
Under review as a conference paper at ICLR 2021

SCALING UNSUPERVISED DOMAIN ADAPTATION
THROUGH OPTIMAL COLLABORATOR SELECTION
AND LAZY DISCRIMINATOR SYNCHRONIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Breakthroughs in unsupervised domain adaptation (uDA) have opened up the pos-
sibility of adapting models from a label-rich source domain to unlabeled target do-
mains. Prior uDA works have primarily focused on improving adaptation accuracy
between the given source and target domains, and considerably less attention has
been paid to the challenges that arise when uDA is deployed in practical settings.
This paper puts forth a novel and complementary perspective, and investigates the
algorithmic challenges that arise when uDA is deployed in a distributed ML sys-
tem with multiple target domains. We propose two algorithms: i) a Collaborator
Selection algorithm which selects an optimal collaborator for each target domain,
and makes uDA systems more accurate and flexible; ii) a distributed training strat-
egy that allows adversarial uDA algorithms to train in a privacy-preserving man-
ner. We provide theoretical justifications and empirical results to show that our
solution significantly boosts the performance of uDA in practical settings.

1 INTRODUCTION

Unsupervised Domain Adaptation (uDA) is a sub-field of machine learning aimed at adapting a
model trained on a labeled source domain to a different, but related, unlabeled target domain. Over
the last few years, many exciting uDA algorithms have been proposed to enhance the accuracy of
deep learning models in a target domain using unlabeled data (Long et al. (2015; 2017; 2018); Ganin
et al. (2016); Tzeng et al. (2017); Hoffman et al. (2018); Shen et al. (2018); Zou et al. (2019)).

In this paper, we study an interesting and under-explored aspect of uDA algorithms, pertaining
to their scalability in practical ML systems. To motivate our problem setting, let us consider the
recent interest in predicting COVID-19 in patients by analyzing the computerized tomography (CT)
scans of their chest (e.g. Zheng et al. (2020)). Assume that scientists in China (source domain)
have collected a labeled dataset of CT scans (e.g., Zhao et al. (2020)) and trained a COVID-19
prediction model on it. This model now needs to be deployed in five countries (target domains)
from where labeled data is unavailable. Due to virus mutations across the world, the CT scan
samples from different countries may follow different data distributions, and the source model may
not work accurately for all target countries. Hence, uDA could become a promising approach to
learn a model tailored for each target country’s distribution.

In this setting, we have a single labeled source domain and multiple unlabeled target domains (ap-
pearing sequentially) for which we want to learn a model using uDA. Below are two challenges in
scaling existing uDA approaches in this setting:

(i) Finding the optimal adaptation collaborator. We define a collaborator as the domain with
which a target domain undergoes adaptation, e.g., in A−→B adaptation, A is the collaborator for
the target domain B. Existing uDA methods are static by design, in that they assume that target
domains would always adapt from the labeled source domain. However, this static approach of
always choosing the labeled source as the collaborator may not be the most optimal. For instance,
some target countries may have a virus strain very different from China (the labeled source), and
hence adapting from the Chinese COVID-19 model may not be optimal for them.

To better explain this problem, we show an experiment on Rotated MNIST, a variant of MNIST
in which digits are rotated clockwise by different degrees. Assume that 0°, i.e., no rotation, is the
labeled source domain while 30°, 60°, 45°, 90° and 15° are five unlabeled target domains appearing
sequentially, for which we would like to learn a model using uDA. Figure 1a shows the accuracy
obtained in each target domain if we always choose the labeled source 0° as their collaborator. While

1

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 1: 0° is the labeled source domain while the domains in blue are unlabeled target domains. The
numbers in rectangle denote the post-adaptation accuracy for a domain. (a) Static Design: Labeled Source
acts the collaborator for each target domain. (b) Flexible Design: Each target domain chooses its collaborator
dynamically. Previously adapted target domains can also act as collaborators. Note that choosing the right
collaborator leads to major accuracy gains over the Static Design for many domains (shown in red).

this approach results in high accuracies for 15° and 30°, it performs poorly for other domains. Can
we do better? What if a target domain can adapt not just from the labeled source, but also from
other target domains which themselves have undergone adaptation in the past. Figure 1b shows
that if target domains could flexibly choose their collaborators, they can achieve significantly higher
accuracies. E.g., if 90° adapts from 60° (which itself underwent adaptation in the past), it could be
achieve an accuracy of 92.6%, almost 75% higher than what could be achieved by adapting from 0°.

In summary, when uDA algorithms scale to settings with multiple target domains such as the
COVID-19 example, selecting an optimal collaborator for each target domain becomes critical. How
do we select this optimal collaborator is a key research question that this paper aims to answer.

(ii) Distributed and Private Datasets. Adversarial uDA methods generally assume that datasets
from the source and target domains are available on the same machine before the adaptation process
begins. While this assumption makes it easy to research uDA algorithms, it does not hold true in
practice. In the example above, the CT scans of patients are sensitive health records, and source and
target domains may not be allowed to share them with each other due to privacy reasons. Clearly,
this bottleneck can severely limit the adoption of uDA in realistic settings. How can we extend uDA
techniques to work in distributed settings while preserving the privacy of each domain?

Contributions. Our contributions are as follows: (1) We propose Optimal Collaborator Selec-
tion (OCS), an algorithm which boosts the accuracy of uDA in multi-target settings by as much as
50%. OCS is built on a novel theoretical formulation which estimates the cross-entropy error of
an unlabeled target domain, based on the collaborator error and Wasserstein distance between the
collaborator and target domain. (2) We propose DILS, an algorithm to extend adversarial uDA to
distributed settings while preserving the privacy of source and target domains. (3) We show that
OCS and DILS can be used together in an end-to-end framework to address the key challenges in
scaling uDA algorithms. (4) We conduct extensive experiments on four image and speech datasets to
demonstrate the superior performance of OCS and DILS over various baselines. Finally, we demon-
strate that our solution is not limited to any specific uDA algorithm, and it can generalize to various
uDA optimization objectives proposed in the literature.

2 PRELIMINARIES AND PROBLEM FORMULATION

Primer. We first provide a brief primer on uDA when there is one source and one target domain. Let
DS be a source domain with input samples XS and labels YS , and DT be a target domain with input
samples XT , without labeled observations. In a domain adaptation problem, it is assumed that XS

and XT are drawn from different distributions. We can train a feature extractor, ES , and a classifier,
CS for the source domain using supervised learning as follows:

min
ES ,CS

Lcls = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys][log(CS(ES(xs))]

The goal of uDA is to learn a feature extractorET for the unlabeled target domain, which minimizes
the divergence between the empirical source and target feature distributions. If the divergence in
feature representations between domains is minimized, we can apply the pre-trained source classifier
CS on the target features and obtain inferences, without requiring to learn a separate CT .

To learn ET , two losses are optimized using adversarial training: a discriminator loss LadvDI
and a

mapping loss LadvM . The computation of these losses differ across uDA algorithms – e.g., ADDA
(Tzeng et al. (2017)) uses label inversion to minimize the Jensen-Shannon divergence between
source and target feature distributions as follows:

min
DI
LadvDI

= −Exs∼XS
[log(DI(ES(xs))]− Ext∼XT

[log(1−DI(ET (xt))] (1)

2

Under review as a conference paper at ICLR 2021

min
ET

LadvM = −Ext∼XT
[log(DI(ET (xt))] (2)

where DI represents a domain discriminator that aims to distinguish source and target domains.

Problem Formulation. We now formalize our problem setting of scaling uDA to settings with
a single labeled source and multiple unlabeled target domains. Moreover, the domain datasets are
private and located on distributed nodes. Let {Dj

T

∣∣j = 1, . . . ,K} be theK unlabeled target domains
for which we want to learn a prediction model using uDA. We assume that target domains appear
sequentially, one at a time. Under this setting, we now formalize the two research problems:

(i) Optimal Collaborator Selection. We define a candidate set Zτ as the set of candidate domains
that are available to collaborate with a target domain at step τ . When a uDA system initializes at
step τ = 0, only the labeled source domain has a learned model, hence Z0 = {DS}. When the first
target domain D

1

T appears, it adapts from DS and learns a model E
1

T . Having learned a model, D
1

T
is now added to the candidate set (along with its unlabeled data) and can act as a collaborator for
future domains.

In general, at step τ = K, ZK = {S} ∪
{
Dj
T

∣∣j = 1, . . . ,K
}

. For a new target domain DK+1
T , the

goal of OCS is to find an optimal collaborator domain Dopt ∈ ZK , such that:
Dopt = argmin

i=1...|ZK |
Φ(ZiK , D

K+1
T)

where ZiK is the ith candidate domain in ZK and Φ is a metric that quantifies the risk of collaboration
between ZiK and DK+1

T .

(ii) Distributed Adversarial Training. Once a collaborator Dopt is selected, we need to perform
distributed uDA between Dopt and the target domain DK+1

T , while preventing any data leaks? This
opens up two challenges: i) how do we distribute the adversarial uDA network architecture and
training process across the nodes? ii) how do we ensure that the gradients exchanged between the
distributed nodes during training cannot be used to reconstruct the raw data?

3 FRUDA: FRAMEWORK FOR REALISTIC UDA
We first present our two algorithmic contributions on Optimal Collaborator Selection (named OCS)
and Distributed uDA (named DILS). Later in §3.3, we explain how these two algorithms work in
conjunction with each other in an end-to-end framework called FRUDA, and allow for scaling uDA
algorithms in multi-domain, distributed ML systems.

3.1 OPTIMAL COLLABORATOR SELECTION (OCS)

For any given target domain, the goal of OCS is to find its optimal collaborator domain Dopt from
a set of candidate domains. Our key idea is quite intuitive: the optimal collaborator should be a
domain, such that adapting from it will lead to the highest classification accuracy (or equivalently,
the lowest classification error) in the target domain. We first introduce some notations and then
present the key theoretical insight that underpins OCS.

Notations. We use domain to represent a distribution D on input space X and a labeling function
l : X → [0, 1]. A hypothesis is a function h : X → [0, 1]. Let εM,D (h, l) denote the error of a
hypothesis h w.r.t. l under the distribution D, where M is an error metric such as L1 error or cross-
entropy error . Further, a function f is called θ-Lipschitz if it satisfies the inequality ‖f(x)−f(y)‖ ≤
θ‖x− y‖ for some θ ∈ R+. The smallest such θ is called the Lipschitz constant of f .

Theorem 1 Let D1 and D2 be two domains sharing the same labeling function l. Let θCE denote
the Lipschitz constant of the cross-entropy loss function in D1. For any two θ-Lipschitz hypotheses
h, h′, we can derive the following error bound for the cross-entropy (CE) error in D2:

εCE,D2
(h, h′) ≤ θCE

(
εL1,D1

(h, h′) + 2θW1(D1, D2)
)

(3)

where W1(D1, D2) denote the first Wasserstein distance between the domains D1 and D2, and
εL1,D1

denotes the L1 error in D1. Proof is in §E in the Appendix.

Theorem 1 has two key properties that make it apt for our problem setting. First, it can be used to
directly estimate the CE error in a target domain (D2), given a hypothesis (or a classifier) from a
collaborator domain (D1). Since target CE error is the key metric of interest in classification tasks,

3

Under review as a conference paper at ICLR 2021

(a) Optimal Collaborator Selection
(b) DILS: Distributed uDA

Figure 2: (a) A new target domainDK+1
T finds its optimal adaptation collaboratorDopt from a set of candidate

domains. (b) DK+1
T performs distributed uDA with Dopt to learn a model for its distribution.

this bound is more useful than the one proposed by Shen et al. (2018) which estimates the L1 error
in the target domain. Secondly, the bound depends on the Wasserstein distance metric between
the domains, which could be computed in a distributed way without exchanging any private data
between domains. This property is very important to guarantee the domain privacy, which is one
of the objectives of our work. Please refer to §D.1 for implementation details on computation of
Wasserstein distance in a distributed and privacy-preserving manner.

Selecting the optimal collaborator. Motivated by Theorem 1, we now discuss how to select the
optimal collaborator for a target domain. Given a collaborator domain Dc, a learned hypothesis hc
and a labeling function l, we can estimate the CE error for a target domain DT using Theorem 1 as:

εCE,DT
(hc, l) ≤ θCE(εL1,Dc

(hc, l) + 2θW1 (Dc, DT)) (4)

We can tighten the bound in Eq. 4 to get a more reliable estimate of the target CE error. This
is achieved by reducing the Lipschitz constant (θ) of the hypothesis hc during training. In uDA,
the hypothesis is parameterized by a neural network, and we can train neural networks with small
Lipschitz constants by regularizing the spectral norm of each network layer (Gouk et al. (2018)).

Now that we have a way to estimate the target CE error, we can use it to select an optimal collaborator
that yields the minimum target CE error. Let Z = {Dk|k = 1, . . . ,K} be a set of candidate domains
each with a pre-trained model hk with Lipschitz constants θkCE and θk. LetDK+1

T be a target domain
for which the collaborator is to be chosen. We use Eq. 4 to select the optimal collaborator Dopt as:

Dopt = argmin
k=1,...,K

θkCE(εL1,Dk(hk, l) + 2θkW1(Dk, DK+1
T)) (5)

3.2 DISTRIBUTED UDA USING DISCRIMINATOR-BASED LAZY SYNCHRONIZATION (DILS)

Upon selecting an optimal collaborator Dopt for the target domain DK+1
T , the next step is to learn

a model for DK+1
T by doing uDA with Dopt. In line with our problem setting, both domains are

located on distributed nodes and cannot share their raw private data with each other.

FADA (Peng et al. (2020)) is a recently proposed technique for adversarial uDA in distributed
settings. Our solution (DILS) differs from FADA in three important ways: (i) FADA was designed
for a federated learning setup and assumes multiple labeled source domains, which is not the case
in our setting. (ii) FADA exchanges feature representations of the data and corresponding gradients
between nodes to achieve distributed training. Prior works (Vepakomma et al. (2020); Aono et al.
(2017); Zhu et al. (2019)) have shown that these are prone to privacy attacks and can be exploited
to reconstruct the raw data. Instead, we leverage a unique characteristic of adversarial training
architectures and show that adversarial uDA can be performed between distributed nodes only by
exchanging the gradients of domain discriminators. The biggest benefit of our approach is that
it provides protection against state-of-the-art gradient leakage attacks. (iii) FADA exchanges the
gradients between nodes after every batch of data, which can increase the overall training time of
uDA due to the communication overhead associated with gradient exchange. DILS, instead, adopts
a lazy gradient synchronization approach which significantly reduces the uDA training time.

Method. As shown in Figure 2b, we split the adversarial architecture across the distributed nodes.
The feature encoders of the collaborator (Eopt) and target (ET) reside on their respective nodes,
while the discriminator DI is split into two components DIopt and DIT . At every training step n,
both nodes feed their private training data ξnopt and ξnT into their encoders and discriminators, and
compute the gradients of the discriminators, i.e.,∇g(DIopt, ξ

n
opt) and∇g(DIT , ξ

n
T) respectively.

4

Under review as a conference paper at ICLR 2021

Algorithm 1: DILS
Result: ET

1 Input: Pre-trained Eopt; Randomly Initialize
DIopt; Initialize ET = Eopt; DIT =DIopt; Sync
up step p; total steps N ;

2 for n = 1, 2, ..., N do
3 Sample a batch of data on both nodes, ξ(n)

opt

and ξ(n)
T . Then feed ξ(n)

opt and ξ(n)
T into the

respective Encoder-Discriminator model
separately on both nodes;

4 Based on different loss functions, calculate the
gradients locally. On collaborator node,
calculate∇g(DIopt, ξ(n)

opt); On target node,
calculate∇g(ET , ξ

(n)
T) and∇g(DIT , ξ(n)

T);
5 Add∇g(DIopt, ξ(n)

opt) to gradient buffer Gopt,
add∇g(DIT , ξ(n)

T) to target gradients buffer
GT ;

6 if isTargetNode then
7 Apply∇g(ET , ξ

(n)
T) to ET ;

8 if n%p == 0 then
9 Exchange gradients buffer and update the

latest synced gradients
gsync =

Gopt+GT

2p
;

10 Clear Gopt and GT ;

11 Apply gsync to DIopt and DIT separately;

How often should we exchange the discrimi-
nator gradients between nodes? By exchang-
ing discriminator gradients after every training
step, we can keep the discriminators synchro-
nized and ensure that distributed training con-
verges to the non-distributed solution. How-
ever, this approach has a major downside, as
gradient exchange every step incurs significant
communication costs and increases the over-
all uDA training time. To increase training
efficiency, we propose a Lazy Synchronization
approach, wherein instead of every step, the
discriminators are synchronized after every p
training steps, thereby reducing the total gra-
dient exchange by a factor of p. We denote
the training steps at which the synchronization
takes place as the sync-up steps while other
steps are called local steps. Following the nota-
tions in §2, we present our DILS strategy in Al-
gorithm 1. As evident, DILS works on the prin-
ciple of using synced stale gradients (∇gsync)
from the last sync-up step to update the discrim-
inators, instead of local gradients. This is very
important as it prevents the distributed discrim-
inators from diverging in the local steps. The
stale gradients are refreshed at every sync-up
step. Our results show that this approach reduces the uDA training time with minimal effect on
target accuracy.

Privacy Analysis. DILS does not exchange raw data, extracted features or the gradients of the
feature extractor during training, all of which are prone to reconstruction attacks (Vepakomma et al.
(2020); Zhu et al. (2019)). Instead, DILS exploits a unique feature of adversarial architecture and
performs distributed uDA by only exchanging gradients of the discriminators. Through a theoretical
analysis presented in §E.2, we show that discriminator gradients cannot be used to reconstruct the
raw domain data, even with state-of-the-art privacy attacks (Zhu et al. (2019)).

Convergence Analysis. While DILS accelerates training through lazy gradient sync, it is important
to study if it can maintain the same convergence properties as non-distributed uDA. In §E.1, we
build upon prior GAN convergence and distributed training theory to prove that when the sync-up
step p is sufficiently small, DILS has a similar convergence rate as the non-distributed setting.

Theorem 2. In Lazy Synchronization, given a fixed target encoder, we have the following conver-
gence rate for the discriminators DIopt and DIT after T iterations:

1

T

T∑
t=1

E[‖∇f(xt)‖
2
2
] ≤ 1

1− µL
[
f(x0)− f(xt+1)

µT
+ (2p− 1)Lµσ2 +

µLσ2

2
+
µ3L3σ2(2p− 1)

2
]

where p is the sync-up step, µ is the learning rate. Set µ = O(1/
√
T). When p << Lσ2, the

impact of stale update will be very small, and thus it can converge with rate O(1/
√
T), same as the

non-distributed setting.

3.3 COMBINING OCS WITH DILS

We now discuss how OCS and DILS work together to address the challenges introduced in §1. As
shown in Figure 2a, a new target domainDK+1

T first performs OCS with all candidate domains in ZK
to find its optimal collaborator Dopt. This step makes uDA systems more flexible and ensures that
each target domain is able to achieve the best possible adaptation accuracy in the given setting. Next,
as shown in Figure 2b, DK+1

T and Dopt use DILS to engage in distributed uDA. This step ensures
that no private data is exposed during adaptation and yet the target domain is able to learn a model
for its distribution. Finally, the newly adapted target domain DK+1

T (with its model and unlabeled
data) is added to the candidate set Z to serve as a potential collaborator for future domains.

5

Under review as a conference paper at ICLR 2021

4 EVALUATION
Datasets. We evaluate FRUDA on four image and speech datasets: Rotated MNIST, Digits, Office-
Caltech, and Mic2Mic. Rotated MNIST is a variant of MNIST with digits rotated clockwise by
different degrees. Each rotation is considered a separate domain. Digits has five domains: MNIST
(M), USPS (U), SVHN (S), MNIST-M (MM) and SynNumbers (SYN), each consisting of digit
classes ranging from 0-9. The Office-Caltech dataset contains images of 10 classes from Amazon
(A), DSLR (D), Webcam (W), and Caltech-256 (C). Finally, Mic2Mic (Mathur et al. (2019)) is a
speech keyword detection dataset recorded with four microphones: Matrix Creator, Matrix Voice,
ReSpeaker and USB. Each microphone represents a domain. More details about the datasets are
provided in §F.0.2 in the Appendix.

4.1 PERFORMANCE OF DISCRIMINATOR-BASED LAZY SYNCHRONIZATION (DILS)

We first evaluate the convergence properties of DILS against two baselines: Non-Distributed uDA
and FADA. As discussed in §3.2, FADA was originally designed for multiple sources in a federated
learning setup. For a fair comparison with our single-source setting, we modify FADA by only
implementing its Federated Adversarial Alignment component and setting the number of source
domains to one. The modified FADA has the same optimization objectives as single-source DA,
but it operates in a distributed setting. Hence, it is fair to compare it with DILS. As we discussed
earlier, DILS provides privacy benefits over the baselines and is robust against gradient leakage
attacks. However, two key questions still remain: (i) Training Time: to what extent can DILS reduce
the training time for distributed uDA? (ii) Target Accuracy: can the use of stale gradients and lazy
synchronization in DILS degrade the classification accuracy in the target domain?

Results. Table 1 shows the performance of DILS against the baselines on 4 datasets and 8 adaptation
tasks. First, we look at the mean training times for uDA (denoted as ‘t’ in Table 1). As expected,
non-distributed uDA, wherein source and target datasets are required to be on the same machine,
has the fastest convergence because there is no gradient communication time involved; however this
comes at the expense of domain privacy. Importantly, the end-to-end convergence of DILS is 37%
faster than FADA in a distributed setting, primarily due to the reduced overhead of gradient com-
munication between nodes. Further, Table 1 shows a very promising result that DILS can achieve
similar accuracy as the baselines, which confirms our theoretical analysis that lazy synchronization
of discriminator gradients does not degrade the target accuracy. Averaged over all adaptation tasks,
the accuracy difference between DILS and the baselines is less than 0.5%, and it could be further
reduced by choosing a smaller p. We provide more discussion on the choice of p in §4.3.

RMNIST Office-Caltech Digits Mic2Mic

Training 30→ 60 150→ 180 t (mins) W→ C D→ A t (mins) M-M→ U Syn→ U t (mins) C→ U R→ C t (mins)

No Adaptation 32.68 61.51 - 87.81 85.28 - 57.54 79.32 - 73.98 67.47 -

Non-Distributed 69.61 91.86 2.4 91.74 92.11 21 82.14 90.1 5.69 79.85 77.52 5.8

FADA 69.30 91.21 65.28 91.02 92.03 73.8 82.13 89.9 86.94 79.81 77.39 37.8

DILS 68.34 90.16 35.2 90.56 91.77 55.05 81.66 89.78 54.6 79.33 77.38 22.5

Table 1: Target Domain Accuracy and mean uDA Training Time (t). DILS has a 37% faster convergence time
than FADA on average, without a major drop in adaptation accuracy. The sync-up step p for DILS is set to 4.

4.2 PERFORMANCE OF THE PROPOSED FRAMEWORK, FRUDA

Recall that FRUDA comprises of two algorithms: Optimal Collaborator Selection (OCS) and dis-
tributed uDA (DILS) algorithms. In §4.1, we established that DILS is an effective algorithm for
distributed uDA, in terms of training time, data privacy and adaptation accuracy. Now we evaluate
how DILS can work in conjunction with OCS to scale uDA in practical settings.

Experiment Setup. In our problem setting, domains appear sequentially in an order. Let
{DS, D

1
T , D

2
T · · ·DK

T } denote an ordering of one labeled source domain DS and K unlabeled tar-
get domains. For each target domain Di

T |Ki=1, we first choose a collaborator domain, which could
be either the labeled source domain DS or any of the previous target domains Dj

T |
i−1
j=1 that have al-

ready learned a model using uDA. Upon choosing a collaborator (using OCS or any of the baseline
techniques), we use DILS to perform distributed uDA between the target domain and the collabora-
tor, and compute the post-adaptation test accuracy AcciT in the target domain. We report the mean
adaptation accuracy obtained over all target domains, i.e., 1

K

∑K
i=1 AcciT .

6

Under review as a conference paper at ICLR 2021

RMNIST Digits Office-Caltech Mic2Mic
Order1 Order2 Order1 Order2 D,W,C,A W,C,D,A Order1 Order2

No Adaptation 34.65 35.54 59.59 72.09 66.40 85.25 76.45 75.83
Random 28.66±6.50 37.11±4.32 62.77±2.19 69.13±4.0 69.18±1.51 80.1±2.44 80.17±1.60 77.34±1.09

Labeled Source (LS) 47.14 ± 0.85 49.08± 0.75 64.89±0.23 79.87±0.31 67.77±0.15 90.62±0.13 80.86 ± 0.09 79.91±0.05
Multi-Collaborator 40.51±0.30 42.73±0.39 60.94±0.13 75.91±0.30 68.90±0.24 82.17±0.87 76.90 ± 0.13 79.0±0.24
Proxy A-Distance 93.51 ± 0.22 74.14±0.05 70.09±0.45 83.07±0.15 69.37±0.2 90.62±0.13 80.34 ± 0.19 80.02±0.31

FRUDA (Ours) 97.08 ± 0.14 81.72±0.3 73.01±0.87 85.31±0.26 74.56±0.52 90.62±0.13 81.43 ± 0.06 81.81±0.10

Table 2: Mean accuracy over all target domains in a given order, e.g., Order1=D,W,C,A for Office-Caltech.

For each dataset, we use two random orderings of source and target domains, e.g., for Office-Caltech,
we choose Order1 = D,W,C,A and Order2 = W,C,D,A. Please refer to §F for details on orderings
used for other datasets, and our computing infrastructure. The optimization objectives of ADDA
presented in Eq. 1 and 2 are used for adaptation in this experiment.

Collaborator Selection Baselines. We compare OCS against four baselines: (i) Labeled Source
wherein each target domain only adapts from the labeled source domain; (ii) Random Collaborator:
each target domain chooses a random collaborator from the available candidates; (iii) Proxy A-
distance (PAD) where we choose the domain which has the least PAD (Ben-David et al. (2007))
from the target; (iv) Multi-Collaborator is based on MDAN (Zhao et al. (2018)), where all available
candidate domains contribute to the adaptation in a weighted-average way. However, MDAN was
developed assuming that all candidate domains are labeled, which is not the case in our setting.
Hence, we modify MDAN and only optimize its adversarial loss during adaptation (details in §D).

Results. Table 2 reports the mean accuracy obtained over the target domains for two domain or-
derings in each dataset. We observe that FRUDA outperforms the baseline collaborator selection
techniques in most cases. Importantly, it can provide significant gains over the Labeled Source (LS)
baseline, which verifies our hypothesis that the labeled source domain is not always optimal for
uDA. We highlight three key results from Table 2: (a) in RMNIST, FRUDA provides 41% accuracy
gains over LS on average — this could be partly attributed to the large number of target domains
(K = 11) in this dataset. As the number of target domains increase, there are more opportuni-
ties for benefiting from collaboration selection, which led to higher accuracy gains over LS in this
dataset. (b) For Office-Caltech (order = W,C,D,A), the labeled source domain W turns out to be
the optimal collaborator for all target domains, and FRUDA managed to converge to the Labeled
Source baseline. (c) Multi-collaborator baseline often performed worse than even LS. We surmise
that this is due to negative transfer caused by some collaborator domains that are too different from
the target domain. OCS, on the other hand, is able to filter out these bad collaborators, which leads
to higher adaptation accuracy. In general, our results demonstrate that as uDA systems scale to
multiple target domains, the need for choosing the right adaptation collaborator becomes important,
hence warranting the need for accurate collaboration selection algorithms.

4.3 DISCUSSION AND ANALYSIS

RMNIST (Order1) Digits (Order1)

ADDA GRL WassDA CADA ADDA GRL WassDA CADA

No Adaptation 34.65 34.65 34.65 34.65 59.59 59.59 59.59 59.59
Labeled Source 47.14 47.26 44.39 41.30 64.89 65.51 70.34 65.22
FRUDA(Ours) 97.08 97.35 91.15 83.37 73.01 69.80 75.36 70.19

Table 3: Mean target accuracy for four uDA methods. Our frame-
work can be used in conjunction with various uDA methods, and
improves mean accuracy over the Labeled Source baseline.

Generalization to other uDA op-
timization objectives. The results
presented in Table 2 used the opti-
mization objectives of ADDA from
Eq. 1 and 2. However, FRUDA is
intended to be a general framework
not limited to one specific uDA al-
gorithm. We now evaluate FRUDA
with three other uDA loss formulations (i) DANN, which uses a Gradient Reversal Layer (GRL)
to compute the mapping loss (Ganin et al. (2016)), (ii) WassDA, which uses Wasserstein Distance
as a loss metric for the domain discriminator (Shen et al. (2018)) and (iii) CADA by Zou et al.
(2019) which operates by enforcing consensus between source and target features. In Table 3, we
observe that while different uDA techniques yield different target accuracies, FRUDA can work in
conjunction with all of them to improve the overall accuracy over the Labeled Source baseline.

Effect of sync-up step p. In DILS, p controls the frequency of gradient exchange between the
nodes. In §C.1 and Figure 3, we vary p from 1 and 10 and calculate the adaptation accuracy in the
target domain. Results show that even at high values of p, DILS provides comparable accuracy to
non-distributed training, while reducing gradient exchange by a factor of p.

7

Under review as a conference paper at ICLR 2021

Properties of OCS. We now discuss two interesting properties of OCS. In sequential adaptation
where a target domain adapts from previous domain(s), negative transfer and error propagation is a
possibility, especially if an unrelated domain appears in the sequence. In §C.2, we show that OCS
can overcome this important issue in sequential adaptation.

Although this paper’s scope was limited to studying the setting with a single labeled source, OCS
can also boost adaptation accuracy in multi-source settings. §C.3 shows that OCS can work with
MDAN, a multi-source uDA algorithm, and improve its performance by up to 13%.

5 RELATED WORK

Related work for OCS. There are prior works on computing similarity between domains, e.g., using
distance measures such as Maximum Mean Discrepancy (Wang et al. (2020)), Gromov-Wasserstein
Discrepancy (Yan et al.), A-distance (Wang et al. (2018)), and subspace mapping (Gong et al.
(2012)). However, our results in §4.2 show that merely choosing the most similar domain as the
collaborator is not optimal. Instead, OCS directly estimates the target cross-entropy error for col-
laborator selection. Another advantage of OCS over prior methods is that it can work in a fully
distributed manner without compromising domain privacy.

There are also works on selecting or generating intermediate domains for uDA. Tan et al. (2015)
studied a setting when source and target domains are too distant (e.g., image and text) which makes
direct knowledge transfer infeasible. As a solution, they propose selecting intermediate domains
using A-distance and domain complexity. However, as we discussed, merely using distance metrics
does not guarantee the most optimal collaborator. Moreover, this work was done on a KNN classifier
and did not involve adversarial uDA algorithms. Gong et al. (2019) and Choi et al. (2020) use
style transfer to generate images in intermediate domains between the source and target. Although
interesting, these works are orthogonal to OCS in which the goal is to select the best domain from
a given set of candidates. Moreover, these works are primarily focused on visual adaptation, while
OCS is a general method that can work for any modality. Finally, Wulfmeier et al. (2018); Bobu
et al. (2018) are techniques for incremental uDA in continuously shifting domains. However, in
our problem, different target domains may not have any inherent continuity in them, and hence it
becomes important to perform OCS.

Related work for DILS. There is prior work on distributed model training, wherein training data is
partitioned across multiple nodes to accelerate training. These methods include centralized aggre-
gation (Li et al. (2014); Sergeev & Del Balso (2018)), decentralized training (Lian et al. (2017a);
Tang et al. (2018)), and asynchronous training (Lian et al. (2017b)). Similarly, with the goal of pre-
serving data privacy, Federated Learning proposes sharing model parameters between distributed
nodes instead of the raw data Konečnỳ et al. (2016); Yang et al. (2019). However, these distributed
and federated training techniques are primarily designed for supervised learning and do not extend
directly to uDA architectures. A notable exception is FADA by Peng et al. (2020) which extends
uDA to federated learning. As we extensively discussed in § 3.2, FADA exchanges the features and
gradients of the feature extractor between nodes to achieve domain privacy, which are prone to pri-
vacy attacks. Instead, DILS operates by exchanging discriminator gradients between nodes, which
bring both privacy and training-time benefits over FADA.

Related work on practical uDA. Kundu et al. (2020) and Liang et al. (2020) are two very promising
recent works on source-dataset-free uDA. Although the scope of these works are different from
us, we share the same goal of making uDA techniques more practical. Specifically, we focus on
developing general algorithms and frameworks to scale existing uDA approaches in realistic settings.

For a tabular summary of the related work, please refer to Table 4.

6 CONCLUSION

This paper identified two critical bottlenecks in scaling uDA algorithms in real-world ML systems,
namely the lack of flexibility in choosing adaptation collaborators, and the need to exchange private
data during adaptation. Our proposed solutions — (i) an optimal collaborator selection algorithm
and (ii) a distributed uDA algorithm — address these bottlenecks and bring a novel and cross-
disciplinary perspective to uDA literature. We provided theoretical justifications and proofs on the
privacy and convergence of our algorithms and extensively evaluated them on four datasets.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Transfer Learning Repository. https://github.com/jindongwang/transferlearning/blob/
master/data/dataset.md, 2019.

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learning via
additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5):1333–
1345, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain
adaptation. In Advances in neural information processing systems, 2007.

Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously shifting domains.
2018.

Jongwon Choi, Youngjoon Choi, Jihoon Kim, Jin-Yeop Chang, Ilhwan Kwon, Youngjune Gwon, and Seungjai
Min. Visual domain adaptation by consensus-based transfer to intermediate domain. In AAAI, pp. 10655–
10662, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint
arXiv:1409.7495, 2014.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The Journal of
Machine Learning Research, 17(1):2096–2030, 2016.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adap-
tation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE, 2012.

Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow: Domain flow for adaptation and generalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2477–2486, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural networks by en-
forcing lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Machine Learning Research, 15(1):2489–2512, 2014.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor
Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International Conference on Machine
Learning, pp. 1994–2003, 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur, R Venkatesh Babu, et al. Towards inheritable
models for open-set domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12376–12385, 2020.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In 11th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 583–598, 2014.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, pp. 5330–5340, 2017a.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. arXiv preprint arXiv:1710.06952, 2017b.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. arXiv preprint arXiv:2002.08546, 2020.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep
adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

9

https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md
https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md

Under review as a conference paper at ICLR 2021

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2208–
2217. JMLR. org, 2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adap-
tation. In Advances in Neural Information Processing Systems, pp. 1640–1650, 2018.

Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D Lane. Mic2mic: Using
cycle-consistent generative adversarial networks to overcome microphone variability in speech systems. In
Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp. 169–
180, 2019.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP), pp. 691–706.
IEEE, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adaptation. ICLR,
2020.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated sub-
gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation learning for
domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Ben Tan, Yangqiu Song, Erheng Zhong, and Qiang Yang. Transitive transfer learning. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1155–1164,
2015.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D 2̂: Decentralized training over decentralized
data. arXiv preprint arXiv:1803.07068, 2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176, 2017.

Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. Nopeek: Information leakage
reduction to share activations in distributed deep learning. arXiv preprint arXiv:2008.09161, 2020.

Jindong Wang, Vincent W Zheng, Yiqiang Chen, and Meiyu Huang. Deep transfer learning for cross-domain
activity recognition. In proceedings of the 3rd International Conference on Crowd Science and Engineering,
pp. 1–8, 2018.

Jindong Wang, Yiqiang Chen, Wenjie Feng, Han Yu, Meiyu Huang, and Qiang Yang. Transfer learning with
dynamic distribution adaptation. ACM Transactions on Intelligent Systems and Technology (TIST), 11(1):
1–25, 2020.

Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adaptation for contin-
ually changing environments. In 2018 IEEE International conference on robotics and automation (ICRA),
pp. 1–9. IEEE, 2018.

Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. Semi-supervised optimal
transport for heterogeneous domain adaptation.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applica-
tions. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):12, 2019.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J Gordon. Ad-
versarial multiple source domain adaptation. In Advances in Neural Information Processing Systems, pp.
8559–8570, 2018.

Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: a ct scan dataset about covid-19.
arXiv preprint arXiv:2003.13865, 2020.

10

Under review as a conference paper at ICLR 2021

Chuansheng Zheng, Xianbo Deng, Qing Fu, Qiang Zhou, Jiapei Feng, Hui Ma, Wenyu Liu, and Xinggang
Wang. Deep learning-based detection for covid-19 from chest ct using weak label. medRxiv, 2020. doi:
10.1101/2020.03.12.20027185. URL https://www.medrxiv.org/content/early/2020/03/
26/2020.03.12.20027185.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural Information
Processing Systems, pp. 14747–14756, 2019.

Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and Costas J Spanos. Consensus adver-
sarial domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
5997–6004, 2019.

11

https://www.medrxiv.org/content/early/2020/03/26/2020.03.12.20027185
https://www.medrxiv.org/content/early/2020/03/26/2020.03.12.20027185

Under review as a conference paper at ICLR 2021

Appendix
In §A, we discuss the broader impact of this work on and beyond machine learning literature. In §B,
we provide a tabular summary of the related work to assist the reader in understanding the contri-
butions of this paper. §C presents the additional results supporting our analysis in §4.3. In §D, we
discuss some implementation details, including how Wasserstein Distance is computed in a com-
pletely distributed manner. We also discuss how we modify the baselines for a fair comparison with
FRUDA. In §E, we provide the proofs and theoretical justifications behind our proposed solutions.
Finally, in §F, we share the complete experiment details to aid reproducibility.

A BROADER IMPACT

Overview. As machine learning algorithms mature, we as a research community should aspire to see
them deployed in realistic settings, in order to solve both technical and broader global challenges.
It is also essential that ML algorithms work universally for users around the world and not just be
limited to a subset of the population in a specific part of the world, otherwise we risk creating a
world of ML haves and have-nots, i.e., people who will gain advanced capabilities in their lives
with ML and others who will not. One of the hurdles in fulfilling this vision is the reliance of
today’s deep learning algorithms on large-scale labeled datasets. Collecting realistic, labeled data is
already expensive and time-consuming; moreover, scaling this data collection process to users and
communities around the world could be infeasible for most developers.

The field of Unsupervised Domain Adaptation (uDA) carries enormous promise in this context. If
we can successfully adapt pre-trained models to new users, new communities, new countries (i.e.,
target domains) using only unlabeled data collected from them, we can significantly reduce our
reliance on labeled data, and still ensure that the benefits of ML reach users around the globe.

Positive Impact. Undoubtedly, in the last 5 years, we have seen exciting advancements and hun-
dreds of research papers that have proposed new adversarial uDA algorithms to increase adaptation
accuracy in a target domain. However, for real-world impact, these accuracy improvements in uDA
need to go hand-in-hand with practical settings in which ML systems will be deployed. We observe
that there is not much research on understanding the bottlenecks of uDA in practical ML systems
(e.g., scalability, privacy) that may hinder the adoption of these algorithms.

As such, one significant impact of our work is in providing a complementary and practical perspec-
tive on uDA research, by critically evaluating uDA techniques from a cross-disciplinary lens at the
intersection of Machine Learning and Distributed Systems. By identifying the bottlenecks of scal-
ability and privacy, and proposing solutions for them, this paper takes a step towards making uDA
techniques more practical and usable in realistic settings.

Ethical Considerations. As with any distributed algorithm that sends data over the communication
network, we need to remain vigilant about privacy attacks. Although our strategy protects against
gradient leakage attacks currently known in the literature, we are mindful that more sophisticated
privacy attacks will be developed in the future. Hence, we need to be constantly aware of the devel-
opments in the ML privacy literature and be ready to make amendments to our proposed technique.

This paper also argues for more cross-disciplinary research inside the uDA community. While
developing and evaluating new uDA algorithms, we should evaluate them not just on ‘accuracy’ as
a metric, but holistically from the perspective of privacy, security, fairness, and their adherence to
practical systems realities. This would mean broadening our research scope to allow complementary
views to contribute to uDA, including those from Systems research, Privacy, Ethics and Fairness
research. This type of cross-disciplinary investigation of uDA would certainly enrich it and lead to
much broader impact.

We hope that this paper, at the intersection of uDA and Distributed Systems, is considered a positive
step in this direction.

12

Under review as a conference paper at ICLR 2021

B OVERVIEW OF RELATED WORK

In Table 4, we provide a tabular summary of the related work in unsupervised domain adaptation.
This builds upon §5 in the main paper, and highlights how our framework, FRUDA, provides novel
contributions to the uDA literature.

Property
Method

ADDA,
DANN,
CADA

Multi
Source uDA

Federated
uDA (FADA)

Tan et al.
(2015)

FRUDA
(Ours)

Adversarial Domain
Adaptation

X X X X

Collaborator Selection
before Adaptation

X X

Collaborator
Selection Metric

A-Distance,
Domain

Complexity

Estimated Target
Cross-Entropy

Error
Supports

Distributed uDA
X X

Privacy Protection in uDA
Against Gradient Leakage

X

Communication
Efficient Distributed uDA

X

Framework to support
multiple uDA algorithms

X

Number of labeled
source domains

1 Multiple Multiple 1 1

Dynamic Weighting of
Multiple Source Domains

N/A X X N/A N/A

Table 4: Overview of the related work in unsupervised domain adaptation and the novelty of FRUDA over
prior works. Check marks denote the core property of different methods. FRUDA is unique in providing
a framework to scale multiple adversarial uDA algorithms using optimal collaborator selection and privacy-
preserving, communication-efficient distributed training.

C ADDITIONAL RESULTS

C.1 EFFECT OF SYNC-UP STEP p

In DILS, p controls the frequency of gradient exchange between the nodes. In Figures 3a and 3b, we
vary p from 1 and 10 and calculate the adaptation accuracy in the target domain for two adaptation
tasks. The results show that DILS is fairly resilient to step-size up to p = 10. The difference in
adaptation accuracy between p = 10 and p = 1 is just 0.5% for the RMNIST task and 1.7% for
the Digits task. This accuracy loss is offset by the gain in training speed; when p is high, DILS
exchanges less gradients over the communication network, hence increasing the training speed.

Effectively, p could be considered as a tunable parameter to trade-off adaptation accuracy and train-
ing time. For applications where it is important to minimize the training time, p could be set to a
high value. Empirically, we find that p = 4 provides a good tradeoff between accuracy and training
speed for all datasets studied in this paper.

13

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 3: Effect of varying the sync-up step p from 1 to 10 on target domain accuracy.

C.2 ERROR PROPAGATION AND NEGATIVE TRANSFER IN SEQUENTIAL ADAPTATION

In sequential adaptation where a target domain adapts from previous domain(s), error propagation
and negative transfer is a possibility, especially if an unrelated domain appears in the sequence.

To demonstrate this phenomenon, Figure 4a shows a sequence of one source domain (0°) and 5
target domains (30°, 60°, 300°, 90°, 120°) from the RMNIST dataset. If we simply do a sequential
adaptation where each domain i adapts from the (i− 1)th domain, we see that 60°−→300° results in
high error and poor adaptation accuracy for 300°. This behavior is caused by the high divergence
between the two domains. More critically however, we see that this error propagates in all the
subsequent adaptation tasks (for 90°, 120°) and causes poor adaptation performance in them as
well. In fact, for 120° we also observe negative transfer, as its post-adaptation accuracy (20.7%) is
worse than the pre-adaptation accuracy obtained with source domain model.

The ability of OCS to flexibly choose a collaborator for each target domain inherently counters this
problem. Firstly, Figure 4b shows that we can choose a better collaborator for 300° and obtain
almost 20% higher adaptation accuracy. More importantly, the subsequent target domains are no
longer reliant on 300° as their collaborator and can adapt from any available candidate domain,
e.g., 90° adapts from 60° and obtains the best possible adaptation accuracy of 92.6% in this setup.
Similarly, for 120°, we can prevent the negative transfer and achieve 91.7% accuracy by adapting
from 90° (which itself underwent adaptation previously with 60°).

In summary, for a given sequence of domains, OCS enables each target domain to flexibly find its
optimal collaborator and achieve the best possible adaptation accuracy.

(a) Sequential Adaptation without OCS. Each domain i adapts from the (i− 1)th domain.

(b) Sequential Adaptation with OCS. Each domain flexibly chooses its optimal collaborator and obtains the
best possible adaptation accuracy (indicated in red).

Figure 4: OCS prevents negative transfer and error propagation in sequential adaptation caused by the presence
of unrelated domains. 0° is the labeled source domain while the domains in blue are unlabeled target domains.
The numbers in rectangle denote the post-adaptation accuracy for a domain.

14

Under review as a conference paper at ICLR 2021

Sources = 0°, 30°, 60°

Target = 90°

Sources = 0°,30°,60°,300°,270°,180°,45°,15°

Target = 90°

Vanilla MDAN
(Without OCS)

82.1% 76.3 %

MDAN with OCS 88.4% 89.3 %
Table 5: OCS can improve the performance of multi-source uDA algorithms by selecting multiple collaborators
for each target domain.

C.3 CAN OCS BENEFIT MULTI-SOURCE SETTINGS?

OCS can also boost the adaptation accuracy in settings with multiple labeled sources. We present
an experiment with MDAN (Zhao et al. (2018)) which is an algorithm for multi-source domain
adaptation.

Table 5 shows the performance of MDAN in two adaptation tasks on RMNIST with 3 and 8 source
domains, and one target domain. Each source domain is labeled. In vanilla MDAN, we use all
available source domains for adaptation without selecting any optimal collaborators. In MDAN with
OCS, we first select multiple optimal collaborators using OCS and then perform MDAN between the
collaborators and the target domain. The OCS formulation in Equation 5 can be trivially extended
to select the top-n collaborators instead of only one collaborator.

For the first task, we set n=2 and the two collaborators returned by OCS are 30° and 60°. For the
second task, we set n=3 and the collaborators returned by OCS are 30°, 60° and 45°. The results in
Table 5 show that by selecting the optimal collaborators for the target domain, we can achieve 6.3%
and 13% gains over vanilla MDAN.

We believe that the accuracy drop in vanilla MDAN is caused by negative transfer due to the presence
of source domains unrelated to the target domain, e.g., in the second adaptation task, there are 8
source domains many of which are far-off from the target domain (90°). On the other hand, OCS
filters out these unrelated domains before initiating the adaptation, thereby preventing any negative
transfer due to them.

D IMPLEMENTATION DETAILS

D.0.1 LOSS FORMULATIONS OF UDA ALGORITHMS

We now discuss the adversarial training formulation of the various uDA algorithms with which we
evaluated the efficacy of FRUDA. Recall that we evaluate our method with four domain adaptation
techniques: ADDA (Tzeng et al. (2017)), Gradient Reversal (Ganin et al. (2016)) and Wasserstein
DA (Shen et al. (2018)), and CADA (Zou et al. (2019)). Below are the adversarial training formula-
tions of these techniques as proposed in their original papers.

ADDA. Following the same notations used earlier in the paper, the adversarial loss formulations of
ADDA can be represented mathematically as:

min
DI
LadvDI

= −Exs∼XS
[log(DI(ES(xs))]− Ext∼XT

[log(1−DI(ET (xt))] (6)

min
ET

LadvM = −Ext∼XT
[log(DI(ET (xt))] (7)

The Discriminator DI is optimized using LadvDI
where the domain data from source and target

domains are assigned different domain labels (0 and 1). To update the feature extractor ET , ADDA
proposes to invert the domain labels, which results in the loss formulation given in LadvM .

15

Under review as a conference paper at ICLR 2021

In order to run ADDA in a distributed manner, we decompose the discriminator DI into DIS and
DIT which results in the following loss functions:

LadvDIS
= −Exs∼XS

[log(DIS(ES(xs))] (8)

LadvDIT
= −Ext∼XT

[log(1−DIT (ET (xt))] (9)

min
ET

LadvM = −Ext∼XT
[log(DIT (ET (xt))] (10)

Thereafter, we compute local gradients for DIS and DIT ,

∇g(DIS , xs) =
δLadvDIS

δDIS
(11)

∇g(DIT , xt) =
δLadvDIT

δDIT
(12)

and aggregate them in the sync-up step as shown in Algorithm 1. The aggregated gradients are used
to optimize DIS and DIT , while ET is optimized using the loss function in Equation 10.

Gradient Reversal. The Gradient Reversal approach uses the same loss formulation for the dis-
criminators DIS and DIT as ADDA as shown in Equations 6, 8, 9.

However, to update the target extractor ET , it leverages the gradient reversal strategy, resulting in
the following loss function.

min
ET

LadvM = −LadvDIT

= Ext∼XT
[log(1−DIT (ET (xt))]

(13)

The computation of local gradients forDIS andDIT follow the same process as shown in Equations
11 and 12.

Wasserstein DA. In this technique, Shen et al. (2018) use the Wasserstein distance as the loss
function for the discriminator. Wasserstein distance between two datasets is defined as

Wasserstein(Xs, Xt) =
1

ns

∑
xs∼XS

DI(ES(xs))−
1

nt

∑
xt∼XT

DI(ET (xt)) (14)

where ns and nt are the number of samples in the dataset. The discriminator loss is computed as:

min
DI
LadvDI = −Exs∼XS ,xt∼XT

[Wasserstein(xs, xt)] + γLgrad (15)

where Lgrad is the gradient penalty used to enforce the Lipschitz constraint on the discriminator.
Further, the target extractor is optimized using the following loss function:

min
ET

LadvM = Exs∼XS ,xt∼XT
[Wasserstein(xs, xt)] (16)

We use the same strategy to compute local gradients for DIS and DIT as shown in Eq 11 and 12.

CADA. Consensus Adversarial Domain Adaptation is a technique proposed by Zou et al. (2019)
which enforces the source and target extractors to arrive at a consensus in the feature space through
adversarial training. It uses the same loss formulation for the discriminatorsDIS andDIT as ADDA
as shown in Equations 6, 8, 9. However, the key difference is that CADA optimizes both the source
and target feature extractors in the training process, until the discriminator can no longer distinguish
the features from source and target domains.

16

Under review as a conference paper at ICLR 2021

D.1 COMPUTING WASSERSTEIN DISTANCE ACROSS DISTRIBUTED DATASETS IN A PRIVACY
PRESERVING MANNER

Our optimal collaborator selection algorithm requires computing an estimate of the Wasserstein
(W1) distance between a candidate domain (DC) and the target domain (DT). Let XC and XT
denote the unlabeled datasets from the two domains. As shown by Shen et al. (2018), the W1
distance can be computed as:

W1(XC , XT) =
1

nC

∑
xs∼XC

DI(EC(xc))−
1

nT

∑
xt∼XT

DI(ET (xt)) (17)

where nC and nT are the number of samples in the dataset, EC and ET are the feature encoders
of each domain, and DI is an optimal discriminator trained to distinguish the features from the two
domains. To train the optimal discriminator, following loss is minimized:

min
DI
LadvDI

= −Exc∼XC ,xt∼XT
[W1(xc, xt) + γLgrad]

where Lgrad is the gradient penalty used to enforce 1-Lipschitz continuity on the discriminator.

Interestingly, Equation 17 has a similar structure to the optimization objectives for ADDA and other
uDA algorithms discussed above. Hence, we can use the same principle as DILS and exchange
discriminator gradients between nodes to compute the Wasserstein Distance in a distributed manner,
without requiring any exchange of raw data.

We initialize ET with EC and decompose the discriminator DI into two parts (DIC and DIT)
which reside on the respective nodes. The raw data from both nodes is fed into their respective
encoders and discriminators, and we compute the gradients of each discriminator as follows:

L
C

DI =
1

nC

∑
xs∼XC

DIC(EC(xc))

L
T

DI =
1

nT

∑
xt∼XT

DIT (ET (xt))

∇g(DIC , xc) =
δLC

DI

δDIC

∇g(DIT , xt) =
δLT

DI

δDIT

Both nodes exchange their discriminator gradients during a synchronization step and compute ag-
gregated gradients:

∇g(DIagg, xc, xt) = ∇g(DIC , xc)−∇g(DIT , xt) (18)

Finally, both discriminatorsDIC andDIT are updated with these aggregated gradients, and gradient
penalty is applied to enforce the 1-Lipschitz continuity on the discriminators. This process continues
until convergence and results in an optimal discriminator. Once the discriminators are trained to
convergence, we can calculate the Wasserstein distance as:

W1(XC , XT) = L
C

DI − L
T

DI

To the best of our knowledge, this approach of computing Wasserstein distance in a distributed
manner has not been explored before. Moreover, this ability to compute Wasserstein distance in a
distributed manner makes it an ideal metric for collaborator selection in a privacy-preserving setting.

D.2 MODIFICATIONS DONE TO MDAN

As we noted in §4.2, we use a Multi-Collaborator baseline for OCS wherein all available candidate
domains contribute in domain adaptation with the target. To this end, we employ the MDAN method

17

Under review as a conference paper at ICLR 2021

proposed by Zhao et al. (2018) for multi-source domain adaptation. However, one key difference
between MDAN and our problem setting is that MDAN assumes that there are multiple source
domains and all of them are labeled. With this assumption, MDAN optimizes the following objective
during uDA:

minimize
1

γ

∑
i∈[k]

exp(γ(ε̂Si
(h)− min

h′∈H∆H
ε̂T,Si

(h′)))

where ε̂Si
is the classification error for source domain Si obtained using supervised learning (as-

suming the availability of labels), and ε̂T,Si
is the error of a domain discriminator trained to separate

Si and target T .

However, in our problem setting, there is only one labeled source and all other domains are un-
labeled. As such, we do not have a way to optimize the classification error ε̂Si

for all candidate
domains. Therefore, we only optimize the discriminator error proposed in MDAN.

E PROOFS

E.1 CONVERGENCE OF DISCRIMINATOR-BASED LAZY SYNCHRONIZATION (DILS)

The network structures of adversarial uDA methods resemble a GAN, where the target encoder
ET and discriminators DI (DIS and DIT) play a minimax game similar to a GAN’s generator
and discriminator. ES and ET can separately define two probability distributions on the feature
representations ES(xs), xs ∼ XS and ET (xt), xt ∼ XT , noted as ps and pt respectively. Then
according to the theoretical analysis in Goodfellow et al. (2014), we know that:

Proposition 2. For a givenET , ifDI is allowed to reach its optimum, and pt is updated accordingly
to optimize the value function, then pt converges to ps, which is the optimization goal of ET .

In other words, if we can guarantee that under the training strategy of Lazy Synchronization, con-
vergence behaviour of DIS and DIT is similar to the non-distributed case, then ET should also
converge. We have the following theorem.

Theorem 1. In Lazy Synchronization, given a fixed target encoder, under certain assumptions, we
have the following convergence rate for the discriminators DIS and DIT .

1

T

T∑
t=1

E[‖∇f(xt)‖
2
2
] ≤ 1

1− µL
[
f(x0)− f(xt+1)

µT
+(2p−1)Lµσ2+

µLσ2

2
+
µ3L3σ2(2p− 1)

2
]

(19)

Where p is the sync-up step, µ is the learning rate. Set µ = O(1/
√
T). When p << Lσ2, the impact

of stale update will be very small, and thus it can converge with rate O(1/
√
T), which is same as

the classic SGD algorithm.

Proof. As we mentioned in the paper, DIS and DIT are lazily synced, such that their weights
are always identical, because they are initialized with the same weights and always apply the same
synced gradients at every training step. Therefore, we can consider them as one discriminatorDIlazy
for our convergence analysis.

Notations. Throughout the proof, we use following notations and definitions:

• x denotes model weights of DIlazy.

• f denotes the loss function of DIlazy.

• Ds and Dt denote the datasets of source and target feature representations (i.e., outputs of
the respective feature extractors).

• ξ denotes one batch of training instances sampled from Ds ∪ Dt.
• f(x, ξ) denotes empirical loss of model x on batch ξ.
• ∇f(·) denotes gradients of function f .

18

Under review as a conference paper at ICLR 2021

• σ denotes the gradient bound.

• µ denotes learning rate.

• T denotes the number of training steps.

• p denotes the size of sync-up step in our proposed Lazy Synchronization approach.

We can formalize the optimization goal of the discriminator as:
min
x∼RN

f(x) = Er(s)∼Ds
log x(r(s)) + Er(t)∼Dt

log[1− x(r(t))] (20)

Assumption 1. f(x) is with L-Lipschitz gradients:
‖∇f(x1)−∇f(x2)‖2

2
≤ L ‖x1 − x2‖

2
2

(21)

Equivalently, we can get:

f(x2) ≤ f(x1) +∇f(x1)T (x2 − x1) +
L

2
‖x2 − x1‖

2
2

(22)

In training step t, we first simplify the updating rule as:
xt+1 = xt − µ∆(xt, ξt) (23)

Combine Inequality 22 and Equation 23, at time step t we have:

f(xt+1) ≤ f(xt)− µ∇f(xt)∆(xt, ξt) +
µ2L

2
‖∆(xt, ξt)‖

2
2

...

f(x1) ≤ f(x0)− µ∇f(x0)∆(x0, ξ0) +
µ2L

2
‖∆(x0, ξ0)‖2

2

(24)

Sum all inequalities:

f(xt+1) ≤ f(x0)− µ
T∑
t=1

∇f(xt)∆(xt, ξt) +

T∑
t=1

µ2L

2
‖∆(xt, ξt)‖

2
2

(25)

Take expectation on ξt in both sides and re-arrange terms:

1

T

T∑
t=1

E[∇f(xt)∆(xt, ξt)] ≤
f(x0)− f(xt+1)

µT
+
µL

2T

T∑
t=1

E[‖∆(xt, ξt)‖
2
2
] (26)

In our proposed Lazy Synchronization algorithm, the update term ∆(xt, ξt) is:

∆(xt, ξt) =
1

p

p−1∑
n=0

∇f(xtp−n, ξtp−n), t ≥ p

tp = bt/pc × p
(27)

where tp is the latest sync-up step given a certain time step t, and p is the sync-up step of our algo-
rithm. This updating rule formalizes our approach, wherein the gradient applied to the discriminator
is the averaged gradient over p steps before the latest sync up step.

We transform ∆(xt, ξt) as follows:

∆(xt, ξt) =
1

p

p−1∑
n=0

∇f(xtp−n, ξtp−n)

=
1

p

p−1∑
n=0

∇f(xtp−n, ξtp−n)− 1

p

p−1∑
n=0

∇f(xt, ξtp−n) +
1

p

p−1∑
n=0

∇f(xt, ξtp−n)−∇f(xt) +∇f(xt)

= ∇f(xt) +
1

p

p−1∑
n=0

[∇f(xtp−n, ξtp−n)−∇f(xt, ξtp−n)] +
1

p

p−1∑
n=0

[∇f(xt, ξtp−n)−∇f(xt)]

(28)

19

Under review as a conference paper at ICLR 2021

Bring Equation 28 back to Equation 26 (Let e(xt, ξt) = 1
p

∑p−1
n=0[∇f(xtp−n, ξtp−n) −

∇f(xt, ξtp−n)] + 1
p

∑p−1
n=0[∇f(xt, ξtp−n)−∇f(xt)]):

1

T

T∑
t=1

E[∇f(xt)(∇f(xt) + e(xt, ξt))] ≤
f(x0)− f(xt+1)

µT
+
µL

2T

T∑
t=1

E[‖(∇f(xt) + e(xt, ξt))‖
2
2
]

1

T

T∑
t=1

E[‖∇f(xt)‖
2
2
] +

1

T

T∑
t=1

∇f(xt)E[e(xt, ξt)] ≤
f(x0)− f(xt+1)

µT
+
µL

2T

T∑
t=1

‖∇f(xt)‖
2
2

+
µL

2T

T∑
t=1

E[‖e(xt, ξt))‖
2
2
]

1

T

T∑
t=1

E[‖∇f(xt)‖
2
2
] ≤ 2

2− µL

(
f(x0)− f(xt+1)

µT
− 1

T

T∑
t=1

∇f(xt)E[e(xt, ξt)] +
µL

2T

T∑
t=1

E[‖e(xt, ξt))‖
2
2
]

)
(29)

Then we analyze E[e(xt, ξt)] and E[‖e(xt, ξt))‖
2
2
]:

e(xt, ξt) =
1

p

p−1∑
n=0

[∇f(xtp−n, ξtp−n)−∇f(xt, ξtp−n)]︸ ︷︷ ︸
e1

+
1

p

p−1∑
n=0

[∇f(xt, ξtp−n)−∇f(xt)]︸ ︷︷ ︸
e2

(30)

For e1:

e1(xt, ξt) =
1

p

p−1∑
n=0

[∇f(xtp−n, ξtp−n)−∇f(xt, ξtp−n)]

=
1

p

p−1∑
n=0

[∇f(xtp−n, ξtp−n)−∇f(xtp−n+1, ξtp−n) +∇f(xtp−n+1, ξtp−n)− ...

−∇f(xtp , ξtp−n) +∇f(xtp , ξtp−n)− ...+∇f(xt−1, ξtp−n)−∇f(xt, ξtp−n)]

=
1

p

p−1∑
n=0

n−1∑
i=0

[∇f(xtp−(i+1), ξtp−n)−∇f(xtp−i, ξtp−n)] +

t−tp−1∑
j=0

[∇f(xtp+j , ξtp−n)−∇f(xtp+j+1, ξtp−n)]

(31)

According to the algorithm, we know that:
xtp−i = xtp−(i+1) − µG(bt/pc−1)×p

xtp+j+1 = xtp+j − µGbt/pc×p
(32)

where G(bt/pc−1)×p is the second last synced gradient, Gbt/pc×p is the latest synced gradient.

Apply L-Lipschitz gradient:∥∥∥∇f(xtp−(i+1), ξtp−n)−∇f(xtp−i, ξtp−n)
∥∥∥ ≤ Lµ∥∥∥G(bt/pc−1)×p

∥∥∥∥∥∥∇f(xtp+j , ξtp−n)−∇f(xtp+j+1, ξtp−n)
∥∥∥ ≤ Lµ∥∥∥Gbt/pc×p∥∥∥ (33)

Assumption 2. Bounded Gradient. We assume the stochastic gradients are uniformly bounded: (see
Shalev-Shwartz et al. (2011); Nemirovski et al. (2009); Hazan & Kale (2014))

E[‖∇f(xt, ξt)‖
2
2] ≤ σ2 (34)

Therefore, we have: ∥∥∥∇f(xtp−(i+1), ξtp−n)−∇f(xtp−i, ξtp−n)
∥∥∥ ≤ Lµ σ∥∥∥∇f(xtp+j , ξtp−n)−∇f(xtp+j+1, ξtp−n)
∥∥∥ ≤ Lµσ (35)

20

Under review as a conference paper at ICLR 2021

Bring Inequality 35 back to Equality 31:

e1(xt, ξt) ≤
1

p

p−1∑
n=0

(n+ t− tp)Lµσ

≤ (2p− 1)Lµσ

(36)

since it is easy to see t− tp ≤ p.

In summary of e1, we get:
E[∇f(xt)e1(xt, ξt)] ≤ E[‖∇f(xt)‖]× ‖e1(xt, ξt)‖] ≤ (2p− 1)Lµσ2

E[‖e1(xt, ξt))‖
2
2
] ≤ (2p− 1)L2µ2σ2

(37)

For e2 = 1
p

∑p−1
n=0[∇f(xt, ξtp−n)−∇f(xt)]:

Since batch ξ is an unbiased sampled batch, it is obvious that for a certain n:
E[∇f(xt, ξtp−n)−∇f(xt)] = 0 (38)

Also,

E[
∥∥∥∇f(xt, ξtp−n)−∇f(xt)

∥∥∥2

2
] ≤ E[‖∇f(xt)‖

2
2
] + E[

∥∥∥∇f(xt, ξtp−n)
∥∥∥2

2
]

≤ E[‖∇f(xt)‖
2
2
] + σ2

(39)

Therefore,
E[e2(xt, ξt)] = 0

E[‖e2(xt, ξt))‖
2
2
] ≤ E[‖∇f(xt)‖

2
2
] + σ2

(40)

Combine 37 and 40 with 29:

1

T

T∑
t=1

E[‖∇f(xt)‖
2
2
] ≤ 1

1− µL
[
f(x0)− f(xt+1)

µT
+(2p−1)Lµσ2+

µLσ2

2
+
µ3L3σ2(2p− 1)

2
]

(41)

Therefore, the expected ‖∇f(xt)‖
2
2

converge to 0 with rate O(1/
√
T) if µ = 1/

√
T . When the

function f(x) is strongly convex, this is the global minimum, otherwise it can be a local minimum,
or a stationary point.

E.2 PRIVACY ANALYSIS OF DILS

Recall that a key feature of our distributed training algorithm is to exchange information between the
distributed nodes using gradients of the discriminators. This clearly affords certain privacy benefits
over existing uDA algorithms since we no longer have to transmit raw training data between nodes.
However, prior works have shown that model gradients can potentially leak raw training data in
collaborative learning (Melis et al. (2019)), therefore it is critical to examine: can the discriminator
gradients also indirectly leak training data of a domain? We begin by providing some theoretical
justification on why our training algorithm prevents the reconstruction of raw data from discrimina-
tor gradients. Then in §E.2.1, we study the performance of DILS under a state-of-the-art gradient
leakage attack proposed by Zhu et al. (2019).

We consider the case when the domain discriminator is made of a single neuron and later, we will
explain how this analysis generalizes to deeper discriminators.

Let x = (x1, x2,xn) ∈ Rn be a n-dimensional training point sampled from the target domain.
Let the target domain feature extractorET be a neural network which outputs a j-dimensional feature

vector e =
(
e1, e2,ej

)
∈ Rj . The squared error discriminator loss LD is expressed as:

LD =

(
g

(
j∑
i=1

Wiei + b

)
− y

)2

(42)

21

Under review as a conference paper at ICLR 2021

where Wi (i = 1...j), b and g are respectively the weights, bias, and activation function of the target
discriminator, and y is the target domain label. Under this formulation, the gradient with respect to
discriminator weight Wj is given as:

∇Wj
=
δLD
δWj

=
δ
(
g
(∑j

i=1Wiei + b
)
− y
)2

δWj

= 2

(
g

(
j∑
i=1

Wiei + b

)
− y

)
δ
(
g
(∑j

i=1Wiei + b
))

δWj

= 2

(
g

(
j∑
i=1

Wiei + b

)
− y

)(
g′

(
j∑
i=1

Wiei + b

))
δ
(∑j

i=1Wiei + b
)

δWj

= 2

(
g

(
j∑
i=1

Wiei + b

)
− y

)(
g′

(
j∑
i=1

Wiei + b

))
· ej (43)

Similarly, the gradient with respect to the bias b is given as:

∇b =
δLD
δb

=
δ
(
g
(∑j

i=1Wiei + b
)
− y
)2

δb

= 2

(
g

(
j∑
i=1

Wiei + b

)
− y

)(
g′

(
j∑
i=1

Wiei + b

))
· 1 (44)

Note that
∇Wj

∇b
= ej , i.e., if an adversary steals the gradients of the weights and bias of the discrimi-

nator, they can potentially (and, at best) reconstruct the feature representation e of the training input.
It is infeasible to reconstruct the input raw data x from the stolen features e, because our training
strategy does not exchange the feature extractor model ET between the nodes. Also note that by
adding regularization during the training process (e.g., using Dropout or L2 regularization), even
reconstruction of the entire feature representations e can be prevented.

Although we provided the above justification assuming that the discriminator consists of a single
neuron, our conclusion extends to scenarios where the discriminator is a neural network. Here, the
gradients of the first hidden layer of the discriminator network can result in feature leakage:

∇
W

(1)
c,j

=
δLD

δW
(1)
c,j

= θ · ej (45)

where,W (1)
c,j is the weight connecting the jth encoded feature ej with the cth node in the first hidden

layer of the discriminator. θ is a real number. As described earlier, the gradient in Equation 45, in
conjunction with the gradient of the bias can at best result in reconstructing the feature representation
e, however it does not reveal the training data x from the target domain.

E.2.1 PROTECTION AGAINST A STATE-OF-THE-ART PRIVACY ATTACK

The above analysis was conceptual in nature and intended to give an intuition on the privacy proper-
ties of DILS. We now take a recently proposed privacy attack as an example and study the behavior
of DILS under it.

22

Under review as a conference paper at ICLR 2021

Zhu et al. (2019) showed that gradient matching can be a simple but robust technique to reconstruct
the raw training data from stolen gradients. Let us say we are given a machine learning model
F () with weights W . Let ∇W be the gradients with respect to a private input pair (x, y). During
distributed training,∇W are exchanged between the nodes.

A reconstruction attack happens as follows: an attacker first randomly initializes a dummy input x′
and label input y′. This data is fed into the model F () to compute dummy gradients as follows:

∇W ′ =
∂` (F (x′,W) ,y′)

∂W

Finally, the attacker minimizes the distance between the dummy gradients and the actual gradients
using gradient descent to reconstruct the private data as follows:

x′∗,y′∗ = arg min
x′,y′

‖∇W ′ −∇W‖2 = arg min
x′,y′

∥∥∥∥∂` (F (x′,W) ,y′)

∂W
−∇W

∥∥∥∥2

(46)

Zhu et al. (2019) demonstrate the success of this attack on a number of image datasets.

Can this attack succeed on DILS? There are two key assumptions in this attack: (i) the weights W
of the end-to-end machine learning model are available to an adversary in order for them to compute
the dummy gradients, (ii) the gradients of all the layers (∇W) between the input x and output y are
available to the adversary.

DILS never exchanges the weights of the target domain model (i.e., the feature encoder and the
discriminator) during the adversarial training process. As shown in Algorithm 1, the target feature
encoder is trained locally and only discriminator gradients are exchanged. Without the knowledge of
the model weights W , an attacker can not generate the dummy gradients ∇W ′ necessary to initiate
the attack on the target domain.

Looking at the source or collaborator domain, we do exchange its feature encoder with the target
domain in the initialization step of uDA, which could be used by the attacker to generate the dummy
gradients∇W ′. However, for the attack to succeed, the attacker also needs the real gradients (∇W)
of all the layers between the input x and output y in the source domain. This includes gradients of
the feature encoder ES and the domain discriminator DIS . In DILS however, we only exchange the
gradients of the domain discriminatorDIS during training; the gradients ofES are never exchanged.
Without the knowledge of the gradients of ES , an attacker cannot use Eq. 46 to reconstruct the
training data of the source domain.

In summary, we have proven that our strategy of distributed uDA based on discriminator gradients
does not allow an attacker to reconstruct the private data of either the source or the target domain.

E.3 OPTIMAL COLLABORATOR SELECTION (OCS) ALGORITHM

Theorem 2 Let D1 and D2 be two domains sharing the same labeling function l. Let θCE denote
the Lipschitz constant of the cross-entropy loss function in D1, and let θ be the Lipschitz constant of
a hypothesis learned on D1. For any two θ-Lipschitz hypotheses h, h′, we can derive the following
error bound for the cross-entropy (CE) error εCE,D2

in D2:

εCE,D2
(h, h′) ≤ θCE

(
εL1,D1

(h, h′) + 2θW1(D1, D2)
)

(47)

where W1(D1, D2) denote the first Wasserstein distance between the domains D1 and D2, and
εL1,D1

denotes the L1 error in D1.

Proof. The L1 error between two hypotheses h, h′ on a distribution D is given by:
εL1,D

(h, h′) = Ex∼D [|h(x)− h′(x)|] (48)

We define softmax cross-entropy on a given distribution D as
εCE,D(h) = Ex∼D

[∣∣∣logSl(x)h(x)
∣∣∣] , (49)

where S is the softmax function Rn −→ Rn, l is the labelling function, and Sl(x) denotes the
projection of S to the l(x)-component.

23

Under review as a conference paper at ICLR 2021

Then we have,

εCE,D(h, h′) = Ex∼D
[
| logSl(x)h(x)− logSl(x)h

′(x)|
]

= εL1,D
(logSlh, logSlh

′) (50)

Further, using the definition of Lipschitz continuity, we have∣∣∣logSl(x)h(x)− logSl(y)h(y)
∣∣∣ ≤ θCE|h(x)− h(y)|, (51)

where θCE is the Lipschitz constant of the softmax cross-entropy function.

Next, we follow the triangle inequality proof from (Shen et al., 2018, proof of Lemma 1) to find that

εL1,D2
(logSlh, logSlh

′) ≤ εL1,D1
(logSlh, logSlh

′) + 2θCE.θW1(D1, D2), (52)

where θ is a Lipschitz constant for h and h′, if the label l(x) were constant. Since l(x) is constant
outside of a measure 0 subset where the labels change, and h and h′ are Lipschitz, so in particular
measurable, Equation 52 holds everywhere.

Then, by substituting from Eq. 50 and Eq. 51 in Eq. 52, we get Theorem 1:

εCE,D2
(h, h′) ≤ εCE,D1

(h, h′) + 2θCE.θW1(D1, D2)

≤ θCE(εL1,D1
(h, h′) + 2θW1 (D1, D2)) (53)

�

In effect, Theorem 1 enables the estimation of target CE error, given a hypothesis (i.e., a classifier)
from a collaborator domain. Given a collaborator domainDc, a learned hypothesis hc and a labeling
function l, we can estimate the CE error for a target domain DT as:

εCE,DT
(hc, l) ≤ θCE(εL1,Dc

(hc, l) + 2θW1 (Dc, DT)) (54)

Now that we have a way to estimate the target CE error, we can use it to select an optimal collaborator
that yields the minimum target CE error. Let Z = {Dk|k = 1, . . . ,K} be a set of candidate domains
each with a pre-trained model hk with Lipschitz constants θkCE and θk. LetDK+1

T be a target domain
for which an optimal collaborator is to be chosen. We use Eq. 54 to select the optimal collaborator
domain Dopt as:

Dopt = argmin
k=1,...,K

θkCE(εL1,Dk(hk, l) + 2θkW1(Dk, DK+1
T)) (55)

Our empirical results confirm that this formulation provides a robust metric to choose optimal col-
laborators and increase the accuracy of uDA algorithms in multi-target scenarios.

F EXPERIMENT DETAILS FOR REPRODUCIBLITY

F.0.1 DOMAIN ORDERINGS

As mentioned in our problem formulation, the unlabeled target domains are introduced sequentially
in a given order. To measure the performance of FRUDA with various target orders, we reported two
different domain orders for each data set in our experiments. We specify these orders in Table 6.

F.0.2 ARCHITECTURES, PRE-PROCESSING AND HYPERPARAMETERS

We now describe the neural architectures used for each dataset along with the pre-processing steps
and hyperparameters used for supervised and adversarial learning.

Rotated MNIST: The MNIST dataset is obtained from the Tensorflow Dataset repository and is
rotated by different degrees to generate different domains. The same training and test partitions as
in the original dataset are used in our experiments. We employ the well-known LeNet architecture

24

Under review as a conference paper at ICLR 2021

Dataset Ordering 1 Ordering 2

RMNIST
0,30,60,90,120,150,180,

210,240,270,300,330

0,180,210,240,270,300,

330,30,60,90,120,150

Mic2Mic Voice (V), USB (U), Creator (C), ReSpeaker (R) USB, Creator, Voice, ReSpeaker

Digits
MNIST Modified (M-M), Synth Digits (Syn),

MNIST (M), USPS (U), SVHN (S)

Synth Digits, MNIST,

MNIST Modified, USPS, SVHN

Office-Caltech DSLR (D), Webcam (W), Caltech (C), Amazon (A) Webcam, Caltech, DSLR, Amazon
Table 6: Domain orderings used in our experiments. Domains in bold correspond to the labeled source domain,
which is introduced first in the system. All other domains have no training labels.

for training the feature encoder as shown below. The model was trained for each source domain with
a learning rate of 10−4 using the Adam optimizer and a batch size of 32.

Conv2D(filters = 20, kernel_size = 5, activation=‘relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Conv2D(filters = 50, kernel_size = 5, activation=‘relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Flatten(),
Dense(500, activation=‘relu’),
Dense(10, activation=‘softmax’)

In order to enforce the Lipschitz continuity on the encoder, we applied a constraint on the weights
of each layer, which represents the upper bound of the Lipschitz constant for that layer Gouk et al.
(2018). We did a hyperparameter search to find the optimal Lipschitz constant for each layer. In
the adversarial training process, we used the ADDA loss formulations to perform domain adaptation
with a learning rate of 10−3 for the target extractor and 10−2 for the discriminators.

Digits: This task consists of five domains: MNIST, SVHN, USPS, MNIST-Modified and SynthDig-
its Ganin & Lempitsky (2014). We used the same train/test split as in the original domain datasets.
The images from all domains were normalized between 0 and 1, and resized to 32x32x3 for consis-
tency. The following architecture was used for the feature encoder and it was trained for each source
domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 64.

inputs = tf.keras.Input(shape=(32,32,3), name=’img’)
x = Conv2D(filters = 64, kernel_size = 5, strides=2)(inputs)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.1)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 128, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.3)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 256, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.5)(x, training=is_training)
x = ReLU()(x)
x = Flatten()(x)
x = Dense(512)(x)
x = BatchNormalization()(x, training=is_training)
x = ReLU()(x)
x = Dropout(0.5)(x, training=is_training)

25

Under review as a conference paper at ICLR 2021

outputs = Dense(10)(x)

In order to enforce the Lipschitz continuity on the encoder, we added spectral norm regularization
on the weights of each layer during the training process. In the adversarial training process, we used
the ADDA losses to perform domain adaptation with a learning rate of 10−6 for the target extractor
and 10−4 for the discriminator.

Office-Caltech: We used the pre-trained DeCAF features (dec (2019)) for each domain along with
the original train/test splits. The following architecture was used for the feature encoder and it was
trained with a learning rate of 10−6 using the Adam optimizer and a batch size of 32.

Dense(512, activation=’linear’)
Dropout(0.7)
Dense(256, activation=’linear’)
Dropout(0.7)
Dense(10, activation=None)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−5 for the discriminator.

Mic2Mic: Similarly, we followed the same train/test splits as in the original dataset provided by the
authors of Mathur et al. (2019). The spectrogram tensors were normalized between 0 and 1 during
the training and test stages. The following model was trained for each source domain with a learning
rate of 10−5 using the Adam optimizer and a batch size of 64.

Conv2D(filters = 64, kernel_size = (8,20), activation=’relu’)
MaxPooling2D(pool_size = (2,2)),
Conv2D(filters = 128, kernel_size = (4,10), activation=’relu’),
MaxPooling2D(pool_size = (1,4)),
Flatten(),
Dense(256, activation=’relu’),
Dense(31)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−3 for the target extractor and 10−2 for the discriminator.

F.0.3 COMPUTING INFRASTRUCTURE

Our system is implemented in Tensorflow 2.0 and uses NVIDIA V100 GPUs. For distributed train-
ing, we use the Message Passing Interface (MPI) to communicate discriminator gradients between
the two virtual machines in a cloud infrastructure.

26

