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ABSTRACT

Editing 4D scenes using text prompts is a novel task made possible by advances in
text-to-image diffusion models and differentiable scene representations. However,
conventional approaches typically use multi-view images or videos with camera
poses as input, which causes inconsistencies when editing monocular videos due
to the reliance of these tools on iteratively per-image editing and the absence
of multi-view supervision. Furthermore, these techniques usually require exter-
nal Structure-from-Motion (SfM) libraries for camera pose estimation, which can
be impractical for casual monocular videos. To tackle these hurdles, we present
4DEditPro, a novel framework that enables consistent 4D scene editing on casual
monocular videos with text prompts. In our 4DEditPro, the Temporally Propa-
gated Editing (TPE) module guides the diffusion model to ensure temporal coher-
ence across all input frames in scene editing. Furthermore, the Spatially Propa-
gated Editing (SPE) module in 4DEditPro introduces auxiliary novel views near
the camera trajectory to enhance the spatial consistency of edited scenes. 4DEdit-
Pro employs a pose-free 4D Gaussian Splatting (4DGS) approach for reconstruct-
ing dynamic scenes on monocular videos, which progressively recovers relative
camera poses, reconstructs the scene, and facilitates scene editing. We have con-
ducted extensive experiments to demonstrate the effectiveness of our approach,
including both quantitative measures and user studies.

1 INTRODUCTION

In recent years, notable progress has been made in differentiable scene representations from multi-
view images (Mildenhall et al., 2021; Pumarola et al., 2021; Kerbl et al., 2023; Wu et al., 2024) as
well as text-to-image (T2I) diffusion models (Rombach et al., 2022; Hertz et al., 2023; Brooks et al.,
2023; Zhang et al., 2023). By integrating these two lines of research, a variety of approaches (Poole
et al., 2023; Wang & Shi, 2023; Park et al., 2024; Cheng et al., 2024) have been proposed to facili-
tate the generation and editing of 3D contents from text or multi-view images, demonstrating great
potential for various applications such as VR/AR and the MetaVerse. Some methods (Shao et al.,
2023; Mou et al., 2024) has taken a step further to explore the editing of 4D dynamic scenes, and
Control4D (Shao et al., 2023) has leveraged Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020) to support diffusion models in producing consistent outcomes from editing. Further-
more, Instruct 4D-to-4D (Mou et al., 2024) treats 4D scenes as pseudo-3D scenes and employs a
video editing approach to iteratively generate coherent edited datasets.

Despite these significant advancements, 4D scene editing using only casual videos (i.e., monocu-
lar videos with unknown camera poses) remains relatively under-explored, and directly integrating
T2I diffusion models with differentiable 4D representations presents several challenges. Firstly,
maintaining temporal and spatial consistency is essential for high-quality 4D editing. Previous
work (Haque et al., 2023; Shao et al., 2023) has relied on iteratively updating the edited scene until
convergence. Yet, the absence of multi-view information in monocular videos significantly reduces
the coherence of the edited scene. Secondly, existing 4D editing approaches heavily depend on
camera pose estimation techniques (e.g., COLMAP (Schonberger & Frahm, 2016)), which not only
introduce redundancy during model initialization, but also cause 4D editing not directly applicable
to casual monocular video input.
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“A black swan is swimming over 
the river”

“An origami black swan is swimming 
over the river”

“A black swan is swimming over 
the river as a Van Gogh painting”

Original frames Local editing Global editing

“A boat is sailing” “A boat is sailing with oil painting style”“A Steampunk boat is sailing”

Figure 1: Results of 4DEditPro. Using text prompts, our 4DEditPro can generate 4D consistent
editing results from monocular videos on local and global editing. Notably, our method does not
rely on COLMAP (Schonberger & Frahm, 2016) for pose calculation.

In this paper, we address these challenges in 4DEditPro, our framework that integrates diffusion
models and 4D Gaussian Splatting (4DGS) for text prompt-guided 4D scene editing of casual
monocular videos. 4DEditPro adapts two key techniques to ensure the temporal and spatial con-
sistency of the editing results. (i) We present the Temporally Propagated Editing (TPE) module
to enhance temporal editing coherence. Specifically, we convert all video frames into latent to-
kens using DDIM inversion (Song et al., 2021) and partition the latent tokens into several batches.
Within each batch, we select a reference token. Utilizing the diffusion model with an extended
self-attention module based on the text prompt, we extract attention features from reference tokens
and propagate these features to align with those of the remaining tokens, ensuring a consistent edit-
ing style throughout the entire sequence. (ii) We introduce the Spatially Propagated Editing (SPE)
module to mitigate the lack of multi-view information in monocular videos. First, we interpolate
novel views near the original camera trajectory. Similar to TPE, we propagate attention features
from known views to novel views at a given timestamp, refining the visual quality of novel views.

Moreover, we introduce a progressive dynamic representation utilizing 4DGS for its efficiency in
training and rendering. Specifically, we introduce local 3DGS to progressively capture relative
pose changes for updating the current pose. Furthermore, we model the global 4DGS with time-
dependent opacity, position, and rotation, incorporating the camera pose input from the local 3DGS.
We conduct extensive experiments on a diverse set of monocular videos without camera pose in-
put, employing various text prompts to demonstrate the efficacy of our approach. As illustrated in
Fig. 1, we utilize both local editing (e.g., editing specific objects or regions) and global editing (e.g.,
applying a style or weather to the scene) to present the editing ability of our approach. The evalu-
ation demonstrates the effectiveness of our method in producing high-quality rendering results and
maintaining temporal-spatial consistency in 4D editing.

In summary, our primary contributions can be outlined as follows:

• We present 4DEditPro, a novel framework that facilitates 4D scene editing from casual
monocular videos using text prompts.

• We propose Temporally Propagated Editing (TPE) and Spatially Propagated Editing (SPE)
based on diffusion models to achieve temporal and spatial consistency in 4D editing.

• We develop a progressive 4D Gaussian Splatting to accurately and efficiently model scene
attributes without requiring camera pose input.

• Extensive experiments on a range of 4D scenes demonstrate the fidelity and consistency of
our method in global and local editing.

2 BACKGROUND AND RELATED WORK

2.1 PRELIMINARY

3D Gaussian Splatting. Gaussian Splatting (Kerbl et al., 2023) is an explicit point-based 3D rep-
resentation. Unlike implicit 3D representations (Mildenhall et al., 2021; Wang et al., 2021), which
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generate images through volume rendering, 3DGS adopts a splatting technique for image rendering
by projecting a set of 3D Gaussians onto 2D planes. Each Gaussian ellipse is characterized by a color
c represented with spherical harmonics coefficients, an opacity o, a position center µ, and a covari-
ance matrix Σ. The Gaussian ellipse can be calculated as G(x) = e−

1
2x

TΣ−1x, where x represents
the displacement from the center µ. The covariance matrix Σ can be decomposed into a rotation
matrix R and a scaling matrix S to facilitate differentiable optimization: Σ = RSSTRT . During
the projection of 3D Gaussians for rendering onto 2D planes, the splatting operation (Zwicker et al.,
2001) is employed to position the Gaussians, involving a new covariance matrix Σ

′
in camera coor-

dinates defined as Σ
′
= JWΣWTJT , where J represents the Jacobian of the affine approximation

of the projective transformation, and W denotes a given viewing transformation matrix. The render-
ing result C at a pixel is achieved by approximating the projection of a 3D Gaussian along the depth
dimension onto the pixel: C =

∑
i∈N cioi

∏i−1
j=1(1 − oj), where N is the series of ordered points

that project onto the pixel, ensuring a coherent rendering of overlapping Gaussians.

Diffusion-based Editing. Stable Diffusion (SD) (Rombach et al., 2022) is a leading text-to-image
diffusion model that operates within a latent image space. SD encodes RGB images into the latent
image space and utilizes a decoder to reconstruct the latent representations into high-resolution
images. The core of SD is based on a U-Net architecture (Ronneberger et al., 2015) incorporating
residual, self-attention, and cross-attention blocks. Building upon SD, several diffusion models that
integrate additional U-Net encoders have been developed (Zhang et al., 2023; Brooks et al., 2023).
These U-Net encoders enable image generation controlled by various types of information, such as
depth, edges, or specific regions based on prompts. The majority of current 3D or 4D scene editing
methods (Haque et al., 2023; Mou et al., 2024) utilize 2D diffusion models with given prompts to
edit datasets. These edited datasets are then utilized as training targets to reconstruct the 3D scene.

2.2 RELATED WORK

4D Neural Scene Representation. Neural representations (Sitzmann et al., 2019; Aliev et al.,
2020; Thies et al., 2019) have been applied in various 3D tasks, with Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) being a groundbreaking technique that utilizes volume render-
ing to optimize 3D modeling with only 2D supervision. However, the rendering process in NeRF
is time-consuming. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has shown im-
pressive rendering quality and speed in 3D reconstruction. The efficient differentiable rendering
implementation and explicit representation of 3DGS allow fast training, making it widely used for
4D reconstruction and generation tasks (Yang et al., 2024; Katsumata et al., 2023; Wu et al., 2024;
Gao et al., 2024). However, 3DGS typically requires a point cloud generated by COLMAP (Schon-
berger & Frahm, 2016) for estimation, making it not directly applicable to reconstructing casual
videos, thus adding additional steps for downstream tasks. Recent progress has been seen in pose-
free 4D Gaussian representations (Wang et al., 2024; Chu et al., 2024; Li et al., 2024), but these
representations rely on deformable networks to model time-varying parameters, resulting in extra
computational cost for generation or editing tasks. In our approach, we propose a progressive and
efficient 4D Gaussian Splatting framework that does not rely on COLMAP initialization, simplifying
and optimizing the 4D editing process.

Diffusion-Based Scene Editing. Diffusion models iteratively transform random samples into data
resembling the target data (Song et al., 2021; Dhariwal & Nichol, 2021), as widely used in various
generation tasks such as text-to-image generation or editing (Meng et al., 2022; Couairon et al.,
2022). However, in 3D and 4D scene reconstruction and editing, directly applying these models
has issues on spatial and temporal consistency. To address these issues, recent diffusion-based 3D
editing techniques (Kamata et al., 2023; Haque et al., 2023; Dong & Wang, 2024; Chen et al.,
2024; Yu & Liu, 2024) utilize self-distillation as a 2D prior to modify scene appearance, yielding
impressive results. Most of these editing approaches incorporate InstructPix2Pix (IP2P) (Brooks
et al., 2023), an image-conditioned diffusion model, for instruction-based 2D image editing. For 4D
scene editing, Control4D (Shao et al., 2023) proposes to construct a continuous 4D space by training
a 4D GAN (Goodfellow et al., 2020) from ControlNet (Zhang et al., 2023) to address inconsistent
supervision signals in 4D portrait editing. In comparison, Instruct 4D-to-4D (Mou et al., 2024)
regards 4D scenes as pseudo-3D scenes and utilizes warping to propagate editing outcomes. As such,
Instruct 4D-to-4D relies heavily on the accuracy of optical flow and may result in some artifacts.
Furthermore, these 4D methods may struggle to reconstruct and edit 4D scenes from sparse views
or monocular videos, potentially overlooking consistency in both temporal and spatial views.
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Figure 2: Our proposed 4DEditPro. This pipeline utilizes the TPE module to generate a tempo-
rally consistent video sequence, employs the SPE module to interpolate and refine novel views near
the camera trajectory of the original monocular video (Sec.3.1), and integrates a progressive 4D
Gaussian representation for estimating camera poses and reconstructing the 4D scenes (Sec.3.2).

3 METHOD

We define the task of 4D scene editing on Gaussian Splatting from casual monocular videos as
follows: Given a video sequence Î , a text description p̂v of the video, and a text prompt p̂e describing
the target editing, generate a 4D scene based on Î , aligning with the text prompt p̂e, and maintaining
temporal and spatial consistency. As illustrated in Fig. 2, we employ the TPE module to generate a
temporally consistent sequence Ê from the input video sequence Î with p̂v and p̂e. Subsequently,
we progressively reconstruct the 4D scene based on 4DGS. To improve the spatial consistency of
the 4D scene, we introduce the SPE module to enhance the visual quality of novel views near the
original camera trajectory. In the following, we describe the key components of our pipeline.

3.1 TEMPORALLY-SPATIALLY PROPAGATED EDITING

Previous studies on 4D editing (Mou et al., 2024; Shao et al., 2023) have incorporated 3D warping
or GAN assistance to achieve consistent editing results. However, when dealing with monocular
videos that lack multi-view information, these methods struggle to accurately edit corresponding
regions across frames. This limitation often leads to visual artifacts and unstable editing outcomes,
reducing the editing performance.

To address these challenges, we draw inspiration from recent studies (Geyer et al., 2024; Liu et al.,
2024) and propose a novel approach called Temporally Propagated Editing (TPE), leveraging latent
tokens from DDIM inversion to ensure editing consistency across all frames in monocular videos.
Also, we introduce Spatially Propagated Editing (SPE) to refine 4D scene reconstruction by enhanc-
ing spatial editing from known views to novel views near the camera trajectory. Our approach aims
to enhance both temporal and spatial editing consistency, boosting the overall performance of 4D
scene reconstruction.

DDIM Inversion. Given an input video sequence consisting of n frames Î = [I1, I2, ..., In] and
its associated description p̂v , we utilize DDIM inversion on each frame to extract the latent tokens
ϕ(zt). This process involves applying a pretrained and fixed text-to-image diffusion model ε as
follows:

ϵt = εu(z
t, t, T (p̂v)),

ϕ(zt) =
√
σt · z

t −
√
1− σt−1 · ϵt√
σt−1

+
√
1− σt · ϵt,

(1)

where εu represents the U-Net component in the diffusion model ε, and T (·) denotes the text
encoder. The variable t corresponds to the timestep of the diffusion process, and σt represents the
scheduling coefficient in the DDIM scheduler.
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Figure 3: Our proposed TPE and SPE modules. In this example, p̂v , p̂e, and p̂o correspond to ”A boat
is sailing”, ”A Steampunk boat is sailing” and an empty prompt, respectively, with ε and ε̂ representing the
diffusion model and the diffusion model with the extended self-attention block.

Temporally Propagated Editing. After obtaining the latent tokens through DDIM inversions, we
utilize these tokens to further establish temporal consistency. To optimize GPU memory usage and
editing efficiency, we divide the entire set of latent tokens into batches and select one reference latent
token within each batch (see Appendix for details). Next, we extract reference attention features
from these reference tokens utilizing the diffusion models with the extended self-attention module
and then propagate these reference attention features to align with those of the remaining tokens,
ensuring consistent editing outcomes.

As illustrated in Fig. 3, we select a reference token from each batch and perform joint editing on these
reference tokens with the text prompt p̂e using the U-Net ε̂u of diffusion models that incorporates
the extended self-attention block (Wu et al., 2023) to extract reference attention features within
reference tokens ϕ(zrn):

Attnr1,r2 = Softmax(
Q(ϕ(zr1))K(ϕ(zr2))√

d
)V (ϕ(zr2)), (2)

where Q(·), K(·), and V (·) are linear projections used to acquire Query, Key, and Value features
from the self-attention mechanism, with d serving as a scaling factor.

Subsequently, we propagate these reference attention features from ε̂ to their corresponding batches,
aligning reference attention features with rest attention features of the non-reference latent tokens to
maintain a consistent editing style across the entire temporal sequence:

Attnp = ω ·Attnp,p + (1− ω) · 1

Np

Np∑
i=1

Attnp,r, (3)

where ω ∈ [0, 1]. This propagation ensures temporal consistency across all frames. Subsequently,
we acquire the edited latent ϕ(z0e) via the denoising process:

ϵt = ε̂u(ϕ(z
t), t, T (p̂o)) + ωu · (ε̂u(ϕ(zt), t, T (p̂e))− ε̂u(ϕ(z

t), t, T (p̂o)),

ϕ(zt−1
e ) =

√
σt−1 · ϕ(z

t
e)−

√
1− σt · ϵt√
σt

+
√
1− σt−1 · ϵt,

(4)

In Eq. 4, p̂o represents the empty prompt, and ωu denotes the classifier-free guidance (Ho & Sali-
mans, 2022). The VAE decoder within the diffusion model is utilized to decode ϕ(z0e) and generate
the final edited images Ê = [E1, E2, .., En].

To enhance local editing, we incorporate the Lang SAM method (Kirillov et al., 2023) to extract
specific masks m. These masks are then utilized to confine the editing regions during the denoising
process.

ϕ(zte) = ϕ(zt)⊙ (1−m) + ϕ(zte)⊙m. (5)
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Spatially Propagated Editing. To enhance the quality of reconstructed 4D scenes on monocular
videos that may lack multi-view supervision, potentially leading to artifacts or poor structures in
the 4D scene, we implement a random pose interpolation strategy for the progressive scene recon-
struction process. This interpolation involves randomly generating a novel pose between two poses
in their corresponding frames, E′

i1
and E′

i2
, along the original camera trajectory. Specifically, we

utilize Slerp(Pi1 , Pi2 , θ) to represent the spherical linear interpolation between the corresponding
poses Pi1 and Pi2 from Ei1 and Ei2 , respectively, with the interpolation coefficient θ.

To ensure that the interpolated pose can be rendered consistently with the edited frames from TPE,
we use the known view as a reference to refine the novel view from an interpolated pose. Specifically,
we extract the latent token of the novel view E′

novel rendered with the pose Pnovel at the same
timestamp as E′

i2
. We then obtain the attention features with the corresponding latent token extracted

from E′
i2

using p̂o following Eq. 1 and Eq. 2. Utilizing a technique similar to TPE, we propagate the
attention feature from E′

i2
to E′

novel as described in Eq. 3 to refine the edited image Ê′
novel based

on the novel pose.

Subsequently, we further refine the rendered image of the novel view to enhance the 4D scene
reconstruction by calculating the loss Lnovel using the L1 loss function:

Lnovel = L1(E
′
novel, Ê

′
novel). (6)

3.2 PROGRESSIVE 4D GAUSSIAN SPLATTING

In 3D or 4D editing tasks, it is tedious for users to compute the camera poses with SfM libraries such
as COLMAP (Schonberger & Frahm, 2016). Moreover, COLMAP may not be able to accurately
estimate poses from various types of casual videos, particularly those featuring dynamic scenes
with highly dynamic objects, poorly textured surfaces, and rotating camera motions that make it
challenging to match features. Thus, we propose an efficient 4D scene representation that eliminates
the need for users to compute camera poses, accommodates casual monocular videos as input, and
streamlines the entire editing process.

Relative Pose Estimation. Inspired by CFGS (Fu et al., 2024), we introduce the local 3DGS Gl
i to

estimate the relative camera pose between two consecutive frames, which is then utilized as input for
the 4DGS pose. This technique involves estimating the relative camera pose by applying a learnable
SE-3 affine transformation Pi to the 3D Gaussian Ĝl

i reconstructed from the current frame n to
obtain the 3D Gaussian representation for the subsequent frame i+ 1, denoted as Gl

i+1 = Pi ⊙Gl
i.

The transformation Pi is optimized by minimizing the photometric loss between the rendered image
and the current edited frame Ei+1.

P̂i = argmin
Pi

Lrgb(R(Pi ⊙Gl
i), Ei+1), (7)

where R is the rendering process for the local 3DGS and the 4DGS. Note that the attributes of
Ĝl

i are fixed to differentiate camera motion from other Gaussian transformations including pruning,
densification, and self-rotation.

4D Gaussian Representation. We develop a 4D scene representation aimed at enhancing editing
efficiency and reconstruction performance. As illustrated in Fig. 2, we design temporal components
to capture time-aware motion and deformation. In particular, we introduce an attribute known as the
appearing time (τ ), specifying from when each point actively contributes within the 4D Gaussians.
By combining this temporal attribute with time-dependent functions, we can effectively model the
parameters of the 4D Gaussians, i.e., center position, opacity, scale, and rotation. This approach
enables us to accurately represent scene content that emerges or disappears over the duration of the
video.

For each Gaussian at time tg , we utilize a time-dependent function to model its motion. We select
the polynomial function to represent the current position at time tg , denoted as µi(t):

µi(t) =

n∑
k=0

bi,k(tg − τi)
k, (8)

where τi denotes the appearing time of each Gaussian. We choose n = 3 for the 3rd-degree
polynomial function for a balance between model size and performance. The coefficients bi,k ∈ R
associated with this function are optimized during training. Similarly, for rotational motion, we
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utilize the 1-st polynomial functions with n = 1 to represent the rotation qi(t):

qi(t) =

n∑
k=0

ci,k(tg − τi)
k, (9)

where ci,k ∈ R are the polynomial coefficients, optimized during training.

Furthermore, we employ a temporal radial basis function to describe the temporal opacity oi(t):
oi(t) = osi exp(−sτ̂i ∥tg − τi∥2), (10)

where sτ̂i is a temporal scaling factor optimized during training, τ̂ = tg − τi, and osi denotes the
time-independent spatial opacity.

Progressive 4D reconstruction. To begin the training process, we utilize a pre-trained monocular
depth estimator (Ranftl et al., 2021) to generate the depth map Di from the edited frame Ei. This
depth map offers robust geometric information independent of camera parameters. We initialize our
4D representation with points lifted from the monocular depth using camera intrinsic and orthog-
onal projections. Subsequently, we train the 4D Gaussians with all attributes by minimizing the
photometric loss and depth loss between the rendered image and the current edited frame En:

G∗
n = argmin

Gn

(λrLrgb(R(Gn), En), λdLdep(R(Gn), Dn)), (11)

where λr and λd are the coefficients for photometric loss and depth loss respectively.

The photometric loss Lrgb is L1 combined with a D-SSIM loss:
Lrgb = (1− λ)L1 + λLD−SSIM , (12)

where λ = 0.2 is empirically set for all experiments. The depth loss can be represented as:
Ldep = L1(R(Gn), Dn) (13)

During the progressive training process, we calculate the relative camera pose between consecutive
frames using the local 3DGS, which serves as the initial camera pose for our 4DGS. Subsequently,
the 4DGS updates the set of 4D Gaussians with all attributes based on the learnable camera poses
Pi obtained from the local 3DGS. Recognizing that accumulated pose errors from the local 3DGS
estimations could impede the optimization of a global scene, we iteratively update the rendered im-
ages and camera poses within observed frames. Additionally, we interpolate the novel pose between
the observed frames using SPE, and use the refined results of novel views from SPE to supervise
the editing of the original novel views, as outlined in Eq. 6. We provide the pseudocode for our
4DEditPro in the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We reconstruct and edit 4D scenes from three public datasets: 1) DAVIS (Perazzi et al.,
2016), which consists of monocular videos without camera poses, 2) Tanks & Templates (Knapitsch
et al., 2017), featuring complex camera pose movements, and 3) SemanticKITTI (Behley et al.,
2019), showcasing complex and large driving scenes. Our method introduces a direct editing pro-
cess that eliminates the need for extracting camera poses from COLMAP or initializing 4D scene
representation. However, for comparison purposes, we use COLMAP to extract camera poses in
Tanks & Templates and SemanticKITTI datasets for the approaches under comparison (Haque et al.,
2023; Chen et al., 2024), and utilize the pose estimated in DAVIS datasets by our method as the ini-
tial pose for the other methods. Additionally, we evaluate our method on causal monocular videos
captured by an iPhone, as showcased in the Appendix.

Evaluation Metrics. The quality of 4D scene editing can be assessed on fidelity and temporal
consistency. Following common practice, we calculate the average similarity between the CLIP
embedding of each edited frame and the target text prompt (Radford et al., 2021) as the CLIP score,
as well as the mean SSIM score between the rendered edited frames warped by optical flow (Teed
& Deng, 2020) and the corresponding original frames as WarpSSIM (Shin et al., 2024). In addition
to these evaluation metrics, we conduct a user study to assess the quality of 4D scene editing on the
DAVIS and Tanks & Templates datasets. This user study involves a two-way or three-way voting
process to compare our method with other state-of-the-art approaches.
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Table 1: Quantitative results on the DAVIS (Perazzi et al., 2016) with different scenes. * denotes that the
scores are calculated solely for the regions of dynamic objects.

Scene Instruction CLIP score↑ WarpSSIM↑
GSEditor-4D Ours GSEditor-4D Ours

Black Swan ”Origami” 0.2695 0.2886 0.7763 0.7818
”Van Gogh”* 0.1982 0.2008 0.7682 0.9388

Rhino ”Silver” 0.2119 0.2615 0.7455 0.9098
”Night” 0.1388 0.1449 0.8180 0.8328

Boat ”Steampunk” 0.1762 0.1829 0.8096 0.8598
”Oil painting” 0.2128 0.2398 0.7352 0.7387

Average 0.2012 0.2198 0.7755 0.8436

“A black swan is swimming 
over the river”

“Turn the black swan
into an origami black swan”

“An origami black swan is 
swimming over the river”

“Make it Van Gogh style” “A black swan is swimming over 
the river as a Van Gogh painting”

“A rhino is walking” “Turn the rhino into a 
silver rhino”

“A silver rhino is walking” “Make it at night” “A rhino is walking at night”

Original frames GSEditor-4D GSEditor-4DOurs Ours

(a)

(b)

(c)

“A boat is sailing” “A boat is sailing with oil 
painting style”

“Turn the boat into a 
Steampunk boat”

“Make it oil painting style”“A Steampunk boat is sailing”

Figure 4: Qualitative results on DAVIS (Perazzi et al., 2016) datasets. Better viewed when zoomed in.

Implementation Details. Our method is implemented using the PyTorch library (Paszke et al.,
2017). We use StableDiffusion v2.1 from the Hugging Face library as our main diffusion model
for editing the scene. we set the classifier-free guidance scale of the TPE module at around 7.5 and
that of the SPE module at 1.5 for best performance. To generate masks for local editing, we utilize
Lang SAM (Kirillov et al., 2023) based on the local segmentation prompt. Typically, the complete
editing process for our project takes about 25 minutes to handle 40-50 frames of a scene. Notably,
this process does not need COLMAP precomputation or model initialization and can be executed
efficiently on a single NVIDIA 48GB L20 GPU. Further details on implementation are available in
the Appendix.

4.2 METHODS UNDER COMPARISON

To the best of our knowledge, our 4DEditPro is the first method of editing 4D scenes from casual
monocular videos without the need for camera pose input, whereas other 4D editing methods (Shao
et al., 2023; Mou et al., 2024) require camera pose input. Since the source code of these methods
have not been released publicly, we develop GSEditor-4D based on GaussianEditor (Chen et al.,
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Table 2: Quantitative results on Tanks & Templates (Knapitsch et al., 2017) and SemanticKITTI (Behley et al.,
2019) datasets with different scenes.

Dataset Scene Instruction CLIP score↑ WarpSSIM↑
IN2N GSEditor Ours IN2N GSEditor Ours

Tanks & Templates
Horse ”Brown horse” 0.2145 0.1864 0.2179 0.9025 0.8735 0.9107

”Snowy” 0.1815 0.1329 0.2013 0.8613 0.8656 0.9024

Ignatius ”Sand” 0.1620 0.1864 0.1909 0.5859 0.9101 0.8970
”Minecraft” 0.2089 0.2195 0.2399 0.8619 0.8243 0.8659

SemanticKITTI Driving ”Railway” 0.1595 0.1721 0.2170 0.1665 0.1967 0.7571
”Autumn” 0.1860 0.1824 0.2301 0.2369 0.1310 0.7655

Average 0.1854 0.1845 0.2162 0.6025 0.6335 0.8498

“Horse sculpture”
to

“Brown horse”

“Snowy”

“Minecraft”

“Autumn”

Original frames GSEditor Ours GSEditor Ours

T
an

k
s 

&
 T

em
p

la
te

S
em

an
ti

cK
IT

T
I

“Grass”
to

“Sand”

“Road”
to

“Railway”

IN2N IN2N

Figure 5: Qualitative results on Tanks & Templates (Knapitsch et al., 2017) and SemanticKITTI (Behley
et al., 2019) datasets. Better viewed when zoomed in.

2024), extending its 3D Gaussian representation to a 4D representation and utilizing our estimated
camera poses as its input.

For the DAVIS (Perazzi et al., 2016) dataset, we have conducted qualitative and quantitative com-
parisons between our method and GSEditor-4D. Since both Tanks & Templates (Knapitsch et al.,
2017) and SemanticKITTI (Behley et al., 2019) datasets contain multi-view images, we not only
compare with GaussianEditor (GSEditor) (Chen et al., 2024) but also Instruct-NeRF2NeRF (IN2N)
(Haque et al., 2023) on these two datasets.

4.3 RESULTS

To compare the global and local editing performance on 4D scenes among different methods, we
select various text prompts to test.

4D Editing Results on DAVIS Datasets. The quantitative results in Tab. 1 show that our method
achieves high scores in CLIP score and WarpSSIM, indicating better editing fidelity and temporal
consistency than GSEditor-4D. Qualitative results are presented in Fig. 4, where, for example, the
target prompt ”make it at night” for GSEditor-4D displays varying and uneven illumination across
different frames. In contrast, our approach maintains consistent illumination and appearance. These
results demonstrate the effectiveness of our method in both local and global scene editing. Further
results are available in the Appendix.

4D Editing Results on Other Datasets. In Tab. 2, we present three complex scenes with two text
prompts, one for global and the other local editing, for each scene, as examples to compare the
CLIP score and WarpSSIM metrics. Complemented by the qualitative results in Fig. 5, our method
has been shown to outperform previous approaches on producing consistent 4D scenes accurate to
the prompt, especially in the driving scene from the SemanticKITTI dataset. To showcase the 4D
attributes of our reconstructed scenes, we include the rendered depth maps corresponding to the
rendered images in the Appendix.
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Before SPE After SPEBefore SPE After SPE

Novel view 1 Novel view 2

Iteratively editing strategy TPE (Ours)

Figure 6: Qualitative ablation study on DAVIS datasets. Better viewed when zoomed in.

User Preference Study. To further assess qualitative results, we conducted experiments on 10
different text instructions using DAVIS datasets and 9 different text prompts using Tanks & Tem-
plates datasets. We used two- and three-alternative forced-choice decision methods to ask 21 users
to choose their preferred results based on the relevance of the edited images or videos with text
prompts, visual quality, and consistency. As shown in Tab. 3, our 4DEditPro was generally pre-
ferred over other methods on both datasets.

4.4 ABLATION STUDY

Table 3: The user preference study on DAVIS and
Tanks & Templates datasets.

Dataset Method User Study (%)

DAVIS GSEditor-4D 24.50%
Ours 75.50%

Tanks & Templates
IN2N 17.22%

GSEditor 13.89%
Ours 68.89%

We conducted an ablation study on the ”black
swan” scene from the DAVIS dataset (Perazzi
et al., 2016) with the text prompt: ”An origami
black swan is swimming over the river”. First,
we replaced TPE by directly utilizing latent to-
kens from DDIM inversion and denoising all
tokens based on the text prompt without propa-
gating reference attention features (w/o TPE).
Second, we omitted the use of SPE in our
methodology by excluding the SPE process from our pipeline (w/o SPE). Third, we investigated
the impact of local 3DGS on our model by directly learning the camera pose parameters within
the 4D Gaussian representation (w/o local 3DGS). Tab. 4 presents the quantitative outcomes of our
ablation studies. It shows TPE’s impact is the most significant whereas both SPE and local 3DGS
enhance WarpSSIM only. To delve deeper, we provide an additional ablation study to assess the
significance of local 3DGS, which crucially contributes to the learning of camera poses essential for
scene reconstruction. This analysis is detailed in the Appendix.

Table 4: The ablation study of each component.
Modules CLIP score ↑ WarpSSIM ↑

ALL 0.2886 0.7818
w/o TPE 0.2641 0.6799
w/o SPE 0.2823 0.7619

w/o local 3DGS 0.2863 0.7297

Also, we present a qualitative ablation study de-
picted in Fig. 6. We compare with the previous itera-
tively per-image editing strategy applied to 4D scene
editing on the ”black swan” scene from the DAVIS
dataset. The results clearly show temporal inconsis-
tencies in the adjacent frames when using the previ-
ous strategy, whereas our TPE module produces results of higher consistency, as shown in the first
row of the figure. Furthermore, the second row of the figure displays the rendered results of the novel
view before and after applying the SPE, which demonstrates that the use of SPE refines details and
reduces artifacts in the novel view scenes.

5 CONCLUSION

This paper introduces a novel 4D editing framework, named 4DEditPro, which utilizes casual
monocular video input along with text prompts for editing. We introduce TPE and SPE modules
to aid the diffusion model in producing 4D consistent editing results in both temporal and spatial as-
pects. Furthermore, we have developed a progressive 4D Gaussian Splatting pipeline to effectively
reconstruct the edited 4D scene while estimating the camera pose. Through extensive experiments
on three public datasets with multiple evaluation metrics, we demonstrate the effectiveness of our
method.
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Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis
using neural textures. Acm Transactions on Graphics (TOG), 38(4):1–12, 2019.

Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
arXiv preprint arXiv:2312.02201, 2023.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689, 2021.

Shizun Wang, Xingyi Yang, Qiuhong Shen, Zhenxiang Jiang, and Xinchao Wang. Gflow: Recover-
ing 4d world from monocular video. arXiv preprint arXiv:2405.18426, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7623–7633, 2023.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. In The Twelfth International Conference on
Learning Representations, 2024.

Huai-Ming Yu and Jing Liu. Quanestimation. jl: An open-source julia framework for quantum
parameter estimation. arXiv preprint arXiv:2405.12066, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Details for Diffusion Models. We employ DDIM inversion with a classifier-free guidance scale of
1, consistent with TokenFlow (Geyer et al., 2024). We employ DDIM deterministic sampling with
50 steps in TPE and 20 steps in SPE. We downsample 2x of the input sequences or images in TPE
and SPE to reduce the computational cost and improve the editing speed.

Details for Temporally Propagated Editing (TPE). In the TPE module, we begin by partitioning
the entire video sequence into multiple batches. Within each batch, we select Kb frames, where Kb

is the largest integer between 1 and 10 that can evenly divide the total number Nv of frames. After
determining the number of batches as NB = Nv

Kb
, we proceed to randomly select one reference token

from each batch. This selection yields Nk reference tokens, where Nk = NB , and Np remaining
frames, with Np = Nv −Nk.

Details for Related Pose Estimation. In pose estimation, we introduce local 3DGS to analyze pose
changes between consecutive frames. However, in dynamic scenarios, the motion of some dynamic
objects can hinder precise pose estimation in local 3DGS, particularly when movements are signif-
icant. To address this problem, we obtain dynamic object masks Md to exclusively consider static
regions for more accurate pose estimation. Specifically, we first estimate the fundamental matrix
using optical flow (Teed & Deng, 2020) between consecutive frames. Subsequently, by computing
the threshold for the Sampson distance with the epipolar line, we obtain dynamic object masks Md

to refine the accuracy of pose estimation in 4D dynamic scenes. We provide the pseudocode for our
4DEditPro in Alg. 1.

A.2 MORE RESULTS

A.2.1 MORE 4D EDITING RESULTS

To further evaluate the effectiveness of our methods in various scenarios, we present additional
qualitative results using the DAVIS dataset (Perazzi et al., 2016) and the Tanks & Templates
dataset (Knapitsch et al., 2017). In Fig. 9, we show five new scenes with diverse text prompts, in-
cluding foreground object manipulation, background scenario modifications, and global scene style
adjustments. Additionally, we display the rendered depth outcomes from the modified 4D scene,
showing the geometric coherence of our results.

Table 5: The novel view synthesis results across 20 scenes
from DAVIS datasets (Perazzi et al., 2016).

Method PSNR ↑ SSIM ↑ LPIPS ↓
RoDynRF (Liu et al., 2023) 24.67 0.6818 0.3963

CFGS (Fu et al., 2024) 24.18 0.7974 0.2363
Ours 30.18 0.8818 0.1453

In Fig. 10, we show five editing sce-
narios of different text prompts. The
consecutive rendered frames high-
light the temporal consistency of our
editing method, suggesting the effec-
tiveness of our approach. The editing
results in the last row of Fig. 9 and
Fig. 10 do not utilize a mask in the
TPE module. Further discussion on this can be found in Sec. A.3.2. Overall, these results collec-
tively demonstrate the effectiveness of our methodology in diverse scenarios.

In addition, we demonstrate the scene edited using our 4DEditPro on casual monocular videos cap-
tured by an iPhone in Fig. 8.
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Algorithm 1: 4DEditPro

1 Input: Î = [I1, I2, ..., In], p̂v , p̂e, p̂o; ▷ Input Video, Text Prompts
2 ϕ̂(z) = [ϕ(z1), ϕ(z2), ..., ϕ(zn)]← DDIMInversion(Î , p̂v);
3 Ê = [E1, E2, ..., En]← TPE(Î , p̂e, ϕ̂(z)) ;
4 i← 0 ;
5 while i < n do
6 Di← DepthEstimator(Ei) ;
7 µi ← Initialization(Di) ; ▷ Initialize 3D Position
8 if i > 0 then
9 c, o,Σ, Pi−1← InitAttributes(Gl

i) ; ▷ Colors, Opacities, Covariances, Camera Poses
10 else
11 P0← Random Initialization ;
12 c, o,Σ, P0← InitAttributes(Gl

i) ;
13 end
14 Pi← argminLrgb(R(Pi ⊙Gl

i), Ei) ;
15 ci, oi,Σi, Pi, t← InitAttributes(Gi); ▷ Colors, Opacities, Covariances, Camera Pose, Time
16 E′

i, D
′
i ←R(Gi) ;

17 if i > 0 then
18 Pnovel ← Slerp(Pi, Pprev, θ); ▷ Spherical Linear Interpolation
19 E′

novel ←R(Gi(Pnovel)) ;
20 ϕ(zi), ϕ(znovel)← DDIMInversion (E′

novel, E
′
i, p̂o) ;

21 Ê′
novel ← SPE(E′

novel, E
′
i, p̂e, ϕ(zi), ϕ(znovel)) ;

22 end
23 L← Lrgb + Ldep + Lnovel; ▷ Total Loss
24 Gi← Adam(∇L) ; ▷ Back Propagation and Step
25 Pruning(Gi) and CloneAndSplit(Gi); ▷ Pruning and Densification
26 i← i+ 1; ▷ Progressively Reconstruction
27 end

RoDynRF CFGS Ours GT

Paragliding

Flamingo

Boat

Kite-walk

Hockey

Figure 7: Comparison of novel view synthesis results on the DAVIS dataset. Better viewed when zoomed in.

A.2.2 NOVEL VIEW SYNTHESIS RESULTS

We present novel view synthesis results to further assess our 4D Gaussian representation and pose
estimation strategy in Sec. 3.2 compared to previous pose-free reconstruction methods, namely Ro-
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“A scene”

“A scene as a Van Gogh painting”

Figure 8: Editing results with the casual video captured by iPhone. Better viewed when zoomed in.
DynRF (Liu et al., 2023) and CFGS (Fu et al., 2024). Our evaluation covers 20 scenes from the
DAVIS (Perazzi et al., 2016) dataset, comprising temporal monocular videos without camera pose
input, with frames sampled at 1 per 8 frames.

Table 6: Ablation studies with novel view syn-
thesis results on each component on DAVIS (Per-
azzi et al., 2016) dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
All 23.13 0.5991 0.2919

w/o SPE 22.31 0.5537 0.3212
w/o local 3DGS 21.57 0.5313 0.3484

w/o SPE w/o local 3DGS

All GT
Figure 11: Visualization of Ablations on each compo-
nent.

Quantitative results in Tab. 5 show that our
method outperforms the other two methods
significantly in terms of PSNR, SSIM, and
LPIPS scores. Moreover, as depicted in Fig. 7,
the other methods struggle with reconstruct-
ing videos featuring significant movements and
complex dynamic changes, e.g.paragliding and
hockey scenes, often resulting in more artifacts.
In contrast, our 4D representation excels in pro-
ducing accurate and high-quality novel view
synthesis results.

A.2.3 DEMO VIDEO

We provide a demo video in our Supplementary
Material showcasing the video results on vari-
ous datasets with scene reconstruction, view in-
terpolation, and some comparison.

A.3 MORE ABLATIONS

A.3.1 VISUALIZATION OF ABLATIONS ON
EACH COMPONENT

original frames

w/ masks w/o masks

Figure 12: Visualization of Ablations on mask for lo-
cal edits.

To further evaluate the efficacy of our com-
ponent, we present ablation results on novel
view synthesis. We pick the task of novel view
synthesis for this evaluation as it effectively
demonstrates the spatial characteristics in views
that lie beyond the original camera trajectory.
The absence of TPE reduces the coherency in
reconstructed results, leading to incomplete and
incongruent images. Utilizing our TPE mod-
ule is important for the performance, because it
leverages the propagation of attention features,
in contrast to the reliance on the convergence of
scene-based iteratively per-image editing or 3D
warping methods that depend on the accuracy of optical flow.

In Tab. 6 and Fig. 11, the impact of omitting local 3DGS is evident: the reconstructed background
appears blurry not only within the yellow box but also in the red box. Similarly, the absence of
SPE results in increased artifacts in the novel view. The quantitative results also demonstrate the
significance of both the SPE and local 3DGS components. These results are averaged across five
novel views sampled from the edited video sequences. Consequently, when all components are
utilized, the results exhibit enhanced spatial consistency.
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A.3.2 MASKS ON LOCAL EDITING

To achieve a balance between precise local editing and the effectiveness of global editing, we incor-
porate the masks extracted by Lang SAM (Kirillov et al., 2023), which indicate the areas that need
TPE, as in Eq. 5.

As shown in Fig. 12, when a mask is employed to direct the editing process, changes mainly occur
in the masked regions and regions outside the mask remain consistent with the original frames. In
comparison, in the absence of a mask, in addition to the target areas of the editing prompt, other
areas may undergo minor alterations in color or contrast. This observation offers users the flexibility
to choose whether to utilize a mask as a condition for the editing process.

A.4 DETAILS OF USER PREFERENCE STUDY

In our user preference study, participants were presented with a series of questions, each featuring
an original view or video along with rendered views or videos from various methods. An example
question is shown in Fig. 13, where participants were asked to select their preferred rendered image
or video. To ensure unbiased responses, the order of the methods was randomly set for each question,
and all options were presented anonymously.

A.5 LIMITATIONS

Figure 13: An example of our user preference study.

Our 4DEditPro framework effectively edits 4D
scenes from casual monocular videos without
requiring camera pose input or model initial-
ization. Nevertheless, it has several limitations.
Firstly, the 4D Gaussian representation in our
4DEditPro is developed by combining time-
dependent functions or parameters to learn the
attributes of Gaussians, which may struggle to
fit the scene with complex motions. Introducing
a more sophisticated modeling method, such as
using Multilayer Perception (MLP) to learn dy-
namic attributes, may be necessary. Another
issue is that 4DEditPro depends on the gener-
ative and editing abilities of the base diffusion
model. Editing efficacy may be compromised if
the base model is unable to handle certain edit-
ing tasks effectively.

Discussion on DDIM Inversion. In editing
tasks, we incorporate DDIM inversion to ex-
tract latent tokens, enabling the acquisition of
consistent initial noise that aligns with tem-
poral and spatial editing outcomes for coher-
ence. However, during the process of inverting
the original video to latent tokens, additional
uncontrolled noise might be introduced. This
noise can manifest as subtle disturbances when
reconstructing these latent tokens back to recre-
ate the original video. Fine-tuning strategies
may be applied to constrain and mitigate such noise artifacts.

Discussion on Progressive 4D Gaussian Splatting. In the progressive reconstruction of 4D edited
scenes, drift errors may arise from estimating long video sequences using local 3DGS. To mitigate
this problem, keyframe selection can be implemented to detect and optimize the learnable camera
pose when progressively learning video sequences of a certain length. Furthermore, we are exploring
pose estimation methods of higher robustness to enhance scene reconstruction accuracy.
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“A spotted cow is walking”

“A pure brown cow is walking”

“A black swan is swimming”

“A white swan is swimming”

“A bear is walking”

“A bear is walking, in a Disney animated style”

“A car is moving”

“A red car is moving”

“A boat is sailing along the land”

“A boat is sailing along the forest”

Figure 9: Additional editing results are provided on the DAVIS dataset (Perazzi et al., 2016). For each scene,
the first row shows the original video frames, while the second row displays the rendered frames and depth of
the reconstructed 4D edited scenes. Better viewed when zoomed in.
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“A horse sculpture”

“A horse sculpture made of marble”

“A statue”

“A statue in the sunny”

“A museum”

“A museum in a Steampunk style”

“A sculpture”

“A sculpture of Batman”

“A barn”

“A brown wooden barn”

Figure 10: Additional editing results are provided on the Tanks & Templates dataset (Knapitsch et al., 2017).
For each scene, the first row shows the original video frames, while the second row displays the rendered frames
and depth of the reconstructed 4D edited scenes. Better viewed when zoomed in.
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