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Figure 1: Left: Multimodality as Supervision. The sensed data in a deployment environment is
often multimodal, which, besides RGB images, can contain various modalities, such as depth, motion
sensing, surface normals, tactile, etc. This enables Cross-Modal learning, i.e., predicting the response
of one sensor from another, as a self-supervised method for pre-training a representation. We use this
concept to frame learning a rich representation for the test space in a self-supervised way and without
using any external data.
Right: The common approach to train and deploy vision models in a desired test space is generalist
pre-training. It uses large diverse external data, such as images from the Internet or other spaces
similar to the test one. As an alternative, we study multimodal Test-Space Training (TST), which
performs self-supervised pre-training on unlabeled multimodal data from the test space. This enables
pre-training a performant representation for that space without access to any external data. We
evaluate this approach on several downstream tasks (semantic segmentation in Fig. 1) and show that
TST can outperform strong generalist pre-training baselines, including those trained on large-scale
Internet-based datasets (Bachmann et al., 2024; Changpinyo et al., 2021; Oquab et al., 2023; Radford
et al., 2021) or many other external spaces.

ABSTRACT

The common approach for developing a vision model is generalism, which involves
training on a large diverse dataset to cover the varied deployment environments
and leads to a model that is expected to solve the problem everywhere. However,
many practical applications need to operate in a specific test space, e.g., a robot
deployed in a single house, and do not necessarily need to generalize to novel
environments. In this work, we explore whether we can use rich multimodal data
only from the test environment to pre-train a representation in a self-supervised
way, without access to any external data. We find that this approach can match
and, in most cases, outperform generalists pre-trained on large-scale Internet
datasets, including popular off-the-shelf models, CLIP (Radford et al., 2021) and
DINOv2 (Oquab et al., 2023). We study the effectiveness of this approach by
evaluating the models on various datasets and downstream tasks, such as semantic
segmentation, captioning, and object detection, as well as a set of ablations and
analyses to extract insights. This approach raises intriguing points on substituting
data with (multi)modality, enabling an alternative scenario where the need for
external Internet-scale datasets for pre-training models is reduced. It also shows that
merely benefiting from test-space data was insufficient for achieving competitive
results, and multimodality was essential for that purpose.
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1 INTRODUCTION

Many practical vision applications, such as augmented reality (Lv et al., 2024; Zehtabian et al., 2021),
household robotics (Wu et al., 2023), and interactive home assistants (Joshi et al., 2024), require
vision models to operate in unique environments such as a user’s living space. In such scenarios, we
often care about performance in that unique space, or as we refer to it, the test space, regardless of
its generalization performance elsewhere. The de facto approach for such applications is to deploy
a pre-trained foundation model (Radford et al., 2021; Oquab et al., 2023), i.e., a generalist model,
based on large-scale data sources, such as the Internet.

In this work, we propose to study an alternative scenario. What if the user device is limited to the test
space, with no access to the external world? This implies not having external data sources, like the
Internet, to pre-train models, or a lack of label supervision in the test space. Additionally, this can
also imply the infeasibility of sharing sensitive user data for external processing. In such a scenario,
we ask, how can we bootstrap the vision representation of the test space for our device?

To this end, we develop multimodal Test-Space Training (TST), a framework that enables this,
building upon two key insights. Firstly, many user devices, e.g., a household robot or a domestic
digital assistant, are equipped with a rich set of sensors, which can enable collecting rich, multi-modal
data. This data collection, in the test space, can be done without any external access and is completely
unsupervised. Second, to learn a vision representation from this data, we can leverage multimodality
as a source of self-supervision. More concretely, drawing inspiration from findings in developmental
psychology, we leverage cross-modal learning (Bachmann et al., 2022) for self-supervised pre-training
on this data, leading to TST-MM.

Through extensive analysis on various tasks (semantic segmentation, object detection, image caption-
ing), and datasets including but not limited to Scannet++ (Yeshwanth et al., 2023), which contains
real-world indoor spaces, we show that TST can build performant models for the test space, without
any external access. We also compare TST-MM to its Internet-based generalist counterparts (Oquab
et al., 2023; Radford et al., 2021) and find TST-MM is always on par and often better (Fig. 1, right) in
various downstream tasks in the test space. Additionally, we perform various controlled analyses and
ablations on the following:

• Modality Scaling vs Data Scaling. We show that we can substitute large-scale external data with a
rich set of modalities in the test space (Fig. 4).

• Scaling properties for TST with modalities. We show that scaling the number of modalities in
the test space improves performance (Fig. 5), and no single modality is responsible for TST-MM’s
performance (Tab. 1).

• Role of pre-training data in TST. We investigate the value of pre-training data in the test space
(Sec. 4.4), revealing the specialization-generalization tradeoff (Fig. 7). We also show that data from
even 3000 similar external spaces cannot compensate for test space data (Fig. 6).

• Significance of TST. We provide a focused discussion on the importance of our results (Sec 4.6)
and point out key results that make our findings interesting, and not obvious for the community.

We share an overview video of our work in the supplementary that we recommend watching.

2 RELATED WORK

Self-supervised learning (SSL) has been effective in learning visual (et al., 2020; He et al., 2021;
Bao et al., 2022; Oquab et al., 2023) and natural language (Devlin et al., 2019; Brown et al., 2020;
OpenAI, 2023) representations. In vision, one line of work uses masked image modeling (He et al.,
2021) as a scalable approach to pre-train self-supervised models. It masks an input image, and
attempts to reconstruct it in the form of pixels (He et al., 2021; Chen et al., 2020a; Dosovitskiy et al.,
2021; El-Nouby et al., 2021), tokens (Bao et al., 2022) or features (Zhou et al., 2022; Baevski et al.,
2022). On the other hand, approaches like SimCLR (Chen et al., 2020b) and DINOv2 (Oquab et al.,
2023) use contrastive learning (Oquab et al., 2023; Caron et al., 2021; Chen et al., 2020b; He et al.,
2020; Chen & He, 2020) to pre-train representations. Both classes of SSL pre-training approaches are
typically trained on large-scale Internet-based datasets (Changpinyo et al., 2021; Deng et al., 2009;
Schuhmann et al., 2022; Gadre et al., 2024). While we leverage similar SSL pre-training objectives,
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Figure 2: TST framework. 1) First, we collect (multimodal) data from the test space (Sec. 3.2).
2) We then use this data for self-supervised multimodal pre-training (Mizrahi et al., 2023; Oquab
et al., 2023) (Sec. 3.3). 3) After pre-training, the model is fine-tuned on a small external transfer
dataset to solve a desired downstream task, e.g. semantic segmentation (Sec. 3.4). 4) This model is
subsequently deployed and evaluated in the same test space where it was pre-trained (Sec. 4).

we are interested in learning a vision representation for a given test space, without any external access,
as opposed to the de facto case of building a generalist model.

Multimodal learning aims to build models that can relate information from different sources of
underlying reality (Baltruvsaitis et al., 2017). This can involve training separate encoders or a unified
model on various sources of modalities, like image, video, 3D, text, audio, etc. (Arandjelovic &
Zisserman, 2017; Lu et al., 2019; Jaegle et al., 2022; Radford et al., 2021; Girdhar et al., 2022;
Lu et al., 2023b;a; Girdhar et al., 2023). MultiMAE (Bachmann et al., 2022) uses multimodal
masked modeling to learn cross-predictive coding across multiple modalities. 4M (Mizrahi et al.,
2023; Bachmann et al., 2024) extends this idea further to train a multimodal foundation model
across tens of modalities. These approaches build on large-scale Internet datasets with image-text
pairs (Changpinyo et al., 2021; Byeon et al., 2022; Schuhmann et al., 2022). Our work leverages
cross-modal pre-training on test space data, as opposed to Internet-based data, to learn a performant
vision model for that space. Results in Sec. 4 show the value of TST over these multimodal baselines.

Test-time adaptation adapts a model to distribution shifts at test-time (see (Xiao & Snoek, 2024) for
a recent survey). One prominent approach in the community is test-time training (TTT) (Sun et al.,
2020; Wang et al., 2021; Liu et al., 2021b; Gandelsman et al., 2022b; Boudiaf et al., 2022; Gao et al.,
2023), which optimizes a self-supervised objective (rotation prediction or entropy minimization), at
test-time to finetune the model. While similar in spirit, we focus on learning a vision model, for a
given test space, without external access in during pre-training, not on model adaptation at test-time.
Concretely, we specialize in a given test space, as opposed to a specific test instance. Note that TTT
can be complementary to TST and improve performance(see App. T). We present additional related
works in App. C on domain adaptation, embodied active learning, and semi-supervised learning.

3 METHOD

We provide an overview of our framework, TST, in Fig. 2. In Sec. 3.1, we present the problem setting,
of building a vision model for a given test space, without any external access. In Sec. 3.2, we provide
details on the multimodal data collection process in the test space. Sec. 3.3 describes how we leverage
cross-modal learning to pre-train on this data, and finally, Sec. 3.4 outlines our evaluation setup.

3.1 PROBLEM SETTING

We are interested in studying how we can bootstrap a vision model, for a given test space, on a user
device, e.g., a household robot, without any external access. This can imply not having external
sources, like Internet-based datasets (Changpinyo et al., 2021) to pre-train a model on, or a lack of
label supervision in the test space. Therefore, our framework, Test-Space Training (TST), proposes
to collect unsupervised pre-training data in the test space. Concretely, we assume access to the
sensory data sampling function in the test space, denoted as x ∼ pspace(x), and use it to collect a
pre-training dataset DPT = {xi} (Sec. 3.2). Besides RGB images, we also leverage other sensors
available on the device, e.g., depth and surface normals. In real-world deployment, this set can be
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expanded significantly to other common sensors, such as IMU, microphone, radar, and occasionally
haptics. We use this data to pre-train a self-supervised model f : X → h that maps RGB images into
representations (Sec. 3.3). We evaluate this model with transfer learning, as described in Sec. 3.4.

3.2 MULTI-MODAL DATA COLLECTION

As noted in Sec. 3.1, we assume access to the sensory data sampling function in the test space,
denoted as x ∼ pspace(x) to collect pre-training data, DPT . This can represent capturing data at
various vantage points, or a video walkthrough to cover the test space. In addition to RGB frames,
we also collect data from various sensors and modalities available on the user device being deployed
in the test space. Additionally, we can also process this data to create more optional modalities as
illustrated in Fig. 2. As we later show in Sec. 4.3, Fig 4, scaling this rich set of modalities in the
multimodal, test-space data is more effective than scaling to diverse unimodal data from external
sources. It is also worth noting that such a dataset of potentially repetitive images from the same space
is related to findings in developmental psychology research suggesting that infants observe highly
redundant visual data (Jayaraman et al., 2015; Slone et al., 2019). We defer more implementation
details for our data collection to Sec. 4.1. This stage results in a multimodal sensory dataset, which
we use for self-supervised pre-training (see Fig. 2.)

3.3 SELF-SUPERVISED PRE-TRAINING

We employ self-supervised learning to pre-train a model f on the multimodal data DPT collected
in the test space. Akin to standard generalist self-supervised pre-training, this model learns task-
agnostic representations that are useful for various downstream tasks. We explored different self-
supervised objectives, comparing both unimodal, RGB-only (He et al., 2021)), i.e. TST-MAE, and
multimodal (Bachmann et al., 2022; Mizrahi et al., 2023; Bachmann et al., 2024), i.e. TST-MM,
variants within our framework. Among these, we found cross-modal learning, or more specifically,
multimodal masked modeling to be most effective for our setup, consistently achieving superior
performance (Sec. 4, App. H). We explore the role of choice of modalities (Tab. 1), and how
performance scales with the number of modalities (Fig. 5) for TST-MM in Sec. 4.3. Note that the
TST framework can also support other self-supervised objectives such as DINOv2 (Oquab et al.,
2023) and MAE (He et al., 2021) (Sec. 4.4). Unless specified otherwise, we refer to the multimodal
version (TST-MM) as TST. We describe more details on the architecture and modalities in Sec. 4.

3.4 TRANSFER

We evaluate the effectiveness of the pre-trained model f using transfer learning. We add a task-
specific head g and finetuning the resulting model g ◦ f on various downstream tasks, following
standard practice in self-supervised learning (Mizrahi et al., 2023; He et al., 2021). For this, we
consider a small transfer dataset Dt with task-specific annotations, collected in an external space,
disconnected from the test space. Importantly, we do not have access to any task-specific annotations
from the test space itself, i.e. Dt and DPT are sampled from different distributions. We benchmark
against several off-the-shelf vision models (Radford et al., 2021; Oquab et al., 2023; Bachmann et al.,
2024), by finetuning them on the transfer data, Dt, as discussed in Sec. 4.5.

4 EXPERIMENTS

We present the results as follows. Sec. 4.1 describes our experimental setup and baselines. Sec. 4.2
analyzes how far we can go with no external access with TST. Then, we present various analyses on
the role of multimodality in TST. Sec. 4.4, discusses the role of pre-training data from the test space.
Lastly, Sec. 4.5 presents results on various tasks by scaling TST to several modalities and compares
against off-the-shelf Internet-based generalists (Bachmann et al., 2024; Oquab et al., 2023; Radford
et al., 2021) and task-specific baselines (Kirillov et al., 2023; Li et al., 2022; Cheng et al.).

4.1 EXPERIMENTAL SETUP

Datasets. To show the efficacy of TST, we experiment using three datasets:
1. Scannet++ (Yeshwanth et al., 2023) is a large-scale dataset of real-world indoor spaces containing
sub-millimeter resolution scans, paired with DSLR and iPhone RGB images. We use 8 scenes as the
test space, and use a mix of iPhone and DSLR images from these scenes for pre-training.
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2. Replica (Straub et al., 2019) provides high-quality 3D reconstructions of real indoor spaces. We
use 5 scenes as the test space, and use rendered RGB-D images for pre-training.
3. ProcTHOR (Deitke et al., 2022) includes procedurally generated house-like environments. We use
5 procedurally generated houses as the test space, unless specified otherwise.

Pre-training. For training models with TST-MM and TST-MAE on the dataset DPT collected from a
test space, we leverage multimodal masked modelling (Bachmann et al., 2024) as described in Sec. 3.3,
and train an encoder-decoder transformer model. We use modality-specific tokenizers (Bachmann
et al., 2024) to convert all modalities into tokens. We train models across two encoder sizes, ViT-S
and ViT-B, which have 8 and 12 encoder layers, respectively. Additionally, we found that mixing
RGB images from the transfer was beneficial in pre-training. Please see Sec. L for an ablation on
this choice. Note that we do not use any task labels from the transfer set during pre-training, making
this stage task-agnostic. For results in Sec. 4.5, we initialize the model from scratch, whereas for
adaptation (Sec. 4.5, Adaptation through TST) we initialize from 4M-21 (Bachmann et al., 2024).

Notations. We refer to TST variants with different objectives as TST-MM for multimodal masked
modeling, TST-MAE for unimodal masked modeling, TST-DINO for DINOv2 (Oquab et al., 2023).
Unless specified otherwise, we refer to the multimodal version (TST-MM) as TST.

Transfer and Evaluation. For all datasets, we use an external set of scenes that are different from
the test space to collect a small transfer set (Dt) with task-specific annotations. We evaluate the
transferred models in the test space on semantic segmentation (Scannet++, Replica, ProcTHOR),
object detection (Scannet++, ProcTHOR) and image captioning (ProcTHOR). We provide more
details on the transfer and evaluation setup in Appendix.

Modalities. For Scannet++ (Yeshwanth et al., 2023), we use RGB images captured by DSLR and
iPhone cameras. For Replica (Straub et al., 2019) and ProcTHOR (Deitke et al., 2022), we render
RGB-D from the test space using onboard sensors. We then extract Canny edges from RGB and
surface normals from depth using simple transformations. We refer to these 4 modalities (RGB,
Depth, Surface normals, and Canny Edges) as sensory in Sec. 4.2 and thereafter. In Sec. 4.5, we
discuss how we can further scale the number of modalities using off-the-shelf networks.

Semantic Segmentation
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Figure 3: How far can we go with no ex-
ternal access? We compare results of pre-
training using large-scale Internet data (DI-
NOv2 (Oquab et al., 2023) on 142M images)
with using only data collected from a test
space with onboard sensors, TST-MM (Sen-
sors). We show segmentation and detection
results on a test space from the Scannet++. We
find that, with no external access, TST-MM
with sensory modalities, and just multimodal
data from the test space, is on par with large-
scale Internet-based pre-training.

Baselines. We compare against several baselines:
Scratch - no pre-training. We present both unimodal
scratch, which takes only RGB images as input, and
multimodal scratch, which inputs all modalities avail-
able to TST-MM during transfer training and evalua-
tion. The latter baseline, along with the indicates that
the performance is not owed to merely having mul-
tiple modalities, but rather performing cross-modal
pre-training.
Large-scale generalist pre-training baselines. We
evaluate 4M-21 (Bachmann et al., 2024), DI-
NOv2 (Oquab et al., 2023), and CLIP (Radford et al.,
2021) as recent strong generalist (self-supervised)
baselines, trained on large-scale datasets via uni-
modal and multimodal learning. To ensure fair com-
parison, we finetune these models, with the same
transfer dataset as TST, Dt.
Task specialist baselines. We perform evaluations
using Mask2Former (Cheng et al.), ViTDet (Li et al.,
2022), SAM (Kirillov et al., 2023), and LLaVA-
1.5 (Liu et al., 2023) as established task-specific baselines for semantic segmentation, object detection,
and image captioning. Similar to generalist baselines, we finetune these models, with the same
transfer dataset, Dt, that we use for TST.

4.2 HOW FAR CAN WE GO WITH NO EXTERNAL ACCESS?

We first explore how far we can go when bootstrapping a vision representation for the test
space, with no external access. Fig 3 shows that pre-training with just multimodal sensory
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data 1 from the test space can perform on par with Internet-based generalist models (Oquab
et al., 2023), pre-trained on large-scale external data. In addition, we find that TST-MAE
improves upon training from scratch, yet multimodality with TST-MM performs the best.
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Figure 4: Modality scaling vs data scal-
ing. We study the tradeoff between col-
lecting unimodal pre-training data from
more spaces to scaling modalities in the
test space (here, 5 houses). The size of
each circle is proportional to the mIoU
performance on segmentation. We find
that scaling the number of modalities
within the test space results in better per-
formance versus scaling data by includ-
ing external spaces, underscoring the ef-
ficacy of the TST-MM paradigm.
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Figure 5: Scaling the number of modal-
ities for TST-MM. We report the perfor-
mance of TST-MM as we scale the num-
ber of modalities. We begin with only
the RGB modality and add more modal-
ities to the model. We find that increas-
ing the number of modalities results in
higher performance, and the variance in
performance due to a specific modality
starts decreasing.

This suggests that with TST, we can build highly per-
formant models for the test space, without any external
access, and achieve on-par performance with large-scale
Internet-based pre-training (Oquab et al., 2023).

4.3 MULTIMODALITY IN TST

As elaborated in Sec. 3.2, TST enables collecting multi-
modal data in the test space. This allows us to leverage
cross-modal learning, and more specifically, multimodal
masked modelling for performing self-supervised learn-
ing. Leveraging multimodality is a key component in
enabling performant models of the test space. We perform
controlled analysis to draw insights on its role in TST.

Can we substitute large-scale data with more modali-
ties? We study the trade-off between using smaller-scale
but modality-rich test-space data, versus large-scale uni-
modal external data (RGB-only). Starting from unimodal
pre-training within the test space, Fig. 4 shows that scaling
data via additional modalities yields significantly better
performance than increasing the amount of unimodal data
from external sources. We use ProcTHOR (Deitke et al.,
2022), to generate similar spaces (IID to the test space),
and leverage them as the external source of data. This sug-
gests: For building high-performing models in a specific
test space, collecting data within that space using a richer
set of modalities is more effective than relying on large-
scale, unimodal data collected from external sources.

Is the choice of modalities important for the effective-
ness of the multimodal pre-training? We investigate
whether all modalities contribute similarly to multimodal
pre-training, as shown in Sec. 4.2 and 4.5, or if there is
a single modality that contributes the most. We present
two ablations in Tab. 1. First, we examine all pairs of two
modalities starting with RGB, i.e., all {RGB, X} com-
binations. Adding any modality improves performance,
with some showing greater benefits than others (e.g., SAM
edges increase performance by an absolute 7.8%), but none
matches the performance of using all modalities. Second,
we examine all sets of eight modalities by removing one
modality, except RGB (which remains as the input during finetuning and evaluation). We find low
variance between different sets, indicating that no single modality is irreplaceable and that other
modalities can compensate for the absence of useful ones. For example, removing the SAM edges
modality reduces results by only 1.5%, compared to its absolute 7.8% improvement when added
to RGB alone. Thus, performance can be improved by simply collecting a larger set of modalities
instead of engineering an optimal set.

How does the performance of TST-MM scale with modalities? Fig. 5 shows the performance of
TST-MM as we increase the number of modalities. Due to the combinatorial complexity of studying
all possible combinations, we only sample all possible options for two (RGB+X) and eight (All-X)
modalities, where here X is the modality added or dropped. For other modality counts, we randomly
sample 8 modality sets and report the average performance on the plot. We find that the performance
of TST-MM scales well with more modalities, agnostic of the exact modality combination, and with
decreasing variance between subsets.

1with only sensory modalities as described in Sec. 4.1
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Figure 6: How many spaces is one test
space worth? We study if test-space data
for pre-training can be substituted with data
from similar but nonidentical spaces. We
compare performance on the test space be-
tween TST and models pre-trained on the
increasing number of IID houses. We find
that using as many as 3000 spaces cannot
match pre-training in the exact test space,
thereby underscoring the usefulness of test-
space specialization with TST.

Figure 7: Specialization-generalization trade-off.
We pre-train models on data collected from a growing
number of spaces, starting with a single test space and
adding data from other IID spaces. The blue curve and
red curve show the models’ performance on semantic
segmentation in the test space (i.e. specialization), and
on a set of 100 held-out IID spaces (i.e. generalization).
As we add more pre-training spaces, performance on
the test space decreases, while performance on the
held-out spaces improves, revealing a specialization-
generalization trade-off.

4.4 MEASURING SPECIALIZATION WITH TST

Table 1: Modality choice in TST. We study the effect
of each modality on TST by doing a drop-one combina-
tion from TST-MM, and add-one to TST-MAE. We find
that although some modalities improve more than others
when added to RGB-only, the performance of TST-MM
stays relatively stable, agnostic to the dropped modality.
This suggests that no single modality is responsible for
TST-MM’s performance, rather their collective inter-
play, i.e., multimodality.

Modalities RGB (TST-MAE) RGB + X ALL – X ALL (TST-MM)

Normalized
Performance (%) 45 66.1± 7.7 95.5± 2.6 100

We define specialization as the measure
of how performant a model is, on a down-
stream task, in a given test space. E.g.,
model A is more specialized than B if it
performs better in the test space. This is in
contrast to generalization in conventional
machine learning, which measures perfor-
mance on spaces not seen in pre-training.
As described in Sec. 3.2, TST collects pre-
training data in a test space, to pre-train a
model for that space. In this section, we
explore what is the role of this pre-training
data from the test space itself.

First, we measure it by cross-evaluating models pre-trained on two different test spaces, showing that
space-specific pre-training performs the best. Then, we explore if we can substitute data from the
test space with data from many (thousands of) similar spaces during pre-training, effectively asking:
how many spaces is the test space worth? Third, we explore whether a single model can exhibit both
specialization and generalization capabilities and show the specialization-generalization trade-off.
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Figure 8: Measuring specializa-
tion. We perform cross-space anal-
ysis by pre-training and evaluating
performance on different spaces.
Each column and row represents a
pre-training and test space. Perfor-
mance is best along the diagonal,
where pre-training and evaluation
are in the same space.

TST effectively specializes to a test space. Fig. 8 shows the
performance of models pre-trained and evaluated on different
test spaces. We find that the best choice in all cases is to pre-
train the model in the corresponding test space, demonstrating
the practical value of specialization. We observe similar spe-
cialization trends for other pre-training objectives in App. Q.

How many spaces is a single test space worth? Here we
ask, if not one space, data from how many similar spaces can
substitute test-space data? Similar to Sec. 4.3, we use Proc-
THOR (Deitke et al., 2022) to generate a large number of
similar houses and pre-train models using an increasing number
of them. Fig. 6 shows the performance of each model on the
test space not seen during pre-training compared to pre-training
on the corresponding test space. We find that even thousands of
similar spaces are not enough to substitute pre-training on the exact same space that we deploy in.

2Task-specific methods used for each result, in order: SAM (Kirillov et al., 2023) (segmentation), ViTDet (Li
et al., 2022) (detection), and LLaVA (Liu et al., 2023) (captioning)
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Figure 9: TST-MM predictions across different tasks. We showcase qualitative results for TST-MM
against various baselines, including scratch (no pre-training) and Internet-based pre-training on
real-world scenes from Scannet++ (Yeshwanth et al., 2023). TST-MM predictions are notably more
consistent across both tasks, showing the value of having access to the test space during pre-training.
Note how TST-MM predicts the same object (magnified in red boxes) more accurately and robustly
across various viewpoints, as compared to generalist models like 4M-21 and DINOv2.

Table 2: Multimodal Test-Space Training (TST-MM) outperforms both strong generalists and
task specialists across tasks. We evaluate semantic segmentation, object detection, and image
captioning. All models use ViT-B backbones, except SAM (Kirillov et al., 2023) (ViT-H). TST-MM
(adapted) refers to fine-tuning 4M-21 on test-space data. On segmentation and detection, TST-MM
consistently outperforms Internet-based generalists and matches or surpasses specialists. On cap-
tioning, TST-MM (from scratch), despite no text pre-training, matches 4M-21 trained on CC12M
image-text pairs; TST-MM (adapted) surpasses 4M-21 and approaches LLaVA-1.5 (Liu et al., 2023).

Method
Semantic Segmentation Object Detection Captioning

Scannet++ ProcTHOR Replica Scannet++ ProcTHOR ProcTHOR
mIoU mIoU mIoU mAP mAP CIDEr SPICE

No Pre-training Unimodal Scratch - no pre-training 7.49 28.62 9.23 2.35 24.59 17.1 14.8
Multimodal Scratch - no pre-training 7.82 26.29 10.03 3.76 19.19 11.0 10.5

Generalist
Pre-training

4M (RGB-only) / MAE 13.74 46.29 18.18 18.31 37.17 30.4 19.1
4M-21 27.59 53.24 26.30 25.91 41.43 36.2 20.3
DINOv2 28.60 54.50 26.72 23.67 40.28 14.7 13.5
CLIP 23.02 48.66 20.92 19.75 38.47 18.4 16.2

Task Specialist Task Specific Methods / SOTA2 34.75 56.72 28.51 23.59 44.10 40.6 21.0
Specialist
Pre-training

TST-MM 34.49 60.85 32.87 31.54 49.38 34.3 20.4
TST-MM (adapted) 36.44 60.59 34.53 35.83 51.25 39.9 20.5

Specialization-generalization trade-off. We observed that the best performance on a given test
space is achieved when pre-trained on data from the same space. However, we would expect this
specialized model to not generalize well to new houses. Can we keep (or improve) this specialization
performance while gaining generalization capabilities by adding more houses during pre-training
in addition to the test house? Figure 7 shows that as we add more houses during pre-training, the
performance on the held-out new houses increases, as expected. However, the performance on
the original test space drops compared to the specialist single-space pre-training, demonstrating a
specialization and generalization trade-off of the pre-trained model.

4.5 TST VS INTERNET-BASED METHODS

Sec. 4.2 discusses how far TST can go with no external access, with only sensory modalities. To
take this one step further, we first draw inspiration from recent progress in multimodal foundation
models (Bachmann et al., 2023), and further scale our set of modalities. Next, we compare TST with
this scaled set of modalities (TST-MM), against Internet-based generalists and task specialist models.
Lastly, we describe how TST can also enable adapting a pre-trained generalist to the test space.

Additional Modalities. We create new modalities by pseudolabeling the collected RGB frames.
We use CLIP features (Radford et al., 2021), ImageBind features (Girdhar et al., 2023), SAM
edges (Kirillov et al., 2023), bounding boxes from ViTDet (Li et al., 2022), and semantic segmentation
masks from Mask2Former (Cheng et al.). For a fair comparison, we also include these pseudolabeling
networks as baselines and show that TST-MM, trained from scratch, outperforms all of them (see
Tab. 2, and App. N), demonstrating the value of multimodal pre-training in the test space.

TST vs. generalists. Tab. 2 shows quantitative results for TST-MM. We compare against generalist
models (MAE, DINOv2, 4M-21, and CLIP) trained on large-scale Internet datasets. This suggests
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that, we can outperform generalist models by using multimodal data from the test space. Figure 9
shows qualitative improvements of TST over generalist Internet pre-training.

TST vs. task specialists. We also show that the proposed TST-MM also outperforms or is on par
with off-the-shelf task specialist models on semantic segmentation (Kirillov et al., 2023) and object
detection (Li et al., 2022). For image captioning, despite not seeing any text data during pre-training,
TST-MM performs on par with 4M-21 (Bachmann et al., 2024) that was pre-trained on large-scale
image-text data (Changpinyo et al., 2021), showing the effectiveness of the learned representation.

Adaptation through TST. Tab. 2 also presents results when TST-MM, adapts an existing generalist
model to the test space. As opposed to starting from scratch (akin to all TST-MM models discussed
above), we start from a pre-trained 4M-21 model and fine-tune it on data from the test space,
using multimodal masked modeling objective. The resulting model, TST-MM (adapted), significantly
improves over 4M-21 in the test space. This suggests TST can also serve as an adaptation mechanism
for Internet pre-trained models, making them more performant in the test space for downstream tasks.

4.6 ARE THESE RESULTS OBVIOUS?

TST goes against the conventional approach in machine learning to collect large-scale external
data, to train generalist models. However, is it obvious that pre-training on data from a given test
space, we will achieve the most performant model for that space? We emphasise that it is not about
simply having test-space data, but employing multimodality as supervision, which enables TST’s
performance. We highlight three key points to further support our argument:

• Highly performant results with no external access: With TST-MM, we can have the most performant
model trained locally, thereby challenging conventional wisdom that pre-training on large-scale
external data is necessary for effective vision models for most applications.
• Phase shift with unimodality and multimodality: Note how with unimodal pre-training, TST-MAE
(13.26 mIoU) is just on par with internet pre-training with the same objective (13.74 mIoU). However,
for TST-MM, which pre-trains on the exact same data, but with a richer set of modalities (Sec. 4.5),
outperforms all internet-based counterparts (See Tab. 2). This phase shift, from unimodality to
multimodality, in the exact same test space, is something neither studied nor concretely explored
before. We see a similar phase shift in specialization-generalization trends, multimodal in Fig. 7, and
unimodal in Fig. 18, App. P.
• Scaling Modality vs Scaling Data: Our work provides various empirical insights, such as the trade-
off between scaling modalities and scaling data, which alleviates the need to collect a large amount
of external data, by simply scaling modalities in the test space. These findings have a significant,
real-world impact, and the results of our work provide concrete insights on how to enable this.

Additional results in Appendix. Besides the analysis presented here, in the Appendix, we present
more experiments on deploying TST in the wild (App. F), TST using other self-supervised objectives
(App. Q), the role of the transfer dataset mix-in during pre-training (App. L), results for cross-modal
retrieval (App. E), and qualitative videos on real-world spaces.

5 CONCLUSION AND LIMITATIONS
We introduce TST, a framework for pre-training, highly performant vision models tailored to a test
space, without any external access. It collects unsupervised, multimodal pre-training data in the
test space and performs self-supervised pre-training on it. We show through various experiments
and analyses that TST can serve as a highly performant alternative for several downstream tasks,
outperforming off-the-shelf generalist and task-specific baselines. We present various insights about
tradeoffs between scaling modalities and data, scaling laws for TST with modalities, and the role of
pre-training data from the test space. We highlight the following future directions for improvement.
Multi-view consistency. TST operates in a single unified test space, such as a user household. This
enables perception of the same objects from various viewpoints. In its current formulation, TST has
no explicit constraints in the pre-training objective, enforcing multi-view consistency. Exploring
pre-training objectives that enforce viewpoint (Luo et al., 2020), and cross-modality (Zamir et al.,
2020) consistency is an exciting future direction we intend to explore.
Incorporating hardware-based modalities. Various user devices today are equipped with a broad
range of hardware sensors like IMU, gyroscope, magnetometer, and GPS. Leveraging these sensors
as additional modalities is a future direction that we are interested in.
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6 ETHICS STATEMENT: THE CRITICAL ROLE OF DATA IN AI

This paper sheds light on the critical of data, and data sources in AI. The setting studied in TST
suggests that it is possible to achieve competitive results without relying on large diverse internet-
based datasets that essentially require the data of different users to be harvested and mixed. The paper
shows training on only the deployment space data is an alternative worth considering and investigate
the requirements of making that viable (e.g. utilizing multimodality being critical for achieving good
results). This setting enables putting a divider between the data of different users and can trigger
intriguing questions on the role of data in AI, which is commonly assumed to be large and diverse
datasets are essential for strong results. The studied setting requires training on the deployment
space’s data, which can be done completely in-house and under the control of the user for privacy
critical scenarios, to avoid any data contact with the external world.

7 REPRODUCIBILITY STATEMENT

All experiments conducted in our work are based on open source frameworks and datasets. We
plan to release all our data splits, and the code to pre-train models with TST, allowing everyone
in the research community to reproduce our results. Additionally, we will also open source all our
pre-trained model weights, ensuring full transparency. Additionally, to allow the community to collect
data in their custom spaces, we will open source an iOS application, that allows collecting various
forms of sensory data from any apple device. We provide more details in the App. S.
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X Computational Resources. 32

A OVERVIEW VIDEO

We provide a video with narration that gives a high-level summary of our paper. We recommend
watching the video. The video can be found in the supplementary zip folder.

B ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in Fig 24 and Fig 25. We also provide more video results on
various tasks in the supplementary zip file.

C ADDITIONAL RELATED WORK.

Domain Adaptation in vision (Li et al., 2017; Zhou et al., 2021) addresses the gap between a source
domain, where abundant data is available, and the target domain, where limited (Shu et al., 2019;
Liu et al., 2024) or no data (Dong et al., 2021; Ganin & Lempitsky, 2014) are available. TST, when
initialized from an Internet-based model, as presented in Tab. 2, can be seen as an instantiation
of adapting a generalist model to the test space. However, TST differs by learning task-agnostic
representations by self-supervised pre-training in the test space, as opposed to domain adaptation,
which generally adapts a pre-trained task-specific network (Xu et al., 2021; Kang et al., 2019).

Semi-Supervised Learning refers to a line of work that attempts to learn a task from a limited labeled
dataset and massive unlabeled data (van Engelen & Hoos, 2019). Clearly, it involves consistency
regularization (Berthelot et al., 2019; Sohn et al., 2020; Xie et al., 2019) and pseudo-labeling (Guo
et al., 2022; Chen et al., 2021; Zhang et al., 2021; Liu et al., 2021a) to generate supervision of
unlabeled data, followed by joint training. Our framework, TST is closer in spirit to self-supervised
learning, as it tries to learn a task-agnostic representation for the test space, that we transfer for
various downstream tasks like segmentation, detection and image captioning. Under semi-supervised
learning, specialization with TST can be posed as using unlabelled data from the test space, as
opposed to other sources like Internet or similar spaces.

Embodied Active learning. In another line of work, SEAL (Chaplot et al., 2021), Interactron (Kotar
& Mottaghi, 2022) learn a reinforcement learning based policy to collect supervision in a house to
finetune an off-the-shelf MaskRCNN (He et al., 2017), or observe additional frames for multi-frame
inference for object detection. As opposed to focusing on adapting task-specific models, we focus on
learning task-agnostic pre-trained representations over a test space.

D DATASET DETAILS.

1. Scannet++ (Yeshwanth et al., 2023) is a large dataset of real-world indoor spaces containing
sub-millimeter resolution laser scans, paired with DSLR and iPhone RGB images.

• Pre-training dataset. We use 8 Scannet++ (Yeshwanth et al., 2023) scenes as our test space.
We use a mix of iPhone and DSLR images for pre-training, with the iPhone containing
19165 samples and the DSLR dataset containing 15000 samples.

• Transfer dataset. We use non-test space buildings for creating a transfer set of 40000 RGB,
segmentation pairs. Note that Scannet++ (Yeshwanth et al., 2023) only provides 3D instance
annotations, which we project to 2D to create a semantic segmentation dataset.

• Evaluation. We evaluate on semantic segmentation in the test space. The test dataset for
evaluation contains 3000 RGB image samples. Note that we collect a separate held out set
from the test space for this stage.

2. Replica (Straub et al., 2019) provides high quality 3D reconstructions of real indoor spaces.
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• Pre-training dataset. We use Omnidata (Eftekhar et al., 2021), to densely sample Replica
meshes corresponding to the 5 scenes to build our pre-training dataset, DPT , containing
84889 samples. We defer the details of the sampling procedure to Omnidata (Eftekhar et al.,
2021).

• Transfer dataset. Similar to Scannet++ (Yeshwanth et al., 2023), we collect a transfer set
from another set of Replica scenes that are different than the scenes used during pre-training.
We collect 20000 RGB images and semantic segmentation masks, and use it as our transfer
dataset, Dt.

• Evaluation. We evaluate on semantic segmentation in the test space. We collect a test set of
5000 images and semantic segmentation annotations from the same test space we pre-train
on, and report performance on it. We leverage Omnidata annotation pipeline to extract the
segmentation labels.

3. ProcTHOR (Deitke et al., 2022) It includes procedurally generated house-like environments. We
use 5 procedurally generated houses as our test space.

• Pre-training dataset. We randomly sample various agent x, y, z positions and orientations
along its axis in the test space, and collect RGB-D images at these points. This sampling
process yields a total of 163767 samples. We collect data by sampling densely across the
test space and use it as our pre-training dataset DPT .

• Transfer dataset. For the transfer data Dt, we collect a small dataset of 20000 RGB
and task annotation pairs, from 800 houses generation using a different asset and layout
distribution than the pre-training test space, thereby making them out-of-distribution to it.

• Evaluation. We evaluate TST and present results on three tasks, namely semantic seg-
mentation, object detection and image captioning. We collect a test set with 5000 samples
from the same test space, where we performed pre-training, and report performance on it.
We use the AI2-THOR (Kolve et al., 2017) metadata to extract semantic segmentation and
object detection labels for evaluations. For captioning, we generate ground truth captions
by prompting GPT-4o (OpenAI, 2024) with privileged information, e.g. class names and
bounding boxes. Finally, we additionally evaluate our model on cross-modal retrieval (in
Sec. E).

E ADDITIONAL DOWNSTREAM EVALUATIONS: ZERO-SHOT CROSS-MODAL
RETRIEVAL TASK

Method Image to Depth Depth to Image

R@1 R@5 R@10 R@1 R@5 R@10

4M-21 (Bachmann et al., 2024) 1.06 2.18 3.08 1.0 2.76 3.66
TST-MM 25.48 37.00 41.58 24.32 36.46 40.82

Table 3: Zero-shot Cross-modal retrieval. When performing the image-to-depth and depth-to-image
cross-modal retrievals on the test space data using the predicted CLIP embeddings, we observe that
the TST-MM method constantly outperforms the Internet-based 4M-21 (Bachmann et al., 2024).

As mentioned in Section 4.1, we present results on zero-shot cross-modal retrieval to further support
our framework TST. Specifically, we evaluate the performance of models pre-trained with TST-MM
on RGB-to-Depth and Depth-to-RGB retrieval. To perform retrieval using an Internet-based model,
4M-21 (Bachmann et al., 2024) and TST-MM, we utilize their cross-modal generation capabilities by
transforming depth and RGB images into CLIP embeddings, and then apply retrieval directly on the
CLIP embeddings. Since 4M-21 (Bachmann et al., 2024) and TST-MM generate feature maps for
CLIP as the target modality from RGB and Depth images, we apply mean-pooling on the feature
maps to obtain global CLIP embeddings. Cross-Modal retrieval evaluates TST-MM on two fronts: i)
How well test-space paired modality inputs are aligned in the model representations internally, and
ii) How effectively TST-MM can perform cross-modal generalization. For the evaluation, we report
zero-shot recall at various thresholds on a test set of 5000 samples from ProcTHOR (Deitke et al.,
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Figure 10: TST-MM cross-modal retrieval predictions. TST-MM retrieves corresponding RGB
images from query Depth input and Depth images from RGB input more accurately than the Internet
based 4M-21(Bachmann et al., 2024) model.

2022) test space. The results are presented in Tab. 3. We also present qualitative examples in Fig. 10.
Note that given our method TST-MM has access to the test space, it can retrieve RGB to Depth and
Depth to RGB much more effectively than models based on external data like the Internet.

We find that TST-MM substantially outperforms 4M-21 (Bachmann et al., 2024). The recall perfor-
mance of TST-MM further increases when evaluated on R@5 and R@10, whereas Internet-based
4M-21 (Bachmann et al., 2024) shows diminishing returns. This underscores the effectiveness of test-
space training, where specialization itself is crucial for learning test-space-aligned representations.

F TST-MM DEPLOYMENT IN THE WILD.

Method mIoU

Scratch 21.82
4M-21 54.58
TST-MM 59.11

Table 4: Semantic segmenta-
tion performance. Compari-
son of mIoU scores across dif-
ferent training methods.

In addition to real-world results on Scannet++ 4.5, we also exper-
iment with the deployment of TST, in a custom space. We collect
a 15-minute video of a meeting room and used the resulting frames
for pre-training described in Sec. 4.1 followed by a transfer on the
ScanNet++ (Yeshwanth et al., 2023) transfer set (Sec. D). We eval-
uated TST-MM and the baselines on the semantic segmentation task.
We evaluate TST-MM and the baselines on the semantic segmen-
tation task. Tab. 4 shows that for this custom scene deployment,
pre-training on the test-space through TST-MM outperforms the
Internet-based baseline 4M-21 (Bachmann et al., 2024). The qual-
itative comparison in Fig. 11 shows that TST-MM’s predictions are
notably better than those of the Internet-based 4M-21 (Bachmann
et al., 2024).
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Figure 11: TST-MM predictions on deployment in the wild. We showcase the qualitative results
for TST-MM on the semantic segmentation task against the Internet-based pre-trained model 4M-
21(Bachmann et al., 2024) and scratch (no-pretraining). TST-MM predictions are notably better
across object categories, showing the value of access to test space and the deployment potential of
TST-MM.

G TST WITH THE DINOV2 OBJECTIVE.

In this section, we explore how TST trained with DINOv2 objective, TST-DINO from scratch,
compares with its Internet counterpart trained on 142M images from the Internet (Oquab et al.,
2023). Fig. 16 shows that pre-training on only data from the test space can substitute large-scale
Internet pre-training. This further underscores that TST framework extends to other self-supervised
objectives (Oquab et al., 2023) beyond masked modeling for specialization. However, we find that
TST-MM, which uses multimodal masked modeling outperforms other unimodal self-supervised
objectives like DINOv2 (Oquab et al., 2023) and MAE (He et al., 2021).

H BENCHMARKING DIFFERENT SELF-SUPERVISED OBJECTIVES UNDER TST.

We compare the performance of TST with different pre-training objectives such as multimodal
masked modeling (Bachmann et al., 2024), DINOv2 (Oquab et al., 2023) and MAE (He et al.,
2021). As shown in Fig. 17, we find that multimodal masked modeling (TST-MM) to be the most
performant among the self-supervised objectives we explored. However, note that all 3 objectives
show specialization trends as presented in Fig. 8 and Fig. 19.

I USING MULTIMODAL DATA DURING TRANSFER: ARE ADDITIONAL
MODALITIES ALL YOU NEED?

In Sec. 4.5, we discuss that pre-training on multimodal data with multimodal masked modeling
objective in our TST-MM method leads to a specialist model more performant than other baselines.
Here we check if this superior performance is solely due to access to the additional modalities
besides RGB that simplify the task, rather than representation learning value through multimodal
pre-training?
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Figure 12: TST works with off-the-shelf transfer set. For Replica (Straub et al., 2019), we find
that even when we use ADE20k (et al., 2017) as a transfer set, TST-MM outperforms Internet-based
generalist models, showcasing the importance of having access to the test space, agnostic to the
transfer set.
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Figure 13: Multimodal pre-training is crucial in TST-MM. We compare our method to the model that
also has access to multimodal data during supervised training on transfer data. “Multimodal Scratch”
uses all modalities, including RGB, as input and predicts the corresponding semantic segmentation
map during both training and testing. TST-MM, which uses only RGB as input during transfer,
significantly outperforms the multimodal scratch model, signifying the importance of multimodal
pre-training.

Figure 13 shows the performance of a model trained from scratch, only on the semantic segmentation
task using multimodal data, ie, no self-supervised pre-training. It receives all of the modalities as
input and predicts the corresponding segmentation map during both training and testing. We find
that this model performs poorly compared to TST-MM, which leverages multimodal data during
pre-training and only RGB input during transfer and test. This experiment signifies the importance of
pre-training using multimodal data from the test space.

J WHAT IS THE SMALLEST UNIT OF SPACE WE CAN SPECIALIZE ON?

In the results presented so far, we have shown that TST can specialize on test spaces at the size from
1-8 houses. However, this raises a question, what is the smallest unit of space we can specialize
on? To probe this, we reduce the size of the test space and evaluate if TST can specialize to it. We
consider a model trained via TST specialized, if it can outperform an off-the-shelf Internet-based
generalist, when evaluated on that test space. We reduce the test space, in the form of concentric
rectangles, starting with a room, and then reducing the size of the rectangle. For each rectangle, we
pre-train a specialist model via TST. We compare this against 4M-21 (Bachmann et al., 2024), on the
task of semantic segmentation. We find that we can specialize on a single room (ring 3) that has an
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Figure 14: Smallest unit of space to specialize on. We reduce the test space size, that we can special-
ize and pre-train models with TST-MM. We compare it with an Internet pre-trained model (Bachmann
et al., 2024), and a baseline that pre-trains only on the transfer set. We also find that training on a ring
smaller than the test ring, leads to diminished performance.
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Figure 15: TST with synthetic data.We replace real DSLR images in ScanNet++(Yeshwanth et al.,
2023) with NeRF(Mildenhall et al., 2020)-rendered images from the same training viewpoints. We
find that this results in only negligible performance, hence demonstrating that NeRF’s output quality
at known poses is sufficient to substitute high-quality DSLR images.

area of 20 square metres, and this trend continues as we reduce it down to ring 2, which is 11 square
metres and ring 1 which is 5 square metres. Reducing the test space, below 5 square metres results in
failed specialization, where the pre-training on just the transfer pre-training performs the best.

K TST WITH SYNTHETIC DATA.

Recent advances in novel view synthesis (Mildenhall et al., 2020; Barron et al., 2021; Kerbl et al.,
2023) have enabled realistic renderings of indoor spaces, opening up the potential for generating
synthetic training data. In TST, we leverage existing indoor scene datasets (Yeshwanth et al., 2023;
Straub et al., 2019), which include real RGB images captured with DSLR/iPhone cameras or rendered
from 3D meshes, to develop specialized models for specific test spaces. This leads to a key question:
if a novel view synthesis model can generate images from arbitrary viewpoints in a test space, can it
serve as a controllable data generator—and can its outputs match real images in utility?

To explore this, we train a NeRF model (Tancik et al., 2023) using DSLR images from Scan-
Net++(Yeshwanth et al., 2023), and render images from the same camera poses. We then pre-train
two models—one using real DSLR images and the other using NeRF-rendered views—to assess the
performance gap. As shown in Fig.15, NeRF-generated images result in negligible performance loss
compared to real images. This suggests an interesting future direction: if high-fidelity NeRF models
can be trained with fewer input images, they could act as steerable data generators, reducing the need
for extensive real-world data collection in test environments.
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Table 5: Ablating the use of transfer RGB frames during pre-training. As noted in Sec. 4.1,
we additionally use RGB images from the transfer set during pre-training. We ablate this choice by
comparing all three dataset configurations. We use the ViT-S backbone for all models.

Test Space Transfer Segmentation (mIoU ↑)

✗ ✓ 42.01

TST
✓ ✗ 50.21
✓ ✓ 56.96

4M-21 46.12
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Figure 16: TST with DINOv2 objective outperforms its Internet counterpart. We compare the performance
of DINOv2 pre-training in the test space, TST-DINO, with DINOv2 pre-trained on the large-scale Internet
dataset of 142M images (Oquab et al., 2023). TST-DINO outperforms its Internet counterpart, showing the
value of specialization. Yet, TST-MM with multimodal masked modeling achieves the best performance.

L THE ROLE OF THE TRANSFER DATASET MIX-IN DURING PRE-TRAINING.

We study the role of mixing images from the test space and transfer datasets during pre-training, as
mentioned in Sec. 4.1. Tab. 5 shows that using only test-space data outperforms both pre-training
on large-scale Internet data and using only transfer images, but mixing test space and transfer data
achieves the best performance. We hypothesize that seeing transfer images during pre-training
helps the model to better align with the fine-tuning stage on the transfer dataset. Note that it
cannot be explained by more diverse data in the transfer set, as adding non-test spaces decreases the
specialization performance, as observed in Fig. 7.

M TST WITH OFF-THE-SHELF TRANSFER SET.

As noted in Sec. 4.1, for each dataset (Deitke et al., 2022; Straub et al., 2019; Yeshwanth et al., 2023)
we explore, the transfer set comes from a similar domain, as the pre-training dataset, albeit from
non-test spaces. It naturally raises the question, what if we use an existing off-the-shelf semantic
segmentation dataset like ADE20k (et al., 2017) as a transfer set. Does TST generalize and result
in performant specialist models, or is an in-domain transfer set necessary? To probe this, for the
Replica (Straub et al., 2019) dataset, we pre-train TST-MM, but instead of using non-test spaces
from Replica as the transfer set, we use ADE20k (et al., 2017). Fig. 12 shows TST-MM outperforms
various generalist models (Bachmann et al., 2024; Oquab et al., 2023; Radford et al., 2021), even
when using ADE20k (et al., 2017) as the transfer set. All models are evaluated in the test space from
Replica (Straub et al., 2019), on semantic segmentation, with a ViT-B backbone.
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Figure 17: Comparison between different pre-training objectives under the TST framework. We compare
the performance of different pre-training objectives using TST on the semantic segmentation task. We find that
multimodal masked modeling (TST-MM) achieves the best performance followed by TST-DINO. All the three
objectives were trained using the ViT-B model size on the ProcTHOR (Deitke et al., 2022) dataset.

Method
Semantic Segmentation Object Detection Captioning

Scannet++ ProcTHOR Replica Scannet++ ProcTHOR ProcTHOR
mIoU ↑ mIoU ↑ mIoU ↑ mAP ↑ mAP ↑ CIDEr ↑ SPICE ↑

Pseudo-labelers

ImageBind (Girdhar et al., 2023) 25.40 44.54 12.78 6.78 32.54 - -
CLIP (Radford et al., 2021) 23.02 48.66 20.92 19.75 38.47 18.4 16.2
Mask2Former (Cheng et al.) 29.42 50.28 22.68 - - - -
ViTDet (Li et al., 2022) - - - 23.49 44.10 - -
SAM (Kirillov et al., 2023) 34.75 56.72 28.51 - - - -

Specialist
Pre-training

TST-MM 34.49 60.85 32.87 31.54 49.38 34.3 20.4
TST-MM (adapted) 36.44 60.59 34.53 35.83 51.25 39.9 20.5

Table 6: Comparing TST-MM against pseudolabels. We find that TST-MM outperforms all pseu-
dolabels underscoring the value of pre-training on them via multimodal masked modelling in the test
space.

N PSEUDO-LABELER BASELINES

As mentioned in Sec. 4.5, we use various off-the-shelf networks to pseudolabel RGB data, and
create additional (optional) modalities for TST-MM. We present a comparison for TST-MM against
these pseudolabel baselines in Tab. 6. TST-MM and TST-MM (adapted) outperform all pseudolabel
baselines, suggesting the benefit of pre-training in the test space with them, via multimodal masked
modeling.

O ADDITIONAL BASELINES

TST-MM includes modalities obtained as outputs from different off-the-shelf models. Tab. 2 shows
that TST-MM outperforms each individual model used as a modality. Since our transfer tasks are
semantic segmentation and object detection, we further study if having off-the-shelf models trained
on related tasks as modalities is crucial for our final performance.

We present three experiments using the ViT-B backbone on ProcTHOR (Deitke et al., 2022). For each
experiment, we drop one of the following modalities: i) Semantic segmentation, ii) Object detection,
iii) Semantic segmentation, Object detection, and SAM edges. Tab. 7 shows the results for each
model when transferred to semantic segmentation and object detection. We find that even though the
performance drops if we remove all three modalities, TST-MM still outperforms the Internet-based
4M-21 (Bachmann et al., 2024) model.
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Method Modalities Task

Semantic
segmentation

Object
detection

SAM
edge Others Segmentation

(mIoU↑)
Detection
(mAP↑)

TST-MM

✓ ✓ ✓ ✓ 60.85 49.38
✗ ✓ ✓ ✓ 59.43 49.58
✓ ✗ ✓ ✓ 59.38 49.34
✗ ✗ ✗ ✓ 55.39 45.97

4M-21 (Bachmann et al., 2024) ✓ ✓ ✓ ✓ 53.24 41.43

Table 7: The effect of semantic modalities in TST-MM. As the results demonstrate, removing
the semantic segmentation and object detection modalities obtained from off-the-shelf networks
does not significantly hurt the TST-MM’s performance on the downstream semantic segmentation
and object detection tasks. When all three semantic modalities are removed, we observe a drop in
performance, but TST-MM still outperforms the Internet-based 4M-21 (Bachmann et al., 2024) model,
demonstrating the value of specialization.
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Figure 18: Unimodal specialization vs generalization. We further show the specialization-
generalization trend with unimodal pre-training.

P UNIMODAL SPECIALIZATION-GENERALIZATION

In Sec. 4.4, we presented the results for specialization-generalization trade-off via multimodal pre-
training (Fig. 7). In this section we further examine the specialization-generalization trend under
unimodal pre-training, where we pre-train using RGB as the only modality.

The results are presented in Fig. 18 demonstrate that in the unimodal pre-training regime there’s
an opposite specialization trend compared to the multimodal pre-training shown in Fig. 7. This
further shows the importance of multimodality in order to achieve a performant model in case of
specialization.

Q DO OTHER SELF-SUPERVISED OBJECTIVES BENEFIT FROM SPECIALIZED
PRE-TRAINING?

In Sec. 4.5, we present results with TST-MM, which employs multimodal masked modeling. However,
as mentioned in Sec. 3.3, TST also supports other self-supervised objectives. Fig. 19 shows that
pre-training objectives, DINOv2 (Oquab et al., 2023), and RGB-only MAE (He et al., 2021) exhibit
similar specialization trends.
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Figure 19: Specialization using other objectives. We further demonstrate the specialization using
other pre-training objectives including MAE and DINOv2. The results shows similar specialization
trend considering the other pre-training objectives.
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Figure 20: Distillation in test space. We find distilling over data from the test space, from various
off-the-shelf models, results in more performant models in the test space. All results here are with
the ViT-B backbone, on ProcTHOR (Deitke et al., 2022).

R IS DISTILLING IN THE TEST SPACE BENEFICIAL?

As discussed in Sec. 4.5, we scale modalities by pseudo-labelling RGB data with various Internet-
based models (Oquab et al., 2023; Radford et al., 2021; Cheng et al.). This process of creating
additional modalities, and pre-training on them has enabled powerful multimodal foundation mod-
els (Mizrahi et al., 2023; Bachmann et al., 2024; 2022). This form of pre-training can also be seen
as distilling the knowledge from these powerful off-the-shelf networks into a single unified model.
With TST-MM, we also distill from various off-the-shelf networks like CLIP (Radford et al., 2021),
DINOv2 (Oquab et al., 2023) with masked modelling (He et al., 2021; Mizrahi et al., 2023). Results
in Tab. 2, suggest that distilling with multiple modalities on the test space, results in performant
specialist models. However, to disentangle the effect of multimodality and distillation, we take it one
step further to probe whether just distilling in the test space, provides some additional benefit, over
non-test spaces? Therefore, we distill, CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023) and
Mask2former (Cheng et al.) in the test space, and compare it with distilling in an IID, but non test
space, and report the results in Fig. 20 on semantic segmentation in ProcTHOR (Deitke et al., 2022).
We find that distilling over data from the test space is more performant than the data from non-test
spaces, underscoring the importance of access to the test space for specialization.

S APPLICATION FOR HARDWARE DATA COLLECTION

As discussed in Sec. 3.2, TST can be extended to leverage more hardware-based modalities, such as
IMU, GPS, Audio, which can be found on most common user devices, such as iPhone. To facilitate
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Figure 21: iOS application for custom data collection. The interface of the iOS application that
allows collecting sensor data from any apple device with a camera.

future research in this area, we release an iOS application that enables anyone to collect aligned
multimodal data from RGB-D and additional hardware sensors present on an iPhone. Fig. 21, shows
an overview of our application.

T TEST TIME TRAINING WITH TST

As noted in Sec. 2, we share a similar goal with Test-time Training (TTT) (Sun et al., 2020) in
bridging the train-test divide. TTT does it from the lens of inference time optimization to specialize
to a particular test instance, whereas TST attempts to specialize to a given test space by pre-training
in it.

However, in practice, these strategies can be orthogonal and complement each other. We can
potentially apply TTT to a model pre-trained with TST, to improve its performance. To benchmark
how this combination works, we conduct an analysis where we apply Test-time training with masked
autoencoders (TTT-MAE) (Gandelsman et al., 2022a), with two pre-trained methods, MAE (He et al.,
2021) pre-trained on Internet data and TST-MAE pre-trained on the test space.

In TTT-MAE, we first start with a pre-trained MAE ViT-B encoder as the backbone, and train a
task-specific head on the transfer set. During the test phase, the backbone is further tuned using the
masked modeling objective for each test sample individually. This adaptive tuning enhances the
model’s performance on the downstream task for the given test samples.

As presented in Tab. 8, TTT-MAE improves the mIoU results for both the Internet pre-trained
backbone and TST-MAE. However, we find that TST-MAE gets significantly more improvement
than Internet-based MAE (He et al., 2021). Both models use a ViT-B backbone and are tested on the
semantic segmentation on the ProcTHOR (Deitke et al., 2022) dataset.

U CONTINUAL LEARNING WITH TST.

As discussed before, when pre-training is performed on the exact same test space we deploy on,
TST results in the most performant models. However, TST specializes in the test space, and all its

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

MAE (He et al., 2021) Before TTT After TTT
pre-training (mIoU ↑) (mIoU ↑)

Internet 34.54 39.28
TST 35.48 42.41

Table 8: TST with Test-Time Training. Before TTT corresponds to the performance of the models
directly after the transfer training without any test-time training, whereas after TTT shows the results
when test-time training on the test samples is performed. Both models use a ViT-B backbone and are
evaluated on the semantic segmentation on ProcTHOR (Deitke et al., 2022).

characteristics, at the state when the pre-training data was collected. Therefore, a natural question
to ask is, what happens if the test space undergoes some changes after data collection? This could
include changes in the lighting of the space or minor object placements. We begin by investigating
if these changes lead to a drop in performance for the TST model trained on the original test space.
Thereafter, we leverage the ability of ProcTHOR to randomize object placements and lighting to
create a perturbed version of the test space. Note that the overall layout and assets remain exactly the
same, only the lighting and placement of small objects are varied.

We first evaluate the performance of TST-MM pre-trained on the unperturbed test space, on the
perturbed test space (Fig. 22, right), and we find that it experiences a drop as compared to its
performance in the original test space, (Fig. 22, left). However, as we continually pre-train the
model by collecting data in the updated test space (TST-MM (CL)), it quickly recovers the loss in
performance, and is still highly performant as compared to Internet-based generalists (Bachmann
et al., 2024). This suggests that even under the condition that the test space undergoes changes, by
simply continuing data collection in the test space, TST can continually improve its performance,
without any access to external data.
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Figure 22: Continual Learning with TST. We study the performance of TST-MM, as the test space,
undergoes lighting and minor object placement changes. The plot on the left, shows the result of
the baselines on the original test space, without any changes. On the right, we present results after
the test space has undergone lighting and object displacements. As expected, the TST-MM trained
in the original test space, looses some performance, however as we continually train by collecting
pre-training in the perturbed test space, we find that TST-MM (CL) quickly recovers performance.

V SAMPLING RATIO BETWEEN TEST SPACE AND TRANSFER DATA DURING
TST PRE-TRAINING

As mentioned in Section 4.1, we found mixing RGB images from the transfer set to our pre-training
data beneficial for performance. To study the interplay of this dataset mix further, we analyze the
effect of the sampling frequency of the samples from the transfer set and the test space data during
pre-training. A ratio of 1/1 implies that half the samples in pre-training come from the test space data
and the other half from the transfer dataset. We pre-train the TST-MM model using both small and
base sizes on the same test space as in Tab. 2, in the ProcTHOR (Deitke et al., 2022) dataset under
different ratios. The models are then transferred and evaluated on the semantic segmentation task.
Tab. 9 demonstrates the results for various ratio configurations and their effect on different model sizes.
First, we find that in all cases, TST-MM consistently outperforms Internet-based 4M-21 (Bachmann
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et al., 2024) models of the same size. Secondly, we note that the performance of the bigger ViT-B
based models is not sensitive to the ratio of sampling transfer and test space data, whereas for smaller
ViT-S based models, a ratio of 1/1 seems to be a reasonable default choice.

Model
Size

Transfer set / Test space set
sampling ratio 4M-21

1/1 1/4 1/8 1/16

Small 61.01 59.03 56.96 57.01 46.12
Base 60.36 60.65 60.85 60.36 53.24

Table 9: The effect of the sampling ratio between the test space and transfer data during pre-
training. We report transfer performance on semantic segmentation as we vary the sampling ratio
between transfer and test space data during pre-training. There is no significant difference in results
across different ratios for the base model, and for the small model, the best result is obtained with a
one-to-one sampling ratio between the transfer set and the test space set. Irrespective of the sampling
ratio observe TST-MM models always outperform Internet-based 4M-21 pre-training (Bachmann
et al., 2024)

W EXPERIMENTAL SETUP DETAILS

W.1 PRE-TRAINING DETAILS

Initialization. For TST-MM, we use two initializations for pre-training. Unless stated otherwise,
we pre-train our model from scratch, following the hyperparameters in Tab. 10. Additionally, for
adaptation results in Tab. 2, we start from a pre-trained 4M-21 (Bachmann et al., 2024) model and
finetune it with the hyperparameters in Tab. 11.

DINO Pre-training. For the DINO TST pre-training in Sec. Q, we use the implementation from the
original DINOv2 repository2. We use the default provided training configuration files and train a
model with the ViT-B/14 backbone for 300,000 steps with a batch size of 1024.

Configuration Small Base

Training length (n tokens) 100B 500B
Warmup length (n tokens) 10B
Optimizer AdamW (Loshchilov & Hutter, 2019)
Opt. momentum β1, β2 = 0.9, 0.95
Base learning rate (Goyal et al., 2017) 1e-4
Batch size 4096
Weight decay 0.05
Learning rate schedule Cosine decay
Feedforward activation SwiGLU (Shazeer, 2020)

Input token budget 128 256
Target token budget 128 256
Input and target α Mixture (Bachmann et al., 2024)
Masking strategy Mixture (Bachmann et al., 2024)

Image resolution 2242

Augmentation Random Crop
Repeated sampling (Feichtenhofer et al., 2022) 4
Data type bfloat16 (Burgess et al., 2019)

Table 10: Pre-training settings for scratch initialization. Training configuration for TST-MM
initialized from scratch.

2https://github.com/facebookresearch/dinov2
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Configuration Small Base

Training length (n tokens) 100B
Warmup length (n tokens) 10B
Optimizer AdamW (Loshchilov & Hutter, 2019)
Opt. momentum β1, β2 = 0.9, 0.95
Base learning rate (Goyal et al., 2017) 5e-5
Batch size 4096
Weight decay 0.05
Learning rate schedule Cosine decay
Feedforward activation SwiGLU (Shazeer, 2020)

Input token budget 128 256
Target token budget 128 256
Input and target α Mixture (Bachmann et al., 2024)
Masking strategy Mixture (Bachmann et al., 2024)

Image resolution 2242

Augmentation Random Crop
Repeated sampling (Feichtenhofer et al., 2022) 4
Data type bfloat16 (Burgess et al., 2019)

Table 11: Pre-training settings for Internet initialization. Pre-training configuration for TST
starting from the the pre-trained 4M (Bachmann et al., 2024) model weights.

W.2 TRANSFER DETAILS

Semantic segmentation: For semantic segmentation on ProcTHOR (Deitke et al., 2022),
Replica (Straub et al., 2019) and Scannet++ (Yeshwanth et al., 2023) datasets, we use the ViT
encoder from the pre-trained models with a decoder head, based on the ConvNext (Liu et al., 2022)
network with a depth of 4. This decoder head is initialized from scratch. Training details are provided
in Tab. 12. On Replica (Straub et al., 2019), and ProcTHOR (Deitke et al., 2022), pre-trained models
are transferred and evaluated using a transfer training dataset of 20,000 images and evaluated on
5000 images sampled from the test space. On Scannet++ (Yeshwanth et al., 2023), we use a transfer
dataset of 40,000 images and evaluated on 3000 images from the test space.

Configuration Small Base

Fine-tuning epochs 64
Warmup epochs 1
Optimizer AdamW (Loshchilov & Hutter, 2019)
Opt. momentum β1, β2 = 0.9, 0.999
Learning rate 1e-4 2e-4
Batch size 32 (16 for Scannet++)
Weight decay 0.05
Learning rate schedule Cosine decay
Layer-wise lr decay (Clark et al., 2020) 0.75
Drop path (Huang et al., 2016) 0.1

Input resolution 2242

Augmentation RandomFlip + RandomCrop

Table 12: Semantic segmentation settings. Configuration used for fine-tuning the pre-trained models
on the semantic segmentation task.

Object detection. For object detection, we evaluate pre-trained models by using the ViT-based
pre-trained encoder as the feature extractor in the detection framework. We use Cascade Mask-
RCNN (He et al., 2017; Cai & Vasconcelos, 2017) as our primary object detection model. Besides
the feature extractor, the other learnable components including the detector’s neck and head are

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

initialized from scratch. All training and evaluations are performed using the Detectron2 (Wu et al.,
2019) framework. Exact training settings are provided in Tab. 13. We evaluate object detection in the
test spaces from the ProcTHOR (Deitke et al., 2022) dataset as described in Section 4.1. For transfer,
we use a dataset of 20,000 images from an external space, that is different from the test space. We
evaluate the transferred model on 5000 images from the test space.

Configuration Small Base

Fine-tuning epochs 150
Optimizer AdamW (Loshchilov & Hutter, 2019)
Opt. momentum β1, β2 = 0.9, 0.999
Weight decay 0.1
Learning rate 0.0001
Learning rate schedule Multi-step decay
Lr schedule milestones [Epoch 133, Epoch 144]
Lr schedule decay values [1.0, 0.1, 0.01]
Warmup epochs 0.01
Batch size 128
Layer-wise lr decay (Clark et al., 2020) 0.7
Drop path (Huang et al., 2016) 0.1

Input resolution 2242

Augmentation RandomFlip + RandomCrop

Table 13: Object detection settings. Configuration used for fine-tuning the pre-trained models on
the object detection task.

Image Captioning. For image captioning, we evaluate the pre-trained models obtained from various
methods including TST, 4M-21 (Bachmann et al., 2024) (Internet), and also include randomly-
initialized baselines (training from scratch). We adopt a standard transformer-based encoder-decoder
architecture for image captioning and employ cross-entropy loss for next-token prediction during
training. Images are input to the encoder which serves as the context for the decoder network. The
encoder network is initialized from the respective method’s encoder while the decoder is initialized
randomly. Training and hyperparameter details are listed in Tab. 14. We also train a LLaVA style (Liu
et al., 2023) model that serves as a Large-language-model-based baseline. We first train the connector
module (MLP layer) using LLaVA’s first-stage pretraining data consisting of 558K image-text pairs
subset of the LAION-CC-SBU dataset (et al., 2021). For second-stage, we re-format our ProcTHOR
captioning dataset into instruction-tuning format and jointly finetune both the connector and LLM.

Captioning data generation. To train models on the captioning task, we create a transfer dataset on
a set of external spaces by generating captions using GPT-4o (OpenAI, 2023) for the transfer dataset.
We follow a similar procedure for the evaluation set from the test space. We ensure the quality of
generated captions by providing GPT-4o with multi-modal inputs that include i) original RGB image
ii) RGB image with instance-wise detection boxes and class names overlayed iii) Class names and
bounding box coordinates in text format. We design an input prompt that instructs GPT-4o to leverage
the multi-modal inputs and generate COCO-style (Lin et al., 2014) 5 concise captions with global
context per image. For a sanity check, we randomly sampled 500 generated samples from the transfer
set and found all captions to be consistent with the visual contents present in their respective images.
The prompt message used for generating captions from GPT-4o is shown in Fig. 23.

X COMPUTATIONAL RESOURCES.

All model pre-training and adaptations were done on 64 H100 GPUs, with the base and small models
taking approximately 12 hours and 7 hours to train, respectively. For the semantic segmentation
transfer runs, we fine-tuned the models on 4 H100 GPUs, resulting in approximately 3 hours of
training for the base model and 1.5 hours for the small model. For the detection task, we only
fine-tuned the base model on 8 A100 GPUs, training for approximately 6 hours. Similar to detection,
for captioning we only fine-tuned the base model training on 8 H100 GPUs for approximately 6
hours.
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I have a dataset of images captured in indoor settings showcasing different common household objects. I want to create 
COCO-style concise and global captions for these images. Please generate a single caption for each image, adhering to 
the following guidelines:

1. **Global Context but Concise**:  
   The caption should be objective, describing the prominent objects and their spatial relationships within the scene. 
Each caption must cover the global scene context and prominent objects.

2. **Use of Ground-Truth Classes**:  
   Along with each image, ground-truth classes and bounding box information are provided. Bounding box information is 
in the format `(upper left x coordinate, upper left y coordinate, width, height)`. Use bounding box information for 
correct spatial relationships (such as left side, right side, top, below, etc.) between objects.

3. **Bounding Boxes and Class Labels Visualized in Image**:  
   The bounding boxes and class names are overlaid on the image, showing each detected class for better localization.

4. **Spatial Positioning**:  
   Describe all objects' positions and spatial relationships as visible in the image and ground-truth information to 
help locate them accurately. If multiple objects are present in the image (as indicated in ground-truth information), 
explicitly mention their count and explain their positional relationships with other objects in the image.

5. **No Hallucinations!**  
   Each generated concise caption must agree with the actual contents shown in the provided image. Strictly avoid 
adding information about objects unless you are certain. Only utilize the information visible in the image and the 
provided ground-truth class information.

I will provide both the original image and the image with overlaid boxes and labels. Use both images to provide a 
grounded global and COCO-style concise caption.

**Format your response**:  
Return a Python list containing concise global captions. Do not output any other text.

Ground Truth information: GT_class_and_bbox_information
Image with Annotations: Image_Annotated
Original Image: Image_Original

Figure 23: LLM Prompt instruction for ProcTHOR caption generation transfer task. We
generate ground-truth captions by providing multi-modal information to GPT-4o (OpenAI, 2023)
including annotated image, class and instance-wise bounding-box information. For each image, we
generate 5 COCO-style captions.
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Figure 24: Additional qualitative results. As demonstrated here TST performs better compared to
the other models for all tasks.
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Figure 25: Additional qualitative results. As demonstrated here TST performs better compared to
the other models for all tasks.
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Configuration ProcTHOR
Captioning

Fine-tuning epochs 1400
Warmup epochs 600
Optimizer AdamW (Loshchilov & Hutter, 2019)
Opt. momentum β1, β2 = 0.9, 0.95
Base learning rate (Goyal et al., 2017) 1e-5
Batch size 2048
Weight decay 0.05
Learning rate schedule Cosine decay
EMA decay SwiGLU (Shazeer, 2020)
Eval. freq (epochs) 50

Input resolution 224

Table 14: Training details: Image Captioning. Configuration used for transfer training for image
captioning.
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