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Abstract

Automated choreography generation, which aims to seam-001
lessly harmonize human movements with music, is a multi-002
faceted challenge demanding both technical precision and003
artistic expressiveness.004

We present STM2PE-Diff, a novel framework for gener-005
ating human dance videos conditioned on a refernce image006
and music sequence using a latent diffusion model. Our007
approach integrates a Music-to-Pose Encoder (M2PEnc),008
trained with a novel synthetic dataset generation pipeline009
(SDGPip), which maps audio features into structured 3D010
pose and shape parameters that capture human geometry011
and dynamic motion patterns synchronized with musical in-012
put. By combining these encoded parameters with a ref-013
erence image through a multi-level attention mechanism014
within the latent diffusion framework, we synthesize visu-015
ally coherent and rhythmically synchronized dance anima-016
tions of individuals from the given reference image.017

Experiments on benchmark datasets demonstrate that018
STM2PE-Diff achieves state-of-the-art performance, pro-019
ducing high-quality dance videos that accurately reflect020
pose diversity and temporal consistency. Additionally, our021
method exhibits robust generalization capabilities, vali-022
dated by its strong performance on a newly introduced in-023
the-wild dataset.024

1. Introduction025

Recent advancements in human motion video genera-026
tion, such as AnimageAnyone [9], AnimateAnything [5],027
Champ [15], MagicPose [3], MagicAnimate [24], Magic-028
Dance [2], and UniAnimate [22], have demonstrated the ef-029
fectiveness of pose-conditioned approaches. These methods030
excel at translating pose sequences into realistic and visu-031
ally compelling videos of human subjects in motion. Pose032
guidance plays a pivotal role in ensuring realism, consis-033
tency, and adaptability by bridging user-defined inputs (e.g.,034
reference poses) with high-quality outputs suitable for di-035

verse applications. 036
However, generating human motion videos from music 037

presents a unique challenge: the inherently ambiguous and 038
complex relationship between musical features and human 039
poses. Unlike pose-conditioned methods that rely on ex- 040
plicit spatial inputs, music-to-motion generation requires 041
capturing intricate temporal patterns and stylistic nuances 042
embedded in audio signals. Current methods often fail to 043
adequately model this relationship, resulting in outputs that 044
lack rhythmic synchronization or stylistic coherence with 045
the input music. 046

To address this gap, we propose STM2PE-Diff, a novel 047
framework for generating dance videos conditioned on mu- 048
sic and reference images. The first innovation of our ap- 049
proach is the Music-to-Pose Encoder (M2PEnc) that maps 050
musical features into structured spatial pose representa- 051
tions, removing ambiguity in the music-to-pose relation- 052
ship. These representations serve as pose guidance within a 053
latent diffusion framework, enabling the synthesis of dance 054
motions that are rhythmically aligned with input music 055
and visually coherent to the reference image. By leverag- 056
ing multi-level attention mechanisms (cross-attention, self- 057
attention, temporal attention) within the diffusion process, 058
our method ensures temporal consistency across frames 059
while preserving stylistic fidelity to the reference image. 060

The second key innovation of our framework is the syn- 061
thetic dataset generation pipeline (SDGPip) designed to 062
address the scarcity of paired music-to-motion data. This 063
pipeline combines established models such as EDGE [20], 064
SMPL [12], DwPose [26], and CHAMP [15] to generate 065
music-to-motion training data. The resulting dataset en- 066
ables meaningful learning of diverse and natural pose fea- 067
tures in the spatial domain while enhancing model robust- 068
ness across various scenarios. 069

Notably, our SDGPip and M2PEnc are designed to effi- 070
ciently utilize existing latent diffusion architectures, allow- 071
ing for effective adaptation without requiring extensive re- 072
training from scratch. This approach streamlines the syn- 073
thesis process, making it more practical for real-world ap- 074
plications. 075
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Our contributions are summarized as follows:076

• Novel Synthetic Dataset Pipeline: We design a syn-077
thetic dataset generation pipeline that leverages CHAMP,078
EDGE, SMPL, and DwPose keypoints to produce paired079
music-pose data, ensuring diversity and naturalness of080
dance motions.081

• Music-to-Pose Encoder (M2PEnc): We introduce the082
M2PEnc, which directly maps musical features into struc-083
tured spatial pose representations, thereby reducing ambi-084
guity in the music-to-pose relationship.085

• Efficient Latent Diffusion Framework Adaptation:086
We propose a novel method to adapt the latent diffu-087
sion framework with multi-level attention mechanisms088
for synchronized dance video synthesis, leveraging our089
synthetic dataset pipeline and M2PEnc to efficiently uti-090
lize existing architectures without requiring extensive re-091
training from scratch.092

• State-of-the-Art Performance: We demonstrate state-093
of-the-art performance on benchmark datasets and robust094
generalization on a newly introduced in-the-wild dataset.095

By bridging the gap between music and motion through096
our synthetic data-driven approach and efficient leveraging097
of diffusion modeling techniques, we present a robust solu-098
tion for automated choreography generation that is scalable099
and adaptable to diverse applications.100

2. Related Works101

2.1. Music Feature Extraction102

Music feature extraction plays a pivotal role in bridging103
audio signals to dance motion generation. Several ap-104
proaches have been proposed for extracting features from105
music signals: Audio feature extraction methods such as106
Librosa [14] focus on extracting features like spectral cen-107
troid, spectral roll-off, and Mel-Frequency Cepstral Coef-108
ficients (MFCCs). Deep Learning-Based Methods such as109
MusicGen [4] and Whisper [16] employ encoder-decoder110
architectures to generate embeddings that capture complex111
musical patterns.112

In our work, we utilize the Jukebox encoder. The Juke-113
box encoder, developed by OpenAI [6], is a generative114
model designed to extract meaningful representations of115
musical features using VQ-VAE to compress audio signals116
into discrete latent spaces while preserving critical musi-117
cal information such as rhythm, melody, and timbre. The118
encoder operates hierarchically at three levels of compres-119
sion and generates 4800-dimensional feature vectors at a120
frequency of 345Hz.121

Jukebox excels at capturing long-term dependencies in122
raw audio signals using its autoregressive Sparse Trans-123
former architecture [6]. By integrating Jukebox embed-124
dings, our model encodes rich musical features like rhythm125
and melody into structured representations, enabling the126

generation of dance motions that are rhythmically synchro- 127
nized and stylistically coherent with the input music. 128

2.2. Music-to-Pose Generation 129

Recent advancements in music-to-pose generation have in- 130
troduced innovative methods for synthesizing dance mo- 131
tions aligned with musical inputs. EDGE employs a 132
transformer-based diffusion model conditioned on Jukebox 133
embeddings, enabling fine-grained motion control through 134
joint-wise conditioning and ensuring physically plausible 135
movements with its Contact Consistency Loss. POPDG 136
uses an iDDPM-based framework with a Space Augmen- 137
tation Algorithm to enhance spatial body joint connections 138
and an Alignment Module for improved temporal synchro- 139
nization. 140

Non-diffusion-based methods, although less performing, 141
also contribute valuable insights. FACT uses a cross-modal 142
transformer to generate key poses from music and inter- 143
polate them into complete sequences, while Danceformer 144
adopts a two-stage framework for pose generation and inter- 145
polation. Bailando combines VQ-VAEs for body segmen- 146
tation with a motion GPT to map music features into dance 147
sequences. 148

Our work leverages EDGE as a teacher diffusion model 149
to augment (music, dance pose sequence) pairs, introducing 150
semantic diversity and enhancing model robustness through 151
diffusion-driven data augmentation [7, 11, 19]. This ap- 152
proach generates diverse and high-quality synthetic data, 153
enriching the training dataset and allowing our 3D trans- 154
former model to capture the intricate links between music 155
and dance movements more effectively. 156

2.3. Latent Diffusion Framework and Conditioned 157
Human Animation Generation 158

Current progress in latent diffusion models has significantly 159
improved the generation of realistic human motion videos 160
conditioned on diverse attributes such as pose and identity. 161
Pose conditioning provides explicit spatial and temporal 162
constraints, enabling precise control over the motion in gen- 163
erated videos. Various methods employ different pose rep- 164
resentations for conditioning. For instance, MagicPose [3] 165
utilizes DensePose [8] for dense motion guidance, Ani- 166
mateAnything [5] leverages optical flow to guide frame-by- 167
frame animation, and CHAMP [15] incorporates 3D SMPL 168
parameters for multi-hypothesis pose generation. 169

Identity conditioning, on the other hand, encodes ap- 170
pearance and background information into the generated 171
videos to ensure visual consistency. While most approaches 172
use a separate U-Net for appearance encoding, UniAni- 173
mate [22] adopts a unified encoder that maps pose, refer- 174
ence images, and noise into a shared feature space. 175

To enhance temporal consistency across video frames, 176
temporal attention blocks are integrated into diffusion net- 177
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works. Additionally, many frameworks adopt multi-stage178
training strategies to disentangle multimodal features effec-179
tively, such as appearance and motion. For example, Mag-180
icDance [2] fine-tunes separate modules for appearance and181
pose control before integrating them into a unified frame-182
work.183

Our work builds upon recent advancements in diffusion-184
based generative models by integrating appearance encod-185
ing, multi-level attention mechanisms, and a novel Music-186
to-Pose Encoding mechanism.187

3. Methods188

Figure 1 provides an overview of the architecture of our189
proposed framework, which generates temporally coher-190
ent dance motion videos conditioned on music input se-191
quence and a reference image. Figure 1a illustrates the192
synthetic dataset generation pipeline, as detailed in Sec-193
tion 3.1, which produces paired music-to-motion data to en-194
able effective training. Figure 1b depicts the Music-to-Pose195
Encoder (M2PEnc), discussed in Section 3.2, which maps196
musical features into structured spatial pose representations197
used as pose guidance. Figure 1c shows how we adapt a198
latent diffusion framework by integrating M2PEnc with a199
denoising 3D U-Net, leveraging multi-level attention mech-200
anisms (cross-attention, self-attention, and temporal atten-201
tion) for synchronized dance video synthesis, as explained202
in Section 3.3. Finally, Section 3.4 describes the training203
and inference methods used in our work.204

3.1. Synthetic Dataset Generation205

Bridging Music and Dance. Transforming music into206
dance motion is inherently challenging due to the ambigu-207
ous relationship between musical features and human poses.208
A single piece of music can correspond to multiple dance209
movements, making it difficult for the Music-to-Pose En-210
coder to learn consistent latent representations during train-211
ing. Incorrect or inconsistent representations can lead to212
anatomically inaccurate or stylistically misaligned dance213
motions when combined with the downstream Denoising214
U-Net.215

To address this ambiguity, we constrain the Music-to-216
Pose Encoder to learn from synthetic datasets that pair mu-217
sic sequences with latent representations of 3D pose and218
shape guidance sequences. By anchoring musical features219
to structured spatial representations, this approach removes220
variability in music-to-motion mapping, enabling synchro-221
nized, visually coherent, and anatomically plausible dance222
motion generation.223

Source Dataset. The AIST [21] dance dataset consists of224
13,940 videos captured from nine multi-view cameras (C01225
to C09), spanning ten music genres, each paired with six226
unique tracks. The dataset features diverse choreographies227

ranging from basic to advanced movements, enabling mod- 228
els to learn a wide variety of dance motions. 229

AIST++ extends AIST by providing 1,408 sequences of 230
3D human SMPL motions, represented as joint rotations 231
and root trajectories. Its precise synchronization between 232
music and dance is critical for learning meaningful correla- 233
tions between musical features and human poses. 234

We follow the recommended AIST++ dataset split: 980 235
videos for training, 20 for validation, and 20 for testing. The 236
dataset spans approximately 5.2 hours (560,000 frames). 237
For training, we crop each frame from camera C09 into a 238
640×640 sub-image centered on the dancer. These cropped 239
images, along with corresponding music tracks and SMPL 240
motion data, are used both as ground truth for MSE loss 241
computation and for generating synthetic datasets as de- 242
scribed in the subsequent section. 243

To expand diversity beyond the predefined motions 244
in AIST++, we utilize EDGE [20] to generate pseudo- 245
motions. Specifically, we select 300 new music tracks span- 246
ning 10 genres and partition them into 5-second slices. Cor- 247
responding SMPL motions are then generated for each slice. 248
These pseudo-motions enable us to explore a broader range 249
of music-to-dance mappings, extending beyond the explicit 250
pairings available in the original dataset. 251

SDGPip Architecture. The pipeline, illustrated in Fig- 252
ure 1 (a), leverages advanced deep learning techniques 253
inspired by Jukebox [6], SMPL [12], DwPose [26], and 254
CHAMP [15] to generate structured spatial representations 255
of human motion. It begins with the SMPL rendering mod- 256
ule, which generates three types of maps to represent human 257
body geometry: 258

• Depth: Encodes the distance between body surfaces and 259
the camera. 260

• Normal: Captures surface orientation to model spatial 261
dynamics. 262

• Semantic: Segments body parts into distinct regions for 263
detailed analysis. 264

Simultaneously, skeletal keypoints are extracted by leverag- 265
ing DwPose. These keypoints are processed by the DwPose 266
Renderer to produce: 267

• Skeleton keypoint map: Visualizes the skeletal struc- 268
ture, highlighting joint connections. 269

• Keypoint Heatmaps: Represents the spatial probability 270
of anatomical landmarks, enabling precise localization of 271
keypoints. 272

Next, Pose Guidance is computed by combining Depth, 273
Normal, Semantic maps, and skeleton keypoint maps 274
through CHAMP’s multi-level Guidance Encoder. This 275
structured spatial representation serves as a critical input to 276
the downstream U-Net during training, ensuring anatomi- 277
cally accurate and rhythmically synchronized dance motion 278
generation. 279

3



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Synthetic dataset generation pipeline (SDGPip).

(b) Music-to-Pose (M2PEnc) architecture.

(c) Video diffusion model architecture.

Figure 1. Overview of our proposed framework. The system integrates a Music-to-Pose Encoder (M2PEnc) with a denoising 3D U-Net
architecture, leveraging multi-level attention mechanisms (cross-attention, self-attention, and temporal attention) to generate dance videos
synchronized with music input. M2PEnc maps musical features into structured spatial pose representations, which serve as pose guidance
within the U-Net. This framework is trained on a synthetic dataset generated leveraging CHAMP, EDGE, SMPL, and DwPose. The
synthetic dataset generation pipeline (SDGPip) addresses the scarcity of paired music-to-motion data, enabling STM2PE-Diff to produce
high-quality, rhythmically aligned, and visually coherent dance animations.

3.2. Music-to-Pose Guidance Encoder280

Dance and music are intrinsically connected, with music281
shaping elements such as rhythm, tempo, mood, emotion,282
structure, and phrasing, while dance translates these char-283
acteristics into physical movements, transitions, and expres-284
sions. The M2PEnc aims to computationally model this re-285
lationship by bridging musical inputs with spatial pose rep-286
resentations.287

3.2.1. M2PEnc Architecture 288

The M2PEnc transforms music into dance feature se- 289
quences that condition the downstream U-Net. Specifically, 290

291

• The Jukebox Encoder produces 4800-dimensional feature 292
vectors for each video frame that encode rhythm, melody, 293
and dynamics of the input music. For each batch, N 294
frames (N = D × F ) of music are processed, where D 295
represents the duration (in seconds) and F is the frame 296
rate (fps). 297
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• The fully-connected layer reduces the dimensionality of298
the feature to (N, 4096).299

• A reshape operation reshapes the feature into an image-300
like spatial shape of (N, 64, 64) for further processing.301

• L alternating layers of Inflated 3D Convolutions (Inf-302
Conv3D) and 3D attention modules capture the temporal303
dependency in the feature. Specifically, Inf-Conv3D cap-304
tures the spatio-temporal dependencies in music-driven305
motion by expanding 2D convolutions into the tempo-306
ral dimension. 3D Attention modules enhance long-range307
temporal relationships across frames.308

Throughout the processing, the feature maps maintain a309
fixed spatial resolution of (64, 64). Upon completion, the310
encoder produces two outputs through two additional layers311
of Inf-Conv3D:312
• Pose Guidance: High-level motion features of shape313
(N,Cguid, 64, 64), which serve as conditioning inputs to314
the downstream U-Net. These features encapsulate tem-315
poral and spatial information derived from the music in-316
put, guiding the generation of coherent and rhythmically317
aligned dance motions.318

• Keypoint Heatmaps: Detailed spatial distributions of319
keypoint locations, represented as heatmaps of shape320
(N,Cheat, 64, 64). These maps are used to enhance model321
performance by minimizing a loss function, such as the322
mean squared error (MSE), which encourages precise323
alignment with ground truth keypoints. The use of key-324
point density maps during training forces the model to325
focus on learning meaningful spatial distributions of key-326
points, thereby improving the accuracy and expressive-327
ness of generated dance motions.328

3.3. Leveraging the Latent Diffusion Framework329

Figure 1c illustrates our approach to leveraging the latent330
diffusion framework by combining a Music-to-Pose En-331
coder (M2PEnc) with a denoising 3D U-Net. The M2PEnc332
maps the input music sequence into a sequence of poses,333
which serves as conditioning input to the U-Net. This pose334
sequence is designed to match the input feature shape of335
the denoising 3D U-Net, allowing for seamless integration336
by summing the pose guidance with the latent features of337
the U-Net. This alignment ensures that the motion guid-338
ance, derived from the pose sequence, effectively captures339
the rhythmic and structural characteristics of the music.340

In parallel, a reference human image is processed using341
a frozen Variational Autoencoder (VAE) and CLIP image342
encoder to extract latent embeddings. These embeddings343
are then processed by the reference U-Net, which encodes344
appearance and background information. The weights of345
the reference U-Net are connected to the denoising 3D U-346
Net, serving as additional conditioning to ensure visual fi-347
delity of appearance and background throughout the syn-348
thesis process of the dance video.349

The denoising 3D U-Net integrates both the pose se- 350
quence guidance and reference embeddings through multi- 351
level attention mechanisms: 352
• Cross-attention: Aligns the pose sequence guidance 353

with reference embeddings, ensuring that pose features 354
correspond accurately to visual attributes derived from 355
the reference image. 356

• Self-attention: Refines spatial coherence within each 357
frame, maintaining local consistency in pose and appear- 358
ance. 359

• Temporal attention: Enforces smooth transitions across 360
video frames, preserving temporal coherence throughout 361
the sequence. 362
Finally, the denoised latent representations are passed 363

through the frozen VAE decoder to reconstruct high-quality 364
video frames. 365

In our work, we leverage the methods proposed in 366
CHAMP [15]. By reusing CHAMP’s pretrained weights 367
alongside the stable diffusion’s denoising 3D U-Net archi- 368
tecture, we can maintain high-quality synthesis results with- 369
out extensive retraining, thereby streamlining the process 370
and enhancing practicality for real-world applications. 371

3.4. Training and Inference 372

The training process for our model is divided into three dis- 373
tinct stages, each designed to progressively refine the sys- 374
tem’s ability to generate high-quality dance motions syn- 375
chronized with music. Notably, the first stage introduces 376
the method to train M2PEnc proposed in this paper, while 377
the second and third stages leverage established methods 378
and weights with some minor changes for computational 379
efficiency. 380

In the first stage, M2PEnc is pretrained using synthetic 381
datasets to establish its ability to map musical features into 382
structured spatial representations. The training objective 383
minimizes two key loss functions: the guidance loss, Lguid, 384
which quantifies the difference between the predicted and 385
ground truth pose guidance features,denoted as f̂ and f re- 386
spectively, and the heatmap loss, Lheat, which measures the 387
alignment between predicted keypoint heatmaps k̂ and their 388
corresponding ground truth k. These losses are designed 389
to ensure that M2PEnc effectively captures the relationship 390
between music and pose structure: 391

Lguid =
1

HWCguid

H∑
h=1

W∑
w=1

Cguid∑
c=1

|fh,w,c − f̂h,w,c| 392

393

Lheat =
exp(k̂h,w,c)

HWCheat
− kh,w,c. 394

In the second stage, training is performed on individual 395
video frames. The weights of the M2PEnc remain frozen, 396
and the temporal layer of the Denoising U-Net is temporar- 397
ily excluded. For each image in the synthetic dataset, there 398
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exists a corresponding Jukebox frame. The U-Net and Ref-399
erence Encoder are optimized to predict the selected video400
frame computed from a corresponding Jukebox frame by401
minimizing a pixel-wise Mean Squared Error (MSE) loss402
between the predicted frame x and a randomly selected im-403
age y. This loss is defined as:404

Lpix = MSE(x, y). (1)405

The Denoising U-Net and ReferenceNet are initialized with406
pre-trained weights from CHAMP [15], while the weights407
of the VAE’s Encoder and Decoder, the CLIP image en-408
coder, as well as the temporal layer remain fixed throughout409
this stage.410

Finally, in the third stage, we fine-tune the temporal411
layer and M2PEnc jointly by combining the pixel-wise loss412
from the U-Net (Lpix) and the guidance loss from M2PEnc413
(Lguid), as defined below:414

Ltotal = 0.5 · Lpix + 0.5 · Lguid.415

The weights of the remaining network components are kept416
fixed during this stage. This joint optimization ensures that417
the temporal layer and M2PEnc work cohesively, enabling418
the model to generate rhythmically aligned and visually co-419
herent dance motions.420

During inference, due to memory constraints, we gen-421
erate dance videos in multiple short segments of 5 sec-422
onds each. To ensure temporal continuity across segments,423
we adopt UNIAnimate’s noise-conditioning method [22],424
which effectively merges these segments into seamless full-425
length videos.426

4. Experiments and Results427

4.1. Implementation Details428

STM2PE-Diff was trained using eight A100 GPUs over429
multiple stages. Initially, the M2PEnc module was trained430
for over 20,000 epochs with a batch size of 24. Each batch431
consisted of a sequence of 75 frames, which corresponds to432
a duration of D = 5 seconds at a frame rate of F = 15 fps.433
The synthetic dataset described in Section 3.1 was utilized434
for training this module.435

Subsequently, in the second stage, video frames were436
sampled, resized, and center-cropped to a resolution of437
640×640. For each frame, a corresponding Jukebox feature438
frame was used as input to the M2PEnc module. This phase439
involved training for 60,000 steps with a batch size of 32.440

To enhance temporal coherence, during the third stage,441
the temporal layer was trained using 24-frame video se-442
quences with a batch size of 8 for 20,000 steps. Through-443
out all training processes, the AdamW optimizer [13] was444
employed with a learning rate of 1 × 10−5 to optimize the445
network.446

4.2. Evaluation Metrics 447

To evaluate the quality of generated videos, we utilize the 448
Fréchet Video Distance (FVD) [18] with the I3D classifier 449
pre-trained on Kinetics-400 [1], which quantifies the dis- 450
crepancy between the generated and the real video distri- 451
bution. For assessing image-level quality, we use widely- 452
used image metrics, namely SSIM [23], PSNR [10], and 453
LPIPS [27]. 454

Table 1. Quantitative evaluation results between STM2PE-Diff to
existing methods.

Model FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
MM-Diffusion 1338.57 0.425 11.04 0.770
DabFusion(scaled) 1440.05 0.561 8.525 0.776
STM2PE-Diff 213.289 0.102 21.11 0.908

4.3. Result Analysis Video Quality Evaluation. 455

To assess the effectiveness of our proposed method, we 456
perform comparisons with existing approaches using both 457
quantitative and qualitative metrics. Furthermore, we con- 458
duct a human evaluation to validate its efficacy. 459

4.3.1. Qualitative Evaluation 460

AIST test set inputs. For the evaluation of the generated 461
dance video quality, we use audio from 20 video clips and 462
the first frame of each video as the reference image. The 463
reference image is cropped to a box of size 640× 640 cen- 464
tered around the dancer. The predicted videos are presented 465
in Figure 2. 466

Music-to-dance generation is a relatively new field with 467
limited works for comparison. We compare STM2PE-Diff 468
against MM-Diffusion [17]. MM-Diffusion results, ob- 469
tained from their project page, demonstrate competence but 470
lack the fine-grained dance realism achieved by our ap- 471
proach. DabFusion [25] samples are of lower quality and 472
were excluded from the qualitative comparison. 473
Unseen individual inputs. STM2PE-Diff demonstrates ex- 474
ceptional generalization by animating individuals who were 475
not part of the full dataset. Using an in-the-wild reference 476
image as the initial frame, the model generates motion se- 477
quences that align seamlessly with the rhythm and style 478
of the input music. As illustrated in Figure 3, the model 479
successfully animates diverse individuals across various 480
dance genres, including Break, House, Ballet Jazz, Street 481
Jazz, LA Hip-Hop, Lock, Krump, Pop, Middle Hip-Hop, 482
and Waack. This evaluation emphasizes how STM2PE- 483
Diff choreographs realistic and stylistically accurate dance 484
movements using only a reference image and music input. 485

As shown in Figure 2 and 3, STM2PE-Diff outperforms 486
existing methods in video quality, movement realism, and 487
alignment with musical cues. By producing visually appeal- 488
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Figure 2. Qualitative evaluation of AIST dataset. Example dance videos generated by STM2PE-Diff using audio from the AIST test set
and the first frame as the reference image. The model showcases its effectiveness in music-to-dance generation by producing high-quality,
rhythmically synchronized dance animations across various genres. Click on the figure to view the results.

Figure 3. Qualitative evaluation using in-the-wild images. Examples of dance videos generated by STM2PE-Diff using in-the-wild
reference images. The model demonstrates its ability to generalize well across different individuals and dance genres, producing realistic
and rhythmically synchronized dance animations. Click on the figure to view the results.

ing and musically synchronized dance videos, our model489
sets a new benchmark in music-to-dance generation.490

4.3.2. Quantitative Evaluation491

The results of the quantitative evaluation are presented in492
Table 1. For comparison, we randomly generated an equiv-493
alent number of frames using MM-Diffusion by providing494
audio from the AIST test set as input.495

Both MM-Diffusion and DabFusion models are trained496
to generate small-sized video clips; for instance, MM-497
Diffusion generates 256 × 256 clips with the application498
of a super-resolution module, while DabFusion generates499
128 × 128 clips. In contrast, our model directly generates500

640×640 videos, matching the size of the reference image. 501

Additionally, the cropping strategies employed by MM- 502
Diffusion and DabFusion include large portions of the back- 503
ground. In our approach, we focus more on the dancer by 504
cropping a box around the dancer’s area and resizing it to 505
640× 640 for comparison with our results. 506

Since the DabFusion codebase is not publicly available, 507
instead of computing its results directly, we scaled its re- 508
ported metrics based on Table 1 of the DabFusion pa- 509
per [25]. 510

Our results in Table 1 demonstrate that STM2PE-Diff 511
significantly outperforms both MM-Diffusion and DabFu- 512
sion across all metrics. The lower FVD and LPIPS values, 513
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combined with higher PSNR and SSIM values, indicate that514
STM2PE-Diff generates more realistic, visually coherent,515
and high-quality dance videos. This superior performance516
validates the effectiveness of our Music-to-Pose Encoder517
and the coupled U-Net architecture in capturing the intri-518
cate relationship between music and dance motions.519

4.4. User Study520

To evaluate the subjective quality of the generated dance521
videos, we conducted a user study comparing our proposed522
STM2PE-Diff framework with MM-Diffusion [17]. Par-523
ticipants were asked to assess two key aspects: rhythmic524
synchronization and visual consistency. Rhythmic synchro-525
nization measured how well the dance movements aligned526
with the rhythm of the input music, while visual consis-527
tency evaluated the realism and coherence of the generated528
videos.529

The results of the user study are summarized in Table 2.530
STM2PE-Diff achieved an 85% preference score for rhyth-531
mic synchronization, slightly surpassing MM-Diffusion’s532
83%. For visual consistency, STM2PE-Diff demonstrated533
a significant improvement, scoring 80% compared to MM-534
Diffusion’s 55%. These findings highlight the ability of535
STM2PE-Diff to produce dance motions that are both rhyth-536
mically aligned and visually coherent, validating its effec-537
tiveness in music-to-dance generation.

Table 2. User Study Results

Model Rhy. Sync Vis. Cons.
MM-Diffusion 83% 55%
STM2PE-Diff 85% 80%

538

5. Ablation539

To evaluate the impact of different pose guidance setups on540
the performance of STM2PE-Diff, we conducted an abla-541
tion study using three configurations: DNS (Depth-Normal-542
Semantic maps), P (Pose skeleton), and PDNS (Pose skele-543
ton combined with Depth-Normal-Semantic maps). The re-544
sults are summarized in Table 3.545

The DNS setup provides spatial information about body546
geometry but it lacks explicit skeletal constraints, leading to547
moderate performance across metrics. The P setup, which548
uses skeleton keypoints as pose guidance, improves upon549
DNS in all metrics. This suggests that skeletal constraints550
contribute significantly to the alignment and coherence of551
generated poses. Finally, the PDNS setup combines skele-552
ton keypoints with depth-normal-semantic maps, yielding553
the best results across all metrics.554

The ablation study highlights the importance of combin-555
ing skeletal pose guidance with detailed spatial representa-556
tions for optimal performance. Future work could further557

Table 3. Ablation Study results on Pose Guidance Setups

Guidance Setup FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
DNS 257.196 0.194 19.95 0.812
P 239.724 0.156 20.50 0.857
PDNS(STM2PE-Diff) 213.289 0.102 21.11 0.908

explore advanced fusion strategies for pose guidance inputs 558
to improve robustness and generalization further. 559

6. Limitations 560

While STM2PE-Diff outperforms existing methods, it still 561
encounters several limitations. Notably, capturing realistic 562
and fine-grained details in facial and hand regions remains a 563
challenge. Furthermore, in certain failure cases, the gener- 564
ated pose guidance does not align with the input reference 565
image, resulting in deformations of the generated individ- 566
ual. Additionally, the background in the generated images 567
often becomes distorted, leading to inconsistencies and ar- 568
tifacts. To address these limitations, future work will focus 569
on synthesizing high-quality, high-definition video datasets 570
and refining the model to improve shape parameter pre- 571
diction. Moreover, we plan to explore the use of back- 572
ground masking techniques to maintain a consistent and sta- 573
ble background across frames, thereby enhancing the over- 574
all coherence and realism of dance animation results. 575

7. Conclusion 576

This study presents STM2PE-Diff, a cutting-edge frame- 577
work for generating dance videos conditioned on music 578
and reference images. By integrating a Music-to-Pose En- 579
coder with a latent diffusion model, we address the inherent 580
challenges of music-to-motion mapping, ensuring rhythmic 581
synchronization and stylistic fidelity. Our synthetic dataset 582
pipeline enhances the model’s robustness by removing the 583
ambiguity between music to dance mapping and providing 584
diversity in the training data. The strong quantitative and 585
qualitative results validate STM2PE-Diff’s ability to pro- 586
duce high-quality dance motions, setting a new benchmark 587
in music-driven choreography generation. Future research 588
directions could include incorporating higher-resolution 589
outputs, enhancing the accuracy of human shape represen- 590
tation, and improving background rendering. STM2PE-Diff 591
represents a significant advancement in integrating AI with 592
artistic expression, unlocking new avenues for creative in- 593
novation. 594

References 595

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action 596
recognition? a new model and the kinetics dataset. In Pro- 597
ceedings of the IEEE Conference on Computer Vision and 598
Pattern Recognition (CVPR), pages 6299–6308, 2017. 6 599

[2] Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu, 600

8



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Guoxian Song, Qing Yan, Yizhe Zhu, Xiao Yang, and Mo-601
hammad Soleymani. Magicdance: Realistic human dance602
video generation with motions & facial expressions transfer.603
arXiv preprint arXiv:2311.12052, 2023. 1, 3604

[3] Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu,605
Guoxian Song, Qing Yan, Yizhe Zhu, Xiao Yang, and Mo-606
hammad Soleymani. Magicpose: Realistic human poses and607
facial expressions retargeting with identity-aware diffusion,608
2024. 1, 2609

[4] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant,610
Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez. Sim-611
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distance. In Proceedings of the IEEE/CVF Conference on 666
Computer Vision and Pattern Recognition (CVPR), 2024. 6 667

[19] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan 668
Salakhutdinov. Effective data augmentation with diffusion 669
models. In Proceedings of the International Conference on 670
Learning Representations (ICLR), 2024. 2 671

[20] Jonathan Tseng, Rodrigo Castellon, and C. Karen Liu. Edge: 672
Editable dance generation from music. In Proceedings of 673
the IEEE/CVF Conference on Computer Vision and Pattern 674
Recognition (CVPR), pages 448–457, 2023. 1, 3 675

[21] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, 676
and Masataka Goto. Aist dance video database: Multi-genre, 677
multi-dancer, and multi-camera database for dance informa- 678
tion processing. In Proceedings of the 20th International 679
Society for Music Information Retrieval Conference, ISMIR 680
2019, Delft, Netherlands, 2019. 3 681

[22] Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, 682
Xiaoqiang Zhou, Yingya Zhang, Luxin Yan, and Nong 683
Sang. Unianimate: Taming unified video diffusion mod- 684
els for consistent human image animation. arXiv preprint 685
arXiv:2406.01188, 2024. 1, 2, 6 686

[23] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. 687
Simoncelli. Image quality assessment: From error visibility 688
to structural similarity. IEEE Transactions on Image Pro- 689
cessing, 13(4):600–612, 2004. 6 690

[24] Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, 691
Jia-Wei Liu, Chenxu Zhang, Jiashi Feng, and Mike Zheng 692
Shou. Magicanimate: Temporally consistent human im- 693
age animation using diffusion model. In Proceedings of 694
the IEEE/CVF Conference on Computer Vision and Pattern 695
Recognition (CVPR), 2024. 1 696

[25] Wang Xuanchen, Wang Heng, Liu Dongnan, and Weidong 697
Cai. Dance any beat: Blending beats with visuals in dance 698
video generation. In IEEE/CVF Winter Conference on Ap- 699
plications of Computer Vision (WACV), 2025. 6, 7 700

[26] Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effec- 701
tive whole-body pose estimation with two-stages distillation. 702
In Proceedings of the IEEE/CVF International Conference 703
on Computer Vision Workshops (ICCVW), pages 4212–4222, 704
2023. 1, 3 705

[27] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht- 706
man, and Oliver Wang. The unreasonable effectiveness of 707
deep features as a perceptual metric. In Proceedings of 708
the IEEE/CVF Conference on Computer Vision and Pattern 709
Recognition (CVPR), 2018. 6 710

9


	Introduction
	Related Works
	 Music Feature Extraction
	Music-to-Pose Generation 
	Latent Diffusion Framework and Conditioned Human Animation Generation

	Methods
	Synthetic Dataset Generation
	Music-to-Pose Guidance Encoder
	M2PEnc Architecture

	Leveraging the Latent Diffusion Framework
	Training and Inference

	Experiments and Results
	Implementation Details
	Evaluation Metrics
	Result Analysis Video Quality Evaluation.
	Qualitative Evaluation
	Quantitative Evaluation

	User Study

	Ablation
	Limitations
	Conclusion

