

MULTIMODALITY AS SUPERVISION: SELF-SUPERVISED SPECIALIZATION TO THE TEST EN- VIRONMENT VIA MULTIMODALITY

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

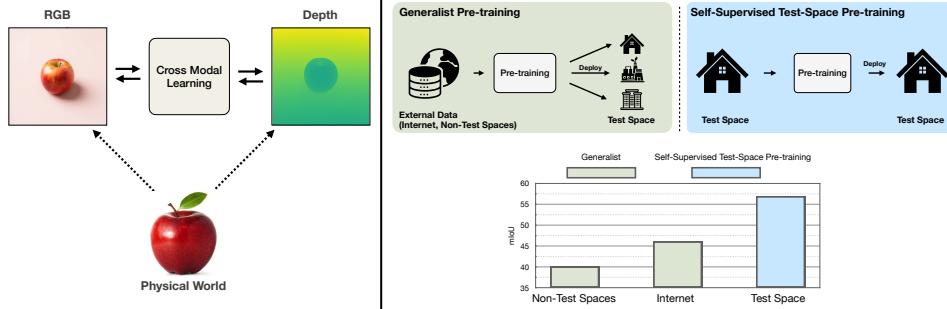


Figure 1: **Left: Multimodality as Supervision.** The sensed data in a deployment environment is often multimodal, which, besides RGB images, can contain various modalities, such as depth, motion sensing, surface normals, tactile, etc. This enables *Cross-Modal learning*, i.e., predicting the response of one sensor from another, as a *self-supervised* method for pre-training a representation. We use this concept to frame learning a rich representation for the test space in a self-supervised way and without using any external data.

Right: The common approach to train and deploy vision models in a desired test space is *generalist pre-training*. It uses large diverse external data, such as images from the Internet or other spaces similar to the test one. As an alternative, we study multimodal *Test-Space Training* (TST), which performs *self-supervised pre-training* on unlabeled multimodal data from the test space. This enables pre-training a performant representation for that space without access to any external data. We evaluate this approach on several downstream tasks (semantic segmentation in Fig. 1) and show that TST can outperform strong generalist pre-training baselines, including those trained on large-scale Internet-based datasets (Bachmann et al., 2024; Changpinyo et al., 2021; Oquab et al., 2023; Radford et al., 2021) or many other external spaces.

ABSTRACT

The common approach for developing a vision model is *generalism*, which involves training on a large diverse dataset to cover the varied deployment environments and leads to a model that is expected to solve the problem everywhere. However, many practical applications need to operate in a specific test space, e.g., a robot deployed in a single house, and do not necessarily need to generalize to novel environments. In this work, we explore whether we can use **rich multimodal data only from the test environment** to pre-train a representation in a self-supervised way, **without access to any external data**. We find that this approach can match and, in most cases, outperform generalists pre-trained on large-scale Internet datasets, including popular off-the-shelf models, CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023). We study the effectiveness of this approach by evaluating the models on various datasets and downstream tasks, such as semantic segmentation, captioning, and object detection, as well as a set of ablations and analyses to extract insights. This approach raises intriguing points on *substituting data with (multi)modality*, enabling an alternative scenario where the need for external Internet-scale datasets for pre-training models is reduced. It also shows that merely benefiting from test-space data was insufficient for achieving competitive results, and *multimodality was essential* for that purpose.

054 **1 INTRODUCTION**

055

056 Many practical vision applications, such as augmented reality (Lv et al., 2024; Zehtabian et al., 2021),
 057 household robotics (Wu et al., 2023), and interactive home assistants (Joshi et al., 2024), require
 058 vision models to operate in unique environments such as a user’s living space. In such scenarios, we
 059 often care about performance in that unique space, or as we refer to it, *the test space*, regardless of
 060 its generalization performance elsewhere. The *de facto* approach for such applications is to deploy
 061 a pre-trained foundation model (Radford et al., 2021; Oquab et al., 2023), i.e., a generalist model,
 062 based on large-scale data sources, such as the Internet.

063 In this work, we propose to study an alternative scenario. What if the user device is limited to the test
 064 space, with no access to the external world? This implies not having external data sources, like the
 065 Internet, to pre-train models, or a lack of label supervision in the test space. Additionally, this can
 066 also imply the infeasibility of sharing sensitive user data for external processing. In such a scenario,
 067 we ask, how can we bootstrap the vision representation of the test space for our device?

068 To this end, we develop multimodal Test-Space Training (TST), a framework that enables this,
 069 building upon two key insights. Firstly, many user devices, e.g., a household robot or a domestic
 070 digital assistant, are equipped with a rich set of sensors, which can enable collecting rich, multi-modal
 071 data. This data collection, in the test space, can be done without any external access and is completely
 072 unsupervised. Second, to learn a vision representation from this data, we can leverage multimodality
 073 as a source of self-supervision. More concretely, drawing inspiration from findings in developmental
 074 psychology, we leverage cross-modal learning (Bachmann et al., 2022) for self-supervised pre-training
 075 on this data, leading to TST-MM.

076 Through extensive analysis on various tasks (semantic segmentation, object detection, image captioning),
 077 and datasets including but not limited to Scannet++ (Yeshwanth et al., 2023), which contains
 078 *real-world indoor spaces*, we show that TST can build performant models for the test space, without
 079 any external access. We also compare TST-MM to its Internet-based generalist counterparts (Oquab
 080 et al., 2023; Radford et al., 2021) and find TST-MM is always on par and often better (Fig. 1, right) in
 081 various downstream tasks in the test space. Additionally, we perform various controlled analyses and
 082 ablations on the following:

083 • **Modality Scaling vs Data Scaling.** We show that we can substitute large-scale external data with a
 084 rich set of modalities in the test space (Fig. 4).

085 • **Scaling properties for TST with modalities.** We show that scaling the number of modalities in
 086 the test space improves performance (Fig. 5), and no single modality is responsible for TST-MM’s
 087 performance (Tab. 1).

088 • **Role of pre-training data in TST.** We investigate the value of pre-training data in the test space
 089 (Sec. 4.4), revealing the specialization-generalization tradeoff (Fig. 7). We also show that data from
 090 even 3000 similar external spaces cannot compensate for test space data (Fig. 6).

092 • **Significance of TST.** We provide a focused discussion on the importance of our results (Sec 4.6)
 093 and point out key results that make our findings interesting, and not obvious for the community.

094 **We share an overview video of our work in the supplementary that we recommend watching.**

095

096 **2 RELATED WORK**

097

098 **Self-supervised learning (SSL)** has been effective in learning visual (et al., 2020; He et al., 2021;
 099 Bao et al., 2022; Oquab et al., 2023) and natural language (Devlin et al., 2019; Brown et al., 2020;
 100 OpenAI, 2023) representations. In vision, one line of work uses masked image modeling (He et al.,
 101 2021) as a scalable approach to pre-train self-supervised models. It masks an input image, and
 102 attempts to reconstruct it in the form of pixels (He et al., 2021; Chen et al., 2020a; Dosovitskiy et al.,
 103 2021; El-Nouby et al., 2021), tokens (Bao et al., 2022) or features (Zhou et al., 2022; Baevski et al.,
 104 2022). On the other hand, approaches like SimCLR (Chen et al., 2020b) and DINOv2 (Oquab et al.,
 105 2023) use contrastive learning (Oquab et al., 2023; Caron et al., 2021; Chen et al., 2020b; He et al.,
 106 2020; Chen & He, 2020) to pre-train representations. Both classes of SSL pre-training approaches are
 107 typically trained on large-scale Internet-based datasets (Changpinyo et al., 2021; Deng et al., 2009;
 Schuhmann et al., 2022; Gadre et al., 2024). While we leverage similar SSL pre-training objectives,

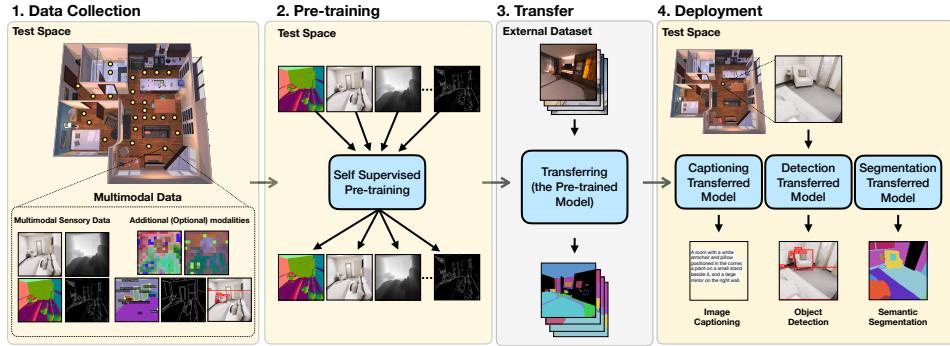


Figure 2: **TST framework.** **1)** First, we collect (multimodal) data from the test space (Sec. 3.2). **2)** We then use this data for self-supervised multimodal pre-training (Mizrahi et al., 2023; Oquab et al., 2023) (Sec. 3.3). **3)** After pre-training, the model is fine-tuned on a small external transfer dataset to solve a desired downstream task, e.g. semantic segmentation (Sec. 3.4). **4)** This model is subsequently deployed and evaluated in the same test space where it was pre-trained (Sec. 4).

we are interested in learning a vision representation for a given test space, without any external access, as opposed to the de facto case of building a generalist model.

Multimodal learning aims to build models that can relate information from different sources of underlying reality (Baltruvsaitis et al., 2017). This can involve training separate encoders or a unified model on various sources of modalities, like image, video, 3D, text, audio, etc. (Arandjelovic & Zisserman, 2017; Lu et al., 2019; Jaegle et al., 2022; Radford et al., 2021; Girdhar et al., 2022; Lu et al., 2023b;a; Girdhar et al., 2023). MultiMAE (Bachmann et al., 2022) uses multimodal masked modeling to learn cross-predictive coding across multiple modalities. 4M (Mizrahi et al., 2023; Bachmann et al., 2024) extends this idea further to train a multimodal foundation model across tens of modalities. These approaches build on large-scale Internet datasets with image-text pairs (Changpinyo et al., 2021; Byeon et al., 2022; Schuhmann et al., 2022). Our work leverages cross-modal pre-training on test space data, as opposed to Internet-based data, to learn a performant vision model for that space. Results in Sec. 4 show the value of TST over these multimodal baselines.

Test-time adaptation adapts a model to distribution shifts at test-time (see (Xiao & Snoek, 2024) for a recent survey). One prominent approach in the community is test-time training (TTT) (Sun et al., 2020; Wang et al., 2021; Liu et al., 2021b; Gandelsman et al., 2022b; Boudiaf et al., 2022; Gao et al., 2023), which optimizes a self-supervised objective (rotation prediction or entropy minimization), at test-time to finetune the model. While similar in spirit, we focus on learning a vision model, for a given test space, without external access in *during pre-training*, not on model adaptation *at test-time*. Concretely, we specialize in a given test space, as opposed to a specific test instance. Note that TTT can be complementary to TST and improve performance (see App. T). We present additional related works in App. C on domain adaptation, embodied active learning, and semi-supervised learning.

3 METHOD

We provide an overview of our framework, TST, in Fig. 2. In Sec. 3.1, we present the problem setting, of building a vision model for a given test space, without any external access. In Sec. 3.2, we provide details on the multimodal data collection process in the test space. Sec. 3.3 describes how we leverage cross-modal learning to pre-train on this data, and finally, Sec. 3.4 outlines our evaluation setup.

3.1 PROBLEM SETTING

We are interested in studying how we can bootstrap a vision model, for a given test space, on a user device, e.g., a household robot, without any external access. This can imply not having external sources, like Internet-based datasets (Changpinyo et al., 2021) to pre-train a model on, or a lack of label supervision in the test space. Therefore, our framework, Test-Space Training (TST), proposes to collect unsupervised pre-training data in the test space. Concretely, we assume access to the sensory data sampling function in the test space, denoted as $x \sim p_{\text{space}}(x)$, and use it to collect a pre-training dataset $D_{PT} = \{x_i\}$ (Sec. 3.2). Besides RGB images, we also leverage other sensors available on the device, e.g., depth and surface normals. In real-world deployment, this set can be

162 expanded significantly to other common sensors, such as IMU, microphone, radar, and occasionally
 163 haptics. We use this data to pre-train a self-supervised model $f : X \rightarrow h$ that maps RGB images into
 164 representations (Sec. 3.3). We evaluate this model with transfer learning, as described in Sec. 3.4.
 165

166 3.2 MULTI-MODAL DATA COLLECTION

167 As noted in Sec. 3.1, we assume access to the sensory data sampling function in the test space,
 168 denoted as $x \sim p_{\text{space}}(x)$ to collect pre-training data, D_{PT} . This can represent capturing data at
 169 various vantage points, or a video walkthrough to cover the test space. In addition to RGB frames,
 170 we also collect data from various sensors and modalities available on the user device being deployed
 171 in the test space. Additionally, we can also process this data to create more optional modalities as
 172 illustrated in Fig. 2. As we later show in Sec. 4.3, Fig 4, scaling this rich set of modalities in the
 173 multimodal, test-space data is more effective than scaling to diverse unimodal data from external
 174 sources. It is also worth noting that such a dataset of potentially repetitive images from the same space
 175 is related to findings in developmental psychology research suggesting that infants observe highly
 176 redundant visual data (Jayaraman et al., 2015; Slone et al., 2019). We defer more implementation
 177 details for our data collection to Sec. 4.1. This stage results in a multimodal sensory dataset, which
 178 we use for self-supervised pre-training (see Fig. 2.)

179 3.3 SELF-SUPERVISED PRE-TRAINING

180 We employ self-supervised learning to pre-train a model f on the multimodal data D_{PT} collected
 181 in the test space. Akin to standard generalist self-supervised pre-training, this model learns task-
 182 agnostic representations that are useful for various downstream tasks. We explored different self-
 183 supervised objectives, comparing both unimodal, RGB-only (He et al., 2021)), i.e. TST-MAE, and
 184 multimodal (Bachmann et al., 2022; Mizrahi et al., 2023; Bachmann et al., 2024), i.e. TST-MM,
 185 variants within our framework. Among these, we found cross-modal learning, or more specifically,
 186 multimodal masked modeling to be most effective for our setup, consistently achieving superior
 187 performance (Sec. 4, App. H). We explore the role of choice of modalities (Tab. 1), and how
 188 performance scales with the number of modalities (Fig. 5) for TST-MM in Sec. 4.3. Note that the
 189 TST framework can also support other self-supervised objectives such as DINOv2 (Oquab et al.,
 190 2023) and MAE (He et al., 2021) (Sec. 4.4). Unless specified otherwise, we refer to the multimodal
 191 version (TST-MM) as TST. We describe more details on the architecture and modalities in Sec. 4.
 192

193 3.4 TRANSFER

194 We evaluate the effectiveness of the pre-trained model f using transfer learning. We add a task-
 195 specific head g and finetuning the resulting model $g \circ f$ on various downstream tasks, following
 196 standard practice in self-supervised learning (Mizrahi et al., 2023; He et al., 2021). For this, we
 197 consider a small transfer dataset D_t with task-specific annotations, collected in an external space,
 198 disconnected from the test space. Importantly, *we do not have access to any task-specific annotations*
 199 *from the test space itself*, i.e. D_t and D_{PT} are sampled from different distributions. We benchmark
 200 against several off-the-shelf vision models (Radford et al., 2021; Oquab et al., 2023; Bachmann et al.,
 201 2024), by finetuning them on the transfer data, D_t , as discussed in Sec. 4.5.
 202

203 4 EXPERIMENTS

204 We present the results as follows. Sec. 4.1 describes our experimental setup and baselines. Sec. 4.2
 205 analyzes how far we can go with no external access with TST. Then, we present various analyses on
 206 the role of multimodality in TST. Sec. 4.4, discusses the role of pre-training data from the test space.
 207 Lastly, Sec. 4.5 presents results on various tasks by scaling TST to several modalities and compares
 208 against off-the-shelf Internet-based generalists (Bachmann et al., 2024; Oquab et al., 2023; Radford
 209 et al., 2021) and task-specific baselines (Kirillov et al., 2023; Li et al., 2022; Cheng et al.).
 210

211 4.1 EXPERIMENTAL SETUP

212 **Datasets.** To show the efficacy of TST, we experiment using three datasets:

213 1. *Scannet++* (Yeshwanth et al., 2023) is a large-scale dataset of *real-world* indoor spaces containing
 214 sub-millimeter resolution scans, paired with DSLR and iPhone RGB images. We use 8 scenes as the
 215 test space, and use a mix of iPhone and DSLR images from these scenes for pre-training.

216 2. *Replica* (Straub et al., 2019) provides high-quality 3D reconstructions of *real* indoor spaces. We
 217 use 5 scenes as the test space, and use rendered RGB-D images for pre-training.
 218 3. *ProcTHOR* (Deitke et al., 2022) includes procedurally generated house-like environments. We use
 219 5 procedurally generated houses as the test space, unless specified otherwise.

220 **Pre-training.** For training models with TST-MM and TST-MAE on the dataset D_{PT} collected from a
 221 test space, we leverage multimodal masked modelling (Bachmann et al., 2024) as described in Sec. 3.3,
 222 and train an encoder-decoder transformer model. We use modality-specific tokenizers (Bachmann
 223 et al., 2024) to convert all modalities into tokens. We train models across two encoder sizes, ViT-S
 224 and ViT-B, which have 8 and 12 encoder layers, respectively. Additionally, we found that mixing
 225 RGB images from the transfer was beneficial in pre-training. Please see Sec. L for an ablation on
 226 this choice. Note that *we do not use any task labels from the transfer set during pre-training, making*
 227 *this stage task-agnostic*. For results in Sec. 4.5, we initialize the model *from scratch*, whereas for
 228 adaptation (Sec. 4.5, Adaptation through TST) we initialize from 4M-21 (Bachmann et al., 2024).

229 **Notations.** We refer to TST variants with different objectives as TST-MM for multimodal masked
 230 modeling, TST-MAE for unimodal masked modeling, TST-DINO for DINOv2 (Oquab et al., 2023).
 231 Unless specified otherwise, we refer to the multimodal version (TST-MM) as TST.

232 **Transfer and Evaluation.** For all datasets, we use an external set of scenes that are different from
 233 the test space to collect a small transfer set (D_t) with task-specific annotations. We evaluate the
 234 transferred models in the test space on semantic segmentation (Scannet++, Replica, ProcTHOR),
 235 object detection (Scannet++, ProcTHOR) and image captioning (ProcTHOR). We provide more
 236 details on the transfer and evaluation setup in [Appendix](#).

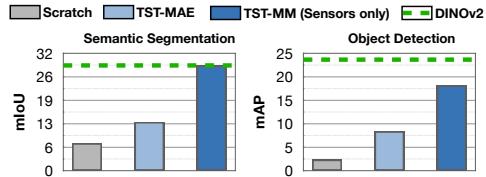
237 **Modalities.** For Scannet++ (Yeshwanth et al., 2023), we use RGB images captured by DSLR and
 238 iPhone cameras. For Replica (Straub et al., 2019) and ProcTHOR (Deitke et al., 2022), we render
 239 *RGB-D* from the test space using onboard sensors. We then extract *Canny edges* from RGB and
 240 *surface normals* from depth using simple transformations. We refer to these 4 modalities (RGB,
 241 Depth, Surface normals, and Canny Edges) as *sensory* in Sec. 4.2 and thereafter. In Sec. 4.5, we
 242 discuss how we can further scale the number of modalities using off-the-shelf networks.

243 **Baselines.** We compare against several baselines:

244 *Scratch - no pre-training.* We present both unimodal scratch, which takes only RGB images as input, and
 245 multimodal scratch, which inputs all modalities available to TST-MM during transfer training and evalua-
 246 tion. The latter baseline, along with the indicates that
 247 the performance is not owed to merely having mul-
 248 tiple modalities, but rather performing cross-modal
 249 pre-training.

250 *Large-scale generalist pre-training baselines.* We evaluate 4M-21 (Bachmann et al., 2024), DI-
 251 NOv2 (Oquab et al., 2023), and CLIP (Radford et al., 2021) as recent strong generalist (self-supervised)
 252 baselines, trained on large-scale datasets via uni-
 253 modal and multimodal learning. To ensure fair com-
 254 parison, we finetune these models, with the same
 255 transfer dataset as TST, D_t .

256 *Task specialist baselines.* We perform evaluations
 257 using Mask2Former (Cheng et al.), ViTDet (Li et al.,
 258 2022), SAM (Kirillov et al., 2023), and LLaVA-
 259 1.5 (Liu et al., 2023) as established task-specific baselines for semantic segmentation, object detection,
 260 and image captioning. Similar to generalist baselines, we finetune these models, with the same
 261 transfer dataset, D_t , that we use for TST.



262 **Figure 3: How far can we go with no external access?** We compare results of pre-
 263 training using large-scale Internet data (DINOv2 (Oquab et al., 2023) on 142M images)
 264 with using only data collected from a test space with onboard sensors, TST-MM (Sen-
 265 sors). We show segmentation and detection
 266 results on a test space from the Scannet++. We
 267 find that, with no external access, TST-MM
 268 with sensory modalities, and just multimodal
 269 data from the test space, is on par with large-
 270 scale Internet-based pre-training.

271 4.2 HOW FAR CAN WE GO WITH NO EXTERNAL ACCESS?

272 We first explore how far we can go when bootstrapping a vision representation for the test
 273 space, with no external access. Fig 3 shows that pre-training with just multimodal sensory

270 data ¹ from the test space can perform on par with Internet-based generalist models (Oquab
 271 et al., 2023), pre-trained on large-scale external data. In addition, we find that TST-MAE
 272 improves upon training from scratch, yet multimodality with TST-MM performs the best.
 273 This suggests that with TST, we can build highly performant models for the test space, without any external
 274 access, and achieve on-par performance with large-scale Internet-based pre-training (Oquab et al., 2023).
 275

278 4.3 MULTIMODALITY IN TST

279 As elaborated in Sec. 3.2, TST enables collecting multi-
 280 modal data in the test space. This allows us to leverage
 281 cross-modal learning, and more specifically, multimodal
 282 masked modelling for performing self-supervised learn-
 283 ing. Leveraging multimodality is a key component in
 284 enabling performant models of the test space. We perform
 285 controlled analysis to draw insights on its role in TST.

286 **Can we substitute large-scale data with more modalities?** We study the trade-off between using *smaller-scale*
 287 *but modality-rich test-space data*, versus *large-scale unimodal external data* (RGB-only). Starting from unimodal
 288 pre-training within the test space, Fig. 4 shows that scaling
 289 data via additional modalities yields significantly better
 290 performance than increasing the amount of unimodal data
 291 from external sources. We use ProcTHOR (Deitke et al.,
 292 2022), to generate similar spaces (IID to the test space),
 293 and leverage them as the external source of data. This sug-
 294 gests: *For building high-performing models in a specific*
 295 *test space, collecting data within that space using a richer*
 296 *set of modalities is more effective than relying on large-*
 297 *scale, unimodal data collected from external sources.*

298 **Is the choice of modalities important for the effectiveness of the multimodal pre-training?** We investigate
 299 whether all modalities contribute similarly to multimodal
 300 pre-training, as shown in Sec. 4.2 and 4.5, or if there is
 301 a single modality that contributes the most. We present
 302 two ablations in Tab. 1. First, we examine all pairs of two
 303 modalities starting with RGB, i.e., all $\{RGB, X\}$ com-
 304 binations. Adding any modality improves performance,
 305 with some showing greater benefits than others (e.g., *SAM*
 306 *edges* increase performance by an absolute 7.8%), but none
 307 matches the performance of using all modalities. Second,
 308 we examine all sets of eight modalities by removing one
 309 modality, except RGB (which remains as the input during
 310 finetuning and evaluation). We find low variance
 311 between different sets, indicating that no single
 312 modality is irreplaceable and that other
 313 modalities can compensate for the absence of useful ones.
 314 For example, removing the *SAM edges* modality reduces
 315 results by only 1.5%, compared to its absolute 7.8% improvement
 316 when added to RGB alone. *Thus, performance can be improved by simply collecting a larger set of modalities*
 317 *instead of engineering an optimal set.*

318 **How does the performance of TST-MM scale with modalities?** Fig. 5 shows the performance of
 319 TST-MM as we increase the number of modalities. Due to the combinatorial complexity of studying
 320 all possible combinations, we only sample all possible options for two (RGB+X) and eight (All-X)
 321 modalities, where here X is the modality added or dropped. For other modality counts, we randomly
 322 sample 8 modality sets and report the average performance on the plot. *We find that the performance*
 323 *of TST-MM scales well with more modalities, agnostic of the exact modality combination, and with*
 324 *decreasing variance between subsets.*

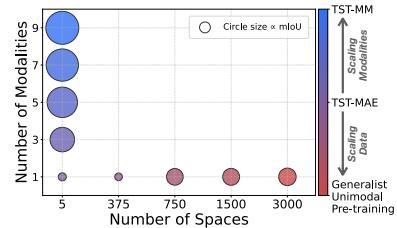


Figure 4: **Modality scaling vs data scaling.** We study the tradeoff between collecting unimodal pre-training data from more spaces to scaling modalities in the test space (here, 5 houses). The size of each circle is proportional to the mIoU performance on segmentation. We find that scaling the number of modalities within the test space results in better performance versus scaling data by including external spaces, underscoring the efficacy of the TST-MM paradigm.

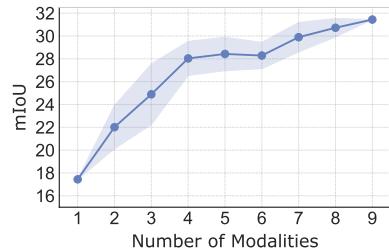


Figure 5: **Scaling the number of modalities for TST-MM.** We report the performance of TST-MM as we scale the number of modalities. We begin with only the RGB modality and add more modalities to the model. We find that *increasing the number of modalities results in higher performance, and the variance in performance due to a specific modality starts decreasing.*

325 We find low variance between different sets, indicating that no single modality is irreplaceable and that other modalities can compensate for the absence of useful ones. For example, removing the *SAM edges* modality reduces results by only 1.5%, compared to its absolute 7.8% improvement when added to RGB alone. *Thus, performance can be improved by simply collecting a larger set of modalities instead of engineering an optimal set.*

¹with only sensory modalities as described in Sec. 4.1

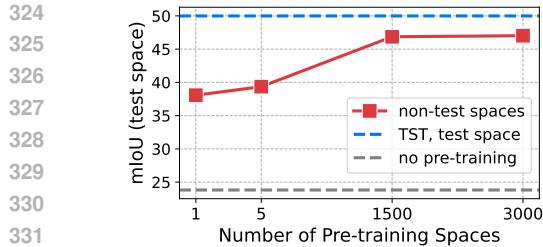


Figure 6: **How many spaces is one test space worth?** We study if test-space data for pre-training can be substituted with data from similar but nonidentical spaces. We compare performance on the test space between TST and models pre-trained on the increasing number of IID houses. We find that using as many as 3000 spaces cannot match pre-training in the exact test space, thereby underscoring the usefulness of test-space specialization with TST.

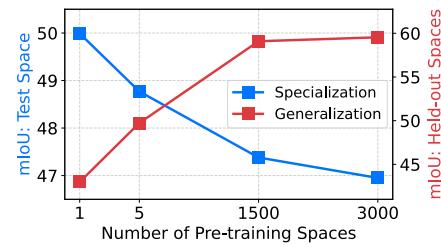


Figure 7: **Specialization-generalization trade-off.** We pre-train models on data collected from a growing number of spaces, starting with a single test space and adding data from other IID spaces. The blue curve and red curve show the models’ performance on semantic segmentation in the test space (*i.e.* specialization), and on a set of 100 held-out IID spaces (*i.e.* generalization). As we add more pre-training spaces, performance on the test space decreases, while performance on the held-out spaces improves, revealing a specialization-generalization trade-off.

4.4 MEASURING SPECIALIZATION WITH TST

We define *specialization* as the measure of how performant a model is, on a downstream task, in a given test space. E.g., model A is more specialized than B if it performs better in the test space. This is in contrast to *generalization* in conventional machine learning, which measures performance on spaces not seen in pre-training. As described in Sec. 3.2, TST collects pre-training data in a test space, to pre-train a model for that space. In this section, we explore what is the role of this pre-training data from the test space itself.

First, we measure it by cross-evaluating models pre-trained on two different test spaces, showing that space-specific pre-training performs the best. Then, we explore if we can substitute data from the test space with data from many (thousands of) similar spaces during pre-training, effectively asking: *how many spaces is the test space worth?* Third, we explore whether a single model can exhibit both specialization and generalization capabilities and show the *specialization-generalization trade-off*.

TST effectively specializes to a test space. Fig. 8 shows the performance of models pre-trained and evaluated on different test spaces. We find that the best choice in all cases is to pre-train the model in the corresponding test space, demonstrating the practical value of specialization. We observe similar specialization trends for other pre-training objectives in App. Q.

How many spaces is a single test space worth? Here we ask, if not one space, data from how many similar spaces can substitute test-space data? Similar to Sec. 4.3, we use ProcTHOR (Deitke et al., 2022) to generate a large number of similar houses and pre-train models using an increasing number of them. Fig. 6 shows the performance of each model on the test space not seen during pre-training compared to pre-training on the corresponding test space. We find that *even thousands of similar spaces are not enough to substitute pre-training on the exact same space that we deploy in*.

Table 1: **Modality choice in TST.** We study the effect of each modality on TST by doing a drop-one combination from TST-MM, and add-one to TST-MAE. We find that although some modalities improve more than others when added to RGB-only, the performance of TST-MM stays relatively stable, agnostic to the dropped modality. *This suggests that no single modality is responsible for TST-MM’s performance, rather their collective interplay, i.e., multimodality.*

Modalities	RGB (TST-MAE)	RGB + X	ALL - X	ALL (TST-MM)
Normalized Performance (%)	45	66.1 \pm 7.7	95.5 \pm 2.6	100

		Pre-training Space		
		I	II	III
Test Space	I	45.19	35.68	35.86
	II	29.38	42.05	29.32
	III	38.20	39.17	51.69

Figure 8: **Measuring specialization.** We perform cross-space analysis by pre-training and evaluating performance on different spaces. Each column and row represents a pre-training and test space. *Performance is best along the diagonal, where pre-training and evaluation are in the same space.*

²Task-specific methods used for each result, in order: SAM (Kirillov et al., 2023) (segmentation), ViTDet (Li et al., 2022) (detection), and LLaVA (Liu et al., 2023) (captioning)

Figure 9: **TST-MM predictions across different tasks.** We showcase qualitative results for TST-MM against various baselines, including scratch (no pre-training) and Internet-based pre-training on **real-world scenes** from Scannet++ (Yeshwanth et al., 2023). TST-MM predictions are notably more consistent across both tasks, showing the value of *having access to the test space during pre-training*. Note how TST-MM predicts the same object (magnified in red boxes) more accurately and robustly across various viewpoints, as compared to generalist models like 4M-21 and DINoV2.

Table 2: **Multimodal Test-Space Training (TST-MM) outperforms both strong generalists and task specialists across tasks.** We evaluate semantic segmentation, object detection, and image captioning. All models use ViT-B backbones, except SAM (Kirillov et al., 2023) (ViT-H). TST-MM (adapted) refers to fine-tuning 4M-21 on test-space data. On segmentation and detection, TST-MM consistently outperforms Internet-based generalists and matches or surpasses specialists. On captioning, TST-MM (from scratch), despite no text pre-training, matches 4M-21 trained on CC12M image-text pairs; TST-MM (adapted) surpasses 4M-21 and approaches LLaVA-1.5 (Liu et al., 2023).

Method	Semantic Segmentation			Object Detection		Captioning	
	Scannet++ mIoU	ProcTHOR mIoU	Replica mIoU	Scannet++ mAP	ProcTHOR mAP	ProcTHOR CIDEr	SPICE
No Pre-training	Unimodal Scratch - no pre-training	7.49	28.62	9.23	2.35	24.59	17.1
	Multimodal Scratch - no pre-training	7.82	26.29	10.03	3.76	19.19	11.0
Generalist	4M (RGB-only) / MAE	13.74	46.29	18.18	18.31	37.17	30.4
Pre-training	4M-21	27.59	53.24	26.30	25.91	41.43	36.2
	DINOv2	28.60	54.50	26.72	23.67	40.28	14.7
	CLIP	23.02	48.66	20.92	19.75	38.47	18.4
Task Specialist	Task Specific Methods / SOTA ²	34.75	56.72	28.51	23.59	44.10	21.0
Specialist	TST-MM	34.49	60.85	<u>32.87</u>	<u>31.54</u>	<u>49.38</u>	34.3
Pre-training	TST-MM (adapted)	36.44	60.59	<u>34.53</u>	<u>35.83</u>	<u>51.25</u>	39.9
							20.4
							20.5

Specialization-generalization trade-off. We observed that the best performance on a given test space is achieved when pre-trained on data from the same space. However, we would expect this specialized model to not generalize well to new houses. Can we keep (or improve) this specialization performance while gaining generalization capabilities by adding more houses during pre-training in addition to the test house? Figure 7 shows that as we add more houses during pre-training, the performance on the held-out new houses increases, as expected. However, the performance on the original test space drops compared to the specialist single-space pre-training, demonstrating a specialization and generalization trade-off of the pre-trained model.

4.5 TST vs INTERNET-BASED METHODS

Sec. 4.2 discusses how far TST can go with no external access, with only sensory modalities. To take this one step further, we first draw inspiration from recent progress in multimodal foundation models (Bachmann et al., 2023), and further scale our set of modalities. Next, we compare TST with this scaled set of modalities (TST-MM), against Internet-based generalists and task specialist models. Lastly, we describe how TST can also enable adapting a pre-trained generalist to the test space.

Additional Modalities. We create new modalities by pseudolabeling the collected RGB frames. We use *CLIP features* (Radford et al., 2021), *ImageBind features* (Girdhar et al., 2023), *SAM edges* (Kirillov et al., 2023), *bounding boxes* from ViTDet (Li et al., 2022), and *semantic segmentation masks* from Mask2Former (Cheng et al.). For a fair comparison, we also include these pseudolabeling networks as baselines and show that TST-MM, trained *from scratch*, outperforms all of them (see Tab. 2, and App. N), demonstrating the value of multimodal pre-training in the test space.

TST vs. generalists. Tab. 2 shows quantitative results for TST-MM. We compare against generalist models (MAE, DINoV2, 4M-21, and CLIP) trained on large-scale Internet datasets. *This suggests*

432 *that, we can outperform generalist models by using multimodal data from the test space.* Figure 9
 433 shows qualitative improvements of TST over generalist Internet pre-training.

434 **TST vs. task specialists.** We also show that the proposed TST-MM also outperforms or is on par
 435 with off-the-shelf task specialist models on semantic segmentation (Kirillov et al., 2023) and object
 436 detection (Li et al., 2022). For image captioning, despite not seeing any text data during pre-training,
 437 TST-MM performs on par with 4M-21 (Bachmann et al., 2024) that was pre-trained on large-scale
 438 image-text data (Changpinyo et al., 2021), showing the effectiveness of the learned representation.
 439

440 **Adaptation through TST.** Tab. 2 also presents results when TST-MM, adapts an existing generalist
 441 model to the test space. As opposed to starting from scratch (akin to all TST-MM models discussed
 442 above), we start from a pre-trained 4M-21 model and fine-tune it on data from the test space,
 443 using multimodal masked modeling objective. The resulting model, TST-MM (adapted), significantly
 444 improves over 4M-21 in the test space. This suggests *TST can also serve as an adaptation mechanism*
 445 *for Internet pre-trained models, making them more performant in the test space for downstream tasks.*

446 4.6 ARE THESE RESULTS OBVIOUS?

447 TST goes against the conventional approach in machine learning to collect large-scale external
 448 data, to train generalist models. However, is it *obvious* that pre-training on data from a given test
 449 space, we will achieve the most performant model for that space? We emphasise that it is not about
 450 simply having test-space data, but employing *multimodality as supervision*, which enables TST’s
 451 performance. We highlight three key points to further support our argument:

- 452 • *Highly performant results with no external access:* With TST-MM, we can have the most performant
 453 model trained locally, thereby challenging conventional wisdom that pre-training on large-scale
 454 external data is necessary for effective vision models for most applications.
- 455 • *Phase shift with unimodality and multimodality:* Note how with unimodal pre-training, TST-MAE
 456 (13.26 mIoU) is just on par with internet pre-training with the same objective (13.74 mIoU). However,
 457 for TST-MM, which pre-trains on the exact same data, but with a richer set of modalities (Sec. 4.5),
 458 outperforms all internet-based counterparts (See Tab. 2). This phase shift, from unimodality to
 459 multimodality, in the exact same test space, is something neither studied nor concretely explored
 460 before. We see a similar phase shift in specialization-generalization trends, multimodal in Fig. 7, and
 461 unimodal in Fig. 18, App. P.
- 462 • *Scaling Modality vs Scaling Data:* Our work provides various empirical insights, such as the trade-
 463 off between scaling modalities and scaling data, which alleviates the need to collect a large amount
 464 of external data, by simply scaling modalities in the test space. These findings have a significant,
 465 real-world impact, and the results of our work provide concrete insights on how to enable this.

466 **Additional results in Appendix.** Besides the analysis presented here, in the [Appendix](#), we present
 467 more experiments on deploying TST in the wild ([App. F](#)), TST using other self-supervised objectives
 468 ([App. Q](#)), the role of the transfer dataset mix-in during pre-training ([App. L](#)), results for cross-modal
 469 retrieval ([App. E](#)), and qualitative videos on real-world spaces.

471 5 CONCLUSION AND LIMITATIONS

472 We introduce TST, a framework for pre-training, highly performant vision models tailored to a test
 473 space, without any external access. It collects unsupervised, multimodal pre-training data in the
 474 test space and performs self-supervised pre-training on it. We show through various experiments
 475 and analyses that TST can serve as a highly performant alternative for several downstream tasks,
 476 outperforming off-the-shelf generalist and task-specific baselines. We present various insights about
 477 tradeoffs between scaling modalities and data, scaling laws for TST with modalities, and the role of
 478 pre-training data from the test space. We highlight the following future directions for improvement.
 479 *Multi-view consistency.* TST operates in a single unified test space, such as a user household. This
 480 enables perception of the same objects from various viewpoints. In its current formulation, TST has
 481 no explicit constraints in the pre-training objective, enforcing multi-view consistency. Exploring
 482 pre-training objectives that enforce viewpoint (Luo et al., 2020), and cross-modality (Zamir et al.,
 483 2020) consistency is an exciting future direction we intend to explore.

484 *Incorporating hardware-based modalities.* Various user devices today are equipped with a broad
 485 range of hardware sensors like IMU, gyroscope, magnetometer, and GPS. Leveraging these sensors
 486 as additional modalities is a future direction that we are interested in.

486 6 ETHICS STATEMENT: THE CRITICAL ROLE OF DATA IN AI

488 This paper sheds light on the critical of data, and data sources in AI. The setting studied in TST
 489 suggests that it is possible to achieve competitive results *without* relying on large diverse internet-
 490 based datasets that essentially require the data of different users to be harvested and mixed. The paper
 491 shows training on only the deployment space data is an alternative worth considering and investigate
 492 the requirements of making that viable (e.g. utilizing multimodality being critical for achieving good
 493 results). This setting enables putting a divider between the data of different users and can trigger
 494 intriguing questions on the role of data in AI, which is commonly assumed to be *large and diverse*
 495 *datasets are essential for strong results*. The studied setting requires training on the deployment
 496 space’s data, which can be done completely in-house and under the control of the user for privacy
 497 critical scenarios, to avoid any data contact with the external world.

498 7 REPRODUCIBILITY STATEMENT

501 All experiments conducted in our work are based on open source frameworks and datasets. We
 502 plan to release all our data splits, and the code to pre-train models with TST, allowing everyone
 503 in the research community to reproduce our results. Additionally, we will also open source all our
 504 pre-trained model weights, ensuring full transparency. Additionally, to allow the community to collect
 505 data in their custom spaces, we will open source an iOS application, that allows collecting various
 506 forms of sensory data from any apple device. We provide more details in the [App](#). S.

507 508 REFERENCES

509 Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In *Proceedings of the IEEE*
 510 *international conference on computer vision*, pp. 609–617, 2017.

512 Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
 513 bias. *arXiv preprint arXiv:2306.13575*, 2023.

515 Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. MultiMAE: Multi-modal
 516 multi-task masked autoencoders. *European Conference on Computer Vision*, 2022.

517 Roman Bachmann, Oğuzhan Fatih Kar, David Mizrahi, Ali Garjani, Mingfei Gao, David Griffiths,
 518 Jiaming Hu, Afshin Dehghan, and Amir Zamir. 4M-21: An any-to-any vision model for tens of
 519 tasks and modalities. *arXiv 2024*, 2024.

521 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec: A
 522 general framework for self-supervised learning in speech, vision and language. In *International*
 523 *Conference on Machine Learning*, pp. 1298–1312. PMLR, 2022.

524 Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
 525 A survey and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41:
 526 423–443, 2017. URL <https://api.semanticscholar.org/CorpusID:10137425>.

528 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers.
 529 In *International Conference on Learning Representations*, 2022.

530 Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
 531 Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
 532 fields. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 533 5855–5864, October 2021.

535 David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
 536 Raffel. Mixmatch: A holistic approach to semi-supervised learning. *ArXiv*, abs/1905.02249, 2019.
 537 URL <https://api.semanticscholar.org/CorpusID:146808485>.

538 Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
 539 test-time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
Recognition, pp. 8344–8353, 2022.

540 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 541 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 542 Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 543 Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
 544 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
 545 and Dario Amodei. Language models are few-shot learners. *ArXiv*, abs/2005.14165, 2020.

546 Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstantinos Monachopoulos, and David Mansell.
 547 Bfloat16 processing for neural networks. In *2019 IEEE 26th Symposium on Computer Arithmetic
 548 (ARITH)*, pp. 88–91, 2019. doi: 10.1109/ARITH.2019.00022.

549

550 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
 551 Kim. COYO-700M: Image-text pair dataset. [https://github.com/kakaobrain/
 552 coyo-dataset](https://github.com/kakaobrain/coyo-dataset), 2022.

553 Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: Delving into high quality object detection.
 554 *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6154–6162, 2017.

555

556 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 557 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
 558 IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

559

560 Soravit Changpinyo, Piyush Kumar Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Push-
 561 ing web-scale image-text pre-training to recognize long-tail visual concepts. *2021 IEEE/CVF
 562 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3557–3567, 2021.

563

564 Devendra Singh Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, and Ruslan Salakhutdinov.
 Seal: Self-supervised embodied active learning. In *NeurIPS*, 2021.

565

566 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
 Generative pretraining from pixels. In *International Conference on Machine Learning*, 2020a.

567

568 Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
 569 self-supervised models are strong semi-supervised learners. *arXiv preprint arXiv:2006.10029*,
 570 2020b.

571

572 Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic segmenta-
 573 tion with cross pseudo supervision. *2021 IEEE/CVF Conference on Computer Vision and Pattern
 574 Recognition (CVPR)*, pp. 2613–2622, 2021. URL [https://api.semanticscholar.org/
 575 CorpusID:235293837](https://api.semanticscholar.org/CorpusID:235293837).

576

577 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. *2021 IEEE/CVF
 578 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 15745–15753, 2020. URL
<https://api.semanticscholar.org/CorpusID:227118869>.

579

580 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
 attention mask transformer for universal image segmentation. *CVPR*.

581

582 Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-training
 583 text encoders as discriminators rather than generators. In *International Conference on Learning
 584 Representations*, 2020.

585

586 Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson Han,
 587 Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR: Large-Scale
 588 Embodied AI Using Procedural Generation. In *NeurIPS*, 2022. Outstanding Paper Award.

589

590 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. ImageNet: A large-scale
 591 hierarchical image database. *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 592 pp. 248–255, 2009.

593

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 deep bidirectional transformers for language understanding. In *North American Chapter of the
 Association for Computational Linguistics*, 2019.

594 Jiahua Dong, Yang Cong, Gan Sun, Zhen Fang, and Zhengming Ding. Where and how to transfer:
 595 Knowledge aggregation-induced transferability perception for unsupervised domain adaptation.
 596 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

597

598 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 599 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 600 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 601 In *International Conference on Learning Representations*, 2021.

602

603 Ainaz Eftekhar, Alexander Sax, Roman Bachmann, Jitendra Malik, and Amir Roshan Zamir. Om-
 604 nidata: A scalable pipeline for making multi-task mid-level vision datasets from 3d scans. 2021
 605 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10766–10776, 2021.

606

607 Alaaeldin El-Nouby, Gautier Izacard, Hugo Touvron, Ivan Laptev, Hervé Jégou, and Edouard Grave.
 608 Are large-scale datasets necessary for self-supervised pre-training? *ArXiv*, abs/2112.10740, 2021.
 609 URL <https://api.semanticscholar.org/CorpusID:245334705>.

610

611 Chen et al. A simple framework for contrastive learning of visual representations. In *ICML*, 2020.

612

613 Schuhmann et al. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. *arXiv*
 614 preprint [arXiv:2111.02114](https://arxiv.org/abs/2111.02114), 2021.

615

616 Zhou et al. Scene parsing through ADE20K dataset. *CVPR*, 2017.

617

618 Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
 619 learners. *Advances in neural information processing systems*, 35:35946–35958, 2022.

620

621 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
 622 Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
 623 next generation of multimodal datasets. *Advances in Neural Information Processing Systems*, 36,
 624 2024.

625

626 Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
 627 coders. *Advances in Neural Information Processing Systems*, 35:29374–29385, 2022a.

628

629 Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A. Efros. Test-time training with masked
 630 autoencoders. *ArXiv*, abs/2209.07522, 2022b. URL <https://api.semanticscholar.org/CorpusID:252283956>.

631

632 Yaroslav Ganin and Victor S. Lempitsky. Unsupervised domain adaptation by backpropagation. In
 633 *International Conference on Machine Learning*, 2014.

634

635 Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to
 636 the source: Diffusion-driven adaptation to test-time corruption. In *Proceedings of the IEEE/CVF*
 637 *Conference on Computer Vision and Pattern Recognition*, pp. 11786–11796, 2023.

638

639 Rohit Girdhar, Mannat Singh, Nikhil Ravi, Laurens van der Maaten, Armand Joulin, and Ishan
 640 Misra. Omnivore: A single model for many visual modalities. 2022 *IEEE/CVF Conference*
 641 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 16081–16091, 2022. URL <https://api.semanticscholar.org/CorpusID:246063865>.

642

643 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 644 Joulin, and Ishan Misra. ImageBind: One embedding space to bind them all. In *Proceedings of the*
 645 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15180–15190, 2023.

646

647 Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 648 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
 649 in 1 hour. *ArXiv*, abs/1706.02677, 2017.

650

651 Lan-Zhe Guo, Yi-Ge Zhang, Zhi-Fan Wu, Jiejing Shao, and Yu-Feng Li. Robust semi-supervised
 652 learning when not all classes have labels. In *Neural Information Processing Systems*, 2022. URL
 653 <https://api.semanticscholar.org/CorpusID:258509119>.

648 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask r-cnn. *IEEE Transactions*
 649 *on Pattern Analysis and Machine Intelligence*, 42:386–397, 2017.
 650

651 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 652 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on*
 653 *Computer Vision and Pattern Recognition (CVPR)*, June 2020.

654 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 655 autoencoders are scalable vision learners. *CVPR*, 2021.
 656

657 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
 658 stochastic depth. In *European conference on computer vision*, pp. 646–661. Springer, 2016.

659 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
 660 Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J Henaff, Matthew
 661 Botvinick, Andrew Zisserman, Oriol Vinyals, and Joao Carreira. Perceiver IO: A general architec-
 662 ture for structured inputs & outputs. In *International Conference on Learning Representations*,
 663 2022.

664 Swapnaa Jayaraman, Caitlin M Fausey, and Linda B Smith. The faces in infant-perspective scenes
 665 change over the first year of life. *PLoS one*, 10(5):e0123780, 2015.
 666

667 Swapna Joshi, Waki Kamino, and Selma Sabanovic. Social robot accessories for tailoring and
 668 appropriation of social robots. *International Journal of Social Robotics*, 2024. URL <https://api.semanticscholar.org/CorpusID:268179541>.
 669

670 Guoliang Kang, Lu Jiang, Yi Yang, and Alexander Hauptmann. Contrastive adaptation network for
 671 unsupervised domain adaptation. *CVPR*, 2019.
 672

673 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3d gaussian
 674 splatting for real-time radiance field rendering. *ACM Transactions on Graphics (TOG)*, 42:1 – 14,
 675 2023. URL <https://api.semanticscholar.org/CorpusID:259267917>.
 676

677 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 678 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
 679 Segment anything. *ArXiv*, abs/2304.02643, 2023. URL <https://api.semanticscholar.org/CorpusID:257952310>.
 680

681 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
 682 Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
 683 for visual ai. *arXiv preprint arXiv:1712.05474*, 2017.

684 Klemen Kotar and Roozbeh Mottaghi. Interactron: Embodied adaptive object detection. In *Proceed-
 685 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14860–14869,
 686 2022.
 687

688 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
 689 generalization. *2017 IEEE International Conference on Computer Vision (ICCV)*, pp. 5543–5551,
 690 2017. URL <https://api.semanticscholar.org/CorpusID:6037691>.
 691

692 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
 693 backbones for object detection. In *Computer Vision–ECCV 2022: 17th European Conference, Tel
 694 Aviv, Israel, October 23–27, 2022, Proceedings, Part IX*, pp. 280–296. Springer, 2022.

695 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 696 Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In *European*
 697 *Conference on Computer Vision*, 2014.

698 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv*
 699 *preprint arXiv:2304.08485*, 2023.
 700

701 Xuan Liu, Ying Huang, Hao Wang, Zheng Xiao, and Shigeng Zhang. Universal and scalable
 702 weakly-supervised domain adaptation. *IEEE Transactions on Image Processing*, 2024.

702 Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen
 703 Wu, Zsolt Kira, and Péter Vajda. Unbiased teacher for semi-supervised object detection.
 704 *ArXiv*, abs/2102.09480, 2021a. URL <https://api.semanticscholar.org/CorpusID:231951546>.
 705

706 Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre
 707 Alahi. Ttt++: When does self-supervised test-time training fail or thrive? *Advances in Neural*
 708 *Information Processing Systems*, 34:21808–21820, 2021b.
 709

710 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 711 A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 712 *Pattern Recognition*, pp. 11976–11986, 2022.
 713

714 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.
 715

716 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
 717 representations for vision-and-language tasks. *Advances in neural information processing systems*,
 718 32, 2019.
 719

720 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
 721 Hoiem, and Aniruddha Kembhavi. Unified-IO 2: Scaling autoregressive multimodal models
 722 with vision, language, audio, and action. *ArXiv*, abs/2312.17172, 2023a. URL <https://api.semanticscholar.org/CorpusID:266573555>.
 723

724 Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-
 725 IO: A unified model for vision, language, and multi-modal tasks. In *The Eleventh International*
 726 *Conference on Learning Representations*, 2023b.
 727

728 Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video
 729 depth estimation. *ACM Transactions on Graphics (ToG)*, 39(4):71–1, 2020.
 730

731 Zhaoyang Lv, Nickolas Charron, Pierre Moulon, Alexander Gamino, Cheng Peng, Chris Sweeney,
 732 Edward Miller, Huixuan Tang, Jeff Meissner, Jing Dong, Kiran Somasundaram, Luis Pesqueira,
 733 Mark Schwesinger, Omkar M. Parkhi, Qiao Gu, Renzo De Nardi, Shangyi Cheng, Steve Saarinen,
 734 Vijay Baiyya, Yuyang Zou, Richard A. Newcombe, Jakob Julian Engel, Xiaqing Pan, and Carl
 735 Ren. Aria everyday activities dataset. *ArXiv*, abs/2402.13349, 2024. URL <https://api.semanticscholar.org/CorpusID:267770215>.
 736

737 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 738 Ren Ng. Nerf. *Communications of the ACM*, 2020.
 739

740 David Mizrahi, Roman Bachmann, Oğuzhan Fatih Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan,
 741 and Amir Zamir. 4M: Massively multimodal masked modeling. In *Advances in Neural Information*
 742 *Processing Systems*, 2023.
 743

744 OpenAI. GPT-4 technical report, 2023.
 745

746 OpenAI. Hello gpt-4o. <https://openai.com/index/Hello-gpt-4o/>, 2024. Accessed:
 747 2024-09-23.
 748

749 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 750 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
 751 las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 752 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
 753 mand Joulin, and Piotr Bojanowski. DINov2: Learning robust visual features without supervision.
 754 *ArXiv*, 2023.
 755

Alec Radford, Prafulla Dhariwal, and Ilya Sutskever. Learning transferable visual models from
 natural language supervision. In *ICML*, 2021.

756 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 757 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
 758 Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
 759 LAION-5B: An open large-scale dataset for training next generation image-text models. *Advances
 760 in Neural Information Processing Systems*, 35:25278–25294, 2022.

761 Noam Shazeer. GLU variants improve transformer. *ArXiv*, abs/2002.05202, 2020.

762 Yang Shu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Transferable curriculum for weakly-
 763 supervised domain adaptation. In *AAAI Conference on Artificial Intelligence*, 2019.

764 Lauren K Slone, Linda B Smith, and Chen Yu. Self-generated variability in object images predicts
 765 vocabulary growth. *Developmental science*, 22(6):e12816, 2019.

766 Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin Do-
 767 gus Cubuk, Alexey Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
 768 supervised learning with consistency and confidence. *ArXiv*, abs/2001.07685, 2020. URL
 769 <https://api.semanticscholar.org/CorpusID:210839228>.

770 Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J. Engel,
 771 Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge, Yajie Yan,
 772 Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
 773 Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi,
 774 Michael Goesele, Steven Lovegrove, and Richard Newcombe. The replica dataset: A digital replica
 775 of indoor spaces. *arXiv*, 2019.

776 Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller, Moritz Hardt, and Alexei A. Efros. Test-time
 777 training with self-supervision for generalization under distribution shifts. In *ICML*, 2020.

778 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang,
 779 Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo
 780 Kanazawa. Nerfstudio: A modular framework for neural radiance field development. In *ACM
 781 SIGGRAPH 2023 Conference Proceedings*, SIGGRAPH '23, 2023.

782 Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. *Machine
 783 Learning*, 109:373–440, 2019. URL <https://api.semanticscholar.org/CorpusID:208044535>.

784 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent: Fully
 785 test-time adaptation by entropy minimization. In *International Conference on Learning Representations*,
 786 2021. URL <https://api.semanticscholar.org/CorpusID:232278031>.

787 Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
 788 Szymon Rusinkiewicz, and Thomas A. Funkhouser. Tidybot: Personalized robot assistance with
 789 large language models. *2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
 790 (IROS)*, pp. 3546–3553, 2023. URL <https://api.semanticscholar.org/CorpusID:258564887>.

791 Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
 792 <https://github.com/facebookresearch/detectron2>, 2019.

793 Zehao Xiao and Cees G. M. Snoek. Beyond model adaptation at test time: A survey. 2024. URL
 794 <https://api.semanticscholar.org/CorpusID:273850374>.

795 Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised
 796 data augmentation for consistency training. *arXiv: Learning*, 2019. URL <https://api.semanticscholar.org/CorpusID:195873898>.

797 Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain
 798 transformer for unsupervised domain adaptation. *ArXiv*, 2021.

799 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity
 800 dataset of 3d indoor scenes. In *ICCV*, 2023.

810 Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, and
811 Leonidas J Guibas. Robust learning through cross-task consistency. In *Proceedings of the*
812 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11197–11206, 2020.

813
814 Sharare Zehtabian, Siavash Khodadadeh, Ladislau Bölöni, and Damla Turgut. Modeling an intelligent
815 controller for predictive caching in ar/vr-enabled home scenarios. *Pervasive and Mobile Computing*,
816 71:101334, 2021.

817 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
818 Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In
819 *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:239016453>.

820
821 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. iBoT:
822 Image BERT pre-training with online tokenizer. In *International Conference on Learning Representations*, 2022.

823
824 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
825 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45:4396–4415, 2021.
826 URL <https://api.semanticscholar.org/CorpusID:232104764>.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864	Appendix	
865		
866	A Overview video	18
867		
868	B Additional qualitative results	18
869		
870	C Additional related work.	18
871		
872	D Dataset Details.	18
873		
874	E Additional downstream evaluations: Zero-shot cross-modal retrieval task	19
875		
876	F TST-MM deployment in the wild.	20
877		
878	G TST with the DINOv2 objective.	21
879		
880	H Benchmarking different self-supervised objectives under TST.	21
881		
882	I Using multimodal data during transfer: are additional modalities all you need?	21
883		
884	J What is the smallest unit of space we can specialize on?	22
885		
886	K TST with synthetic data.	23
887		
888	L The role of the transfer dataset mix-in during pre-training.	24
889		
890	M TST with off-the-shelf transfer set.	24
891		
892	N Pseudo-labeler baselines	25
893		
894	O Additional baselines	25
895		
896	P Unimodal specialization-generalization	26
897		
898	Q Do other self-supervised objectives benefit from specialized pre-training?	26
899		
900	R Is distilling in the test space beneficial?	27
901		
902	S Application for hardware data collection	27
903		
904	T Test time training with TST	28
905		
906	U Continual learning with TST.	28
907		
908	V Sampling ratio between test space and transfer data during TST pre-training	29
909		
910	W Experimental Setup details	30
911		
912	W.1 Pre-training details	30
913		
914		
915		
916		
917		

918 W.2 Transfer details 31
919920 X Computational Resources. 32
921923 A OVERVIEW VIDEO
924925 We provide a video with narration that gives a high-level summary of our paper. **We recommend**
926 **watching the video.** The video can be found in the supplementary zip folder.
927928 B ADDITIONAL QUALITATIVE RESULTS
929930 We provide additional qualitative results in Fig 24 and Fig 25. We also provide more video results on
931 various tasks in the supplementary zip file.
932933 C ADDITIONAL RELATED WORK.
934935 **Domain Adaptation** in vision (Li et al., 2017; Zhou et al., 2021) addresses the gap between a source
936 domain, where abundant data is available, and the target domain, where limited (Shu et al., 2019;
937 Liu et al., 2024) or no data (Dong et al., 2021; Ganin & Lempitsky, 2014) are available. TST, when
938 initialized from an Internet-based model, as presented in Tab. 2, can be seen as an instantiation
939 of adapting a generalist model to the test space. However, TST differs by learning task-agnostic
940 representations by self-supervised pre-training in the test space, as opposed to domain adaptation,
941 which generally adapts a pre-trained task-specific network (Xu et al., 2021; Kang et al., 2019).
942943 **Semi-Supervised Learning** refers to a line of work that attempts to learn a task from a limited labeled
944 dataset and massive unlabeled data (van Engelen & Hoos, 2019). Clearly, it involves consistency
945 regularization (Berthelot et al., 2019; Sohn et al., 2020; Xie et al., 2019) and pseudo-labeling (Guo
946 et al., 2022; Chen et al., 2021; Zhang et al., 2021; Liu et al., 2021a) to generate supervision of
947 unlabeled data, followed by joint training. Our framework, TST is closer in spirit to *self-supervised*
948 *learning*, as it tries to learn a task-agnostic representation for the test space, that we transfer for
949 various downstream tasks like segmentation, detection and image captioning. Under semi-supervised
950 learning, specialization with TST can be posed as using unlabelled data from the test space, as
951 opposed to other sources like Internet or similar spaces.
952953 **Embodied Active learning.** In another line of work, SEAL (Chaplot et al., 2021), Interactron (Kotar
954 & Mottaghi, 2022) learn a reinforcement learning based policy to collect supervision in a house to
955 finetune an off-the-shelf MaskRCNN (He et al., 2017), or observe additional frames for multi-frame
956 inference for object detection. As opposed to focusing on adapting task-specific models, we focus on
957 learning task-agnostic pre-trained representations over a test space.
958959 D DATASET DETAILS.
960961 **1. Scannet++** (Yeshwanth et al., 2023) is a large dataset of real-world indoor spaces containing
962 sub-millimeter resolution laser scans, paired with DSLR and iPhone RGB images.
963964

- **Pre-training dataset.** We use 8 Scannet++ (Yeshwanth et al., 2023) scenes as our test space.
965 We use a mix of iPhone and DSLR images for pre-training, with the iPhone containing
966 19165 samples and the DSLR dataset containing 15000 samples.
- **Transfer dataset.** We use non-test space buildings for creating a transfer set of 40000 RGB,
967 segmentation pairs. Note that Scannet++ (Yeshwanth et al., 2023) only provides 3D instance
968 annotations, which we project to 2D to create a semantic segmentation dataset.
- **Evaluation.** We evaluate on semantic segmentation in the test space. The test dataset for
969 evaluation contains 3000 RGB image samples. Note that we collect a separate held out set
970 from the test space for this stage.

971 **2. Replica** (Straub et al., 2019) provides high quality 3D reconstructions of real indoor spaces.
972

- 972 • **Pre-training dataset.** We use Omnidata (Eftekhar et al., 2021), to densely sample Replica
973 meshes corresponding to the 5 scenes to build our pre-training dataset, D_{PT} , containing
974 84889 samples. We defer the details of the sampling procedure to Omnidata (Eftekhar et al.,
975 2021).
- 976 • **Transfer dataset.** Similar to Scannet++ (Yeshwanth et al., 2023), we collect a transfer set
977 from another set of Replica scenes that are different than the scenes used during pre-training.
978 We collect 20000 RGB images and semantic segmentation masks, and use it as our transfer
979 dataset, D_t .
- 980 • **Evaluation.** We evaluate on semantic segmentation in the test space. We collect a test set of
981 5000 images and semantic segmentation annotations from the same test space we pre-train
982 on, and report performance on it. We leverage Omnidata annotation pipeline to extract the
983 segmentation labels.

984 **3. ProcTHOR** (Deitke et al., 2022) It includes procedurally generated house-like environments. We
985 use 5 procedurally generated houses as our test space.

- 986 • **Pre-training dataset.** We randomly sample various agent x, y, z positions and orientations
987 along its axis in the test space, and collect RGB-D images at these points. This sampling
988 process yields a total of 163767 samples. We collect data by sampling densely across the
989 test space and use it as our pre-training dataset D_{PT} .
- 990 • **Transfer dataset.** For the transfer data D_t , we collect a small dataset of 20000 RGB
991 and task annotation pairs, from 800 houses generation using a different asset and layout
992 distribution than the pre-training test space, thereby making them out-of-distribution to it.
- 993 • **Evaluation.** We evaluate TST and present results on three tasks, namely semantic
994 segmentation, object detection and image captioning. We collect a test set with 5000 samples
995 from the same test space, where we performed pre-training, and report performance on it.
996 We use the AI2-THOR (Kolve et al., 2017) metadata to extract semantic segmentation and
997 object detection labels for evaluations. For captioning, we generate ground truth captions
998 by prompting GPT-4o (OpenAI, 2024) with privileged information, e.g. class names and
999 bounding boxes. Finally, we additionally evaluate our model on cross-modal retrieval (in
1000 Sec. E).

1001 **E ADDITIONAL DOWNSTREAM EVALUATIONS: ZERO-SHOT CROSS-MODAL
1002 RETRIEVAL TASK**

Method	Image to Depth			Depth to Image		
	R@1	R@5	R@10	R@1	R@5	R@10
4M-21 (Bachmann et al., 2024)	1.06	2.18	3.08	1.0	2.76	3.66
TST-MM	25.48	37.00	41.58	24.32	36.46	40.82

1012 Table 3: **Zero-shot Cross-modal retrieval.** When performing the image-to-depth and depth-to-image
1013 cross-modal retrievals on the test space data using the predicted CLIP embeddings, we observe that
1014 the TST-MM method constantly outperforms the Internet-based 4M-21 (Bachmann et al., 2024).

1016 As mentioned in Section 4.1, we present results on zero-shot cross-modal retrieval to further support
1017 our framework TST. Specifically, we evaluate the performance of models pre-trained with TST-MM
1018 on RGB-to-Depth and Depth-to-RGB retrieval. To perform retrieval using an Internet-based model,
1019 4M-21 (Bachmann et al., 2024) and TST-MM, we utilize their cross-modal generation capabilities by
1020 transforming depth and RGB images into CLIP embeddings, and then apply retrieval directly on the
1021 CLIP embeddings. Since 4M-21 (Bachmann et al., 2024) and TST-MM generate feature maps for
1022 CLIP as the target modality from RGB and Depth images, we apply mean-pooling on the feature
1023 maps to obtain global CLIP embeddings. Cross-Modal retrieval evaluates TST-MM on two fronts: i)
1024 How well test-space paired modality inputs are aligned in the model representations internally, and
1025 ii) How effectively TST-MM can perform cross-modal generalization. For the evaluation, we report
zero-shot recall at various thresholds on a test set of 5000 samples from ProcTHOR (Deitke et al.,



Figure 10: **TST-MM cross-modal retrieval predictions.** TST-MM retrieves corresponding RGB images from query Depth input and Depth images from RGB input more accurately than the Internet based 4M-21(Bachmann et al., 2024) model.

2022) test space. The results are presented in Tab. 3. We also present qualitative examples in Fig. 10. Note that given our method TST-MM has access to the test space, it can retrieve RGB to Depth and Depth to RGB much more effectively than models based on external data like the Internet.

We find that TST-MM substantially outperforms 4M-21 (Bachmann et al., 2024). The recall performance of TST-MM further increases when evaluated on R@5 and R@10, whereas Internet-based 4M-21 (Bachmann et al., 2024) shows diminishing returns. This underscores the effectiveness of test-space training, where specialization itself is crucial for learning test-space-aligned representations.

F TST-MM DEPLOYMENT IN THE WILD.

In addition to real-world results on Scannet++ 4.5, we also experiment with the deployment of TST, in a custom space. We collect a 15-minute video of a meeting room and used the resulting frames for pre-training described in Sec. 4.1 followed by a transfer on the ScanNet++ (Yeshwanth et al., 2023) transfer set (Sec. D). We evaluated TST-MM and the baselines on the semantic segmentation task. We evaluate TST-MM and the baselines on the semantic segmentation task. Tab. 4 shows that for this custom scene deployment, pre-training on the test-space through TST-MM outperforms the Internet-based baseline 4M-21 (Bachmann et al., 2024). The qualitative comparison in Fig. 11 shows that TST-MM’s predictions are notably better than those of the Internet-based 4M-21 (Bachmann et al., 2024).

Method	mIoU
Scratch	21.82
4M-21	54.58
TST-MM	59.11

Table 4: **Semantic segmentation performance.** Comparison of mIoU scores across different training methods.

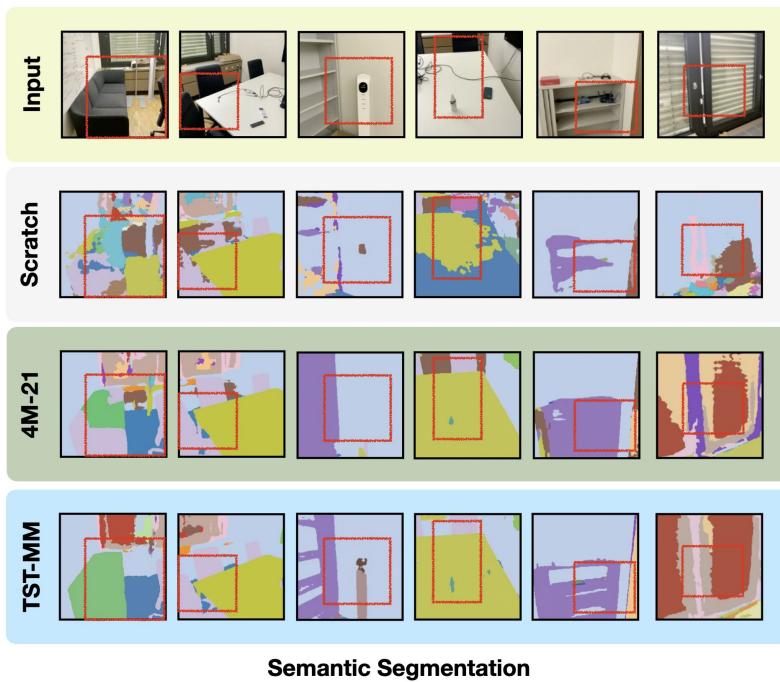


Figure 11: **TST-MM predictions on deployment in the wild.** We showcase the qualitative results for TST-MM on the semantic segmentation task against the Internet-based pre-trained model 4M-21(Bachmann et al., 2024) and scratch (no-pretraining). TST-MM predictions are notably better across object categories, showing the value of access to test space and the deployment potential of TST-MM.

G TST WITH THE DINOv2 OBJECTIVE.

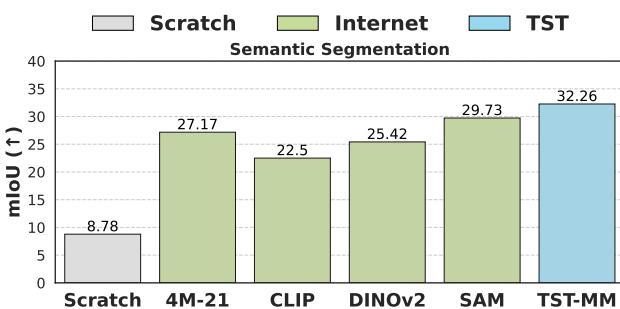
In this section, we explore how TST trained with DINOv2 objective, TST-DINO from *scratch*, compares with its Internet counterpart trained on 142M images from the Internet (Oquab et al., 2023). Fig. 16 shows that pre-training on only data from the test space can substitute large-scale Internet pre-training. This further underscores that TST framework extends to other self-supervised objectives (Oquab et al., 2023) beyond masked modeling for specialization. However, we find that TST-MM, which uses multimodal masked modeling outperforms other unimodal self-supervised objectives like DINOv2 (Oquab et al., 2023) and MAE (He et al., 2021).

H BENCHMARKING DIFFERENT SELF-SUPERVISED OBJECTIVES UNDER TST.

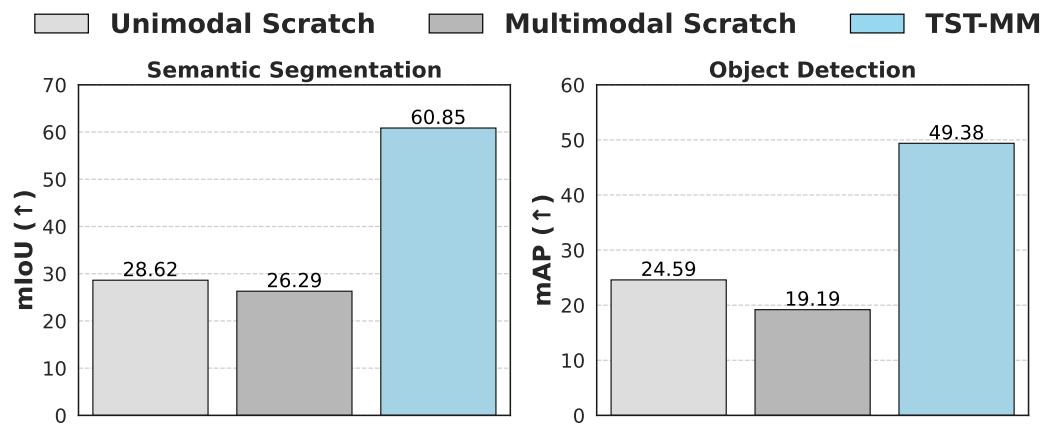
We compare the performance of TST with different pre-training objectives such as multimodal masked modeling (Bachmann et al., 2024), DINOv2 (Oquab et al., 2023) and MAE (He et al., 2021). As shown in Fig. 17, we find that multimodal masked modeling (TST-MM) to be the most performant among the self-supervised objectives we explored. However, note that all 3 objectives show specialization trends as presented in Fig. 8 and Fig. 19.

I USING MULTIMODAL DATA DURING TRANSFER: ARE ADDITIONAL MODALITIES ALL YOU NEED?

In Sec. 4.5, we discuss that pre-training on multimodal data with multimodal masked modeling objective in our TST-MM method leads to a specialist model more performant than other baselines. Here we check if this superior performance is solely due to access to the additional modalities besides RGB that simplify the task, rather than representation learning value through multimodal *pre-training*?



1145 Figure 12: **TST works with off-the-shelf transfer set.** For Replica (Straub et al., 2019)
1146 we find that even when we use ADE20k (et al., 2017) as a transfer set, TST-MM outperforms Internet-based
1147 generalist models, showcasing the importance of having access to the test space, agnostic to the
1148 transfer set.



1164 Figure 13: **Multimodal pre-training is crucial in TST-MM.** We compare our method to the model that
1165 also has access to multimodal data during supervised training on transfer data. “Multimodal Scratch”
1166 uses all modalities, including RGB, as input and predicts the corresponding semantic segmentation
1167 map during both training and testing. TST-MM, which uses only RGB as input during transfer,
1168 significantly outperforms the multimodal scratch model, signifying *the importance of multimodal*
1169 *pre-training*.

1170
1171
1172 Figure 13 shows the performance of a model trained from scratch, only on the semantic segmentation
1173 task using multimodal data, ie, no self-supervised pre-training. It receives all of the modalities as
1174 input and predicts the corresponding segmentation map during both training and testing. We find
1175 that this model performs poorly compared to TST-MM, which leverages multimodal data during
1176 pre-training and only RGB input during transfer and test. This experiment signifies *the importance of*
1177 *pre-training using multimodal data from the test space*.

J WHAT IS THE SMALLEST UNIT OF SPACE WE CAN SPECIALIZE ON?

1181 In the results presented so far, we have shown that TST can specialize on test spaces at the size from
1182 1-8 houses. However, this raises a question, what is the smallest unit of space we can specialize
1183 on? To probe this, we reduce the size of the test space and evaluate if TST can specialize to it. We
1184 consider a model trained via TST specialized, if it can outperform an off-the-shelf Internet-based
1185 generalist, when evaluated on that test space. We reduce the test space, in the form of concentric
1186 rectangles, starting with a room, and then reducing the size of the rectangle. For each rectangle, we
1187 pre-train a specialist model via TST. We compare this against 4M-21 (Bachmann et al., 2024), on the
1188 task of semantic segmentation. We find that we can specialize on a single room (ring 3) that has an

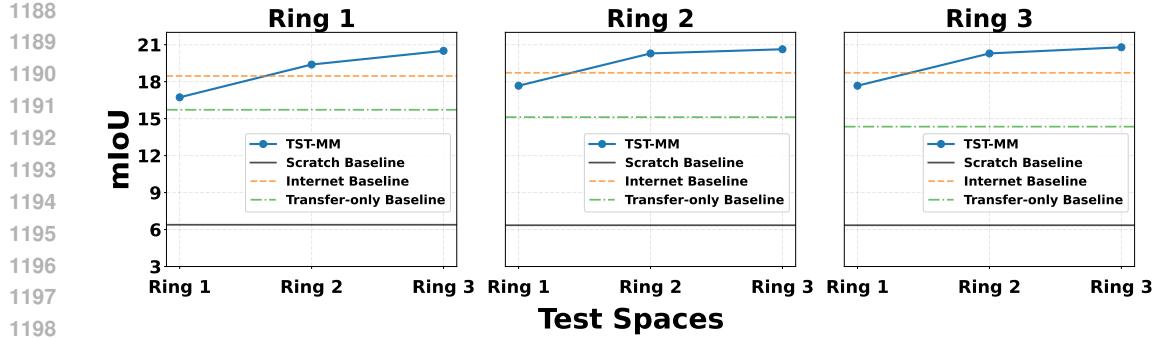


Figure 14: **Smallest unit of space to specialize on.** We reduce the test space size, that we can specialize and pre-train models with TST-MM. We compare it with an Internet pre-trained model (Bachmann et al., 2024), and a baseline that pre-trains only on the transfer set. We also find that training on a ring smaller than the test ring, leads to diminished performance.

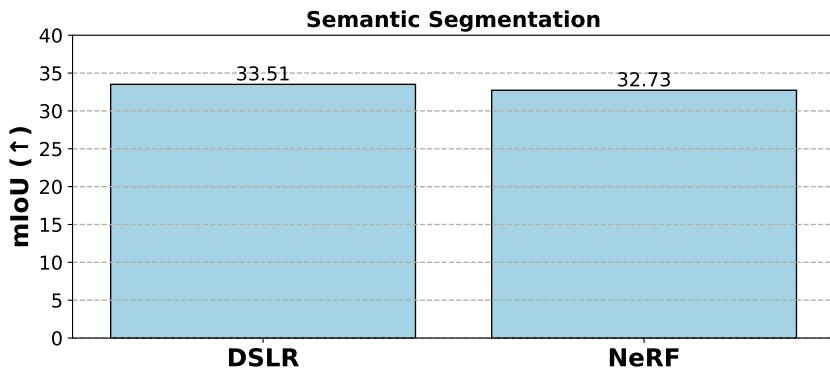


Figure 15: **TST with synthetic data.** We replace real DSLR images in ScanNet++(Yeshwanth et al., 2023) with NeRF(Mildenhall et al., 2020)-rendered images from the same training viewpoints. We find that this results in only negligible performance, hence demonstrating that NeRF’s output quality at known poses is sufficient to substitute high-quality DSLR images.

area of 20 square metres, and this trend continues as we reduce it down to ring 2, which is 11 square metres and ring 1 which is 5 square metres. Reducing the test space, below 5 square metres results in failed specialization, where the pre-training on just the transfer pre-training performs the best.

K TST WITH SYNTHETIC DATA.

Recent advances in novel view synthesis (Mildenhall et al., 2020; Barron et al., 2021; Kerbl et al., 2023) have enabled realistic renderings of indoor spaces, opening up the potential for generating synthetic training data. In TST, we leverage existing indoor scene datasets (Yeshwanth et al., 2023; Straub et al., 2019), which include real RGB images captured with DSLR/iPhone cameras or rendered from 3D meshes, to develop specialized models for specific test spaces. This leads to a key question: if a novel view synthesis model can generate images from arbitrary viewpoints in a test space, can it serve as a controllable data generator—and can its outputs match real images in utility?

To explore this, we train a NeRF model (Tancik et al., 2023) using DSLR images from ScanNet++(Yeshwanth et al., 2023), and render images from the same camera poses. We then pre-train two models—one using real DSLR images and the other using NeRF-rendered views—to assess the performance gap. As shown in Fig.15, NeRF-generated images result in negligible performance loss compared to real images. This suggests an interesting future direction: if high-fidelity NeRF models can be trained with fewer input images, they could act as steerable data generators, reducing the need for extensive real-world data collection in test environments.

1242 **Table 5: Ablating the use of transfer RGB frames during pre-training.** As noted in Sec. 4.1,
 1243 we additionally use RGB images from the transfer set during pre-training. We ablate this choice by
 1244 comparing all three dataset configurations. We use the ViT-S backbone for all models.

	Test Space	Transfer	Segmentation (mIoU \uparrow)
	\times	\checkmark	42.01
TST	\checkmark	\times	<u>50.21</u>
	\checkmark	\checkmark	56.96
4M-21			46.12

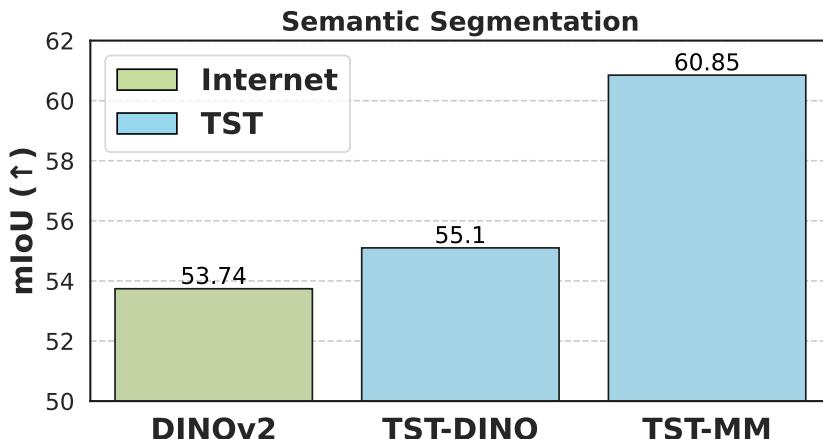


Figure 16: **TST with DINOv2 objective outperforms its Internet counterpart.** We compare the performance of DINOv2 pre-training in the test space, TST-DINO, with DINOv2 pre-trained on the large-scale Internet dataset of 142M images (Oquab et al., 2023). TST-DINO outperforms its Internet counterpart, showing the value of specialization. Yet, TST-MM with multimodal masked modeling achieves the best performance.

L THE ROLE OF THE TRANSFER DATASET MIX-IN DURING PRE-TRAINING.

We study the role of mixing images from the test space and transfer datasets during pre-training, as mentioned in Sec. 4.1. Tab. 5 shows that using only test-space data outperforms both pre-training on large-scale Internet data and using only transfer images, but mixing test space and transfer data achieves the best performance. We hypothesize that seeing transfer images during pre-training helps the model to better align with the fine-tuning stage on the transfer dataset. Note that it cannot be explained by more diverse data in the transfer set, as adding non-test spaces decreases the specialization performance, as observed in Fig. 7.

M TST WITH OFF-THE-SHELF TRANSFER SET.

As noted in Sec. 4.1, for each dataset (Deitke et al., 2022; Straub et al., 2019; Yeshwanth et al., 2023) we explore, the transfer set comes from a similar domain, as the pre-training dataset, albeit from non-test spaces. It naturally raises the question, what if we use an existing off-the-shelf semantic segmentation dataset like ADE20k (et al., 2017) as a transfer set. Does TST generalize and result in performant specialist models, or is an in-domain transfer set necessary? To probe this, for the Replica (Straub et al., 2019) dataset, we pre-train TST-MM, but instead of using non-test spaces from Replica as the transfer set, we use ADE20k (et al., 2017). Fig. 12 shows TST-MM outperforms various generalist models (Bachmann et al., 2024; Oquab et al., 2023; Radford et al., 2021), even when using ADE20k (et al., 2017) as the transfer set. All models are evaluated in the test space from Replica (Straub et al., 2019), on semantic segmentation, with a ViT-B backbone.

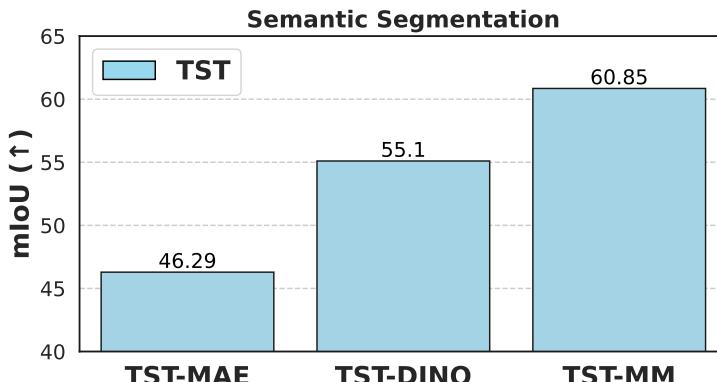


Figure 17: **Comparison between different pre-training objectives under the TST framework.** We compare the performance of different pre-training objectives using TST on the semantic segmentation task. We find that multimodal masked modeling (TST-MM) achieves the best performance followed by TST-DINO. All the three objectives were trained using the ViT-B model size on the ProcTHOR (Deitke et al., 2022) dataset.

Method	Semantic Segmentation			Object Detection		Captioning	
	Scannet++ mIoU ↑	ProcTHOR mIoU ↑	Replica mIoU ↑	Scannet++ mAP ↑	ProcTHOR mAP ↑	ProcTHOR CIDEr ↑	SPICE ↑
Pseudo-labelers	ImageBind (Girdhar et al., 2023)	25.40	44.54	12.78	6.78	32.54	-
	CLIP (Radford et al., 2021)	23.02	48.66	20.92	19.75	38.47	18.4
	Mask2Former (Cheng et al.)	29.42	50.28	22.68	-	-	-
	VITDet (Li et al., 2022)	-	-	-	23.49	44.10	-
	SAM (Kirillov et al., 2023)	34.75	56.72	28.51	-	-	-
Specialist	TST-MM	34.49	60.85	32.87	31.54	49.38	34.3
Pre-training	TST-MM (adapted)	36.44	60.59	34.53	35.83	51.25	39.9
							20.4

Table 6: **Comparing TST-MM against pseudolabels.** We find that TST-MM outperforms all pseudolabels underscoring the value of pre-training on them via multimodal masked modelling in the test space.

N PSEUDO-LABELER BASELINES

As mentioned in Sec. 4.5, we use various off-the-shelf networks to pseudolabel RGB data, and create additional (optional) modalities for TST-MM. We present a comparison for TST-MM against these pseudolabel baselines in Tab. 6. TST-MM and TST-MM (adapted) outperform all pseudolabel baselines, suggesting the benefit of pre-training in the test space with them, via multimodal masked modeling.

O ADDITIONAL BASELINES

TST-MM includes modalities obtained as outputs from different off-the-shelf models. Tab. 2 shows that TST-MM outperforms each individual model used as a modality. Since our transfer tasks are semantic segmentation and object detection, we further study if having off-the-shelf models trained on related tasks as modalities is crucial for our final performance.

We present three experiments using the ViT-B backbone on ProcTHOR (Deitke et al., 2022). For each experiment, we drop one of the following modalities: i) Semantic segmentation, ii) Object detection, iii) Semantic segmentation, Object detection, and SAM edges. Tab. 7 shows the results for each model when transferred to semantic segmentation and object detection. We find that even though the performance drops if we remove all three modalities, TST-MM still outperforms the Internet-based 4M-21 (Bachmann et al., 2024) model.

Method	Modalities				Task	
	Semantic segmentation	Object detection	SAM edge	Others	Segmentation (mIoU↑)	Detection (mAP↑)
TST-MM	✓	✓	✓	✓	60.85	49.38
	✗	✓	✓	✓	59.43	49.58
	✓	✗	✓	✓	59.38	49.34
	✗	✗	✗	✓	55.39	45.97
4M-21 (Bachmann et al., 2024)	✓	✓	✓	✓	53.24	41.43

Table 7: **The effect of semantic modalities in TST-MM.** As the results demonstrate, removing the semantic segmentation and object detection modalities obtained from off-the-shelf networks does not significantly hurt the TST-MM’s performance on the downstream semantic segmentation and object detection tasks. When all three semantic modalities are removed, we observe a drop in performance, but TST-MM still outperforms the Internet-based 4M-21 (Bachmann et al., 2024) model, demonstrating the value of specialization.

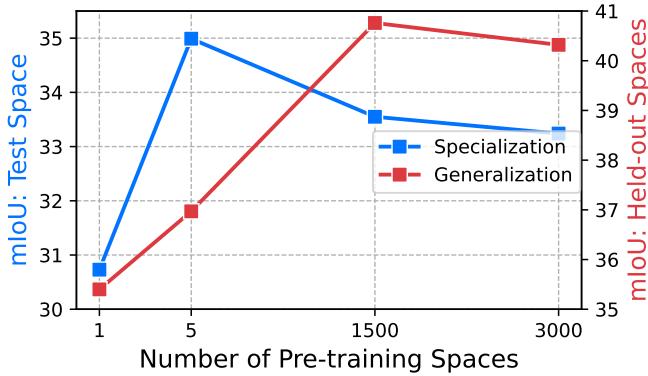


Figure 18: **Unimodal specialization vs generalization.** We further show the specialization-generalization trend with unimodal pre-training.

P UNIMODAL SPECIALIZATION-GENERALIZATION

In Sec. 4.4, we presented the results for specialization-generalization trade-off via multimodal pre-training (Fig. 7). In this section we further examine the specialization-generalization trend under unimodal pre-training, where we pre-train using RGB as the only modality.

The results are presented in Fig. 18 demonstrate that in the unimodal pre-training regime there’s an opposite specialization trend compared to the multimodal pre-training shown in Fig. 7. This further shows the importance of multimodality in order to achieve a performant model in case of specialization.

Q DO OTHER SELF-SUPERVISED OBJECTIVES BENEFIT FROM SPECIALIZED PRE-TRAINING?

In Sec. 4.5, we present results with TST-MM, which employs multimodal masked modeling. However, as mentioned in Sec. 3.3, TST also supports other self-supervised objectives. Fig. 19 shows that pre-training objectives, DINoV2 (Oquab et al., 2023), and RGB-only MAE (He et al., 2021) exhibit similar specialization trends.

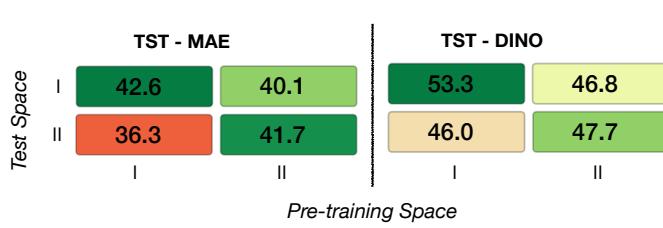


Figure 19: **Specialization using other objectives.** We further demonstrate the specialization using other pre-training objectives including MAE and DINOv2. The results shows similar specialization trend considering the other pre-training objectives.

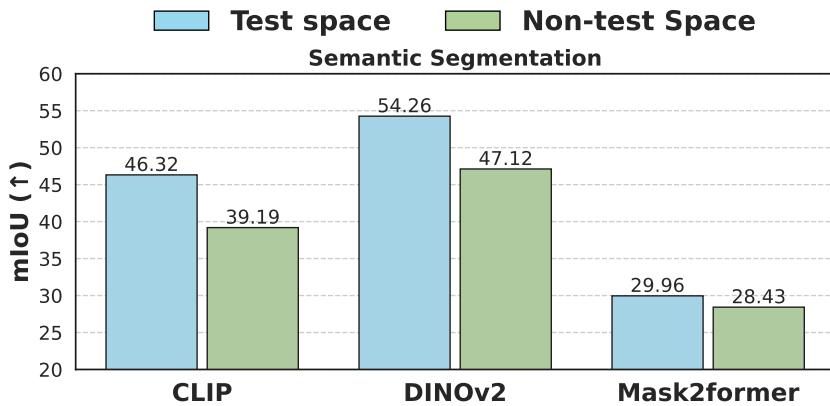


Figure 20: **Distillation in test space.** We find distilling over data from the test space, from various off-the-shelf models, results in more performant models in the test space. All results here are with the ViT-B backbone, on ProcTHOR (Deitke et al., 2022).

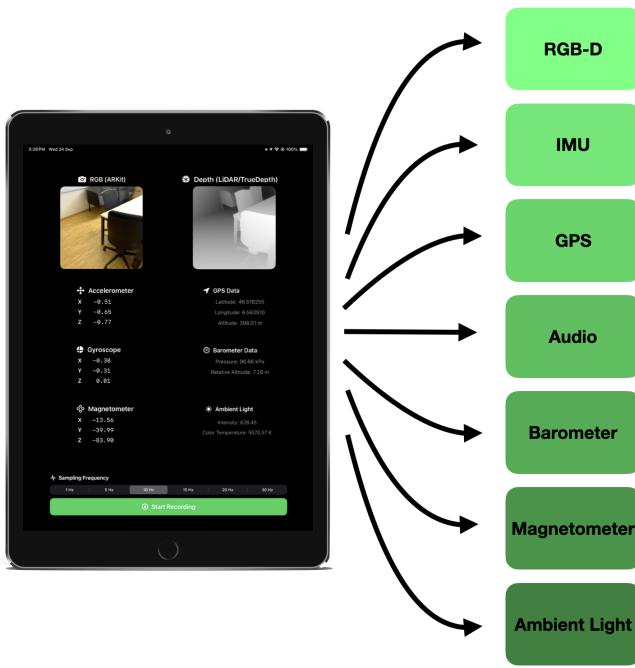
R IS DISTILLING IN THE TEST SPACE BENEFICIAL?

As discussed in Sec. 4.5, we scale modalities by pseudo-labelling RGB data with various Internet-based models (Oquab et al., 2023; Radford et al., 2021; Cheng et al.). This process of creating additional modalities, and pre-training on them has enabled powerful multimodal foundation models (Mizrahi et al., 2023; Bachmann et al., 2024; 2022). This form of pre-training can also be seen as distilling the knowledge from these powerful off-the-shelf networks into a single unified model. With TST-MM, we also distill from various off-the-shelf networks like CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023) with masked modelling (He et al., 2021; Mizrahi et al., 2023). Results in Tab. 2, suggest that distilling with multiple modalities on the test space, results in performant specialist models. However, to disentangle the effect of multimodality and distillation, we take it one step further to probe whether just distilling in the test space, provides some additional benefit, over non-test spaces? Therefore, we distill, CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023) and Mask2former (Cheng et al.) in the test space, and compare it with distilling in an IID, but non test space, and report the results in Fig. 20 on semantic segmentation in ProcTHOR (Deitke et al., 2022). We find that distilling over data from the test space is more performant than the data from non-test spaces, underscoring the importance of access to the test space for specialization.

S APPLICATION FOR HARDWARE DATA COLLECTION

As discussed in Sec. 3.2, TST can be extended to leverage more hardware-based modalities, such as IMU, GPS, Audio, which can be found on most common user devices, such as iPhone. To facilitate

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479



1480
 1481 **Figure 21: iOS application for custom data collection.** The interface of the iOS application that
 1482 allows collecting sensor data from any apple device with a camera.
 1483

1484 future research in this area, we release an iOS application that enables anyone to collect aligned
 1485 multimodal data from RGB-D and additional hardware sensors present on an iPhone. Fig. 21, shows
 1486 an overview of our application.

T TEST TIME TRAINING WITH TST

1490 As noted in Sec. 2, we share a similar goal with Test-time Training (TTT) (Sun et al., 2020) in
 1491 bridging the train-test divide. TTT does it from the lens of inference time optimization to specialize
 1492 to a particular test instance, whereas TST attempts to specialize to a given test space by pre-training
 1493 in it.

1494 However, in practice, these strategies can be orthogonal and complement each other. We can
 1495 potentially apply TTT to a model pre-trained with TST, to improve its performance. To benchmark
 1496 how this combination works, we conduct an analysis where we apply Test-time training with masked
 1497 autoencoders (TTT-MAE) (Gandelsman et al., 2022a), with two pre-trained methods, MAE (He et al.,
 1498 2021) pre-trained on Internet data and TST-MAE pre-trained on the test space.

1499 In TTT-MAE, we first start with a pre-trained MAE ViT-B encoder as the backbone, and train a
 1500 task-specific head on the transfer set. During the test phase, the backbone is further tuned using the
 1501 masked modeling objective for each test sample individually. This adaptive tuning enhances the
 1502 model’s performance on the downstream task for the given test samples.

1503 As presented in Tab. 8, TTT-MAE improves the mIoU results for both the Internet pre-trained
 1504 backbone and TST-MAE. However, we find that TST-MAE gets significantly more improvement
 1505 than Internet-based MAE (He et al., 2021). Both models use a ViT-B backbone and are tested on the
 1506 semantic segmentation on the ProcTHOR (Deitke et al., 2022) dataset.

U CONTINUAL LEARNING WITH TST.

1508 As discussed before, when pre-training is performed on the exact same test space we deploy on,
 1509 TST results in the most performant models. However, TST specializes in the test space, and all its
 1510

MAE (He et al., 2021)	Before TTT (mIoU \uparrow)	After TTT (mIoU \uparrow)
Internet	34.54	39.28
TST	35.48	42.41

Table 8: **TST with Test-Time Training.** Before TTT corresponds to the performance of the models directly after the transfer training without any test-time training, whereas after TTT shows the results when test-time training on the test samples is performed. Both models use a ViT-B backbone and are evaluated on the semantic segmentation on ProcTHOR (Deitke et al., 2022).

characteristics, at the state when the pre-training data was collected. Therefore, a natural question to ask is, what happens if the test space undergoes some changes after data collection? This could include changes in the lighting of the space or minor object placements. We begin by investigating if these changes lead to a drop in performance for the TST model trained on the original test space. Thereafter, we leverage the ability of ProcTHOR to randomize object placements and lighting to create a perturbed version of the test space. Note that the overall layout and assets remain exactly the same, only the lighting and placement of small objects are varied.

We first evaluate the performance of TST-MM pre-trained on the unperturbed test space, on the perturbed test space (Fig. 22, right), and we find that it experiences a drop as compared to its performance in the original test space, (Fig. 22, left). However, as we continually pre-train the model by collecting data in the updated test space (TST-MM (CL)), it quickly recovers the loss in performance, and is still highly performant as compared to Internet-based generalists (Bachmann et al., 2024). This suggests that even under the condition that the test space undergoes changes, by simply continuing data collection in the test space, TST can continually improve its performance, without any access to external data.

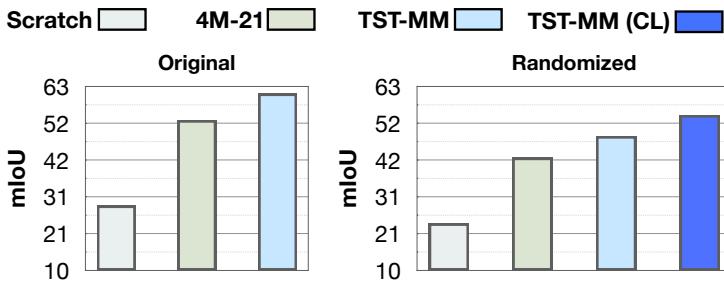


Figure 22: **Continual Learning with TST.** We study the performance of TST-MM, as the test space, undergoes lighting and minor object placement changes. The plot on the left, shows the result of the baselines on the original test space, without any changes. On the right, we present results after the test space has undergone lighting and object displacements. As expected, the TST-MM trained in the original test space, loses some performance, however as we continually train by collecting pre-training in the perturbed test space, we find that TST-MM (CL) quickly recovers performance.

V SAMPLING RATIO BETWEEN TEST SPACE AND TRANSFER DATA DURING TST PRE-TRAINING

As mentioned in Section 4.1, we found mixing RGB images from the transfer set to our pre-training data beneficial for performance. To study the interplay of this dataset mix further, we analyze the effect of the sampling frequency of the samples from the transfer set and the test space data during pre-training. A ratio of 1/1 implies that half the samples in pre-training come from the test space data and the other half from the transfer dataset. We pre-train the TST-MM model using both small and base sizes on the same test space as in Tab. 2, in the ProcTHOR (Deitke et al., 2022) dataset under different ratios. The models are then transferred and evaluated on the semantic segmentation task. Tab. 9 demonstrates the results for various ratio configurations and their effect on different model sizes. First, we find that in all cases, TST-MM consistently outperforms Internet-based 4M-21 (Bachmann

1566 et al., 2024) models of the same size. Secondly, we note that the performance of the bigger ViT-B
 1567 based models is not sensitive to the ratio of sampling transfer and test space data, whereas for smaller
 1568 ViT-S based models, a ratio of 1/1 seems to be a reasonable default choice.
 1569

Model Size	Transfer set / Test space set sampling ratio				4M-21
	1/1	1/4	1/8	1/16	
	Small	61.01	59.03	56.96	
Base	60.36	60.65	60.85	60.36	53.24

1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577 **Table 9: The effect of the sampling ratio between the test space and transfer data during pre-**
 1578 **training.** We report transfer performance on semantic segmentation as we vary the sampling ratio
 1579 between transfer and test space data during pre-training. There is no significant difference in results
 1580 across different ratios for the base model, and for the small model, the best result is obtained with a
 1581 one-to-one sampling ratio between the transfer set and the test space set. Irrespective of the sampling
 1582 ratio observe TST-MM models always outperform Internet-based 4M-21 pre-training (Bachmann
 1583 et al., 2024)

W EXPERIMENTAL SETUP DETAILS

W.1 PRE-TRAINING DETAILS

1589 **Initialization.** For TST-MM, we use two initializations for pre-training. Unless stated otherwise,
 1590 we pre-train our model from scratch, following the hyperparameters in Tab. 10. Additionally, for
 1591 adaptation results in Tab. 2, we start from a pre-trained 4M-21 (Bachmann et al., 2024) model and
 1592 finetune it with the hyperparameters in Tab. 11.

1593 **DINO Pre-training.** For the DINO TST pre-training in Sec. Q, we use the implementation from the
 1594 original DINOv2 repository². We use the default provided training configuration files and train a
 1595 model with the ViT-B/14 backbone for 300,000 steps with a batch size of 1024.

Configuration	Small	Base
Training length (n tokens)	100B	500B
Warmup length (n tokens)	10B	
Optimizer	AdamW (Loshchilov & Hutter, 2019)	
Opt. momentum	$\beta_1, \beta_2 = 0.9, 0.95$	
Base learning rate (Goyal et al., 2017)	1e-4	
Batch size	4096	
Weight decay	0.05	
Learning rate schedule	Cosine decay	
Feedforward activation	SwiGLU (Shazeer, 2020)	
Input token budget	128	256
Target token budget	128	256
Input and target α	Mixture (Bachmann et al., 2024)	
Masking strategy	Mixture (Bachmann et al., 2024)	
Image resolution	224^2	
Augmentation	Random Crop	
Repeated sampling (Feichtenhofer et al., 2022)	4	
Data type	bf16 (Burgess et al., 2019)	

1616 **Table 10: Pre-training settings for scratch initialization.** Training configuration for TST-MM
 1617 initialized from scratch.
 1618

1619 ²<https://github.com/facebookresearch/dinov2>

Configuration	Small	Base
Training length (n tokens)	100B	
Warmup length (n tokens)	10B	
Optimizer	AdamW (Loshchilov & Hutter, 2019)	
Opt. momentum	$\beta_1, \beta_2 = 0.9, 0.95$	
Base learning rate (Goyal et al., 2017)	5e-5	
Batch size	4096	
Weight decay	0.05	
Learning rate schedule	Cosine decay	
Feedforward activation	SwiGLU (Shazeer, 2020)	
Input token budget	128	256
Target token budget	128	256
Input and target α	Mixture (Bachmann et al., 2024)	
Masking strategy	Mixture (Bachmann et al., 2024)	
Image resolution	224 ²	
Augmentation	Random Crop	
Repeated sampling (Feichtenhofer et al., 2022)	4	
Data type	bfloat16 (Burgess et al., 2019)	

Table 11: **Pre-training settings for Internet initialization.** Pre-training configuration for TST starting from the the pre-trained 4M (Bachmann et al., 2024) model weights.

W.2 TRANSFER DETAILS

Semantic segmentation: For semantic segmentation on ProcTHOR (Deitke et al., 2022), Replica (Straub et al., 2019) and Scannet++ (Yeshwanth et al., 2023) datasets, we use the ViT encoder from the pre-trained models with a decoder head, based on the ConvNext (Liu et al., 2022) network with a depth of 4. This decoder head is initialized from scratch. Training details are provided in Tab. 12. On Replica (Straub et al., 2019), and ProcTHOR (Deitke et al., 2022), pre-trained models are transferred and evaluated using a transfer training dataset of 20,000 images and evaluated on 5000 images sampled from the test space. On Scannet++ (Yeshwanth et al., 2023), we use a transfer dataset of 40,000 images and evaluated on 3000 images from the test space.

Configuration	Small	Base
Fine-tuning epochs	64	
Warmup epochs	1	
Optimizer	AdamW (Loshchilov & Hutter, 2019)	
Opt. momentum	$\beta_1, \beta_2 = 0.9, 0.999$	
Learning rate	1e-4	2e-4
Batch size	32 (16 for Scannet++)	
Weight decay	0.05	
Learning rate schedule	Cosine decay	
Layer-wise lr decay (Clark et al., 2020)	0.75	
Drop path (Huang et al., 2016)	0.1	
Input resolution	224 ²	
Augmentation	RandomFlip + RandomCrop	

Table 12: **Semantic segmentation settings.** Configuration used for fine-tuning the pre-trained models on the semantic segmentation task.

Object detection. For object detection, we evaluate pre-trained models by using the ViT-based pre-trained encoder as the feature extractor in the detection framework. We use Cascade Mask-RCNN (He et al., 2017; Cai & Vasconcelos, 2017) as our primary object detection model. Besides the feature extractor, the other learnable components including the detector’s neck and head are

1674 initialized from scratch. All training and evaluations are performed using the Detectron2 (Wu et al.,
 1675 2019) framework. Exact training settings are provided in Tab. 13. We evaluate object detection in the
 1676 test spaces from the ProcTHOR (Deitke et al., 2022) dataset as described in Section 4.1. For transfer,
 1677 we use a dataset of 20,000 images from an external space, that is different from the test space. We
 1678 evaluate the transferred model on 5000 images from the test space.
 1679

Configuration	Small	Base
Fine-tuning epochs	150	
Optimizer	AdamW (Loshchilov & Hutter, 2019)	
Opt. momentum	$\beta_1, \beta_2 = 0.9, 0.999$	
Weight decay	0.1	
Learning rate	0.0001	
Learning rate schedule	Multi-step decay	
Lr schedule milestones	[Epoch 133, Epoch 144]	
Lr schedule decay values	[1.0, 0.1, 0.01]	
Warmup epochs	0.01	
Batch size	128	
Layer-wise lr decay (Clark et al., 2020)	0.7	
Drop path (Huang et al., 2016)	0.1	
Input resolution	224 ²	
Augmentation	RandomFlip + RandomCrop	

1696 Table 13: **Object detection settings.** Configuration used for fine-tuning the pre-trained models on
 1697 the object detection task.
 1698

1699 **Image Captioning.** For image captioning, we evaluate the pre-trained models obtained from various
 1700 methods including TST, 4M-21 (Bachmann et al., 2024) (Internet), and also include randomly-
 1701 initialized baselines (training from scratch). We adopt a standard transformer-based encoder-decoder
 1702 architecture for image captioning and employ cross-entropy loss for next-token prediction during
 1703 training. Images are input to the encoder which serves as the context for the decoder network. The
 1704 encoder network is initialized from the respective method’s encoder while the decoder is initialized
 1705 randomly. Training and hyperparameter details are listed in Tab. 14. We also train a LLaVA style (Liu
 1706 et al., 2023) model that serves as a Large-language-model-based baseline. We first train the connector
 1707 module (MLP layer) using LLaVA’s first-stage pretraining data consisting of 558K image-text pairs
 1708 subset of the LAION-CC-SBU dataset (et al., 2021). For second-stage, we re-format our ProcTHOR
 1709 captioning dataset into instruction-tuning format and jointly finetune both the connector and LLM.
 1710

1711 **Captioning data generation.** To train models on the captioning task, we create a transfer dataset on
 1712 a set of external spaces by generating captions using GPT-4o (OpenAI, 2023) for the transfer dataset.
 1713 We follow a similar procedure for the evaluation set from the test space. We ensure the quality of
 1714 generated captions by providing GPT-4o with multi-modal inputs that include i) original RGB image
 1715 ii) RGB image with instance-wise detection boxes and class names overlayed iii) Class names and
 1716 bounding box coordinates in text format. We design an input prompt that instructs GPT-4o to leverage
 1717 the multi-modal inputs and generate COCO-style (Lin et al., 2014) 5 concise captions with global
 1718 context per image. For a sanity check, we randomly sampled 500 generated samples from the transfer
 1719 set and found all captions to be consistent with the visual contents present in their respective images.
 1720 The prompt message used for generating captions from GPT-4o is shown in Fig. 23.
 1721

1720 X COMPUTATIONAL RESOURCES.

1722 All model pre-training and adaptations were done on 64 H100 GPUs, with the base and small models
 1723 taking approximately 12 hours and 7 hours to train, respectively. For the semantic segmentation
 1724 transfer runs, we fine-tuned the models on 4 H100 GPUs, resulting in approximately 3 hours of
 1725 training for the base model and 1.5 hours for the small model. For the detection task, we only
 1726 fine-tuned the base model on 8 A100 GPUs, training for approximately 6 hours. Similar to detection,
 1727 for captioning we only fine-tuned the base model training on 8 H100 GPUs for approximately 6
 hours.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

I have a dataset of images captured in indoor settings showcasing different common household objects. I want to create COCO-style concise and global captions for these images. Please generate a single caption for each image, adhering to the following guidelines:

1. **Global Context but Concise**:**

The caption should be objective, describing the prominent objects and their spatial relationships within the scene. Each caption must cover the global scene context and prominent objects.

2. **Use of Ground-Truth Classes**:**

Along with each image, ground-truth classes and bounding box information are provided. Bounding box information is in the format `(upper left x coordinate, upper left y coordinate, width, height)`. Use bounding box information for correct spatial relationships (such as left side, right side, top, below, etc.) between objects.

3. **Bounding Boxes and Class Labels Visualized in Image**:**

The bounding boxes and class names are overlaid on the image, showing each detected class for better localization.

4. **Spatial Positioning**:**

Describe all objects' positions and spatial relationships as visible in the image and ground-truth information to help locate them accurately. If multiple objects are present in the image (as indicated in ground-truth information), explicitly mention their count and explain their positional relationships with other objects in the image.

5. **No Hallucinations**:**

Each generated concise caption must agree with the actual contents shown in the provided image. Strictly avoid adding information about objects unless you are certain. Only utilize the information visible in the image and the provided ground-truth class information.

I will provide both the original image and the image with overlaid boxes and labels. Use both images to provide a grounded global and COCO-style concise caption.

Format your response:**

Return a Python list containing concise global captions. Do not output any other text.

Ground Truth information: `GT_class_and_bbox_information`

Image with Annotations: `Image_Annotated`

Original Image: `Image_Original`

Figure 23: **LLM Prompt instruction for ProcTHOR caption generation transfer task.** We generate ground-truth captions by providing multi-modal information to GPT-4o (OpenAI, 2023) including annotated image, class and instance-wise bounding-box information. For each image, we generate 5 COCO-style captions.

Figure 24: **Additional qualitative results.** As demonstrated here TST performs better compared to the other models for all tasks.

1780

1781

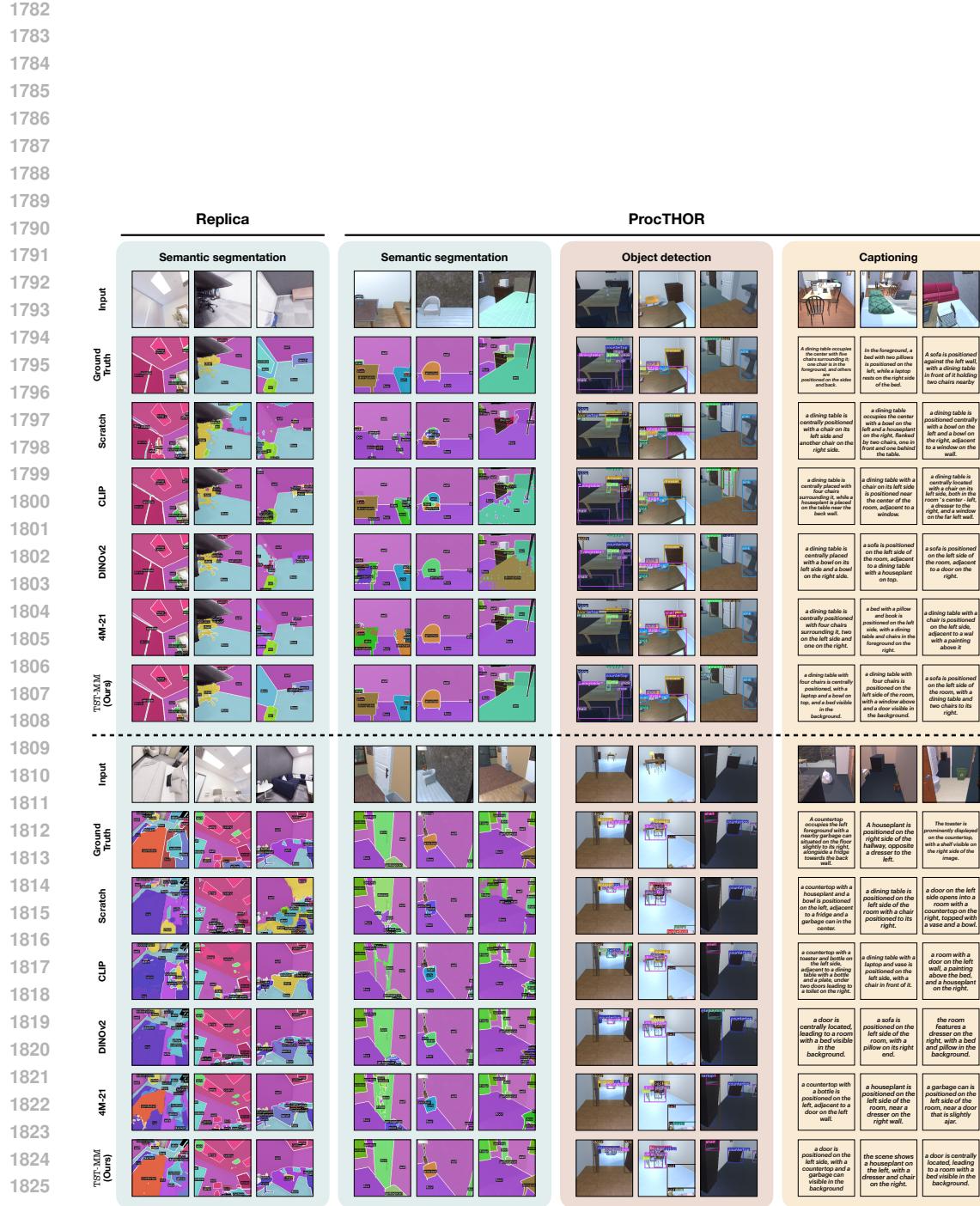


Figure 25: **Additional qualitative results.** As demonstrated here TST performs better compared to the other models for all tasks.

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855

Configuration	ProcTHOR Captioning
Fine-tuning epochs	1400
Warmup epochs	600
Optimizer	AdamW (Loshchilov & Hutter, 2019)
Opt. momentum	$\beta_1, \beta_2 = 0.9, 0.95$
Base learning rate (Goyal et al., 2017)	1e-5
Batch size	2048
Weight decay	0.05
Learning rate schedule	Cosine decay
EMA decay	SwiGLU (Shazeer, 2020)
Eval. freq (epochs)	50
Input resolution	224

1869 Table 14: **Training details: Image Captioning.** Configuration used for transfer training for image
 1870 captioning.
 1871

1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889