
information. This also explains the higher sensitivity to text perturbations compared to the sensitivity
to image corruptions.

Figure 5: The average performance drop given
both visual and text corruptions. A darker color
indicates a severe performance drop.

Compounding Effects of Multimodal Corrup-
tions. To assess the impact of compounding
distribution shifts on both the visual and text
modalities, we selected a subset of corruption
methods from each category and presented the
results in Fig. 5. Specifically, for text corruption
methods, we selected ocr at the character level,
swap syn word embd at the word level, and back
translation at the sentence level. For visual cor-
ruption methods, we selected Gaussian noise
in the noise category, zoom blur in the blur cat-
egory, JPEG in the digital category, and snow
in the weather category. We tested the full fine-
tuning and single adapter on CLIP-BART and
CLIP-T5. The results demonstrate that combin-
ing corruptions from two modalities can lead to
a greater drop in robustness. Additionally, the re-
sults show similar trends as the single-modal cor-
ruptions. Character-level corruptions still lead
to the most severe performance drop compared
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Figure 6: The first row represents the clean performance and relative robustness of full fine-tuning
and single adapter on CLIP-BART given the different sizes of the adaptation dataset. Green lines
stand for performance in each task and the orange is robustness. The second row is relative robustness
given the different sizes of the adaptation dataset. The X-axis shows the random subset ratio of the
training dataset during adaptation, ranging from 20% to 100%.

to sentence- and word-level corruptions. Zoom blur still drops the robustness the most among image
corruptions.

6.3 The Influence of Adaptation Data Size and Parameter Size on Robustness

Adaptation Data Size. Adaptation methods are gaining more attention due to their efficient fine-
tuning manner compared to full fine-tuning. We take a further step and evaluate their performance and
robustness given different sizes of training data during adaptation. Fig. 6 compares the performance
and robustness of full fine-tuning and single adapter. Given more adaptation data, performance
in all tasks has a steady increase, and in most cases, the performance of full fine-tuning surpasses
single adapter’s performance, while the latter can achieve comparable performance given the whole
adaptation data. Only on MSCOCO Caption, single adapter outperforms full fine-tuning given a
subset of adaptation data. Single adapter achieves better RR compared to full fine-tuning against
both image and text corruptions but has a robustness drop on GQA. Fig. 6 also demonstrates the
robustness of other adaptation methods. All lines present a steady declining tendency, which indicates
that increasing the size of the adaptation data does not consistently enhance relative robustness.
Besides, the blue full fine-tuning lines take the lowest position on all three datasets given text
corruptions and on VQAv2, NLVR2, and MSCOCO Caption given image corruptions. In comparison
to other adaptation methods, full fine-tuning has relatively lower relative robustness, despite having
the most trainable parameters. The last conclusion is that there is no single adaptation method
that surpasses others across all tasks and corruptions and all methods share a similar robustness
fluctuation given a different size of the adaptation dataset.

Adaptation Parameter Size. Fig. 7 presents RR and clean performance of prompt-tuning given
different soft prompt lengths added to the concatenated embeddings. There is a steady increase in the
performance on four tasks with longer prompt lengths which proves that prompt methods perform
better given more parameters. Regarding relative robustness, such a steady increase does not apply to
all tasks, and longer soft prompts do not ensure better relative robustness. Fig. 7 also shows the
experimental results from the other 4 adaptation methods given different sizes of trainable parameters.
The results demonstrate that more parameters do not ensure enhanced robustness and some even
reduce it, such as the single compacter and single adapter on GQA.

7 Discussion and Conclusion

This study focuses on the robustness of adaptation methods on pre-trained vision-language models
and provides 7 benchmark datasets containing 96 visual and 87 textual corruptions. We systematically
inspect the robustness of 11 adaptation methods on 4 popular VL datasets and conclude that: 1) these
adaptation methods are more sensitive towards text corruptions compared to visual corruptions, 2) full
fine-tuning does not achieve the best robustness; instead, adapters demonstrate better robustness while
maintaining comparable performance, 3) surprisingly, more adaptation data and more parameters do
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Figure 7: The top row shows the clean performance and relative robustness from prompt adaptations
with different prompt lengths on CLIP-BART. Blue lines stand for performance on each task and
purple lines represent relative robustness. The bottom row shows the relative robustness given
the different number of parameters in 4 adaptation methods. Different colors stand for different
embedding sizes and larger numbers are with more parameters.

not ensure a better robustness. In fact, it can even lead to worse robustness, 4) there is currently no
adaptation method achieving both the best performance and best robustness across all corruptions
and all tasks. The main limitation of this work is that the analysis is on a limited number of
multimodal models due to the availability of usable code, model weights, and massive experiments.
Potential future work includes investigating more diverse pre-trained VL models, designing more
robust adaptation methods, and integrating future model adaptation methods to make our benchmark
up-to-date.
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A Corruption Details

A.1 Image Corruption Methods

We have incorporated 20 image corruption methods (Fig. 8) following [26, 4, 53] which can be
categorized into 5 categories noise, blur, weather, digital, and extra. We also introduce 5 levels of
severity (Fig. 9) to image corruption methods except for blank corruption.

Noise There are 4 different noises used in this study, namely Impulse, Gaussian, Shot, and Speckle.
Impulse noise mimics the corruption caused by bit errors by introducing a mixture of salt and pepper
noise, with varying intensities such as 0.03, 0.06, 0.09, 0.17, and 0.27. Gaussian noise simulates
corruptions due to low-lighting conditions by pixel value normalization and normal noise addition.
The intensity of this noise is scaled according to severity, with values of 0.08, 0.12, 0.18, 0.26, and
0.38. Shot noise simulates electronic noise caused by discrete light and is also called Poisson noise.
Speckle noise is an additive noise where larger noise will be added if the original pixel value is larger.

Blur Zoom blur is observed when the camera swiftly moves toward an object. It blurs toward the
center of the frame. Defocus blur occurs when the image is out of focus and its severity is defined by
the disk radius convolved over the image ranging from (3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5).
Motion blur occurs when the camera is moving quickly. The blurring effect is created by a kernel with
different radius and sigma ranging from (10, 3), (15, 5), (15, 8), (15, 12), (20, 15). Frosted Glass
blur occurs when the glass of windows or panels frosts. Gaussian blur generates blurred pixels by a
weighted average of its neighbors. The farther the neighbors are, the lower the weight in the average
is.

Digital JPEG is a lossy image compression format that converts the original picture to JPEG format
with quality ranging from 25, 18, 15, 10, 7 given different severity. Contrast simulates corruptions
caused by the lighting conditions and object’s color. Elastic stretches small image regions for
stretching effects. Spatter appears when the lens is occluded by rain or mud. Pixelate transforms the
original images into a small number of large pixels.

Weather Snow mimics the visual obstruction caused by precipitation. Frost occurs when lenses are
covered by ice crystals. Fog obscures the object and is rendered by the diamond-square algorithm.
Brightness adds a bright effect to the image simulating daylight.

Extra we introduce a new corruption method called blank that sets all pixel values to 255, i.e.
turning the original image into a blank picture.

A.2 Text Corruption Methods

We have included 35 text corruptions methods following [72, 53, 4] which corrupt on 3 levels (e.g.
character, word, and sentence level) and can be categorized into 3 main categories, 6 sub-categories.

Character Modification. Character modification simulates common mistakes during typing and
corrupts the text on a character level and contains 9 methods, namely OCR, Punct, Typos, Keyboard,
Spelling Error, char random insert, char random replace, char random swap, char random delete.
OCR replaces a character based on common Optical Character Recognition (OCR) errors. Keyboard
substitutes original characters based on keyboard distance.

Text Style Transformation. Methods in the text style category modify the text on a sentence level
and transform the sentence style to a target one, such as turning the original sentence to passive,
formal, causual, to double negative, and changing the tense.

Text Addition. Text addition inserts additional words to the original text. InsertAdv adds an adverb
before each verb. AppendIrr adds irrelevant phrases to the original texts. Random Insert randomly
inserts token [UNK] to the original texts.
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Figure 8: We introduce 20 corruption methods to image data following the methods in [26]. Except
for the blank corruption, each type of corruption has five levels of severity. In total, there are 96
different corruptions, as shown in Appendix 3

Figure 9: Examples of image and text corruptions. The top row shows an original image from GQA
and images corrupted by zoom blur with 5 levels of severity. The second row presents text corruptions
on the original texts where the red sign indicates the corrupted parts. More examples are shown in
supplementary material.

Text Drop based on POS. Text drop transforms the text on a word level based on POS tagging
[72]. There are methods of dropping nouns (DropNN), verbs (DropVB), dropping both nouns and
verbs (Drop VB & NN), dropping random nous and verbs (Drop Rand NN, Drop Rand VB), keeping
only nouns (Only NN), keeping only verbs (Only VB), keeping both (Only NN & VB).

Text Drop based on Position. According to the word position, there are methods of dropping the
first (Drop First), dropping the last (Drop Last), dropping both the first and the last (Drop First and
Last), shuffling word order (Shuffle Order), and randomly removing words (Random Delete).

Text Swap. Under the category of text swap, we can replace words randomly or with synonyms
by word embedding (SwapSyn Word Embd) and WordNet [49] (SwapSyn WordNet). We also deploy
back translation (Back Trans) from [72], which first translates English into French and then translates
it back to English. Randwom Swap randomly swaps words position.

16



Table 3: Image Corruption Methods
Category Corruption Method Severity

Noise

Impulse 5
Gaussian 5

Shot 5
Speckle 5

Blur

Zoom 5
Defocus 5
Motion 5

Frosted Glass 5
Gaussian Blur 5

Digital

JPEG 5
Contrast 5
Elastic 5

Saturate 5
Spatter 5
Pixelate 5

Weather

Snow 5
Frost 5
Fog 5

Brightness 5

Extra Blank 1

5 Category 20 Methods 96 Severity

In addition to the above corruptions, Qiu et al. proposed in [53] that we should ensure the corrupted
text has the same semantics as the original one to make sure the image-text pairs remain meaningful.
We follow this setting and use the same fidelity guarantee mechanism as [53].

B Model Implementations

B.1 CLIP-BART/T5

CLIP-BART/T5 [62], a combination of CLIP and BART/T5, follows VL-T5 [7] which unifies VL
tasks to a text-generation problem. Specifically, given a pair of an image xI and a sentence xS , e.g. a
picture and corresponding question texts in VQA, as the input to the model, CLIP-BART/T5 aims to
maximize the agreement between the prediction and text label of M tokens y = (y1, y2, . . . , yM ).
The primary generative model is an encoder-decoder language model, parameterized by θL. Visual
representation from input images is extracted from a CLIP and a visual projection layer, parameterized
by θV and θV→L respectively. The concatenation of visual representation and sentence representation
is fed into the encoder-decoder language model. The training goal is to minimize the cross-entropy
loss [62]:

l
(
xI ,xS ,y; θL, θV , θV→L

)
= CE

(
fθL

(
xV→L,xS

)
,y

)
= −

M∑
i=1

yi log
(
fθL

(
xV→L,xS

)
i

)
,

(1)

where fθ means a function parameterized by θ, xV→L is the projected visual representation.

The unified structure is beneficial to multi-task training where a universal dataset D from N VL
datasets is constructed and used to train the VL model. Under such a scenario, the parameters are
optimized by minimizing the averaging loss on D [62]:
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Table 4: Text Corruption Methods
Category Sub Category Level Corruption Method Severity

Natural

Char Modification

character OCR 5
character Punct 1
character Typos 5
character Keyboard 5
character Spelling Error 5
character char random insert 5
character char random replace 5
character char random swap 5
character char random delete 5

Text Style

sentence Passive 1
sentence Tense 1
sentence Formal 1
sentence Casual 1
sentence Active 1
sentence Double Neg 1

Text Addition
word InsertAdv 1
word Appendlrr 1
word Random Insert 5

Synthetic

Drop Text based on POS tag

word Drop NN 1
word Drop Rand NN 1
word DropVB 1
word Drop VB & NN 1
word Only NN 1
word Only VB 1
word Only NN & VB 1
word Drop Rand VB 1

Positional Drop

word Drop First 1
word Drop Last 1
word Drop First and Last 1
sent Shuffle Order 1
word Random Delete 5

Machine Text Swap

word SwapSyn Word Embd 5
word SwapSyn WordNet 5

sentence Back Trans 1
word Random Swap 5

35 methods 87 levels of severity

L
(
D; θL, θV , θV→L

)
=

1

|D|
∑

(xI ,xS ,y)∈D

l
(
xI ,xS ,y; θL, θV , θV→L

) (2)

B.2 Adaptation Methods

Full fine-tuning directly updates the whole θ on D and becomes prohibitive due to the rapidly
growing model size. For instance, simply loading a GPT-3 language model with 175B parameters as
the VL model backbone would require 700GB of memory 3. Therefore, the following more efficient
adaptation methods are developed to achieve comparable performance while optimizing only a few
parameters.

Prompt-based adaptation modifies the input x to the model F by either concatenating a trainable
prefix (Soft Prompt) [36] or a manually designed prefix [3]. For the given input x = {x1, . . . , xn}
with n tokens, the pre-trained model will first form an embedding matrix X ∈ Rn×d where d is the

3(175× 109)× 4(bytes)× 10−9 = 700GB
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Table 5: We deploy eleven distinct adaptation methods in total.
Type Method

Full Fine-tuning Full Fine-tuning

Adapter [29]
Single Adapter

Half-shared Adapters
Multiple Adapters

Compacter [33] Single Compacter
Multiple Compacter

Hyperformer [46] Hyperformer

LoRA [30] Single LoRA
Multiple LoRA

Soft Prompt [36] Single Prompt
Multiple Prompts

dimension of the embedding space. Soft-prompts [36] are then represented as a learnable parameter
P ∈ Rp×d where p is the length of the prompt. Next, P is concatenated with the original embedded
input X to form a new single matrix defined as [P;X] ∈ R(p+n)×d. During adaptation, the model is
trained to maximize the probability of the desired output while only updating P.

LoRA [30] also freezes the pre-trained model parameters θ, but it utilizes low-rank decomposition
matrices to update gradients. For an intermediate model parameter θ0 ∈ Rd×k, which can be the
parameters from one self-attention module in the transformer architecture, its update is represented
by a low-rank decomposition as shown in Formula 3. θ0 is frozen, whereas B and A contain trainable
parameters while adapting.

θ0 +∆θ = θ0 +BA,B ∈ Rd×r, A ∈ Rr×k, r ≪ min(d, k). (3)

Adapter-based adaptation inserts small modules between parameters in θ and modifies the interme-
diate learning process. Variants of adapter-based methods differ in the insertion manner. Adapters[29]
consists of a pair of downsampling and upsampling layers and a residual connection. Suppose the
original input to an intermediate layer θ0 in model θ is x0 ∈ Rd0 , adapters insert a downsampling
layer θD ∈ Rd0×d1 and an upsampling layer θU ∈ Rd1×d0 where d0, d1 are dimensions of the hidden
embeddings. The output after injecting adapters is defined in Formula 4 where σ(·) is an activation
function such as GELU [27].

h = fθU (σ (fθD (x0))) + x0 (4)

Compacter [33] is based on the mechanism of adapters [29], but it utilizes matrix decomposition and
parameter sharing to further reduce redundant parameters in adapters. It introduces parameterized
hypercomplex multiplication (PHM) layers (Formula 5), which decompose the layer in the adapter by
Kronecker products. Compacter also shares the parameter of Ai across all layers and decomposes
Bi even further with low-rank decomposition. However, as found in [62], such sharing and further
decomposition severely decreases the VL performance. In our study, we only use PHM layers.

θD =

k∑
i=1

Ai ⊗Bi, Ai ∈ Rk×k, Bi ∈ R
d0
k × d1

k (5)

Hyperformer [46] also aims to reduce redundant parameters in adapters. It relies on a hyper-
network that is shared across tasks to generate the weights in adapters given a task index and a
layer index. The hyper-network maintains learnable embeddings for each task and each layer. For
NT tasks and NL layers, the de-dimensional embeddings can be denoted as t1, . . . , tNT

∈ Rde ;
l1, . . . , lNL

∈ Rde . The Hyperformer consists of a task projector θT ∈ R(de+de)×dp and a hyper-
network θH ∈ Rdp×(d0×d1+d1×d0), and generates an adapter’s weights in the ith layer for the jth

task following Formula 6. [
θD, θU

]
= fθH (fθT ([tj , li])) (6)
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Adaptation shared over tasks is inspired by Hyperformer and proposed in [62] which aims to exploit
similar information shared across multiple tasks and to reduce redundant parameters. For vanilla
adapters in a multi-task setting with NT tasks, the collection of all inserted adapter modules can be
denoted as Θ = {ΘD,ΘU} where ΘD (ΘU ) stands for the subset of downsampling (upsampling)
layers in adapters. The straightforward application is to train the adaptation modules per task, so
we have independent {ΘD

i ,ΘU
i } for the ith task, dubbed as Multiple Adapters. The same goes for

other adaptation methods. By training one prompt, low-rank weights, and compacter layer for each
task, we obtain Multiple Prompts, Multiple LoRA, and Multiple Compacter respectively. We can
also train only one set of adapter layers for all tasks, and we have Single Adapter where ΘD

i = ΘD
j

and ΘU
i = ΘU

j , i ̸= j. Also, if we use the same prompts, low-rank weights, and compacter layers,
we have Single Prompt, Single LoRA, and Single Compacter respectively. For adapters, we can
make parts of the weights shareable by making ΘD

i = ΘU
j , i ̸= j and. In this way, the task-specific

information of ith can still be learned by the rest ΘU
i . Such sharing mechanism is called half-shared

adapter. Lastly, Hyperformer already shares information from multiple tasks and therefore does not
have such extensions.

B.3 Training and Evaluation

We follow the same experimental and hyperparameter settings as [62]. CLIP-ResNet101 is the
vision encoder that takes the resized 224 × 224 images as input. The 7 × 7 gird features in the
last convolutional layer are extracted as visual features and are downsampled to 6× 6 by adaptive
maximum pooling. BARTbase and T5base are both studied in this work as encoder-decoder language
models. During training, AdamW is the optimizer along with a linear decay scheduler. Models are
trained for 20 epochs, and the learning rate increases from 0 to the highest learning rate in the first
2 epochs. Training batch sizes are set as 500 and 250 for CLIP-BART and CLIP-T5 respectively.
Models are trained in a multi-task setting where the training dataset includes all training split from 4
VL datasets. After training, we first evaluate the clean performance. Specifically, accuracy on the
Karpathy-test split is evaluated for VQAv2. For GQA, accuracy on the test-dev split is evaluated,
and accuracy on the test-P split is used for NLVR2. In image captioning, we use CIDEr [69] on the
Karpathy-test split. Then, we evaluate the corrupted performance on the corresponding corrupted
test split from each dataset and calculate the relative robustness. All the training and evaluations are
conducted on LRZ AI Systems at the Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities.

C Limitations

The limitations of this work mainly include 1) the adoption of simulated noise instead of real-world
data due to the difficulty of obtaining real-world corruptions, 2) the analysis is on a limited number of
multimodal models due to the availability of usable code, model weights, and the massive experiments,
3) the experiments require heavy GPU usage to pre-train vision-language models.

D Licensing

All the models and datasets used in this study are publicly available. The code for model VL-
T5(BART) and CLIP-T5(BART) have the MIT License and the code for Hyperformer and Soft
Prompt has the Apache 2.0 License. Our benchmark datasets are built upon 4 well-known and
publicly available VL datasets, namely VQAv2 [20], GQA [31], NLVR2 [61], and MSCOCO [5]. We
also publicize our benchmark datasets, corruption codes, and benchmark codes under MIT License.

E Impact

From our understanding, there are no negative societal impacts of our study. This study aims
to investigate the robustness of multimodal adaptation methods and facilitate future research and
real-world applications.
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