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ABSTRACT

Score-based generative models (SGMs) have revolutionized the field of generative
modeling, achieving unprecedented success in generating realistic and diverse
content. Despite empirical advances, the theoretical basis for why optimizing
the evidence lower bound (ELBO) on the log-likelihood is effective for training
diffusion generative models, such as DDPMs, remains largely unexplored. In
this paper, we address this question by establishing a density formula for a
continuous-time diffusion process, which can be viewed as the continuous-time
limit of the forward process in an SGM. This formula reveals the connection
between the target density and the score function associated with each step of
the forward process. Building on this, we demonstrate that the minimizer of
the optimization objective for training DDPMs nearly coincides with that of the
true objective, providing a theoretical foundation for optimizing DDPMs using
the ELBO. Furthermore, we offer new insights into the role of score-matching
regularization in training GANSs, the use of ELBO in diffusion classifiers, and the
recently proposed diffusion loss.

1 INTRODUCTION

Score-based generative models (SGMs) represent a groundbreaking advancement in the realm of
generative models, significantly impacting machine learning and artificial intelligence by their
ability to synthesize high-fidelity data instances, including images, audio, and text (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021b; Song & Ermon, 2019; Dhariwal & Nichol, 2021;
Song et al., 2021a). These models operate by progressively refining noisy data into samples
that resemble the target distribution. Due to their innovative approach, SGMs have achieved
unprecedented success, setting new standards in generative Al and demonstrating extraordinary
proficiency in generating realistic and diverse content across various domains, from image synthesis
and super-resolution to audio generation and molecular design (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022; Croitoru et al., 2023; Yang et al., 2023).

The foundation of SGMs is rooted in the principles of stochastic processes, especially stochastic
differential equations (SDEs). These models utilize a forward process, which involves the gradual
corruption of an initial data sample with Gaussian noise over several time steps. This forward
process can be described as:

add naise add naise add noise
XO y X1 S LTS XT7 (1.1)

where X ~ Ddata 1 the original data sample, and X7 is a sample close to pure Gaussian noise. The
ingenuity of SGMs lies in constructing a reverse denoising process that iteratively removes the noise,
thereby reconstructing the data distribution. This reverse process starts from a Gaussian sample Y
and moves backward as:

denoise denoise denoise
Rk g 7

Yr —"Yr_ 0 (1.2)

. d . ..
ensuring that Y; ~ X; at each step ¢. The final output Y} is a new sample that closely mimics the
distribution of the initial data pyata.

Inspired by the classical results on time-reversal of SDEs (Anderson, 1982; Haussmann & Pardoux,
1986), SGMs construct the reverse process guided by score functions V log px, associated with each
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step of the forward process. Although these score functions are unknown, they are approximated
by neural networks trained through score-matching techniques (Hyvérinen, 2005; 2007; Vincent,
2011; Song & Ermon, 2019). This leads to two popular models: denoising diffusion probabilistic
models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) and denoising diffusion implicit
models (DDIMs) (Song et al., 2021a). While the theoretical results in this paper do not depend
on the specific construction of the reverse process, we will use the DDPM framework to discuss
their implications for diffusion generative models.

However, despite empirical advances, there remains a lack of theoretical understanding for diffusion
generative models. For instance, the optimization target of DDPM is derived from a variational lower
bound on the log-likelihood (Ho et al., 2020), which is also referred to as the evidence lower bound
(ELBO) (Luo, 2022). It is not yet clear, from a theoretical standpoint, why optimizing a lower
bound of the true objective is still a valid approach. More surprisingly, recent research suggests
incorporating the ELBO of a pre-trained DDPM into other generative or learning frameworks to
leverage the strengths of multiple architectures, effectively using it as a proxy for the negative log-
likelihood of the data distribution. This approach has shown empirical success in areas such as GAN
training, classification, and inverse problems (Xia et al., 2023; Li et al., 2023a; Graikos et al., 2022;
Mardani et al., 2024). While it is conceivable that the ELBO is a reasonable optimization target for
training DDPMs (as similar idea is utilized in e.g., the majorize-minimization algorithm), it is more
mysterious why it serves as a good proxy for the negative log-likelihood in these applications.

In this paper, we take a step towards addressing the aforementioned question. On the theoretical
side, we establish a density formula for a diffusion process (X;)o<¢<1 defined by the following
SDE:

1 1
dXy = ———Xpydt + ——=dB; (0<t < 1), Xo ~ ,
t 2(1 —t) tdt + \/m t ( > ) 0 "~ Ddata
which can be viewed as a continuous-time limit of the forward process (1.1). Under some regularity
conditions, this formula expresses the density of X, with the score function along this process,
having the form

- k;g(%)d_/o {2(11— t)E[HXt - \/tlftXO

2
log px, (z) = + Vlogpx, (Xt)Hz | Xo = Jf}

where px, (+) is the density of X;. By time-discretization, this reveals the connection between the
target density pgata and the score function associated with each step of the forward process (1.1).
These theoretical results will be presented in Section 3.

Finally, using this density formula, we demonstrate that the minimizer of the optimization target for
training DDPMs (derived from the ELBO) also nearly minimizes the true target—the KL divergence
between the target distribution and the generator distribution. This finding provides a theoretical
foundation for optimizing DDPMs using the ELBO. Additionally, we use this formula to offer new
insights into the role of score-matching regularization in training GANs (Xia et al., 2023), the use
of ELBO in diffusion classifiers (Li et al., 2023a), and the recently proposed diffusion loss (Li et al.,
2024). These implications will be discussed in Section 4.

2 PROBLEM SET-UP

In this section, we formally introduce the Denoising Diffusion Probabilistic Model (DDPM) and
the stochastic differential equation (SDE) that describes the continuous-time limit of the forward
process of DDPM.

2.1 DENOISING DIFFUSION PROBABILISTIC MODEL

Consider the following forward Markov process in discrete time:

Xi=V1-83Xi_1+ \/ﬂtWt (t: 17~--,T)7 Xo ~ Pdatas 2.1
where W1, ..., Wrp i N(0, 1;) and the learning rates 3; € (0,1). Since our main results do not

depend on the specific choice of 3;, we will specify them as needed in later discussions. For each
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t € [T, let ¢; be the law or density function of X, and let oy :== 1 — 3; and &, = Hle ;. A
simple calculation shows that:

Xt = \/EXO + 1-— Qay Wt where Wt ~ N(O, Id) (22)

We will choose the learning rates (; to ensure that @ is sufficiently small, such that g7 is close to
the standard Gaussian distribution.

The key components for constructing the reverse process in the context of DDPM are the score
functions s7 : R? — R? associated with each ¢;, defined as the gradient of their log density:

si(x) =Vilogq(x) (t=1,...,T).

While these score functions are not explicitly known, in practice, noise-prediction networks e ()

are trained to predict
ef(z) = =1 —ays;(z),
which are often referred to as epsilon predictors. To construct the reverse process, we use:

1
)/%,1 = 7(E+nt5t (Yt)—l—atZt) (t:T771), YT NN(O,Id) (23)
VOt
where Z1,...,Z1 i N(0,14), and s¢(-) == —&¢(+)/+/1 — @ is the estimate of the score function
s7(+). Here 1, o > 0 are the coefficients that influence the performance of the DDPM sampler, and
we will specify them as needed in later discussion. For each ¢ € [T], we use p; to denote the law or

density of Y;.

2.2 A CONTINUOUS-TIME SDE FOR THE FORWARD PROCESS

In this paper, we build our theoretical results on the continuous-time limit of the aforementioned
forward process, described by the diffusion process:

1 1
dXy = - Xydt + —=dB; (0<t<1), Xo ~ , 24
t 21— 4—\/m ¢ (0< ) 0 ™ Pdata 2.4
where (B;)¢>o is a standard Brownian motion. The solution to this stochastic differential equation
(SDE) has the closed-form expression:

— — [1—t [t 1
X, =V1—tXo+VtZ, where 7y = T/ 1—dB5 ~ N(0,1,). (2.5)
0 — S

It is important to note that the process X; is not defined at ¢ = 1, although it is straightforward to
see from the above equation that X, converges to a Gaussian variable as ¢ — 1.

To demonstrate the connection between this diffusion process and the forward process (2.1) of the
diffusion model, we evaluate the diffusion process at times t; = /1 —a; for 1 < ¢ < T. Itis
straightforward to check that the marginal distribution of the resulting discrete-time process { X, :
1 < 4 < T} is identical to that of the forward process (2.1). Therefore the diffusion process
(2.4) can be viewed as a continuous-time limit of the forward process. In the next section, we will
establish theoretical results for the diffusion process (2.4). Through time discretization, our theory
will provide insights for the DDPM.

We use the notation X for both the discrete-time process { X, : t € [T']} in (2.1) and the continuous-
time diffusion process (X;)o<i<1 in (2.4) to maintain consistency with standard literature. The
context will clarify which process is being referred to.

3 THE SCORE-BASED DENSITY FORMULA

3.1 MAIN RESULTS

Our main results are based on the continuous-time diffusion process (X;)o<i<1 defined in (2.4).
While X might not have a density, for any ¢ € (0, 1), the random variable X; has a smooth density,
denoted by p;(-). Our main result characterizes the evolution of the conditional mean of log p;(X;)
given X, as stated below.
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Theorem 1. Consider the diffusion process (Xi)o<i<1 defined in (2.4), and let p; be the density of
Xi. Forany 0 < t1 < t9 < 1, we have

ta
I log pt, (Xt,) — log pt, (Xt,) | Xo] = /

t1

D t +Vlogp (X)) 1] -

( 1 ]E[HXt—\/l—th
The proof of this theorem is deferred to Appendix A. A few remarks are as follows. First, it is worth
mentioning that this formula does not describe the evolution of the (conditional) differential entropy
of the process, because p;(-) represents the unconditional density of X, while the expectation is
taken conditional on Xy. Second, without further assumptions, we cannot set {1 = 0 or to = 1
because Xy might not have a density (hence pg is not well-defined), and X; is only defined for
t < 1. By assuming that X has a finite second moment, the following proposition characterizes the
limit of E[log p:(X;) | Xo] as t — 1.

Proposition 1. Suppose that E[|| Xo||3] < oc. Then for any zo € RY, we have

. 1+ log (27

lim E[logp: (X;) | Xo = zo] = f#d.

t—1— 2

The proof of this proposition is deferred to Appendix B. This result is not surprising, as it can be

seen from (2.5) that X; converges to a standard Gaussian variable as t — 1 regardless of x(, and we

can check 1+ log (27)
+ log (27

Ellog ¢(7)] = —— 2=

where Z ~ N(0, I4) and ¢(-) is its density (we will use this notation throughout his section). The

proof of Proposition 1 formalizes this intuitive analysis.

d

When X, has a smooth density pg(-) with Lipschitz continuous score function, we can show that
E[log p:(X¢) | Xo] = po(xo) ast — 0, as presented in the next proposition.

Proposition 2. Suppose that Xo has density po(+) and sup,, |[V?log po(z)|| < oo. Then for any
xo € RY, we have

lim E[log p: (X:) | Xo = xo] = log po(xo).

t—0+

The proof of this proposition can be found in Appendix C. With Propositions 1 and 2 in place, we
can take t; — 0 and £o — 1 in Theorem 1 to show that for any given point z,

1 log(2
log po (o) = — —- Og ) / D(t,z0)d (3.1a)
where the function D(a: t) is defined as
X: — V1 —-tX 2 d
D) = 57— {H - 0 —l—Vlogpt(Xt)H2|X0 - x} -5 (3.1b)

In practice, we might not want to make smoothness assumptions on X as in Proposition 2. In that
case, we can fix some sufficiently small 6 > 0 and obtain a density formula

1+ log(2m !

B llog s (Xs) | Xo = a0l = -2 EE g [ Dt g G.10)
5

for a smoothed approximation of log po(zo). This kind of proximity is often used to circumvent

non-smoothness target distributions in diffusion model literature (e.g., Li et al. (2023b); Chen et al.

(2022; 2023b); Benton et al. (2023)). We leave some more discussions to Appendix D.

3.2 FROM CONTINUOUS TIME TO DISCRETE TIME

In this section, to avoid ambiguity, we will use (dee)0§t<1 to denote the continuous-time diffusion
process (2.4) studied in the previous section, while keep using {X; : 1 < ¢ < T} to denote
the forward process (2.1). The density formula (3.1) is not readily implementable because of its
continuous-time nature. Consider time discretization over the grid

0<t1<t2<"'<tT<tT+1:1 where t, =1—1a (ISZST)

d
2t

o )ar
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Recall that the forward process X1, ..., X7 has the same marginal distribution as thfe, . 7X§;{e
snapshoted from the diffusion process (2.4). This gives the following approximation of the density
formula (3. la):

log po () & E [log pn(X:fe) | X5 = ]

(ié) 1+10g d ZT: i+l — b {HXZde —J/1 —tiXSde
2(1 —t;) t;

2
+ Vlog pr, (X7%)||

| X5 = »”CO}

i) 1+ log (27tq) l;
w Lrlogrt), z LU, o [l ~ SO/ T + V)]

In step (i) we approximate log po(xg) with a smoothed proxy; see the discussion around (3.1c) for
details; step (ii) applies (3.1c), where we compute the integral ftll d/(2t)dt = —(d/2)logt; in
closed form and approximate the integral

/1 |:H Xsde \/ixsde
2(1—1)

2
+ Vlog pi(X;%) ) | X5% = zo| dt;

step (iii) follows from Xff’e = /T =tz + /te fore ~ N(0,1;) conditional on X% = x¢, and
the relation
Vlog py, = Vlogg; = s7(x) = —Vtie] (z) = —Vt:i().

In practice, we need to choose the learning rates {3; : 1 < ¢ < T'} such that the grid becomes finer
as T becomes large. More specifically, we require

tiy1 —ti =@ — Qg1 = i1 < i1 (1<i<T—1)
to be small (roughly of order O(1/T)), and t; = B; and 1 — t7 = @r to be vanishingly small
(of order T'~¢ for some sufficiently large constant ¢ > 0); see e.g., Li et al. (2023b); Benton et al.

(2023) for learning rate schedules satisfying these properties. Finally, we replace the time steps
{t; : 1 < i < T} with the learning rates for the forward process to achieve!

1+ log (2
logpo(xo) %(ﬂ-ﬁld Z ati_l)E,SN/\/' 0,14) |:HE — Et \/7.’110 + 41— Qe H :|

3.2)

The density approximation (3.2) can be evaluated with the trained epsilon predictors.

3.3 COMPARISON WITH OTHER RESULTS

The density formulas (3.1) expresses the density of X, using the score function along the
continuous-time limit of the forward process of the diffusion model. Other forms of score-based
density formulas can be derived using normalizing flows. Notice that the probability flow ODE of
the SDE (2.4) is
= Viog pi(a).
21—-t) 7’
namely, if we draw a particle zo ~ pg and evolve it according to the ODE (3.3) to get the trajectory
t — x4 fort € [0,1), then z; ~ p;. See e.g., Song et al. (2021b, Appendix D.1) for the derivation
of this result.

jft = Ut(ﬂft) where ’Ut(JU) = — (33)

Under some smoothness condition, we can use the results developed in Grathwohl et al. (2019);
Albergo et al. (2023) to show that for any given xg

_ ¢ 9 s d—tr(V?log ps(zs))
log pi(x¢) — log po(xg) = —/O Tr (axvs(xs)> ds = /o 3T —s) ds. (3.4)

Here ¢ — x; is the solution to the ODE (3.3) with initial condition x(. Since the ODE system (3.3)
is based on the score functions (hence x; can be numerically solved), and the integral in (3.4) is

"Here we define ar+1 = 0 to accommodate the last term in the summation.
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based on the Jacobian of the score functions, we may take t — 1 and use the fact that p;(-) — &(-)
to obtain a score-based density formula

Ld—tr(V%log ps(zs))
2(1—s)

However, numerically, this formula is more difficult to compute than our formula (3.1) for the
following reasons. First, (3.5) involves the Jacobian of the score functions, which are more
challenging to estimate than the score functions themselves. In fact, existing convergence guarantees
for DDPM do not depend on the accurate estimation of the Jacobian of the score functions (Benton
et al., 2023; Chen et al., 2023a; 2022; Li & Yan, 2024). Second, using this density formula requires
solving the ODE (3.3) accurately to obtain x;, which might not be numerically stable, especially
when the score function is not accurately estimated at early stages, due to error propagation. In
contrast, computing (3.1) only requires evaluating a few Gaussian integrals (which can be efficiently
approximated by the Monte Carlo method) and is more stable to score estimation error.

d 1
log po(s0) = 5 log(2m) — 3 [~ | as.G3)
0

4 IMPLICATIONS

In the previous section, we established a density formula

2 1—@)
=C}

1+ log (2 L1—
logao(e) ~ ~ B ET) 3 21—y Eeen[[le = 6t (VA + VI=me) ] @0
t=1

=Ly _,(x)

up to discretization error (which vanishes as 7' becomes large) and score estimation error. In
this section, we will discuss the implications of this formula in various generative and learning
frameworks.

4.1 CERTIFYING THE VALIDITY OF OPTIMIZING ELBO IN DDPM

The seminal work (Ho et al., 2020) established the variational lower bound (VLB), also known as
the evidence lower bound (ELBO), of the log-likelihood

T
IngO(x) > - ZEItNPXt\XO('|I)KL (pXt71|Xt,X0(' |xt’$) ||th71D/t(. | mt))
=2 — Lo 1 (2)
— KL (pYT(') H pXT\Xo(' ‘l‘)) +EZI?1~:DX1|XO(' | x) [logpyo‘yl (l‘ I xl)]? 4.2)

=:Lr(x) =:Co(z)

where the reverse process (Y;)o<i<7 was defined in Section 2.1, and py is the density of Y. Under
the coefficient design recommended by Li & Yan (2024) (other reasonable designs also lead to
similar conclusions)

1_ .
N =1—ay and o} = (1= o) ((it %)
I*Oét

, (4.3)

it can be computed that foreach 2 <t < T"
— — 2
WEENN(O’IGI) |:H€ — Et(\/ G + 1-— CYtE)H2:| .

We can verify that (i) for each 2 < ¢ < T, the coefficients in L;_; from (4.2) and L}_, from (4.1)
are identical up to higher-order error; (ii) when 7' is large, L1 becomes vanishingly small; and (iii)

the function 1+ log (218,
+ lo .
— A4 0(B) = Gy + 0(8)

is nearly a constant. See Appendix E.1 for details. It is worth highlighting that as far as we know,
existing literature haven’t pointed out that Cy(x) is nearly a constant. For instance, Ho et al. (2020)
discretize this term to obtain discrete log-likelihood (see Section 3.3 therein), which is unnecessary

11—«
Ltfl(.’ﬂ) = !

Co(z) =
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in view of our observation. Additionally, some later works falsely claim that Cy(z) is negligible, as
we will discuss in the following sections.

Now we discuss the validity of optimizing the variational bound for training DDPMs. Our discussion
shows that

KL(qo || po) = —Ezng,logpo(x)] — H(qo) < Eung,[L(2)] — CF — H(qo) + o(1), 4.4)
—_————

=L(€1,--,6T) =L (€1, ,ET)

where H(qo) = — [ log go(z)dqo is the entropy of o, and L(z) denotes the widely used (negative)
ELBO’

T
. 1— [eTEN]) — — 2
L(z) = ; 72(1 — at)EENN(O’Id) [Hs —e(Var++v1— ats)HQ]
The true objective of DDPM is to learn the epsilon predictors 1, . . ., ep that minimizes £ in (4.4),

while in practice, the optimization target is the variational bound L. It is known that the global
minimizer for

11—
Eongy [L(2)] = Z 2(1 f‘g—tl) Emgo,en (0,14) {HE — (Vo +v1— atE)H§:| 4.5)

is exactly &;(-) = ef(:) foreach 1 < ¢t < T (see Appendix E.1). Although in practice the
optimization is based on samples from the target distribution ¢y (instead of the population level
expectation over gg) and may not find the exact global minimizer, we consider the ideal scenario
where the learned epsilon predictors £; equal ¢} to facilitate discussion. When ¢; = ¢} for each ¢,
according to (4.1), we have

L(z) = —log qo(x) + C}. (4.6)

Taking (4.4) and (4.6) together gives
0 S E(gla cee 7gT) S Evb(gla e agT) ~ 7Em~qo [IOg Q(x)] + CS - CS - H(qO) = 07 (47)

namely the minimizer for £}, approximately minimizes £, and the optimal value is asymptotically
zero when the number of steps 7' becomes large. This suggests that by minimizing the variational
bound Ly, the resulting generator distribution pq is guaranteed to be close to the target distribution
qo in KL divergence.

Some experimental evidence suggests that using reweighted coefficients can marginally improve
empirical performance. For example, Ho et al. (2020) suggests that in practice, it might be better to
use uniform coefficients in the ELBO

1 « _ —
Lsimple(x) = T ZEENN(O,Id) [HE - Eti(\/itm +v1- at£)”§:| (48)
=1

when trainging DDPM to improve sampling quality.® This strategy has been adopted by many later
works. In the following sections, we will discuss the role of using the ELBO in different applications.
While the original literature might use the modified ELBO (4.8), in our discussion we will stick to
the original ELBO (4.6) to gain intuition from our theoretical findings.

4.2 UNDERSTANDING THE ROLE OF REGULARIZATION IN GAN

Generative Adversarial Networks (GANs) are a powerful and flexible framework for learning the
unknown probability distribution pgat, that generates a collection of training data (Goodfellow
et al., 2014). GANs operate on a game between a generator G and a discriminator D, typically

*We follow the convention in existing literature to remove the last two terms L (z) and Co(z) from (4.2)
in the ELBO.

3Note that the optimal epsilon predictors £; for L and Lsimple are the same, but in practice, we may not find
the optimal predictors. This practical strategy is beyond the scope of our theoretical result, and implies that
the influence of terms from different steps needs more careful investigation. We conjecture that this is mainly
because the estimation error for terms when ¢ is close to zero is larger, hence smaller coefficients for these terms
can improve performance.
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implemented using neural networks. The generator G takes a random noise vector z sampled from a
simple distribution ppeise (€.g., Gaussian) and maps it to a data sample resembling the training data,
aiming for the distribution of G(z) to be close to pyata. Meanwhile, the discriminator D determines
whether a sample x is real (i.e., drawn from pqat,) or fake (i.e., produced by the generator), outputting
the probability D(z) of the former. The two networks engage in a zero-sum game:

minmax V(G, D) = Eonpy,, [108 D(2)] + B, [log(1 — D(G(2)))];

with the generator striving to produce realistic data while the discriminator tries to distinguish real
data from fake. The generator and discriminator are trained iteratively*

D« argmin —Eqp, [log D(z)] — Eavp,..[log(1 — D(G(2)))],
G < argmin —E, ., .. [log D(G(z))]

to approach the Nash equilibrium (G*, D*), where the distribution of G*(z) with z ~ ppeise matches
the target distribution pyata, and D(z) = 1/2 for all .

It is believed that adding a regularization term to make the generated samples fit the VLB can
improve the sampling quality of the generative model. For example, Xia et al. (2023) proposed
adding the VLB L(x) as a regularization term to the objective function, where {&;,(-) : 1 <i < T}
are the learned epsilon predictors for pyat,. The training procedure then becomes

D A arg min _E$diata [log D(m)] - IEZ"‘/pnoise []'Og(]‘ - D(G(Z)))]7

G A arg min _Ez’\/pnoise [log D(G(Z))] + AIE:Z"’pnoise [‘[/(CTV(’Z))}7
where A > 0 is some tuning parameter. However, it remains unclear what exactly is optimized
through the above objective. According to our theory, L(z) ~ —10gpgata(x) + C§. Assuming

that this approximation is exact for intuitive understanding, the unique Nash equilibrium (G, D)
satisfies

Py () = (2pdata(®)* — 1), Paata()

for some normalizing factor z > 0, where pg, is the density of G)(z) with z ~ ppoise- See
Appendix E.2 for details. This can be viewed as amplifying the density pq.:a Wherever it is not too
small, while zeroing out the density where pyat, is vanishingly small (which is difficult to estimated
accurately), thus improving the sampling quality.

4.3 CONFIRMING THE USE OF ELBO IN DIFFUSION CLASSIFIER

Motivated by applications like image classification and text-to-image diffusion model, we consider
a joint underlying distribution po(z, c), where typically z is the image data and the latent variable
c is the class index or text embedding, taking values in a finite set C. For each ¢ € C, we train
a diffusion model for the conditional data distribution po(z | ¢), which provides a set of epsilon

predictors {a(x, ¢):1<t<T,ce C}. Assuming a uniform prior over C, we can use Bayes’
formula to obtain:

po(@po(xlei) _  polxfc)
jeePo(¢)po(zej)  Xjecpo(x|c))
for each ¢ € C. Recent work (Li et al., 2023a) proposed to use the ELBO’

po(0\$)=z

T
1-— ~
—L(z;¢) = — Z ﬁEaNN(O,Id) {Hg —&(Vaw + V1 —ae; C)H;}

—2(1—)

as an approximate class-conditional log-likelihood log po(x | ¢) for each ¢ € C, which allows them
to obtain a posterior distribution

exp (—L(z;¢c))
jecexp (—L(z;¢5))

po(clz) = 5 4.9)

*While the most natural update rule for the generator is G +— argmin B, [log(1 — D(G(2)))], both
schemes are used in practice and have similar performance. Our choice is for consistency with Xia et al. (2023),
and our analysis can be extended to the other choice.

>The original paper adopted uniform coefficients; see the last paragraph of Section 4.1 for discussion.
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Our theory suggests that —L(z;¢) &~ logpo(z|c) — C§, where C§ = —[1 + log(2701)]d/2 is a
universal constant that does not depend on pg and c. This implies that

exp (logpo(z]c) =C5) _  po(z]c)
jecexp(logpo(z|c;) = C5)  Xjecpo(@|e;

providing theoretical justification for using the computed posterior py in classification tasks.

Polclz) ~ 5

j = polela)

It is worth mentioning that, although this framework was proposed in the literature (Li et al., 2023a),
it remains a heuristic method before our work. For example, in general, replacing the intractable
log-likelihood with a lower bound does not guarantee good performance, as they might not be close.
Additionally, recall that there is a term Cy(z) in the ELBO (4.2). Li et al. (2023a) claimed that
“Since T = 1000 is large and log pg(xo | 21, ¢) is typically small, we choose to drop this term”.
However this argument is not correct, as we already computed in Section 4.1 that this term

_ 14log(27pB1)
2

can be very large since f3; is typically very close to 0. In view of our results, the reason why this
term can be dropped is that it equals a universal constant that does not depend on the image data x
and the class index c, thus it does not affect the posterior (4.9).

Co(z) = d+O(b)

4.4 DEMYSTIFYING THE DIFFUSION LOSS IN AUTOREGRESSIVE MODELS

Finally, we use our results to study a class of diffusion loss recently introduced in Li et al.
(2024), in the context of autoregressive image generation. Let x* denote the next token to be
predicted, and z be the condition parameterized by an autoregressive network z = f(x!,..., 2%71)
based on previous tokens as input. The goal is to train the network z = f(-) together with a
diffusion model {e¢(-;2) : 1 < ¢t < T} such that p(z | z) (induced by the diffusion model) with

z = f(x',...,2F"1) can predict the next token z*.

The diffusion loss is defined as follows: for some weights w; > 0, let

T
— — 2
L(z2) = 3 wiEeonor [||5 —a(War + VI —ae z)||2] . (4.10)
t=1
With training data {(z},...,2¥) : 1 <i < n}, we can train the autoregressive network f(-) and the
diffusion model by minimizing the following empirical risk:
1 n
argmin — > L (f(a},...,2f""),2}). 4.11)
f,€1 s ET n i=1

To gain intuition from our theoretical results, we take the weights in the diffusion loss (4.10) to
be the coefficients in the ELBO (4.6), and for each z, suppose that the learned diffusion model for
p(z¥ | 2) is already good enough, which returns the set of epsilon predictors {£;(-;2) : 1 <t < T}
for the probability distribution of 2* conditioned on z. Under this special case, our approximation
result (4.6) shows that
L(z,x) = —logp(z|z) + CF,

which suggests that the training objective for the network f in (4.11) can be viewed as approximate
MLE, as the loss function

1o Lo
SN L(fGal ) & =2 Y o plaf | S 4
n; (f(-rza , Lj )ax’b> TL; ng(‘rz |f(],‘l, , T, ))+ s

represents the negative log-likelihood function (up to an additive constant) of the observed
x¥ ..., xF in terms of f.

5 DISCUSSION

This paper develops a score-based density formula that expresses the density function of a target
distribution using the score function along a continuous-time diffusion process that bridges this
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distribution and standard Gaussian. By connecting this diffusion process with the forward process
of score-based diffusion models, our results provide theoretical support for training DDPMs by
optimizing the ELBO, and offer novel insights into several applications of diffusion models,
including GAN training and diffusion classifiers.

Our work opens several directions for future research. First, our theoretical results are established
for the continuous-time diffusion process. It is crucial to carefully analyze the error induced by time
discretization, which could inform the number of steps required for the results in this paper to be
valid in practice. Additionally, while our results provide theoretical justification for using the ELBO
(4.6) as a proxy for the negative log-likelihood of the target distribution, they do not cover other
practical variants of ELBO with modified weights (e.g., the simplified ELBO (4.8)). Extending our
analysis to other diffusion processes might yield new density formulas incorporating these modified
weights. Lastly, further investigation is needed into other applications of this score-based density
formula, including density estimation and inverse problems.
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A PROOF OF THEOREM 1

Recall the definition of the stochastic process (X¢)o<t<1
1 1
2(1—¢) VI—t

Define Y; := X;/v/1 —tforany 0 < t < 1, and let f(¢,z) = x/+/1 — t, we can use Ito’s formula
to show that

dX; = — Xdt + dB;.

of
ot

1
Ay, = df (t, X,) = (t,Xt)dt+wa(t,Xt)TdXt+§dXtTVif(t,Xt)dXt

X, 1 1 1 dB;
— dt - Xydt + ——dB, | = —~. Al
2(1 — )3/ +\/1—t< STU R R p t) 1—¢ A1)

Therefore the Itd process Y; is a martingale, which is easier to handle. Let g(t,y) =

log p:(v/1 — ty), and we can express log p;(z) = g(t,z/+/1 —1t). In view of It6’s formula, we
have

dlog pu(X0) = dg (1Y) 2 2 (1,,)dt 4 V9 (1Y) aY; + 2%, V3 (1, Vi) Y,

ot
i Oy 1 T 1 To2
t,Yy))dt+ —V,g9(t,Y;) dBy+ ——dB, Vig(t,Y;)dB
It (t, Y1) 1_1¢ yg (t,Y2) t 2(1 _t)2 t yg( t)dB;
(i) 99 1 T 1 2
t,Y;)dt t,Y;) dB _ t,Y;))dt. (A2
Bt( t) + tvyg(7 t) t+2(1_) (Vg( 0)) (A.2)

Here step (i) follows from the It rule, step (ii) utilizes (A.1), while step (iii) can be derived from
the 1t6 calculus. Then we investigate the three terms above. Notice that

~ Vype (V1 —ty) _ Vap(Xy)v1—t
Vyg (t,y) ly=y, = e ly=y, = ) Xt) =1 —tViogp, (X)), (A3)

and similarly, we have
V39 (t,9) |y=y, = (1 =) V*log p; (Xy) . (A4)
Substituting (A.3) and (A.4) back into (A.2) gives

0
99 (¢, ;) dt + Viog p: (X;) T dB; +

1
ot VARER

or equivalently, for any given 0 < ¢; < to < 1, we have

ta 2 rdg tr (V2 log p¢ (Xt)) 2
- Iy,
o / (o0 0+ =505 ]d”/n Vi

Conditional on X, we take expectation on both sides of (A.5) to achieve

dlog pi(Xy) = tr (V2 log p; (X)) dt.

1
2(1—1)

Vlogp; (X;) " dB;.
(AS)

log p; (X¢)

B llog p, (Xis) ~ o8 1, (Xa) | o] = [ (% wr+ tr (V2 log 1 (X)) at %o

(A.6)

2(1—1)

We need the following lemmas, whose proof can be found at the end of this section.
Claim 1. Forany 0 < t < 1 and any y € R?, we have

dg d 1
e (t,y) = 5t oz / Pxo1x, (2o | V1 —ty) |ly — xol|5do.

Claim 2. Forany 0 <t < 1 and any z € R%, we have
d 2 1 2
tr (V2 log py(z)) = - |V log pi ()], + 2 / |z = V1 —tao||,0x,)x, (x0|z) dz.
It also admits the lower bound

tr (V2 log py(z)) > —g.

12
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Therefore for any x and y = 2/+/1 — t, we know that

dg | , d d d
a(t,y)—&-mtr(v log p; (z)) > TR Ty > oot (A7)

Hence we have

[ log pt, (X¢,) — log ps, (Xt,) | Xo]

()E[/ (5 010+ gy (oo (60) + - ) 1 / T

[ 5[ g+ ) oo [
:/tl E Kgi (t,Y;) + 2(11_ t)tr (V?log p: (Xt))> Xo] dt. (A.8)

Here step (i) follows from (A.6), and its validity is guaranteed by

2 g ty (1 —t1)
% dt=log 2" o 4o,
/tl t(1—t) S (1—t)

while step (ii) utilizes Tonelli’s Theorem, and the nonnegativity of the integrand is ensured by (A.7).
Taking Claims | and 2 collectively, we know that for any z and y = x/v/1 — ¢,

5} tr (V21og p; (z d+ ||V log p(2)]?
('Ti (t9) = ( 2(1 —tt)( ) ||2(1 —tf) . 22 f, PXolX (w0 | VI = ty) lly = oll3dzo
s [ o= VIt o, (o] ) doo
dt ||v10gpt o)
B 2(1—t) ‘ (A9)

Putting (A.8) and (A.9) together, we arrive at

d+||V1 x5
|: +H ngt( t)||2+ ! tr(v210gpt(Xt)) |XO:|dt

ta
E [logptz (th) - log Pty (th) |X0] = / E 9 (1 — t) 1—¢
(A.10)

ty
Notice that conditional on X, we have X; ~ N'(v/1 — ¢ Xy, t14). Then we have
E [log pt, (Xt,) — log pe, (Xi,) | Xo]

L rt2 dJrHVlogpt (X¢) ||
0] 2
_/tl E|: 2(1—t) 1—¢ X():|dt

o [ (g1 i3]

Here step (i) follows from (A.10) and an application of Stein’s lemma

T’Xt \/ XO

Vlog pi(X1)

E[v log py(X) " (X¢ — V1 —tXo) |X0} =1tE [tr(V?log pi(X1)) | Xo]

while step (i) holds since

e

S IR

Proof of Claim 1. For any ¢ € (0, 1), since X; = /T — t X + /tZ, we have

p(VI—ty) = / (Zwt)*d“exp(fw)po(dxo)- (A1)

13
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Note that here pg(-) stands for the law of X. Hence we have

ag 9

d 1

= —log p (VI —ty) = ————pi(VI—

5t (b)) = 5;log o ty) o T=Ty) 5Pt ty)
1 _ d _g/9_ 1—t)|ly — zol3
= v L g e (- B
1—1t)|ly — xol|3 — xl|3
+t7d/2exp(7 ( )”i on) ly 2t20”2]p0(dx0)

B 1 — _d |y — ol

= (st /xo px.|xo (V1 tl/|$o)[ %t op po(dzo)

_ d  |ly —=oll3

—/zo(—%ﬂLQtz)ﬂdet (dzo [ V1 —ty)

as claimed.

Proof of Claim 2. Notice that we can express

1 1
Vlog pi(x) = —7 (X — V1 —tXo| X = 2] = —g/ (z = V1 —txo) px,yx, (dzo | 2);
xo

see Chen et al. (2022) for the proof of this relationship. Then we can compute
1 1 T
V2log pu(a) = =5 {la+ TE[Xi = VI = X0 | X; = 2] E [X; - VI = X0 | X, = ]
1 T
— SB[ (X = VI=X0) (Xe — VI—iX0) | X =2 }

M+ %[/ (2 = VT=1x0) pxojx, (o] 2) | [/ (v~ VT=E0) pxopx, (doo|2)]

1 [ o= VT=a0) (o = VT=0) v, oo 2) }

Hence we have

1 1 1
tr (V2 log p()) :_t{d+ gﬂ/(a:—\/l—txo) PXo|X: (dxﬂx)”i—;/Hx—\/l—txoﬂipxo‘xt (dx0|a:)}
_d
t

1 1
_ ﬁ||Vlogpt(x)|‘§ + 2 / Ha: —V1- txOH;pX(ﬂXt (zo | ) dxg.
By Jensen’s inequality, we know that

tr (V2 log p¢(z)) > —%

B PROOF OF PROPOSITION 1

We establish the desired result by sandwiching E[log p;(X;) | Xo = zo] and find its limitas ¢t — 1.
We first record that the density of X; can be expressed as

e TTERY)

5 B.1)

pul) = B | (2mt) P exp
since X, 4 V1 —=1Xy + +/1Z for an independent variable Z ~ N (0, I;).

Lower bounding E[log p;(X;) | Xo = z¢].  Starting from (B.1), for any x € R% and any 0 < t <
1,

log pt(z) = log Ex, [(27715)_6[/2 exp (

) |x—ﬂXo||%)]

2t

14
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> log {(%t)‘”Q P ( R V ) mXOH%} ) }

2t

— V1 —1tXol3

:—dlog(th)—Exo{x V-t 0||2}
2 2t

4 ol 1= tpn o, VIt T
= —glog(2mt) — == — — —E[l| Xoll2] + Elz " Xo]
iy d :
& —Flog(2nt) — (1+0(VI 1)) ”21'5'2 +O(VI—H)E[|[ Xo|13]

Here step (i) follows from Jensen’s inequality and the fact that e~* is a convex function, while step
(ii) follows from elementary inequalities

1
[Elz" Xo]| < El|zlll| Xoll2] < SE[llzll3 + [ Xoll3]

This immediately gives, for any given 29 € R? and any 0 < t < 1,

_1+0(/T-1),

d
E[log p:(X:) | Xo = x0] > 3 log(2nt) on

[1XelI3 ] Xo = zo] + O(VI = O)E[| Xol13].

=:faq (t)

(B.2a)
Since E[|| Xol|3] < oo, it is straightforward to check that

d 1
lim f,(t) = —3 log(2m) — tgr}l_ 5[@ [||\/1 —txg + \/fZH%} for Z ~ N (0, 14)

t—1—

d d

Upper bounding Elog p;(X;) | Xo = x0]. Towards that, we need to obtain point-wise upper
bound for log p;(x). Since the desired result only depends on the limiting behavior when ¢ — 1,
from now on we only consider ¢t > 0.9, under which

1 1
1-)Y* < =\ 1
(1-1) <g\/log1—

holds. It would be helpful to develop the upper bound for the following two cases separately.

e Forany (1 —t)'/* < ||lz||2 < 0.5/log 1/(1 — t), we have

(llzllz = (1 = )*/*)
2t

(2)
log pi(z) % log Ex, [(27rt)d/2 exp < —

(b) o _4\1/4)\2
2 ogamy - =1 =0

) +1 (| Xoll2 > (1 - t)”‘*)}

zla — (1 —t)Y/ _
+eXP<(” H ) 4)2)P(|\X0||2>(1*t) 1/4)

2t 2t
© _d (lefls = (1= )/*)? a3 201 P12
< _ _
< 5 log(2nt) > +exp (122 )E[|Xoll3)(1 — 1)
@ d zll2 — (1 —¢)1/4)?
L roganr) — W2 =020 T 4 gy -0y ®3)

Here step (a) follows from (B.1); step (b) holds since log(z + y) < logx + y/ holds for any
x> 0and y > 0; step (c) follows from ||z[y > (1 — t)'/* and Chebyshev’s inequality; while

step (d) holds since ||z]|2 < 0.54/log1/(1 —¢).

* For ||z||2 > 0.5¢/log 1/(1 —t) or ||z|| < (1 — t)'/%, we will use the naive upper bound
d
log pi(z) < -3 log(27t) < 0, (B.4)

where the first relation simply follows from (B.1) and the second relation holds when ¢ > 0.9.
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Then we have

Eflog po(X,) | Xo = 20] < Ellog py (X)) 1 {@=0"" < | X,]l2 < 0.5v/l0g 1/(T= 1) } | Xo = o]

(lzll2 = (1 = )'/%)
2t

1 {(1 — Y4 < |1 X2 < 0,5\/m} | Xo = xo}
- (- glog@m + B[ Xol (1 - )P (1= )1/ < | X]l2 < 0.5Vlog T/(T—1) )

(i) d
< _Z _
<E {( ) log(27t)

+ E[| Xo 311 - /)

=7, (1)
Xilla — (1—1)1/4)?
_E [(” ill2 ;t VT {(1 — )V <X ]l2 < 0.5¢/Tog 1/(1 —t)} | Xy = xo} .
::§10(t)

Here step (i) follows from (B.4), while step (ii) utilizes (B.3). Since X; is a continuous random
variable for any ¢ € (0, 1), we have

lim P ((1 — )4 < || X2 < 0.5v/Tog 1/(1 — t)) —1.
t—1—

Therefore we know that p
lim g, (t) = —3 log(27).

t—1—

Recall that X, 4 V1 —=1X, + v/tZ for a Gaussian variable Z ~ N(0, I;) independent of Xy, we
can express

Goo(t) =E [(\/%Z-l-\/l —txollz — (1 —t)1/4)2 1 {(1 —t)1/4 < ||\/ZZ+ /1 “taol|s < % Nog 1/(1 —t)}]

2t
= —(1 =1V
_ / (J[Vtz + V1 tl‘20t||2 (1—t)t/1)2 1 {(1 — )4 < ||Vitz + V1 = taglfe < % log T it}(b(z) dz,

::ht(z)

where ¢(z) = (21) =42 exp(—||2||3/2) is the density function of NV(0, I). For any ¢t € (0.9, 1),

we have
he(2) < [IVtz + V1 = taoll36(2) < 2(||2[15 + [lzoll3)¢(2) = h(2),

and it is straightforward to check that
/h(z)dz — 24+ 2o 2 < 0.

By dominated convergence theorem, we know that

o [ _ [ =113 _d
tlﬁlrflf Guo (t) = tlﬁu{lﬁ hi(z)dz = /tgﬂnf hi(z)dz = / 7¢(2)dz =3
Therefore we have
Ellog pi(X:) [ Xo = o] < guo(t)  where gy, (£) 1= Gy, (£) — Guro (1), (B.5a)
such that d d
Jm go, (8) = lMm gy, (8) — Um goy(t) = —5 log(27) — 5. (B.5b)

Conclusion. By putting together (B.2) and (B.5), we know that for any ¢ € (0.9, 1)

fao(t) < Ellog pi(Xe) | Xo = o] < ga (1) and liql_ fuo(t) = lm gy, (t) = —g 10g(27r)—g.

t— t—1—

By the sandwich theorem, we arrive at the desired result

. d d
tl_l)rln_E[Ingt(Xt) | Xo = o] = ) log(2m) — 9
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C PROOF OF PROPOSITION 2

Suppose that L = sup, ||[V?log po(z)||. The following claim will be useful in establishing the
proposition, whose proof is deferred to the end of this section.

Claim 3. There exists some ¢ty > 0 such that
sup [|V?log py ()| < 4L. (C.1)
holds for any 0 < t < tg.
Equipped with Claim 3, we know that for any ¢ < ¢,
E[log pt(X:) | Xo = o] = E[log pr(V1 — txg + ViZ)]
€ E[log pe (V1 — txo) + V12V log pr(V1— txo) + O(Lt)| Z||3]
= log pt (V1 — txg) + O(Ldt)
(1 —t)llz — x0l13

i) log/ po(z)(2mt) =2 exp ( - 5

—d/2 _ - 2
= (1—t)" 42 log/ po(z) (f”’;) exp ( - W)dx +O(LVdt),
‘ (€.2)

where Z ~ N(0,1;). Here step (i) follows from (C.1) in Claim 3; step (ii) holds since E[Z] = 0
and E[|| Z||3] = d; while step (iii) follows from (A.11). It is straightforward to check that

is the density of po * A (0,¢/(1 — t)) evaluated at o, which taken collectively with the assumption
that po(+) is continuous yields

—d/2 2
. 2mt (1 =t)||z — =oll5
A, [ pol@) (1—t> exp (= g )do = pofao).
Therefore we can take ¢ — 0+ in (C.2) to achieve

Jim B [log py(X;) | Xo = @o] = log po(o)

)dx + O(LVdt)

as claimed.

Proof of Claim 3. The conditional density of X given X; = x is

Pxo (%0)Px, %0 (® [ T0) — po(o) —dy2 lz — V1 — tao|3
Praix. (2] 2) b (@) ) O 2 ’
(C.3)
which leads to
1
—V3, log px,x, (zo | 1) = =V, log po(w0) + ﬂvioﬂz — V1 —taolf;
1—1t 1—1t
= —Vio logpo(xo) + Tld >~ (t - L) 1.
Therefore we know that
1 1
2
— 1 -1 f t< ———— C4
Vo log pxyx, (To | ) = o7 Ld or TSI (C4

namely the conditional distribution of Xy given X; = x is 1/(2t)-strongly log-concave for any z,
when ¢t < 1/2(L + 1). By writting

pe(z) = px, (x) = /¢(Z)P\/1Ttxo (x - \ﬁz) dz=(1- t)—d/2/¢(z)00 (:c—ﬂit:) dz,

(C.5)
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we can express the score function of p; as

th( ) \fz
— (1) z r- vz 0, _\/Z z
— (-1 pt(z)/qs( >po(m)v1gpo(m)d )
@ _ar1 (1 —1 d/2 1 r—+1—tx
=(1-t) = ( ; ) (@) /¢( i 0>P0 (w0) Vlog po (x0) dzo
@ \/f/pxo\xt (w0 | )V log po (z0) dxg = \/11—_25]E[V10gpo (Xo) | Xy = 2].

(C.7)

Here step (i) uses the change of variable o = (z —+/tz)/+/1 — t, while step (ii) follows from (C.3).
Starting from (C.6), we take the derivative to achieve

et
—H(2)
—Ha ()
-0 [ am (ﬁ%) Viogm () (Vo))
— Hy(2)
(C.8)

Then we investigate Hy(x), Ha(x) and Hs(x) respectively. Regarding Hy (), we have

—t\"? z—+1—-tx
Hi(z) @ (1—15)‘%le (1 ; t) ptéx) /(;5( \}Z ! O)Po (o) Vlog po (z0) [V log po (z0)] " dz

b1y 1
. m/pxo\x, (zo |2)V log po (o) [V log po (ffo)]Tdfo

1
= —E [v log po (Xo) [V log po (Xo)] T | X; = m] : (C.92)

for Hy(z), we have
/2
a _a 1-—1t 1 r—+1—tz x— Atz
) (-t () [ (200 ) 9o ()
¢

() Vi Nip=r
) 1 1
®2) T3 /pXo\Xt (z0 | :E)VQ log po (o) dxg = 17—t]E [VQ log po (Xo) | Xi = I] ;
(C.9b)

for the final term Hs(x), we have
Hi(z) 2 —(1— 1)~ [/¢ ( ) V log po ( \/it:) Z} [V log pi(z)]

@ (1 —t)‘% (1t_t)d/2 ﬁ [/¢( 70 po (o) V log po (wo)dl‘o} [V log pe ()] "

®3)

ﬁ / Pxoix, (00| 2)V log po (o) do [V log pe(2)] "
(d)

= ’T —E[Vlog po (Xo) | X; = 2] E[Vlog po (Xo) | X, = ). (C.9¢)

18



Under review as a conference paper at ICLR 2025

Here steps (al), (a2) and (a3) follow from the change of variable zo = (z — v/tz)/+/1 — {; steps
(bl), (b2) and (b3) utilize (C.3); step (c) follows from V log p:(z) = Vpi(z)/pt(x); while step (d)
follows from (C.7). Substituting (C.9) back into (C.8), we have

1
VZlog pi(x) = T [V?log po (Xo) | Xi = z] + T

Notice that for any ¢t < 1/2(L + 1), we have

cov (Vlog pg (Xo) | Xt = x). (C.10)

[[cov (V1og po (Xo) | Xi = z)| = zgﬁlE [[UT (Vlog po (Xo) — E[Vlog po (Xo) | Xy = 1?])]2 | X¢ = l’]
< sup E[[u” (Vlogp (Xo) ~ Vlog po (E[Xo | X, = a]))] | X, = ]

u€Sd—1

< E [V log po (Xo) — Vlog po (E [Xo | X, = a]) |3 | X, = o]

(ii)

<E || Xo ~E[Xo| X, = alll} | X, = o]

(iii) )

< 2tLAd, (C.11)
Here step (i) holds since for any random variable X, E[(X — ¢)?] is minimized at ¢ = E[X]; step
(ii) holds since the score function V log po(-) is L-Lipschitz; step (iii) follows from the Poincaré
inequality for log-concave distribution, and the fact that the conditional distribution of X, given
X = x is 1/2t-strongly log-concave (cf. (C.4)). We conclude that

2tL2d ®
<A4L.
1—t

Here step (a) follows from (C.10), (C.11), and the assumption that sup,, ||[V?log p;(z)|| < L, while
step (b) holds provided that ¢ < min{1/2,1/(2Ld)}.

@ 1
V2 log pu(a)]| < =L+

D MORE DISCUSSIONS ON THE DENSITY FORMULAS

Although the density formulas (3.1a) have been rigorously established, it is helpful to inspect the
limiting behavior of the integrand D(t, =) at the boundary to understand why the integral converges.
Throughout the discussion, we let & ~ A/(0, Iy).

* Ast — 0, we can compute

E(|le + VtViog ps (V1 — two + Vie)|3] —d
t

i 1
o E[||Vlog p: (V1 — tzo + Vie)||3] + %E[&?TVIngt(\/l —tzo + Vie)]

R E[IVIog pi(VI=Tao + VERE] + B [or (V2 log e (VT =i + Vi) )|

Here step (i) holds since E[||¢]|3] = d, while step (ii) follows from Stein’s lemma. Therefore,
when the score functions are reasonably smooth as ¢ — 0, one may expect that the integrand
D(t,xp) is of constant order, allowing the integral to converge at t = 0.

D(t,xy) <

* Ast — 1, we can compute

Dlt,w0) = 5Bl + ViV log p (VT = fo + Vi) -

201 — 1) 2t
ﬁﬂi[”e +VtVlog p (V1 — tzo + Vie) 3] —

Since p; converges to ¢ as t — 1 and Vlog ¢(x) = —z, we have

tlirrie +VtVlog pr (V1 — tzg + Vte) = 0.
e

X

N

Hence one may expect that E[||e + v/tV log pi(v/1 — txg + V/t€)||3] converges to zero quickly,
allowing the integral to converge at ¢t = 1.
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E TECHNICAL DETAILS IN SECTION 4

E.1 TECHNICAL DETAILS IN SECTION 4.1

Computing L;_;(zp). Conditional on X; = z; and Xy = x¢, we have

N Vo (1l —ay_ 1— o
Xt—lthfUt,Xo:ﬂCoNN( L lﬁta?o-i- el t-1) (tylﬁtfd),
t

1—oy 1-a

and conditional on Y; = z;, we have

T+ st (1) oF
Y, 1Y, =z ~ ct T RSt T )
Y= N( Ju o

Recall that the KL divergence between two d-dimensional Gaussian A (py,31) and N (g, X2)
admits the following closed-form expression:

1 _ _
KL (N (1, 21) [| N (122, 22)) = 3 [tr (257%0) + (2 — p1) " 551 (o — p1) — d + log det £y — log det El] .

Then we can check that for2 <t < T,
2

a; || vVa—15: ap — 1 N5t (24)
KL(px, 10 X0 (T2, 20) [Py (| 20)) = 55 (175 T mO—a) T v |y
t 2

where we use the coefficient design (4.3). This immediately gives

@ [ /8 o — 1 s+ (o
Lt_l(xo) = TZEI’LNPX 1xo ([ o) \/Ti tl‘o + ! —— X — Mese(2e)
(9 t 1-— (e 77 \/at(]- — at) \/at

2
2]
2
2]
Here in step (i), we utilize the coefficient design (4.3) and replace x; with \/a,z0++/1 — &g, which

has the same distribution; while in step (ii), we replace the score function s;(-) with the epsilon
predictor £,(+) :== —/1 — ays¢(+). Comparing the coefficients in L}_; and L;_;, we decompose

(i o ap — 1 1-—

(@7
= —E.. £ —
257 NI U’ Jou(l—a) Vo
(i_i) ]. — O

S Eean ) [lle = ee(v@rwo + VT =ae)[5] -

2(ap — @

tst(\/atxo +V1—ae)

170&,54_1_ lfozt ‘lOtH_l_ 170%_;'_1 '10lt+1 _ 170@
2(1 — at) 2(0{15 — at) - 2(1 — @t) 2(Oét — at) 2(0475 — @t) 2(Oét — at) '
=M =72
Consider the learning rate schedule in Li et al. (2023b); Li & Yan (2024):
1 clogT e logT\'
e = e Bip1 = = Tg mln{,@l <1+ ! Tg > ,1} (t=1,...,T—1) (ED)

for sufficiently large constants cg, ¢; > 0. Then using the properties in e.g., Li & Yan (2024, Lemma
8), we can check that

5 ‘(104t+1)(04t1) < SCllogT‘ 1—oyq
1 — [— [— — j— 9
2(1 —ay) (o — @) T 2(1 —ay)
and
R S e N B — 5t+1 Bt 1—oy 11— 8crlogT |1 — ayyr
Y2 = — | = — | < |1 - 1+ — — —|.
2(Oét — Oét) 2(Oét — Odt) 6“_1 Qp — Ot 2(1 — O(t) T 2(1 — Oét)

Hence the coefficients in L}_; and L;_; are identical up to higher-order error:

2(1 *at) 2(0[,5 *at)

’1—Qt+1 1—0475

160110gT 1—Oét+1
- T 2(1 — @)
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Computing Ly(zo). By takingn; = 07 = 1—«; (notice that (4.3) does not cover the case t = 1),

we have
2 2 —d/2 _ 2
Pyojy (o | 21) = 220 - 1 —msi (21)
20 9

T —
a1 1 0 v/ a1

_ (27751)d/2 exp o o — z1 — P51 (xl) 2
aq 2/, Vvai 2]’

and therefore

d 27I'ﬂ1 (5]

z1 + Pisi(z1)
Co(xo) = ]Ewlexl\XO(' | z0) l—Q log o — 2751 - - - -7

j

NG
Q d 27Tﬁ1 1 2
=3 log a §E€~N(O,Id) [HE +VBis1(V1 = Przo + v 515)”2}
iy 14 log(2m d 1
@ 18T 4 4 Drog(1 — B1) — 3 BiEeenio sl (VI— Bz + VB3]

- \/EEENN(O,IL{) [€T81(\/ 1 - Bixo + \/Eé‘)] (E.2)

Here in step (i), we replace z; with /1 — S1xg + /1€, which has the same distribution; step
(ii) uses the fact that E[||¢||3] = d for e ~ N(0,1;). Using similar analysis as in Proposition 2,
we can show that sup, ||VZlogqi(z)|| < O(L) when f3; is sufficiently small, as long as

sup,, | V2log go(z)|| < L. Hence we have

Eeono.t [151 (V1T = Brzo + VBiE) 2] < Ecrnvourn [(151(20) |2 + O(L) |20 — /1 = Brao — v/ Bicll) ]
< 2|1s1(z0) |13 + O(L2)E6~N(O,1d) [Hffo — V1= pizg — \/EEHQ
= 2||s1(z0)||2 + O(L?B1). (E.3)

By Stein’s lemma, we can show that

Ecn0,14) [€T51(\/ 1= przo + \/EE)} = /BiE [tr (V2 logg1(v/1 — Bixo + \//6715))}
< O(V/BiLd). (E.4)
Substituting the bounds (E.3) and (E.4) back into (E.2), we have

1 +log(27p1)

B d+O(p1)

CO (.%‘0) =
as claimed.

Negligibility of L1 (x). Since
Yr NN(O,Id), and XT|X0 =X NN(\/aTxo,(l 7ET)IE[) R

we can compute

1 ar
KL (pr () | e (- |20) = 57—

ar

(d+ Jlzoll3)

N |

d _
(d+ ||$0||§)+§10g(1—04T) <31 ar

Using the learning rate schedule in (E.1), we can check that o < T~ for some large universal
constant co > 0; see e.g., Li et al. (2023b, Section 5.1) for the proof. Therefore when T > 2, we
have
d + ||lzol3
KL (pYT(') ||pXT|X0(' | .’)30)) < 47—'7@7

which is negligible when 7' is sufficiently large.
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Optimal solution for (4.5). It is known that for each 1 < ¢ < T, the score function s} (-)
1

associated with ¢, satisfies
2
—F—F¢ .
RV4 1-— (673 2

See e.g., Chen et al. (2022, Appendix A) for the proof. Recall that £;(-) = /1 — @;s}(-), then we
have

s (Vagr + V1 —aye) +

s;(-) = argmin Ey gy conr(o,1,) [
s(-):Rd—R4

* . — — 2
g;(-) = argmin Eongo,en (0,10) {Hg —e(Vaww +v1— at€)||2:|'

e(-):Ré4—Re
Therefore the global minimizer for (4.5) is £;(-) = e} (-) foreach 1 <t < T.
E.2 TECHNICAL DETAILS IN SECTION 4.2
By checking the optimality condition, we know that (Dy, G, ) is a Nash equilibrium if and only if

D, (l‘) o Pdata (Z‘)

= , (optimality condition for D (E.5)
pema(@) + 90, (@) )

where pg, = (G ,\)#pnoise, and there exists some constant ¢ such that

{— log Dy(z) + AL(z) = ¢, when =z € supp(pg, ),

timalit dition f E.
—log Dy(z) + AL(x) > ¢, otherwise. (optimality condition for G») (E.6)

Taking the approximation L(x) &~ —log pyata(z) + C as exact, we have

ACi—ep X (x), forz € supp(pa, ),

D)\(l') = {1’ for x ¢ SUPP(pGA)'

where the first and second cases follow from (E.6) and (E.5) respectively. Then we derive a closed-
form expression for pg, .

(E.7)

* For any x € supp(pg, ), by putting (E.5) and (E.7) together, we have

ACE—c, —A Ddata ()
ero )= ,
data( ) DPdata (1') +ka (1’)

which further gives
yyeN (x) = pdata(x) (ei/\CU Jrcpc>i\ata (33) - 1) (E.8)
* For any z ¢ supp(pg, ), we have

iii

i ii (iii)
—log Dx(2) + AL(z) L AL(2) & —\log paata(z) + ACE > ¢,

where step (i) follows from D) (x) = 1, which follows from (E.7); step (ii) holds when we take
the approximation L(x) &~ — log pgata(z) + C§ as exact; and step (iii) follows from (E.6). This
immediately gives

e oteph (2) — 1 = log (—ACE + ¢+ A1og paata()) — 1 < 0. (E.9)
Taking (E.8) and (E.9) collectively, we can write
PG5 () = paata () (0 FpYia(a) — 1), (E.10)

On the other hand, we can check that (E.7) and (E.10) satisfies the optimality conditions (E.5) and
(E.6), which establishes the desired result.
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