
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SCORE-BASED DENSITY FORMULA, WITH
APPLICATIONS IN DIFFUSION GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based generative models (SGMs) have revolutionized the field of generative
modeling, achieving unprecedented success in generating realistic and diverse
content. Despite empirical advances, the theoretical basis for why optimizing
the evidence lower bound (ELBO) on the log-likelihood is effective for training
diffusion generative models, such as DDPMs, remains largely unexplored. In
this paper, we address this question by establishing a density formula for a
continuous-time diffusion process, which can be viewed as the continuous-time
limit of the forward process in an SGM. This formula reveals the connection
between the target density and the score function associated with each step of
the forward process. Building on this, we demonstrate that the minimizer of
the optimization objective for training DDPMs nearly coincides with that of the
true objective, providing a theoretical foundation for optimizing DDPMs using
the ELBO. Furthermore, we offer new insights into the role of score-matching
regularization in training GANs, the use of ELBO in diffusion classifiers, and the
recently proposed diffusion loss.

1 INTRODUCTION

Score-based generative models (SGMs) represent a groundbreaking advancement in the realm of
generative models, significantly impacting machine learning and artificial intelligence by their
ability to synthesize high-fidelity data instances, including images, audio, and text (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021b; Song & Ermon, 2019; Dhariwal & Nichol, 2021;
Song et al., 2021a). These models operate by progressively refining noisy data into samples
that resemble the target distribution. Due to their innovative approach, SGMs have achieved
unprecedented success, setting new standards in generative AI and demonstrating extraordinary
proficiency in generating realistic and diverse content across various domains, from image synthesis
and super-resolution to audio generation and molecular design (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022; Croitoru et al., 2023; Yang et al., 2023).

The foundation of SGMs is rooted in the principles of stochastic processes, especially stochastic
differential equations (SDEs). These models utilize a forward process, which involves the gradual
corruption of an initial data sample with Gaussian noise over several time steps. This forward
process can be described as:

X0
add noise−→ X1

add noise−→ · · · add noise−→ XT , (1.1)

where X0 ∼ pdata is the original data sample, and XT is a sample close to pure Gaussian noise. The
ingenuity of SGMs lies in constructing a reverse denoising process that iteratively removes the noise,
thereby reconstructing the data distribution. This reverse process starts from a Gaussian sample YT
and moves backward as:

YT
denoise−→ YT−1

denoise−→ · · · denoise−→ Y0 (1.2)

ensuring that Yt
d
≈ Xt at each step t. The final output Y0 is a new sample that closely mimics the

distribution of the initial data pdata.

Inspired by the classical results on time-reversal of SDEs (Anderson, 1982; Haussmann & Pardoux,
1986), SGMs construct the reverse process guided by score functions∇ log pXt associated with each

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

step of the forward process. Although these score functions are unknown, they are approximated
by neural networks trained through score-matching techniques (Hyvärinen, 2005; 2007; Vincent,
2011; Song & Ermon, 2019). This leads to two popular models: denoising diffusion probabilistic
models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) and denoising diffusion implicit
models (DDIMs) (Song et al., 2021a). While the theoretical results in this paper do not depend
on the specific construction of the reverse process, we will use the DDPM framework to discuss
their implications for diffusion generative models.

However, despite empirical advances, there remains a lack of theoretical understanding for diffusion
generative models. For instance, the optimization target of DDPM is derived from a variational lower
bound on the log-likelihood (Ho et al., 2020), which is also referred to as the evidence lower bound
(ELBO) (Luo, 2022). It is not yet clear, from a theoretical standpoint, why optimizing a lower
bound of the true objective is still a valid approach. More surprisingly, recent research suggests
incorporating the ELBO of a pre-trained DDPM into other generative or learning frameworks to
leverage the strengths of multiple architectures, effectively using it as a proxy for the negative log-
likelihood of the data distribution. This approach has shown empirical success in areas such as GAN
training, classification, and inverse problems (Xia et al., 2023; Li et al., 2023a; Graikos et al., 2022;
Mardani et al., 2024). While it is conceivable that the ELBO is a reasonable optimization target for
training DDPMs (as similar idea is utilized in e.g., the majorize-minimization algorithm), it is more
mysterious why it serves as a good proxy for the negative log-likelihood in these applications.

In this paper, we take a step towards addressing the aforementioned question. On the theoretical
side, we establish a density formula for a diffusion process (Xt)0≤t<1 defined by the following
SDE:

dXt = − 1

2(1− t)
Xtdt+

1√
1− t

dBt (0 ≤ t < 1), X0 ∼ pdata,

which can be viewed as a continuous-time limit of the forward process (1.1). Under some regularity
conditions, this formula expresses the density of X0 with the score function along this process,
having the form

log pX0
(x) = −1 + log(2π)

2
d−
∫ 1

0

[
1

2(1− t)
E
[∥∥∥Xt −

√
1− tX0

t
+∇ log pXt(Xt)

∥∥∥2
2
|X0 = x

]
− d

2t

]
dt,

where pXt(·) is the density of Xt. By time-discretization, this reveals the connection between the
target density pdata and the score function associated with each step of the forward process (1.1).
These theoretical results will be presented in Section 3.

Finally, using this density formula, we demonstrate that the minimizer of the optimization target for
training DDPMs (derived from the ELBO) also nearly minimizes the true target—the KL divergence
between the target distribution and the generator distribution. This finding provides a theoretical
foundation for optimizing DDPMs using the ELBO. Additionally, we use this formula to offer new
insights into the role of score-matching regularization in training GANs (Xia et al., 2023), the use
of ELBO in diffusion classifiers (Li et al., 2023a), and the recently proposed diffusion loss (Li et al.,
2024). These implications will be discussed in Section 4.

2 PROBLEM SET-UP

In this section, we formally introduce the Denoising Diffusion Probabilistic Model (DDPM) and
the stochastic differential equation (SDE) that describes the continuous-time limit of the forward
process of DDPM.

2.1 DENOISING DIFFUSION PROBABILISTIC MODEL

Consider the following forward Markov process in discrete time:

Xt =
√

1− βtXt−1 +
√
βtWt (t = 1, . . . , T), X0 ∼ pdata, (2.1)

where W1, . . . ,WT
i.i.d.∼ N (0, Id) and the learning rates βt ∈ (0, 1). Since our main results do not

depend on the specific choice of βt, we will specify them as needed in later discussions. For each

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

t ∈ [T], let qt be the law or density function of Xt, and let αt := 1 − βt and αt :=
∏t
i=1 αi. A

simple calculation shows that:

Xt =
√
αtX0 +

√
1− αtW t where W t ∼ N (0, Id). (2.2)

We will choose the learning rates βt to ensure that αT is sufficiently small, such that qT is close to
the standard Gaussian distribution.

The key components for constructing the reverse process in the context of DDPM are the score
functions s?t : Rd → Rd associated with each qt, defined as the gradient of their log density:

s?t (x) := ∇ log qt(x) (t = 1, . . . , T).

While these score functions are not explicitly known, in practice, noise-prediction networks εt(x)
are trained to predict

ε?t (x) := −
√

1− αts?t (x),

which are often referred to as epsilon predictors. To construct the reverse process, we use:

Yt−1 =
1
√
αt

(
Yt + ηtst (Yt) + σtZt

)
(t = T, . . . , 1), YT ∼ N (0, Id) (2.3)

where Z1, . . . , ZT
i.i.d.∼ N (0, Id), and st(·) := −εt(·)/

√
1− αt is the estimate of the score function

s?t (·). Here ηt, σt > 0 are the coefficients that influence the performance of the DDPM sampler, and
we will specify them as needed in later discussion. For each t ∈ [T], we use pt to denote the law or
density of Yt.

2.2 A CONTINUOUS-TIME SDE FOR THE FORWARD PROCESS

In this paper, we build our theoretical results on the continuous-time limit of the aforementioned
forward process, described by the diffusion process:

dXt = − 1

2(1− t)
Xtdt+

1√
1− t

dBt (0 ≤ t < 1), X0 ∼ pdata, (2.4)

where (Bt)t≥0 is a standard Brownian motion. The solution to this stochastic differential equation
(SDE) has the closed-form expression:

Xt =
√

1− tX0 +
√
t Zt where Zt =

√
1− t
t

∫ t

0

1

1− s
dBs ∼ N (0, Id). (2.5)

It is important to note that the process Xt is not defined at t = 1, although it is straightforward to
see from the above equation that Xt converges to a Gaussian variable as t→ 1.

To demonstrate the connection between this diffusion process and the forward process (2.1) of the
diffusion model, we evaluate the diffusion process at times ti =

√
1− αi for 1 ≤ i ≤ T . It is

straightforward to check that the marginal distribution of the resulting discrete-time process {Xti :
1 ≤ i ≤ T} is identical to that of the forward process (2.1). Therefore the diffusion process
(2.4) can be viewed as a continuous-time limit of the forward process. In the next section, we will
establish theoretical results for the diffusion process (2.4). Through time discretization, our theory
will provide insights for the DDPM.

We use the notationXt for both the discrete-time process {Xt : t ∈ [T]} in (2.1) and the continuous-
time diffusion process (Xt)0≤t<1 in (2.4) to maintain consistency with standard literature. The
context will clarify which process is being referred to.

3 THE SCORE-BASED DENSITY FORMULA

3.1 MAIN RESULTS

Our main results are based on the continuous-time diffusion process (Xt)0≤t<1 defined in (2.4).
While X0 might not have a density, for any t ∈ (0, 1), the random variable Xt has a smooth density,
denoted by ρt(·). Our main result characterizes the evolution of the conditional mean of log ρt(Xt)
given X0, as stated below.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1. Consider the diffusion process (Xt)0≤t<1 defined in (2.4), and let ρt be the density of
Xt. For any 0 < t1 < t2 < 1, we have

E [log ρt2(Xt2)− log ρt1(Xt1) |X0] =

∫ t2

t1

(
1

2(1− t)
E
[∥∥∥Xt −

√
1− tX0

t
+∇ log ρt(Xt)

∥∥∥2
2
|X0

]
− d

2t

)
dt.

The proof of this theorem is deferred to Appendix A. A few remarks are as follows. First, it is worth
mentioning that this formula does not describe the evolution of the (conditional) differential entropy
of the process, because ρt(·) represents the unconditional density of Xt, while the expectation is
taken conditional on X0. Second, without further assumptions, we cannot set t1 = 0 or t2 = 1
because X0 might not have a density (hence ρ0 is not well-defined), and Xt is only defined for
t < 1. By assuming that X0 has a finite second moment, the following proposition characterizes the
limit of E[log ρt(Xt) |X0] as t→ 1.
Proposition 1. Suppose that E[‖X0‖22] <∞. Then for any x0 ∈ Rd, we have

lim
t→1−

E [log ρt (Xt) |X0 = x0] = −1 + log (2π)

2
d.

The proof of this proposition is deferred to Appendix B. This result is not surprising, as it can be
seen from (2.5) that Xt converges to a standard Gaussian variable as t→ 1 regardless of x0, and we
can check

E[log φ(Z)] = −1 + log (2π)

2
d

where Z ∼ N (0, Id) and φ(·) is its density (we will use this notation throughout his section). The
proof of Proposition 1 formalizes this intuitive analysis.

When X0 has a smooth density ρ0(·) with Lipschitz continuous score function, we can show that
E[log ρt(Xt) |X0]→ ρ0(x0) as t→ 0, as presented in the next proposition.
Proposition 2. Suppose that X0 has density ρ0(·) and supx ‖∇2 log ρ0(x)‖ < ∞. Then for any
x0 ∈ Rd, we have

lim
t→0+

E [log ρt (Xt) |X0 = x0] = log ρ0(x0).

The proof of this proposition can be found in Appendix C. With Propositions 1 and 2 in place, we
can take t1 → 0 and t2 → 1 in Theorem 1 to show that for any given point x0,

log ρ0(x0) = −1 + log(2π)

2
d−

∫ 1

0

D(t, x0)dt (3.1a)

where the function D(x, t) is defined as

D(t, x) :=
1

2(1− t)
E
[∥∥∥Xt −

√
1− tX0

t
+∇ log ρt(Xt)

∥∥∥2
2
|X0 = x

]
− d

2t
. (3.1b)

In practice, we might not want to make smoothness assumptions on X0 as in Proposition 2. In that
case, we can fix some sufficiently small δ > 0 and obtain a density formula

E [log ρδ (Xδ) |X0 = x0] = −1 + log(2π)

2
d−

∫ 1

δ

D(t, x0)dt (3.1c)

for a smoothed approximation of log ρ0(x0). This kind of proximity is often used to circumvent
non-smoothness target distributions in diffusion model literature (e.g., Li et al. (2023b); Chen et al.
(2022; 2023b); Benton et al. (2023)). We leave some more discussions to Appendix D.

3.2 FROM CONTINUOUS TIME TO DISCRETE TIME

In this section, to avoid ambiguity, we will use (Xsde
t)0≤t<1 to denote the continuous-time diffusion

process (2.4) studied in the previous section, while keep using {Xt : 1 ≤ t ≤ T} to denote
the forward process (2.1). The density formula (3.1) is not readily implementable because of its
continuous-time nature. Consider time discretization over the grid

0 < t1 < t2 < · · · < tT < tT+1 = 1 where ti := 1− αi (1 ≤ i ≤ T).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Recall that the forward process X1, . . . , XT has the same marginal distribution as Xsde
t1 , . . . , X

sde
tT

snapshoted from the diffusion process (2.4). This gives the following approximation of the density
formula (3.1a):

log ρ0(x0)
(i)
≈ E

[
log ρt1(Xsde

t1) |Xsde
0 = x0

]
(ii)
≈ −1 + log(2πt1)

2
d−

T∑
i=1

ti+1 − ti
2(1− ti)

E
[∥∥∥Xsde

ti −
√

1− tiXsde
0

ti
+∇ log ρti(X

sde
t)
∥∥∥2
2
|Xsde

0 = x0

]
(iii)
≈ −1 + log (2πt1)

2
d−

T∑
i=1

ti+1 − ti
2ti(1− ti)

Eε∼N (0,Id)

[∥∥ε− ε̂i(√1− tix0 +
√
tiε)
∥∥2
2

]
.

In step (i) we approximate log ρ0(x0) with a smoothed proxy; see the discussion around (3.1c) for
details; step (ii) applies (3.1c), where we compute the integral

∫ 1

t1
d/(2t)dt = −(d/2) log t1 in

closed form and approximate the integral∫ 1

t1

1

2(1− t)
E
[∥∥∥Xsde

t −
√

1− tXsde
0

t
+∇ log ρt(X

sde
t)
∥∥∥2
2
|Xsde

0 = x0

]
dt;

step (iii) follows from Xsde
ti

d
=
√

1− tix0 +
√
tiε for ε ∼ N (0, Id) conditional on Xsde

0 = x0, and
the relation

∇ log ρti = ∇ log qi = s?i (x) = −
√
tiε

?
i (x) ≈ −

√
tiε̂i(x).

In practice, we need to choose the learning rates {βt : 1 ≤ t ≤ T} such that the grid becomes finer
as T becomes large. More specifically, we require

ti+1 − ti = αi − αi+1 = αiβi+1 ≤ βi+1 (1 ≤ i ≤ T − 1)

to be small (roughly of order O(1/T)), and t1 = β1 and 1 − tT = αT to be vanishingly small
(of order T−c for some sufficiently large constant c > 0); see e.g., Li et al. (2023b); Benton et al.
(2023) for learning rate schedules satisfying these properties. Finally, we replace the time steps
{ti : 1 ≤ i ≤ T} with the learning rates for the forward process to achieve1

log ρ0(x0) ≈ −1 + log (2πβ1)

2
d−

T∑
t=1

1− αt+1

2(1− αt)
Eε∼N (0,Id)

[∥∥ε− ε̂t(√αtx0 +
√

1− αtε)
∥∥2
2

]
,

(3.2)

The density approximation (3.2) can be evaluated with the trained epsilon predictors.

3.3 COMPARISON WITH OTHER RESULTS

The density formulas (3.1) expresses the density of X0 using the score function along the
continuous-time limit of the forward process of the diffusion model. Other forms of score-based
density formulas can be derived using normalizing flows. Notice that the probability flow ODE of
the SDE (2.4) is

ẋt = vt(xt) where vt(x) = −x−∇ log ρt(x)

2(1− t)
; (3.3)

namely, if we draw a particle x0 ∼ ρ0 and evolve it according to the ODE (3.3) to get the trajectory
t → xt for t ∈ [0, 1), then xt ∼ ρt. See e.g., Song et al. (2021b, Appendix D.1) for the derivation
of this result.

Under some smoothness condition, we can use the results developed in Grathwohl et al. (2019);
Albergo et al. (2023) to show that for any given x0

log ρt(xt)− log ρ0(x0) = −
∫ t

0

Tr

(
∂

∂x
vs(xs)

)
ds =

∫ t

0

d− tr
(
∇2 log ρs(xs)

)
2(1− s)

ds. (3.4)

Here t→ xt is the solution to the ODE (3.3) with initial condition x0. Since the ODE system (3.3)
is based on the score functions (hence xt can be numerically solved), and the integral in (3.4) is

1Here we define αT+1 = 0 to accommodate the last term in the summation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

based on the Jacobian of the score functions, we may take t→ 1 and use the fact that ρt(·)→ φ(·)
to obtain a score-based density formula

log ρ0(x0) = −d
2

log(2π)− 1

2
‖x1‖22 −

∫ 1

0

d− tr
(
∇2 log ρs(xs)

)
2(1− s)

ds. (3.5)

However, numerically, this formula is more difficult to compute than our formula (3.1) for the
following reasons. First, (3.5) involves the Jacobian of the score functions, which are more
challenging to estimate than the score functions themselves. In fact, existing convergence guarantees
for DDPM do not depend on the accurate estimation of the Jacobian of the score functions (Benton
et al., 2023; Chen et al., 2023a; 2022; Li & Yan, 2024). Second, using this density formula requires
solving the ODE (3.3) accurately to obtain x1, which might not be numerically stable, especially
when the score function is not accurately estimated at early stages, due to error propagation. In
contrast, computing (3.1) only requires evaluating a few Gaussian integrals (which can be efficiently
approximated by the Monte Carlo method) and is more stable to score estimation error.

4 IMPLICATIONS

In the previous section, we established a density formula

log q0(x) ≈ −1 + log (2πβ1)

2
d︸ ︷︷ ︸

=:C?0

−
T∑
t=1

1− αt+1

2(1− αt)
Eε∼N (0,Id)

[∥∥ε− ε?t (√αtx+
√

1− αtε)
∥∥2
2

]
︸ ︷︷ ︸

=:L?t−1(x)

(4.1)

up to discretization error (which vanishes as T becomes large) and score estimation error. In
this section, we will discuss the implications of this formula in various generative and learning
frameworks.

4.1 CERTIFYING THE VALIDITY OF OPTIMIZING ELBO IN DDPM

The seminal work (Ho et al., 2020) established the variational lower bound (VLB), also known as
the evidence lower bound (ELBO), of the log-likelihood

log p0(x) ≥ −
T∑
t=2

Ext∼pXt|X0
(· | x)KL

(
pXt−1|Xt,X0

(· |xt, x) ‖ pYt−1|Yt(· |xt)
)︸ ︷︷ ︸

=:Lt−1(x)

− KL
(
pYT (·) ‖ pXT |X0

(· |x)
)︸ ︷︷ ︸

=:LT (x)

+Ex1∼pX1|X0
(· | x)

[
log pY0|Y1

(x |x1)
]︸ ︷︷ ︸

=:C0(x)

, (4.2)

where the reverse process (Yt)0≤t≤T was defined in Section 2.1, and p0 is the density of Y0. Under
the coefficient design recommended by Li & Yan (2024) (other reasonable designs also lead to
similar conclusions)

ηt = 1− αt and σ2
t =

(1− αt) (αt − αt)
1− αt

, (4.3)

it can be computed that for each 2 ≤ t ≤ T :

Lt−1(x) =
1− αt

2(αt − αt)
Eε∼N (0,Id)

[∥∥ε− εt(√αtx+
√

1− αtε)
∥∥2
2

]
.

We can verify that (i) for each 2 ≤ t ≤ T , the coefficients in Lt−1 from (4.2) and L?t−1 from (4.1)
are identical up to higher-order error; (ii) when T is large, LT becomes vanishingly small; and (iii)
the function

C0(x) = −1 + log (2πβ1)

2
d+O(β1) = C?0 +O(β1)

is nearly a constant. See Appendix E.1 for details. It is worth highlighting that as far as we know,
existing literature haven’t pointed out that C0(x) is nearly a constant. For instance, Ho et al. (2020)
discretize this term to obtain discrete log-likelihood (see Section 3.3 therein), which is unnecessary

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in view of our observation. Additionally, some later works falsely claim that C0(x) is negligible, as
we will discuss in the following sections.

Now we discuss the validity of optimizing the variational bound for training DDPMs. Our discussion
shows that

KL(q0 ‖ p0)︸ ︷︷ ︸
=:L(ε1,...,εT)

= −Ex∼q0 [log p0(x)]−H(q0) ≤ Ex∼q0 [L(x)]− C?0 −H(q0) + o(1)︸ ︷︷ ︸
=:Lvb(ε1,...,εT)

, (4.4)

where H(q0) = −
∫

log q0(x)dq0 is the entropy of q0, and L(x) denotes the widely used (negative)
ELBO2

L(x) :=

T∑
t=1

1− αt+1

2(1− αt)
Eε∼N (0,Id)

[∥∥ε− εt(√αtx+
√

1− αtε)
∥∥2
2

]
.

The true objective of DDPM is to learn the epsilon predictors ε1, . . . , εT that minimizes L in (4.4),
while in practice, the optimization target is the variational bound Lvb. It is known that the global
minimizer for

Ex∼q0 [L(x)] =

T∑
t=1

1− αt+1

2(1− αt)
Ex∼q0,ε∼N (0,Id)

[∥∥ε− εt(√αtx+
√

1− αtε)
∥∥2
2

]
(4.5)

is exactly ε̂t(·) ≡ ε?t (·) for each 1 ≤ t ≤ T (see Appendix E.1). Although in practice the
optimization is based on samples from the target distribution q0 (instead of the population level
expectation over q0) and may not find the exact global minimizer, we consider the ideal scenario
where the learned epsilon predictors ε̂t equal ε?t to facilitate discussion. When εt = ε?t for each t,
according to (4.1), we have

L(x) ≈ − log q0(x) + C?0 . (4.6)

Taking (4.4) and (4.6) together gives

0 ≤ L(ε̂1, . . . , ε̂T) ≤ Lvb(ε̂1, . . . , ε̂T) ≈ −Ex∼q0 [log q(x)] + C?0 − C?0 −H(q0) = 0, (4.7)

namely the minimizer for Lvb approximately minimizes L, and the optimal value is asymptotically
zero when the number of steps T becomes large. This suggests that by minimizing the variational
bound Lvb, the resulting generator distribution p0 is guaranteed to be close to the target distribution
q0 in KL divergence.

Some experimental evidence suggests that using reweighted coefficients can marginally improve
empirical performance. For example, Ho et al. (2020) suggests that in practice, it might be better to
use uniform coefficients in the ELBO

Lsimple(x) :=
1

T

T∑
i=1

Eε∼N (0,Id)

[∥∥ε− ε̂ti(√αtx+
√

1− αtε)
∥∥2
2

]
(4.8)

when trainging DDPM to improve sampling quality.3 This strategy has been adopted by many later
works. In the following sections, we will discuss the role of using the ELBO in different applications.
While the original literature might use the modified ELBO (4.8), in our discussion we will stick to
the original ELBO (4.6) to gain intuition from our theoretical findings.

4.2 UNDERSTANDING THE ROLE OF REGULARIZATION IN GAN

Generative Adversarial Networks (GANs) are a powerful and flexible framework for learning the
unknown probability distribution pdata that generates a collection of training data (Goodfellow
et al., 2014). GANs operate on a game between a generator G and a discriminator D, typically

2We follow the convention in existing literature to remove the last two terms LT (x) and C0(x) from (4.2)
in the ELBO.

3Note that the optimal epsilon predictors ε̂t for L and Lsimple are the same, but in practice, we may not find
the optimal predictors. This practical strategy is beyond the scope of our theoretical result, and implies that
the influence of terms from different steps needs more careful investigation. We conjecture that this is mainly
because the estimation error for terms when t is close to zero is larger, hence smaller coefficients for these terms
can improve performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

implemented using neural networks. The generator G takes a random noise vector z sampled from a
simple distribution pnoise (e.g., Gaussian) and maps it to a data sample resembling the training data,
aiming for the distribution of G(z) to be close to pdata. Meanwhile, the discriminator D determines
whether a sample x is real (i.e., drawn from pdata) or fake (i.e., produced by the generator), outputting
the probability D(x) of the former. The two networks engage in a zero-sum game:

min
G

max
D

V (G,D) := Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))],

with the generator striving to produce realistic data while the discriminator tries to distinguish real
data from fake. The generator and discriminator are trained iteratively4

D ← arg min −Ex∼pdata [logD(x)]− Ez∼pnoise [log(1−D(G(z)))],

G← arg min −Ez∼pnoise [logD(G(z))]

to approach the Nash equilibrium (G?, D?), where the distribution ofG?(z) with z ∼ pnoise matches
the target distribution pdata, and D(x) = 1/2 for all x.

It is believed that adding a regularization term to make the generated samples fit the VLB can
improve the sampling quality of the generative model. For example, Xia et al. (2023) proposed
adding the VLB L(x) as a regularization term to the objective function, where {ε̂ti(·) : 1 ≤ i ≤ T}
are the learned epsilon predictors for pdata. The training procedure then becomes

D ← arg min −Ex∼pdata [logD(x)]− Ez∼pnoise [log(1−D(G(z)))],

G← arg min −Ez∼pnoise [logD(G(z))] + λEz∼pnoise [L(G(z))],

where λ > 0 is some tuning parameter. However, it remains unclear what exactly is optimized
through the above objective. According to our theory, L(x) ≈ − log pdata(x) + C?0 . Assuming
that this approximation is exact for intuitive understanding, the unique Nash equilibrium (Gλ, Dλ)
satisfies

pGλ(x) =
(
zpdata(x)λ − 1

)
+
pdata(x)

for some normalizing factor z > 0, where pGλ is the density of Gλ(z) with z ∼ pnoise. See
Appendix E.2 for details. This can be viewed as amplifying the density pdata wherever it is not too
small, while zeroing out the density where pdata is vanishingly small (which is difficult to estimated
accurately), thus improving the sampling quality.

4.3 CONFIRMING THE USE OF ELBO IN DIFFUSION CLASSIFIER

Motivated by applications like image classification and text-to-image diffusion model, we consider
a joint underlying distribution p0(x, c), where typically x is the image data and the latent variable
c is the class index or text embedding, taking values in a finite set C. For each c ∈ C, we train
a diffusion model for the conditional data distribution p0(x | c), which provides a set of epsilon
predictors

{
ε̂t(x; c) : 1 ≤ t ≤ T, c ∈ C

}
. Assuming a uniform prior over C, we can use Bayes’

formula to obtain:

p0 (c |x) =
p0 (c) p0 (x | ci)∑
j∈C p0 (cj) p0 (x | cj)

=
p0 (x | c)∑
j∈C p0 (x | cj)

.

for each c ∈ C. Recent work (Li et al., 2023a) proposed to use the ELBO5

−L(x; c) := −
T∑
t=1

1− αt+1

2(1− αt)
Eε∼N (0,Id)

[∥∥ε− ε̂t(√αtx+
√

1− αtε; c)
∥∥2
2

]
as an approximate class-conditional log-likelihood log p0(x | c) for each c ∈ C, which allows them
to obtain a posterior distribution

p̂0 (c |x) =
exp (−L(x; c))∑
j∈C exp (−L(x; cj))

. (4.9)

4While the most natural update rule for the generator is G ← argmin Ez∼pnoise [log(1 −D(G(z)))], both
schemes are used in practice and have similar performance. Our choice is for consistency with Xia et al. (2023),
and our analysis can be extended to the other choice.

5The original paper adopted uniform coefficients; see the last paragraph of Section 4.1 for discussion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Our theory suggests that −L(x; c) ≈ log p0(x | c) − C?0 , where C?0 = −[1 + log(2πβ1)]d/2 is a
universal constant that does not depend on p0 and c. This implies that

p̂0 (c |x) ≈ exp (log p0(x | c)− C?0)∑
j∈C exp (log p0(x | cj)− C?0)

=
p0 (x | c)∑
j∈C p0 (x | cj)

= p0 (c |x)

providing theoretical justification for using the computed posterior p̂0 in classification tasks.

It is worth mentioning that, although this framework was proposed in the literature (Li et al., 2023a),
it remains a heuristic method before our work. For example, in general, replacing the intractable
log-likelihood with a lower bound does not guarantee good performance, as they might not be close.
Additionally, recall that there is a term C0(x) in the ELBO (4.2). Li et al. (2023a) claimed that
“Since T = 1000 is large and log pθ(x0 |x1, c) is typically small, we choose to drop this term”.
However this argument is not correct, as we already computed in Section 4.1 that this term

C0(x) = −1 + log (2πβ1)

2
d+O(β1)

can be very large since β1 is typically very close to 0. In view of our results, the reason why this
term can be dropped is that it equals a universal constant that does not depend on the image data x
and the class index c, thus it does not affect the posterior (4.9).

4.4 DEMYSTIFYING THE DIFFUSION LOSS IN AUTOREGRESSIVE MODELS

Finally, we use our results to study a class of diffusion loss recently introduced in Li et al.
(2024), in the context of autoregressive image generation. Let xk denote the next token to be
predicted, and z be the condition parameterized by an autoregressive network z = f(x1, . . . , xk−1)
based on previous tokens as input. The goal is to train the network z = f(·) together with a
diffusion model {εt(· ; z) : 1 ≤ t ≤ T} such that p̂(x | z) (induced by the diffusion model) with
z = f(x1, . . . , xk−1) can predict the next token xk.

The diffusion loss is defined as follows: for some weights wt ≥ 0, let

L(z, x) =

T∑
t=1

wtEε∼N (0,Id)

[∥∥ε− εt(√αtx+
√

1− αtε; z)
∥∥2
2

]
. (4.10)

With training data {(x1i , . . . , xki) : 1 ≤ i ≤ n}, we can train the autoregressive network f(·) and the
diffusion model by minimizing the following empirical risk:

arg min
f,ε1,...,εT

1

n

n∑
i=1

L
(
f(x1i , . . . , x

k−1
i), xki

)
. (4.11)

To gain intuition from our theoretical results, we take the weights in the diffusion loss (4.10) to
be the coefficients in the ELBO (4.6), and for each z, suppose that the learned diffusion model for
p(xk | z) is already good enough, which returns the set of epsilon predictors {ε̂t(· ; z) : 1 ≤ t ≤ T}
for the probability distribution of xk conditioned on z. Under this special case, our approximation
result (4.6) shows that

L(z, x) ≈ − log p(x | z) + C?0 ,

which suggests that the training objective for the network f in (4.11) can be viewed as approximate
MLE, as the loss function

1

n

n∑
i=1

L
(
f(x1i , . . . , x

k−1
i), xki

)
≈ − 1

n

n∑
i=1

log p(xki | f(x1i , . . . , x
k−1
i)) + C?0

represents the negative log-likelihood function (up to an additive constant) of the observed
xk1 , . . . , x

k
n in terms of f .

5 DISCUSSION

This paper develops a score-based density formula that expresses the density function of a target
distribution using the score function along a continuous-time diffusion process that bridges this

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

distribution and standard Gaussian. By connecting this diffusion process with the forward process
of score-based diffusion models, our results provide theoretical support for training DDPMs by
optimizing the ELBO, and offer novel insights into several applications of diffusion models,
including GAN training and diffusion classifiers.

Our work opens several directions for future research. First, our theoretical results are established
for the continuous-time diffusion process. It is crucial to carefully analyze the error induced by time
discretization, which could inform the number of steps required for the results in this paper to be
valid in practice. Additionally, while our results provide theoretical justification for using the ELBO
(4.6) as a proxy for the negative log-likelihood of the target distribution, they do not cover other
practical variants of ELBO with modified weights (e.g., the simplified ELBO (4.8)). Extending our
analysis to other diffusion processes might yield new density formulas incorporating these modified
weights. Lastly, further investigation is needed into other applications of this score-based density
formula, including density estimation and inverse problems.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Linear convergence
bounds for diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686, 2023.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. arXiv preprint arXiv:2305.11798, 2023b.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728,
2022.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJxgknCcK7.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability,
pp. 1188–1205, 1986.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(4), 2005.

10

https://openreview.net/forum?id=rJxgknCcK7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aapo Hyvärinen. Some extensions of score matching. Computational statistics & data analysis, 51
(5):2499–2512, 2007.

Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your
diffusion model is secretly a zero-shot classifier. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2206–2217, 2023a.

Gen Li and Yuling Yan. Adapting to unknown low-dimensional structures in score-based diffusion
models. arXiv preprint arXiv:2405.14861, 2024.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
diffusion-based generative models. In The Twelfth International Conference on Learning
Representations, 2023b.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
inverse problems with diffusion models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=1YO4EE3SPB.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
Neural Information Processing Systems, 35:36479–36494, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pp. 2256–2265, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021a. URL https://openreview.
net/forum?id=St1giarCHLP.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2021b.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

Mengfei Xia, Yujun Shen, Ceyuan Yang, Ran Yi, Wenping Wang, and Yong-jin Liu. Smart:
Improving gans with score matching regularity. In Forty-first International Conference on
Machine Learning, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

11

https://openreview.net/forum?id=1YO4EE3SPB
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Recall the definition of the stochastic process (Xt)0≤t≤1

dXt = − 1

2(1− t)
Xtdt+

1√
1− t

dBt.

Define Yt := Xt/
√

1− t for any 0 ≤ t < 1, and let f(t, x) = x/
√

1− t, we can use Itô’s formula
to show that

dYt = df (t,Xt) =
∂f

∂t
(t,Xt) dt+∇xf (t,Xt)

>
dXt +

1

2
dX>t ∇2

xf (t,Xt) dXt

=
Xt

2(1− t)3/2
dt+

1√
1− t

(
− 1

2(1− t)
Xtdt+

1√
1− t

dBt

)
=

dBt
1− t

. (A.1)

Therefore the Itô process Yt is a martingale, which is easier to handle. Let g(t, y) =
log ρt(

√
1− ty), and we can express log ρt(x) = g(t, x/

√
1− t). In view of Itô’s formula, we

have

d log ρt(Xt) = dg (t, Yt)
(i)
=
∂g

∂t
(t, Yt) dt+∇yg (t, Yt)

>
dYt +

1

2
dY >t ∇2

yg (t, Yt) dYt

(ii)
=
∂g

∂t
(t, Yt) dt+

1

1− t
∇yg (t, Yt)

>
dBt +

1

2 (1− t)2
dB>t ∇2

yg (t, Yt) dBt

(iii)
=

∂g

∂t
(t, Yt) dt+

1

1− t
∇yg (t, Yt)

>
dBt +

1

2 (1− t)2
tr
(
∇2
yg (t, Yt)

)
dt. (A.2)

Here step (i) follows from the Itô rule, step (ii) utilizes (A.1), while step (iii) can be derived from
the Itô calculus. Then we investigate the three terms above. Notice that

∇yg (t, y) | y=Yt =
∇yρt(

√
1− ty)

ρt(
√

1− tYt)
| y=Yt =

∇xρt(Xt)
√

1− t
ρt(Xt)

=
√

1− t∇ log ρt (Xt) , (A.3)

and similarly, we have
∇2
yg (t, y) | y=Yt = (1− t)∇2 log ρt (Xt) . (A.4)

Substituting (A.3) and (A.4) back into (A.2) gives

d log ρt(Xt) =
∂g

∂t
(t, Yt) dt+

1√
1− t

∇ log ρt (Xt)
>

dBt +
1

2 (1− t)
tr
(
∇2 log ρt (Xt)

)
dt.

or equivalently, for any given 0 < t1 < t2 < 1, we have

log ρt (Xt)
∣∣∣t2
t1

=

∫ t2

t1

[∂g
∂t

(t, Yt) +
tr
(
∇2 log ρt (Xt)

)
2 (1− t)

]
dt+

∫ t2

t1

1√
1− t

∇ log ρt (Xt)
>

dBt.

(A.5)
Conditional on X0, we take expectation on both sides of (A.5) to achieve

E [log ρt2 (Xt2)− log ρt1 (Xt1) |X0] = E
[∫ t2

t1

(
∂g

∂t
(t, Yt) +

1

2 (1− t)
tr
(
∇2 log ρt (Xt)

))
dt |X0

]
.

(A.6)
We need the following lemmas, whose proof can be found at the end of this section.
Claim 1. For any 0 < t < 1 and any y ∈ Rd, we have

∂g

∂t
(t, y) = − d

2t
+

1

2t2

∫
x0

ρX0|Xt
(
x0 |
√

1− ty
)
‖y − x0‖22dx0.

Claim 2. For any 0 < t < 1 and any x ∈ Rd, we have

tr
(
∇2 log ρt(x)

)
= −d

t
−
∥∥∇ log ρt(x)

∥∥2
2

+
1

t2

∫ ∥∥x−√1− tx0
∥∥2
2
ρX0|Xt (x0 |x) dx0.

It also admits the lower bound
tr
(
∇2 log ρt(x)

)
≥ −d

t
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Therefore for any x and y = x/
√

1− t, we know that

∂g

∂t
(t, y) +

1

2 (1− t)
tr
(
∇2 log ρt (x)

)
≥ − d

2t
− d

2 (1− t) t
≥ − d

(1− t) t
. (A.7)

Hence we have

E [log ρt2 (Xt2)− log ρt1 (Xt1) |X0]

(i)
= E

[∫ t2

t1

(
∂g

∂t
(t, Yt) +

1

2 (1− t)
tr
(
∇2 log ρt (Xt)

)
+

d

(1− t) t

)
dt |X0

]
−
∫ t2

t1

d

(1− t) t
dt

(ii)
=

∫ t2

t1

E
[(

∂g

∂t
(t, Yt) +

1

2 (1− t)
tr
(
∇2 log ρt (Xt)

)
+

d

(1− t) t

)
|X0

]
dt−

∫ t2

t1

d

(1− t) t
dt

=

∫ t2

t1

E
[(

∂g

∂t
(t, Yt) +

1

2 (1− t)
tr
(
∇2 log ρt (Xt)

))
|X0

]
dt. (A.8)

Here step (i) follows from (A.6), and its validity is guaranteed by∫ t2

t1

d

t (1− t)
dt = log

t2 (1− t1)

t1 (1− t2)
< +∞,

while step (ii) utilizes Tonelli’s Theorem, and the nonnegativity of the integrand is ensured by (A.7).
Taking Claims 1 and 2 collectively, we know that for any x and y = x/

√
1− t,

∂g

∂t
(t, y)−

tr
(
∇2 log ρt (x)

)
2 (1− t)

=
d+

∥∥∇ log ρt(x)
∥∥2
2

2 (1− t)
+

1

2t2

∫
x0

ρX0|Xt
(
x0 |
√

1− ty
)
‖y − x0‖22dx0

− 1

2 (1− t)
1

t2

∫ ∥∥x−√1− tx0
∥∥2
2
ρX0|Xt (x0 |x) dx0

=
d+

∥∥∇ log ρt(x)
∥∥2
2

2 (1− t)
. (A.9)

Putting (A.8) and (A.9) together, we arrive at

E [log ρt2 (Xt2)− log ρt1 (Xt1) |X0] =

∫ t2

t1

E
[
d+

∥∥∇ log ρt(Xt)
∥∥2
2

2 (1− t)
+

1

1− t
tr
(
∇2 log ρt (Xt)

)
|X0

]
dt.

(A.10)
Notice that conditional on X0, we have Xt ∼ N (

√
1− tX0, tId). Then we have

E [log ρt2 (Xt2)− log ρt1 (Xt1) |X0]

(i)
=

∫ t2

t1

E
[
d+

∥∥∇ log ρt(Xt)
∥∥2
2

2 (1− t)
+

1

1− t
∇ log ρt(Xt)

>Xt −
√

1− tX0

t
|X0

]
dt

(ii)
=

∫ t2

t1

(
1

2(1− t)
E
[∥∥∥Xt −

√
1− tX0

t
+∇ log ρt(Xt)

∥∥∥2
2
|X0

]
− d

2t

)
dt

Here step (i) follows from (A.10) and an application of Stein’s lemma

E
[
∇ log ρt(Xt)

> (Xt −
√

1− tX0

)
|X0

]
= tE

[
tr
(
∇2 log ρt(Xt)

)
|X0

]
,

while step (ii) holds since

E
[∥∥∥Xt −

√
1− tX0

t

∥∥∥2
2

]
=
d

t
.

Proof of Claim 1. For any t ∈ (0, 1), since Xt =
√

1− tX0 +
√
tZ, we have

ρt(
√

1− ty) =

∫
x0

(2πt)−d/2 exp
(
− (1− t)‖y − x0‖22

2t

)
ρ0(dx0). (A.11)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Note that here ρ0(·) stands for the law of X0. Hence we have

∂g

∂t
(t, y) =

∂

∂t
log ρt(

√
1− ty) =

1

ρt(
√

1− ty)

∂

∂t
ρt(
√

1− ty)

=
1

ρt(
√

1− ty)

∫
x0

(2π)−d/2
[
− d

2
t−d/2−1 exp

(
− (1− t)‖y − x0‖22

2t

)
+ t−d/2 exp

(
− (1− t)‖y − x0‖22

2t

)‖y − x0‖22
2t2

]
ρ0(dx0)

=
1

ρt(
√

1− ty)

∫
x0

ρXt|X0

(√
1− ty |x0

) [
− d

2t
+
‖y − x0‖22

2t2

]
ρ0(dx0)

=

∫
x0

(
− d

2t
+
‖y − x0‖22

2t2

)
ρX0|Xt

(
dx0 |

√
1− ty

)
as claimed.

Proof of Claim 2. Notice that we can express

∇ log ρt(x) = −1

t
E
[
Xt −

√
1− tX0 |Xt = x

]
= −1

t

∫
x0

(
x−
√

1− tx0
)
ρX0|Xt (dx0 |x) ;

see Chen et al. (2022) for the proof of this relationship. Then we can compute

∇2 log ρt(x) = −1

t

{
Id +

1

t
E
[
Xt −

√
1− tX0 |Xt = x

]
E
[
Xt −

√
1− tX0 |Xt = x

]>
− 1

t
E
[(
Xt −

√
1− tX0

) (
Xt −

√
1− tX0

)> |Xt = x
]}

= −1

t

{
Id +

1

t

[∫ (
x−
√

1− tx0
)
ρX0|Xt (dx0 |x)

][∫ (
x−
√

1− tx0
)
ρX0|Xt (dx0 |x)

]>
− 1

t

∫ (
x−
√

1− tx0
) (
x−
√

1− tx0
)>
ρX0|Xt (dx0 |x)

}
.

Hence we have

tr
(
∇2 log ρt(x)

)
= −1

t

{
d+

1

t

∥∥∫ (x−√1− tx0
)
ρX0|Xt (dx0 |x)

∥∥2
2
− 1

t

∫ ∥∥x−√1− tx0
∥∥2
2
ρX0|Xt (dx0 |x)

}
= −d

t
− 1

t2
∥∥∇ log ρt(x)

∥∥2
2

+
1

t2

∫ ∥∥x−√1− tx0
∥∥2
2
ρX0|Xt (x0 |x) dx0.

By Jensen’s inequality, we know that

tr
(
∇2 log ρt(x)

)
≥ −d

t
.

B PROOF OF PROPOSITION 1

We establish the desired result by sandwiching E[log ρt(Xt) |X0 = x0] and find its limit as t→ 1 .
We first record that the density of Xt can be expressed as

ρt (x) = EX0

[
(2πt)−d/2 exp

(
− ‖x−

√
1− tX0‖22
2t

)]
, (B.1)

since Xt
d
=
√

1− tX0 +
√
tZ for an independent variable Z ∼ N (0, Id).

Lower bounding E[log ρt(Xt) |X0 = x0]. Starting from (B.1), for any x ∈ Rd and any 0 < t <
1,

log ρt(x) = logEX0

[
(2πt)−d/2 exp

(
− ‖x−

√
1− tX0‖22
2t

)]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(i)
≥ log

{
(2πt)−d/2 exp

(
− EX0

[
‖x−

√
1− tX0‖22
2t

])}
= −d

2
log(2πt)− EX0

[
‖x−

√
1− tX0‖22
2t

]
= −d

2
log(2πt)− ‖x‖

2
2

2t
− 1− t

2t
E[‖X0‖22] +

√
1− t
t

E[x>X0]

(ii)
= −d

2
log(2πt)−

(
1 +O(

√
1− t)

) ‖x‖22
2t

+O(
√

1− t)E[‖X0‖22].

Here step (i) follows from Jensen’s inequality and the fact that e−x is a convex function, while step
(ii) follows from elementary inequalities∣∣E[x>X0]

∣∣ ≤ E
[
‖x‖‖X0‖2

]
≤ 1

2
E
[
‖x‖22 + ‖X0‖22

]
.

This immediately gives, for any given x0 ∈ Rd and any 0 < t < 1,

E[log ρt(Xt) |X0 = x0] ≥ −d
2

log(2πt)− 1 +O(
√

1− t)
2t

E
[
‖Xt‖22 |X0 = x0

]
+O(

√
1− t)E[‖X0‖22]︸ ︷︷ ︸

=:fx0 (t)

.

(B.2a)
Since E[‖X0‖22] <∞, it is straightforward to check that

lim
t→1−

fx0(t) = −d
2

log(2π)− lim
t→1−

1

2
E
[
‖
√

1− tx0 +
√
tZ‖22

]
for Z ∼ N (0, Id)

= −d
2

log(2π)− d

2
. (B.2b)

Upper bounding E[log ρt(Xt) |X0 = x0]. Towards that, we need to obtain point-wise upper
bound for log ρt(x). Since the desired result only depends on the limiting behavior when t → 1,
from now on we only consider t > 0.9, under which

(1− t)1/4 < 1

2

√
log

1

1− t
holds. It would be helpful to develop the upper bound for the following two cases separately.

• For any (1− t)1/4 < ‖x‖2 < 0.5
√

log 1/(1− t), we have

log ρt(x)
(a)
≤ logEX0

[
(2πt)−d/2 exp

(
− (‖x‖2 − (1− t)1/4)2

2t

)
+ 1

(
‖X0‖2 > (1− t)−1/4

)]
(b)
≤ −d

2
log(2πt)− (‖x‖2 − (1− t)1/4)2

2t
+ exp

((‖x‖2 − (1− t)1/4)2

2t

)
P
(
‖X0‖2 > (1− t)−1/4

)
(c)
≤ −d

2
log(2πt)− (‖x‖2 − (1− t)1/4)2

2t
+ exp

(‖x‖22
2t

)
E[‖X0‖22](1− t)1/2

(d)
≤ −d

2
log(2πt)− (‖x‖2 − (1− t)1/4)2

2t
+ E[‖X0‖22](1− t)1/4. (B.3)

Here step (a) follows from (B.1); step (b) holds since log(x + y) ≤ log x + y/x holds for any
x > 0 and y ≥ 0; step (c) follows from ‖x‖2 > (1 − t)1/4 and Chebyshev’s inequality; while
step (d) holds since ‖x‖2 < 0.5

√
log 1/(1− t).

• For ‖x‖2 ≥ 0.5
√

log 1/(1− t) or ‖x‖ ≤ (1− t)1/4, we will use the naive upper bound

log ρt(x) ≤ −d
2

log(2πt) < 0, (B.4)

where the first relation simply follows from (B.1) and the second relation holds when t > 0.9.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then we have

E[log ρt(Xt) |X0 = x0]
(i)
≤ E[log ρt(Xt)1

{
(1− t)1/4 < ‖Xt‖2 < 0.5

√
log 1/(1− t)

}
|X0 = x0]

(ii)
≤ E

[(
− d

2
log(2πt)− (‖x‖2 − (1− t)1/4)2

2t
+ E[‖X0‖22](1− t)1/4

)
· 1
{

(1− t)1/4 < ‖Xt‖2 < 0.5
√

log 1/(1− t)
}
|X0 = x0

]
=
(
− d

2
log(2πt) + E[‖X0‖22](1− t)1/4

)
P
(

(1− t)1/4 < ‖Xt‖2 < 0.5
√

log 1/(1− t)
)

︸ ︷︷ ︸
=:gx0 (t)

− E
[

(‖Xt‖2 − (1− t)1/4)2

2t
1
{

(1− t)1/4 < ‖Xt‖2 < 0.5
√

log 1/(1− t)
}
|X0 = x0

]
︸ ︷︷ ︸

=:g̃x0 (t)

.

Here step (i) follows from (B.4), while step (ii) utilizes (B.3). Since Xt is a continuous random
variable for any t ∈ (0, 1), we have

lim
t→1−

P
(

(1− t)1/4 < ‖Xt‖2 < 0.5
√

log 1/(1− t)
)

= 1.

Therefore we know that
lim
t→1−

gx0
(t) = −d

2
log(2π).

Recall that Xt
d
=
√

1− tX0 +
√
tZ for a Gaussian variable Z ∼ N (0, Id) independent of X0, we

can express

g̃x0
(t) = E

[
(‖
√
tZ +

√
1− tx0‖2 − (1− t)1/4)2

2t
1

{
(1− t)1/4 < ‖

√
tZ +

√
1− tx0‖2 <

1

2

√
log 1/(1− t)

}]
=

∫
(‖
√
tz +

√
1− tx0‖2 − (1− t)1/4)2

2t
1

{
(1− t)1/4 < ‖

√
tz +

√
1− tx0‖2 <

1

2

√
log

1

1− t

}
φ(z)︸ ︷︷ ︸

=:ht(z)

dz,

where φ(z) = (2π)−d/2 exp(−‖z‖22/2) is the density function of N (0, Id). For any t ∈ (0.9, 1),
we have

ht(z) ≤ ‖
√
tz +

√
1− tx0‖22φ(z) ≤ 2(‖z‖22 + ‖x0‖22)φ(z) =: h(z),

and it is straightforward to check that∫
h(z)dz = 2d+ 2‖x0‖22 <∞.

By dominated convergence theorem, we know that

lim
t→1−

g̃x0(t) = lim
t→1−

∫
ht(z)dz =

∫
lim
t→1−

ht(z)dz =

∫
‖z‖22

2
φ(z)dz =

d

2
.

Therefore we have

E[log ρt(Xt) |X0 = x0] ≤ gx0(t) where gx0(t) := gx0
(t)− g̃x0(t), (B.5a)

such that
lim
t→1−

gx0
(t) = lim

t→1−
gx0

(t)− lim
t→1−

g̃x0
(t) = −d

2
log(2π)− d

2
. (B.5b)

Conclusion. By putting together (B.2) and (B.5), we know that for any t ∈ (0.9, 1)

fx0
(t) ≤ E[log ρt(Xt) |X0 = x0] ≤ gx0

(t) and lim
t→1−

fx0
(t) = lim

t→1−
gx0

(t) = −d
2

log(2π)−d
2
.

By the sandwich theorem, we arrive at the desired result

lim
t→1−

E[log ρt(Xt) |X0 = x0] = −d
2

log(2π)− d

2
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PROOF OF PROPOSITION 2

Suppose that L := supx ‖∇2 log ρ0(x)‖. The following claim will be useful in establishing the
proposition, whose proof is deferred to the end of this section.
Claim 3. There exists some t0 > 0 such that

sup
x
‖∇2 log ρt(x)‖ ≤ 4L. (C.1)

holds for any 0 ≤ t ≤ t0.

Equipped with Claim 3, we know that for any t ≤ t0,

E
[

log ρt(Xt) |X0 = x0
]

= E
[

log ρt(
√

1− tx0 +
√
tZ)
]

(i)
= E

[
log ρt(

√
1− tx0) +

√
tZ>∇ log ρt(

√
1− tx0) +O(Lt)‖Z‖22

]
(ii)
= log ρt(

√
1− tx0) +O(Ldt)

(iii)
= log

∫
x

ρ0(x)(2πt)−d/2 exp
(
− (1− t)‖x− x0‖22

2t

)
dx+O(L

√
dt)

= (1− t)−d/2 log

∫
x

ρ0(x)

(
2πt

1− t

)−d/2
exp

(
− (1− t)‖x− x0‖22

2t

)
dx+O(L

√
dt),

(C.2)

where Z ∼ N (0, Id). Here step (i) follows from (C.1) in Claim 3; step (ii) holds since E[Z] = 0
and E[‖Z‖22] = d; while step (iii) follows from (A.11). It is straightforward to check that∫

x

ρ0(x)

(
2πt

1− t

)−d/2
exp

(
− (1− t)‖x− x0‖22

2t

)
dx

is the density of ρ0 ∗ N (0, t/(1− t)) evaluated at x0, which taken collectively with the assumption
that ρ0(·) is continuous yields

lim
t→0+

∫
x

ρ0(x)

(
2πt

1− t

)−d/2
exp

(
− (1− t)‖x− x0‖22

2t

)
dx = ρ0(x0).

Therefore we can take t→ 0+ in (C.2) to achieve

lim
t→0+

E
[

log ρt(Xt) |X0 = x0
]

= log ρ0(x0)

as claimed.

Proof of Claim 3. The conditional density of X0 given Xt = x is

pX0|Xt(x0 |x) =
pX0

(x0)pXt|X0
(x |x0)

pXt(x)
=
ρ0(x0)

ρt(x)
(2πt)−d/2 exp

(
−‖x−

√
1− tx0‖22
2t

)
,

(C.3)
which leads to

−∇2
x0

log pX0|Xt(x0 |x) = −∇2
x0

log ρ0(x0) +
1

2t
∇2
x0
‖x−

√
1− tx0‖22

= −∇2
x0

log ρ0(x0) +
1− t
t

Id �
(

1− t
t
− L

)
Id.

Therefore we know that

−∇2
x0

log pX0|Xt(x0 |x) � 1

2t
Id for t ≤ 1

2(L+ 1)
, (C.4)

namely the conditional distribution of X0 given Xt = x is 1/(2t)-strongly log-concave for any x,
when t ≤ 1/2(L+ 1). By writting

ρt(x) = pXt(x) =

∫
φ(z)p√1−tX0

(
x−
√
tz
)

dz = (1− t)−d/2
∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
dz,

(C.5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

we can express the score function of ρt as

∇ log ρt(x) =
∇ρt(x)

ρt(x)
= (1− t)−

d+1
2

1

ρt(x)

∫
φ(z)∇ρ0

(
x−
√
tz√

1− t

)
dz

= (1− t)−
d+1
2

1

ρt(x)

∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
∇ log ρ0

(
x−
√
tz√

1− t

)
dz (C.6)

(i)
= (1− t)−

d+1
2

(
1− t
t

)d/2
1

ρt(x)

∫
φ

(
x−
√

1− tx0√
t

)
ρ0 (x0)∇ log ρ0 (x0) dx0

(ii)
=

1√
1− t

∫
pX0|Xt(x0 |x)∇ log ρ0 (x0) dx0 =

1√
1− t

E [∇ log ρ0 (X0) |Xt = x] .

(C.7)

Here step (i) uses the change of variable x0 = (x−
√
tz)/
√

1− t, while step (ii) follows from (C.3).
Starting from (C.6), we take the derivative to achieve

∇2 log ρt(x) = (1− t)− d2+1 1

ρt(x)

∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
∇ log ρ0

(
x−
√
tz√

1− t

)[
∇ log ρ0

(
x−
√
tz√

1− t

)]>
dz︸ ︷︷ ︸

=:H1(x)

+ (1− t)− d2+1 1

ρt(x)

∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
∇2 log ρ0

(
x−
√
tz√

1− t

)
dz︸ ︷︷ ︸

=:H2(x)

− (1− t)−
d+1
2

1

ρ2t (x)

∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
∇ log ρ0

(
x−
√
tz√

1− t

)
dz [∇ρt(x)]

>

︸ ︷︷ ︸
=:H3(x)

.

(C.8)

Then we investigate H1(x), H2(x) and H3(x) respectively. Regarding H1(x), we have

H1(x)
(a1)
= (1− t)− d2+1

(
1− t
t

)d/2
1

ρt(x)

∫
φ

(
x−
√

1− tx0√
t

)
ρ0 (x0)∇ log ρ0 (x0) [∇ log ρ0 (x0)]

>
dz

(b1)
=

1

1− t

∫
pX0|Xt(x0 |x)∇ log ρ0 (x0) [∇ log ρ0 (x0)]

>
dx0

=
1

1− t
E
[
∇ log ρ0 (X0) [∇ log ρ0 (X0)]

> |Xt = x
]

; (C.9a)

for H2(x), we have

H2(x)
(a2)
= (1− t)− d2+1

(
1− t
t

)d/2
1

ρt(x)

∫
φ

(
x−
√

1− tx0√
t

)
ρ0 (x0)∇2 log ρ0

(
x−
√
tz√

1− t

)
dx0

(b2)
=

1

1− t

∫
pX0|Xt(x0 |x)∇2 log ρ0 (x0) dx0 =

1

1− t
E
[
∇2 log ρ0 (X0) |Xt = x

]
;

(C.9b)

for the final term H3(x), we have

H3(x)
(c)
= −(1− t)−

d+1
2

1

ρt(x)

[∫
φ(z)ρ0

(
x−
√
tz√

1− t

)
∇ log ρ0

(
x−
√
tz√

1− t

)
dz

]
[∇ log ρt(x)]

>

(a3)
= −(1− t)−

d+1
2

(
1− t
t

)d/2
1

ρt(x)

[∫
φ

(
x−
√

1− tx0√
t

)
ρ0 (x0)∇ log ρ0 (x0) dx0

]
[∇ log ρt(x)]

>

(b3)
= − 1√

1− t

∫
pX0|Xt(x0 |x)∇ log ρ0 (x0) dx0 [∇ log ρt(x)]

>

(d)
= − 1

1− t
E [∇ log ρ0 (X0) |Xt = x]E [∇ log ρ0 (X0) |Xt = x]

>
. (C.9c)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Here steps (a1), (a2) and (a3) follow from the change of variable x0 = (x −
√
tz)/
√

1− t; steps
(b1), (b2) and (b3) utilize (C.3); step (c) follows from ∇ log ρt(x) = ∇ρt(x)/ρt(x); while step (d)
follows from (C.7). Substituting (C.9) back into (C.8), we have

∇2 log ρt(x) =
1

1− t
E
[
∇2 log ρ0 (X0) |Xt = x

]
+

1

1− t
cov (∇ log ρ0 (X0) |Xt = x) . (C.10)

Notice that for any t ≤ 1/2(L+ 1), we have

‖cov (∇ log ρ0 (X0) |Xt = x)‖ = sup
u∈Sd−1

E
[[
u> (∇ log ρ0 (X0)− E [∇ log ρ0 (X0) |Xt = x])

]2 |Xt = x
]

(i)
≤ sup
u∈Sd−1

E
[[
u> (∇ log ρ0 (X0)−∇ log ρ0 (E [X0 |Xt = x]))

]2 |Xt = x
]

≤ E
[
‖∇ log ρ0 (X0)−∇ log ρ0 (E [X0 |Xt = x])‖22 |Xt = x

]
(ii)
≤ E

[
‖X0 − E [X0 |Xt = x]‖22 |Xt = x

]
(iii)
≤ 2tL2d, (C.11)

Here step (i) holds since for any random variable X , E[(X − c)2] is minimized at c = E[X]; step
(ii) holds since the score function ∇ log ρ0(·) is L-Lipschitz; step (iii) follows from the Poincaré
inequality for log-concave distribution, and the fact that the conditional distribution of X0 given
Xt = x is 1/2t-strongly log-concave (cf. (C.4)). We conclude that∥∥∇2 log ρt(x)

∥∥ (a)
≤ 1

1− t
L+

2tL2d

1− t
(b)
≤ 4L.

Here step (a) follows from (C.10), (C.11), and the assumption that supx ‖∇2 log ρt(x)‖ ≤ L, while
step (b) holds provided that t ≤ min{1/2, 1/(2Ld)}.

D MORE DISCUSSIONS ON THE DENSITY FORMULAS

Although the density formulas (3.1a) have been rigorously established, it is helpful to inspect the
limiting behavior of the integrandD(t, x0) at the boundary to understand why the integral converges.
Throughout the discussion, we let ε ∼ N (0, Id).

• As t→ 0, we can compute

D(t, x0) �
E
[
‖ε+

√
t∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
− d

t
(i)
� E

[
‖∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
+

1√
t
E
[
ε>∇ log ρt(

√
1− tx0 +

√
tε)
]

(ii)
� E

[
‖∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
+ E

[
tr
(
∇2 log ρt(

√
1− tx0 +

√
tε)
)]
.

Here step (i) holds since E[‖ε‖22] = d, while step (ii) follows from Stein’s lemma. Therefore,
when the score functions are reasonably smooth as t → 0, one may expect that the integrand
D(t, x0) is of constant order, allowing the integral to converge at t = 0.

• As t→ 1, we can compute

D(t, x0) =
1

2(1− t)t
E
[
‖ε+

√
t∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
− d

2t

� 1

2(1− t)
E
[
‖ε+

√
t∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
− d

2
.

Since ρt converges to φ as t→ 1 and ∇ log φ(x) = −x, we have

lim
t→1

ε+
√
t∇ log ρt(

√
1− tx0 +

√
tε) = 0.

Hence one may expect that E
[
‖ε+

√
t∇ log ρt(

√
1− tx0 +

√
tε)‖22

]
converges to zero quickly,

allowing the integral to converge at t = 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E TECHNICAL DETAILS IN SECTION 4

E.1 TECHNICAL DETAILS IN SECTION 4.1

Computing Lt−1(x0). Conditional on Xt = xt and X0 = x0, we have

Xt−1 |Xt = xt, X0 = x0 ∼ N
(√

αt−1βt
1− αt

x0 +

√
αt(1− αt−1)

1− αt
xt,

1− αt−1
1− αt

βtId

)
,

and conditional on Yt = xt, we have

Yt−1 |Yt = xt ∼ N
(
xt + ηtst (xt)√

αt
,
σ2
t

αt

)
.

Recall that the KL divergence between two d-dimensional Gaussian N (µ1,Σ1) and N (µ2,Σ2)
admits the following closed-form expression:

KL (N (µ1,Σ1) ‖N (µ2,Σ2)) =
1

2

[
tr
(
Σ−12 Σ1

)
+ (µ2 − µ1)

>
Σ−12 (µ2 − µ1)− d+ log det Σ2 − log det Σ1

]
.

Then we can check that for 2 ≤ t ≤ T ,

KL
(
pXt−1|Xt,X0

(· |xt, x0) ‖ pYt−1|Yt(· |xt)
)

=
αt

2σ2
t

∥∥∥∥√αt−1βt1− αt
x0 +

αt − 1
√
αt(1− αt)

xt −
ηtst(xt)√

αt

∥∥∥∥2
2

,

where we use the coefficient design (4.3). This immediately gives

Lt−1(x0) =
αt

2σ2
t

Ext∼pXt|X0
(· | x0)

[∥∥∥∥√αt−1βt1− αt
x0 +

αt − 1
√
αt(1− αt)

xt −
ηtst(xt)√

αt

∥∥∥∥2
2

]
(i)
=

αt
2σ2

t

Eε∼N (0,Id)

[∥∥∥∥ αt − 1√
αt(1− αt)

ε− 1− αt√
αt

st(
√
αtx0 +

√
1− αtε)

∥∥∥∥2
2

]
(ii)
=

1− αt
2(αt − αt)

Eε∼N (0,Id)

[∥∥ε− εt(√αtx0 +
√

1− αtε)
∥∥2
2

]
.

Here in step (i), we utilize the coefficient design (4.3) and replace xt with
√
αtx0+

√
1− αtε, which

has the same distribution; while in step (ii), we replace the score function st(·) with the epsilon
predictor εt(·) := −

√
1− αtst(·). Comparing the coefficients in L?t−1 and Lt−1, we decompose∣∣∣∣ 1− αt+1

2(1− αt)
− 1− αt

2(αt − αt)

∣∣∣∣ ≤ ∣∣∣∣ 1− αt+1

2(1− αt)
− 1− αt+1

2(αt − αt)

∣∣∣∣︸ ︷︷ ︸
=:γ1

+

∣∣∣∣ 1− αt+1

2(αt − αt)
− 1− αt

2(αt − αt)

∣∣∣∣︸ ︷︷ ︸
=:γ2

.

Consider the learning rate schedule in Li et al. (2023b); Li & Yan (2024):

β1 =
1

T c0
, βt+1 =

c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
(t = 1, . . . , T − 1) (E.1)

for sufficiently large constants c0, c1 > 0. Then using the properties in e.g., Li & Yan (2024, Lemma
8), we can check that

γ1 =

∣∣∣∣ (1− αt+1)(αt − 1)

2(1− αt)(αt − αt)

∣∣∣∣ ≤ 8c1 log T

T

∣∣∣∣ 1− αt+1

2(1− αt)

∣∣∣∣ ,
and

γ2 =

∣∣∣∣ αt − αt+1

2(αt − αt)

∣∣∣∣ =

∣∣∣∣ βt − βt+1

2(αt − αt)

∣∣∣∣ ≤ ∣∣∣∣1− βt
βt+1

∣∣∣∣ ∣∣∣∣1 +
1− αt
αt − αt

∣∣∣∣ ∣∣∣∣ 1− αt+1

2(1− αt)

∣∣∣∣ ≤ 8c1 log T

T

∣∣∣∣ 1− αt+1

2(1− αt)

∣∣∣∣ .
Hence the coefficients in L?t−1 and Lt−1 are identical up to higher-order error:∣∣∣∣ 1− αt+1

2(1− αt)
− 1− αt

2(αt − αt)

∣∣∣∣ ≤ 16c1 log T

T

∣∣∣∣ 1− αt+1

2(1− αt)

∣∣∣∣ .
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Computing L0(x0). By taking η1 = σ2
1 = 1−α1 (notice that (4.3) does not cover the case t = 1),

we have

pY0|Y1
(x0 |x1) =

(
2πσ2

1

α1

)−d/2
exp

(
− α1

2σ2
1

∥∥∥∥x0 − x1 − η1s1 (x1)
√
α1

∥∥∥∥2
2

)

=

(
2πβ1
α1

)−d/2
exp

(
− α1

2β1

∥∥∥∥x0 − x1 − β1s1 (x1)
√
α1

∥∥∥∥2
2

)
,

and therefore

C0(x0) = Ex1∼pX1|X0
(· | x0)

[
−d

2
log

2πβ1
α1
− α1

2β1

∥∥∥∥x0 − x1 + β1s1(x1)
√
α1

∥∥∥∥2
2

]
(i)
= −d

2
log

2πβ1
α1
− 1

2
Eε∼N (0,Id)

[
‖ε+

√
β1s1(

√
1− β1x0 +

√
β1ε)‖22

]
(ii)
= −1 + log(2πβ1)

2
d+

d

2
log(1− β1)− 1

2
β1Eε∼N (0,Id)

[
‖s1(

√
1− β1x0 +

√
β1ε)‖22

]
−
√
β1Eε∼N (0,Id)

[
ε>s1(

√
1− β1x0 +

√
β1ε)

]
. (E.2)

Here in step (i), we replace x1 with
√

1− β1x0 +
√
β1ε, which has the same distribution; step

(ii) uses the fact that E[‖ε‖22] = d for ε ∼ N (0, Id). Using similar analysis as in Proposition 2,
we can show that supx ‖∇2 log q1(x)‖ ≤ O(L) when β1 is sufficiently small, as long as
supx ‖∇2 log q0(x)‖ ≤ L. Hence we have

Eε∼N (0,Id)

[
‖s1(

√
1− β1x0 +

√
β1ε)‖22

]
≤ Eε∼N (0,Id)

[(
‖s1(x0)‖2 +O(L)‖x0 −

√
1− β1x0 −

√
β1ε‖2

)2]
≤ 2‖s1(x0)‖22 +O(L2)Eε∼N (0,Id)

[
‖x0 −

√
1− β1x0 −

√
β1ε‖22

]
= 2 ‖s1(x0)‖22 +O(L2β1). (E.3)

By Stein’s lemma, we can show that

Eε∼N (0,Id)

[
ε>s1(

√
1− β1x0 +

√
β1ε)

]
=
√
β1E

[
tr
(
∇2 log q1(

√
1− β1x0 +

√
β1ε)

)]
≤ O(

√
β1Ld). (E.4)

Substituting the bounds (E.3) and (E.4) back into (E.2), we have

C0(x0) = −1 + log(2πβ1)

2
d+O(β1)

as claimed.

Negligibility of LT (x). Since

YT ∼ N (0, Id), and XT |X0 = x0 ∼ N
(√
αTx0, (1− αT)Id

)
,

we can compute

KL
(
pYT (·) ‖ pXT |X0

(· |x0)
)

=
1

2

αT
1− αT

(
d+ ‖x0‖22

)
+
d

2
log(1−αT) ≤ 1

2

αT
1− αT

(
d+ ‖x0‖22

)
.

Using the learning rate schedule in (E.1), we can check that αT ≤ T−c2 for some large universal
constant c2 > 0; see e.g., Li et al. (2023b, Section 5.1) for the proof. Therefore when T ≥ 2, we
have

KL
(
pYT (·) ‖ pXT |X0

(· |x0)
)
≤ d+ ‖x0‖22

4T c2
,

which is negligible when T is sufficiently large.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Optimal solution for (4.5). It is known that for each 1 ≤ t ≤ T , the score function s?t (·)
associated with qt satisfies

s?t (·) = arg min
s(·):Rd→Rd

Ex∼q0,ε∼N (0,Id)

[∥∥∥∥s (√αtx+
√

1− αtε
)

+
1√

1− αt
ε

∥∥∥∥2
2

]
.

See e.g., Chen et al. (2022, Appendix A) for the proof. Recall that ε?t (·) =
√

1− αts?t (·), then we
have

ε?t (·) = arg min
ε(·):Rd→Rd

Ex∼q0,ε∼N (0,Id)

[∥∥ε− ε(√αtx+
√

1− αtε)
∥∥2
2

]
.

Therefore the global minimizer for (4.5) is ε̂t(·) ≡ ε?t (·) for each 1 ≤ t ≤ T .

E.2 TECHNICAL DETAILS IN SECTION 4.2

By checking the optimality condition, we know that (Dλ, Gλ) is a Nash equilibrium if and only if

Dλ(x) =
pdata(x)

pdata(x) + pGλ(x)
, (optimality condition for Dλ) (E.5)

where pGλ = (Gλ)#pnoise, and there exists some constant c such that{
− logDλ(x) + λL(x) = c, when x ∈ supp(pGλ),

− logDλ(x) + λL(x) ≥ c, otherwise.
(optimality condition for Gλ) (E.6)

Taking the approximation L(x) ≈ − log pdata(x) + C?0 as exact, we have

Dλ(x) =

{
eλC

?
0−cp−λdata(x), for x ∈ supp(pGλ),

1, for x /∈ supp(pGλ).
(E.7)

where the first and second cases follow from (E.6) and (E.5) respectively. Then we derive a closed-
form expression for pGλ .

• For any x ∈ supp(pGλ), by putting (E.5) and (E.7) together, we have

eλC
?
0−cp−λdata(x) =

pdata(x)

pdata(x) + pGλ(x)
,

which further gives
pGλ(x) = pdata(x)

(
e−λC

?
0+cpλdata(x)− 1

)
. (E.8)

• For any x /∈ supp(pGλ), we have

− logDλ(x) + λL(x)
(i)
= λL(x)

(ii)
= −λ log pdata(x) + λC?0

(iii)
≥ c,

where step (i) follows from Dλ(x) = 1, which follows from (E.7); step (ii) holds when we take
the approximation L(x) ≈ − log pdata(x) + C?0 as exact; and step (iii) follows from (E.6). This
immediately gives

e−λC
?
0+cpλdata(x)− 1 = log (−λC?0 + c+ λ log pdata(x))− 1 ≤ 0. (E.9)

Taking (E.8) and (E.9) collectively, we can write

pGλ(x) = pdata(x)
(
e−λC

?
0+cpλdata(x)− 1

)
+
. (E.10)

On the other hand, we can check that (E.7) and (E.10) satisfies the optimality conditions (E.5) and
(E.6), which establishes the desired result.

22

