
Residual Reweighted Conformal Prediction for Graph Neural Networks

Zheng Zhang*1 Jie Bao*2,3 Zhixin Zhou4 Nicolo Colombo5 Lixin Cheng6 Rui Luo†1,2

1Department of System Engineering, City University of Hong Kong, China
2Chengdu Research Institute, City University of Hong Kong, China

3Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, China
4Alpha Benito Research, USA

5Centre for Intelligent Systems, Royal Holloway, University of London, UK
6Shenzhen People’s Hospital, China

Abstract

Graph Neural Networks (GNNs) excel at model-
ing relational data but face significant challenges
in high-stakes domains due to unquantified uncer-
tainty. Conformal prediction (CP) offers statisti-
cal coverage guarantees, but existing methods of-
ten produce overly conservative prediction inter-
vals that fail to account for graph heteroscedastic-
ity and structural biases. While residual reweight-
ing CP variants address some of these limitations,
they neglect graph topology, cluster-specific uncer-
tainties, and risk data leakage by reusing training
sets. To address these issues, we propose Resid-
ual Reweighted GNN (RR-GNN), a framework
designed to generate minimal prediction sets with
provable marginal coverage guarantees.
RR-GNN introduces three major innovations to
enhance prediction performance. First, it employs
Graph-Structured Mondrian CP to partition nodes
or edges into communities based on topological
features, ensuring cluster-conditional coverage that
reflects heterogeneity. Second, it uses Residual-
Adaptive Nonconformity Scores by training a sec-
ondary GNN on a held-out calibration set to esti-
mate task-specific residuals, dynamically adjust-
ing prediction intervals according to node or edge
uncertainty. Third, it adopts a Cross-Training Pro-
tocol, which alternates the optimization of the pri-
mary GNN and the residual predictor to prevent in-
formation leakage while maintaining graph depen-
dencies. We validate RR-GNN on 15 real-world
graphs across diverse tasks, including node clas-
sification, regression, and edge weight prediction.
Compared to CP baselines, RR-GNN achieves im-
proved efficiency over state-of-the-art methods,
with no loss of coverage.

*These authors contributed equally to this work.
†Corresponding author: ruiluo@cityu.edu.hk

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-
the-art performance on graph-structured data across vari-
ous applications like recommendation systems, knowledge
graphs, and molecular modeling Lam et al. [2023], Li et al.
[2022], Wu et al. [2022]. As GNNs are increasingly applied
in high-stakes areas such as healthcare and autonomous sys-
tems, accurately assessing prediction uncertainty becomes
paramount. A common approach to predicting uncertainty is
to construct prediction intervals that capture the probability
of true outcomes. While several methods of predicting un-
certainty have been explored Hsu et al. [2022], Zhang et al.
[2020], Lakshminarayanan et al. [2017], they typically lack
rigorous theoretical guarantees on interval validity Wang
et al. [2021]. Improving uncertainty quantification for GNNs
with probabilistic guarantees is critical to ensuring their safe,
trusted application in real-world settings.

Previous residual reweight methods Papadopoulos et al.
[2008] often relied on fixed weight loss functions and im-
portance weighting techniques, which do not adequately
capture heteroscedasticity, leading to inaccurate quantifica-
tion of prediction errors across diverse samples. Guan Guan
[2023] proposed Localized Conformal Prediction (LCP),
and Han et al. proposed Split Localized Conformal Pre-
diction (SLCP) Han et al. [2022] which uses kernel-based
weights. However, kernel methods are well-known to suffer
from the curse of dimensionality, making them less effec-
tive in handling complex data, particularly structured data
such as graphs. Previous graph-based methods often relied
on simplistic partitioning techniques that ignored the com-
plex topological structure between nodes and edges Clark-
son [2023], thereby lacking the capability to perform the
samplewise normalization. Conformal Prediction (CP) is a
machine learning framework for uncertainty quantification
that constructs prediction intervals for any underlying point
predictor in a theoretically valid manner Vovk et al. [2005].

mailto:<ruiluo@cityu.edu.hk>?Subject=Residual Reweighted Conformal Prediction for Graph Neural Network

Due to its principled formulation, rigorous guarantees, and
distribution-free nature, CP has enabled uncertainty estima-
tion across diverse applications, including computer vision
Angelopoulos et al. [2020], Bates et al. [2021], causal in-
ference Lei and Candès [2021], Jin et al. [2023], Yin et al.
[2024], time series Gibbs and Candes [2021], Zaffran et al.
[2022], and drug discovery Jin and Candès [2023]. CP lever-
ages a "calibration" dataset to output prediction sets for new
test samples that provably cover the true outcome with at
least 1 - α probability, where α is a user-specified error
tolerance. CP is based on a nonconformity measure/score
that measures the dissimilarity between a data point and oth-
ers, reflecting disagreements according to the algorithm’s
feature-relationship assumptions. Crucially, each noncon-
formity score can represent a single algorithm, by defining
a distinct CP predictor Papadopoulos et al. [2008]. Addi-
tionally, adding a Residual-Reweighting (RR) factor can
refine prediction intervals Papadopoulos et al. [2011], Lei
et al. [2018]. By assigning weights to errors covariately, RR
helps mitigate heteroscedasticity impacts on accuracy and
reliability. Overall, carefully constructing the nonconfor-
mity measure and incorporating RR are pivotal to prediction
performance.

Previous residual reweight methods often relied on fixed-
weight loss functions and importance weighting techniques
to address sample imbalance in various applications. How-
ever, these approaches have significant limitations: they
often overlook relationships between samples, fail to lever-
age the topological structure of the data, and inadequately
analyze prediction residuals when dynamically adjusting
sample weights. Existing methods, such as normalized non-
conformity functions Johansson et al. [2014], Kath and
Ziel [2021] and local reweighted conformal methods Pa-
padopoulos et al. [2008], involve training separate models
to predict errors but struggle to capture the heteroscedas-
ticity of the data. Similarly, prior graph-based methods of-
ten relied on simplistic partitioning techniques that ignored
complex relationships between nodes and edges Aggarwal
[2015]. Before the Cross-Training Protocol, machine learn-
ing models, including GNNs, faced challenges with infor-
mation leakage during training Vepakomma et al. [2020].
Simultaneous optimization of multiple models on the same
dataset often caused one model’s learning to adversely affect
the other, leading to biased predictions and reduced perfor-
mance Kapoor and Narayanan [2023], Hitaj et al. [2017].

We propose a novel residual-reweighted nonconformity mea-
sure for graph neural networks (RR-GNN), which optimizes
model performance by independently predicting expected
accuracy. RR-GNN consists of two GNNs: the Conformal
GNN, which generates predictions based on input features
and true labels, and the Residual GNN, trained on prediction
residuals to calibrate outputs.

We present the key contributions of this work:

• We propose a novel framework that integrates con-
formal prediction with GNNs to enhance uncertainty
quantification in graph-structured data.

• To address the heteroscedasticity of graph data, we de-
sign a novel nonconformity score that reweights resid-
uals using a separately trained GNN.

• We introduce a graph-based Mondrian CP, where nodes
are clustered based on graph structure, enabling fine-
grained, context-aware prediction intervals Aggarwal
[2015].

• To prevent information leakage between the primary
GNN and residual-prediction GNN, we develop a
cross-training strategy where models iteratively update
each other. This ensures independence between cali-
bration and training data—a critical requirement for
CP validity—while maintaining model performance
Vepakomma et al. [2020], Kapoor and Narayanan
[2023], Hitaj et al. [2017].

2 RELATED WORK

Conformal prediction (CP) Vovk et al. [2005] is a method-
ology designed to generate prediction regions for variables
of interest, facilitating the estimation of model uncertainty
by providing prediction sets rather than point estimates. CP
has been successfully applied to both classification Luo
and Zhou [2024], Luo and Colombo [2024], Luo and Zhou
[2025a] and regression tasks Luo and Zhou [2025d,e]. Its
flexibility allows adaptation to various real-world scenarios,
including segmentation Luo and Zhou [2025b], games Luo
et al. [2024], Bao et al. [2025], time-series forecasting Su
et al. [2024], and graph-based applications Luo et al. [2023],
Tang et al. [2025], Luo and Zhou [2025c], Wang et al.
[2025], Luo and Colombo [2025].

Graph Neural Networks (GNNs) have become foundational
models for learning from graph-structured data. Kipf et
al. Kipf and Welling [2016a] introduced a seminal unsu-
pervised GNN for learning low-dimensional embeddings.
Cai et al. Cai et al. [2021] proposed the Line Graph Neu-
ral Network (LGNN), which reformulates link prediction
as a node classification problem in the line graph. Kollias
et al. Kollias et al. [2022] developed DiGAE, a directed
graph auto-encoder with parameterized message passing for
node classification and link prediction. GNNs are also adapt-
able to regression tasks Luo and Krishnamurthy [2023b] by
modifying the output layer and loss functions, which has
potential applications in network segregation prediction and
control Luo et al. [2021], Krishnamurthy et al. [2021], Luo
et al. [2022b,a], Luo and Krishnamurthy [2023a].

For heterogeneous graphs, specialized architectures have
been proposed. Wang et al. Wang et al. [2019] introduced
the Heterogeneous Graph Attention Network (HAN), which
employs hierarchical attention to capture both meta-path-

based and semantic-level importance, achieving state-of-
the-art results. Iyer et al. Iyer et al. [2021] presented the
Bi-Level Attention GNN (BAGNN), utilizing a bi-level at-
tention mechanism to learn complex relationships in hetero-
geneous data.

While existing GNN approaches focus primarily on achiev-
ing high prediction accuracy, they often lack flexibility,
adaptability, and mechanisms for uncertainty quantifica-
tion. Conformal prediction addresses these gaps by offering
prediction intervals and enhanced generalization. Notably,
Huang et al. Huang et al. [2024] extended CP to GNNs
with CF-GNN, improving uncertainty quantification. Ro-
bustness in these frameworks has been further enhanced
by importance weighting schemes. Guo et al. Guo et al.
[2017] introduced a causal inference-driven weighting tech-
nique, whereas Volpi et al. Volpi et al. [2018] proposed a
distribution matching-based strategy to mitigate distribution
shifts.

Despite these advancements, rigorous guarantees on cover-
age and reliability for uncertainty quantification in GNNs
remain an open challenge Bhagat et al. [2011].

3 METHODOLOGY

RR-GNN combines conformal prediction with a GNN-
based framework to effectively address graph-structured
data tasks. The model accepts a graph as input, either undi-
rected or directed and yields predictions for edge weights
or node features as output. RR-GNN provides prediction
intervals instead of a single point value, which can better
capture the uncertainty in the data. For new test samples,
the probability of the predicted interval would cover the
true outcome with at least 1 - α with rigorous theoretical
guarantees.

RR-GNN performs graph-based Mondrian CP, in which
the input graph is clustered to subnetworks to capture the
community structure of the graph. It begins by training a pre-
dictive model on a training dataset named Conformal GNN,
which gives the main prediction according to the tasks. Next,
RR-GNN trains a Residual GNN model based on the valida-
tion set to predict the residual of Conformal GNN, which is
next used to calculate prediction errors used as a reweight
factor to establish nonconformity scores, measuring how
unusual the data point looks relative to previous examples.
After determining a significance level based on the desired
confidence, RR-GNN generates a cluster-specific fixed pre-
diction interval based on the distribution of nonconformity
scores in the calibration set of each cluster. The predicted
interval of test data is given by the combination of predicted
point estimation, residual prediction and the cluster-specific
fixed interval. Notably, throughout this process, each dataset
is divided into four distinct parts: training data, validation
data, calibration data, and test data, with only the test data

Training data

𝑨 𝑿

Node featuresNode features

Validation data

𝑨,𝑾 𝑿

Node featuresNode features

Conformal

GNN

Residual

GNN

Edge

weight

Node

classification

Node

regression

Ground truth

Edge

weight

Or

Node

label

Ground truth of Residual GNN

Predicted residual

Predicted value

by Conformal

GNN

Residual=

Ground truth (GNN1)

–Predicted value

Edge

Weight

residual

Node

Classification

residual

Node

Regression

residual

Cross-training

Predicted value

Test data

Conformal GNN Residual GNN

Predicted

value

Predicted

residual
+

Cluster-specific error reweighted predicted interval

𝑨,𝑾
𝑿

Node featuresNode features

tr
a
in

in
g

te
s
ti
n
g

Mondrian conformal prediction

Cluster the whole graph (all data)

into subgraphs

cluster 1

cluster 2
cluster 3

+
Graph

clustering

Error reweight

Figure 1: The RR-GNN pipeline consists of three parts:
1) Conformal GNN Training: A GNN is trained for edge
weight prediction, node regression, or classification, out-
putting prediction intervals with uncertainty quantification
and marginal coverage guarantees; 2) Residual GNN Train-
ing: A separate Residual GNN is trained on validation data
to predict residuals between true values and Conformal
GNN predictions; 3) Residual Reweighting: Prediction in-
tervals from the Conformal GNN and residual weights from
the Residual GNN are integrated, and Mondrian confor-
mal prediction incorporates graph-structured clustering. The
Conformal and Residual GNNs are trained alternately, with
the Residual GNN correcting the Conformal GNN’s final
predictions.

lacking labels. Algorithm 1 and Figure 1 show the imple-
mentation details of training the main and residual models
crossly simultaneously Cowell et al. [2006], Peste et al.
[2021]. The Conformal GNN model is trained using a cross-
training process with the Residual GNN model.

We clarify the notation here. The input is a graph, G =
(V,E), with node set V and edge set E ⊆ V× V. Assume
the graph has n nodes with m features. Let X ∈ Rn×m

be the node feature matrix, and Xi,: ∈ Rm be the feature
vector of the ith node. The binary adjacency matrix of G,
A ∈ {0, 1}n×n, encodes the binary (unweighted) connect-
ing structure of the graph. For the weighted graph, we use
W ∈ Rn×n to represent the weighted adjacency matrix.

In RR-GNN, taking the weighted graph as an example. We
partition the edge set E into three disjoint subsets: Etrain,
Eval, Ecalib and Etest, while satisfying E = Etrain ∪

Algorithm 1 Crossly-Training Algorithm for RR-GNN

Input: Model C0 (Conformal GNN) weights θ1 ∈ RN ,
Residual Model C1 (Residual GNN) weights θ2 ∈ RN ,
loop limit n
for i = 1 to n with step 1 do

if i is odd then
Train Model C0 with gradients and update θ1 using
the training data.

else
Get the residual from Model C0 as the label based
on validation data.
Train Residual Model C1 with gradients and update
θ2 based on validation data.

end if
end for

Eval ∪Ecalib ∪Etest. We define

Wtrain =

Wij , if (i, j) ∈ Etrain;

δ, if (i, j) ∈ Eval ∪Ecalib ∪Etest;

0, otherwise,
(1)

where δ > 0 is a small positive constant to represent a
minimal edge weight. The Conformal GNN is represented
by:

[ŷ, ŷα/2, ŷ1−α/2] = gθ1

(
W train,X

)
, (2)

where y is the label for a specific task; gθ1
represents the

GNN-based model mapping the input to the label; ŷα/2 and
ŷ1−α/2 is the predicted α/2 and 1 − α/2 quantile of the
label. The Residual GNN is represented by the following
equation:

R̂ = gθ2

(
W val,X

)
, (3)

where R̂ is the predicted residual of Conformal GNN pre-
diction; gθ2 represents the GNN-based model mapping the
input to the residual. Then, we will predict residuals for the
calibration set and calculate the nonconformity score

V = s
(
gθ1

(
W calib,X

)
, gθ2

(
W calib,X

))
, (4)

where s(.) is the nonconformity function. We will perform
graph-based partition: the nodes in the graph G = (V,E)
are clustered into K groups C1, C2, . . . , CK using Louvain
clustering, where G(m) = (V(m), E(m)) is the subgraph for
the cluster m. Next, we will get an interval factor for each
cluster, d(m), which is a quantile of nonconformity scores
according to the significant level. The predicted interval for
a test data point in cluster m is

C(m) = [l
(
gθ1

(
W test,X

)
, gθ2

(
W test,X

)
, d(m)

)
,

u
(
gθ1

(
W test,X

)
, gθ2

(
W test,X

)
, d(m)

)
], (5)

where l(.) and u(.) represent the lower and upper bound of
the prediction interval.

3.1 NODE REGRESSION/CLASSIFICATION

For the node regression/classification tasks, we partition the
node set V into three disjoint subsets: V train, V val, V calib

and V test, while satisfying V = V train∪V val∪V calib∪
V test. We define the label of node y as:

ytrain =

{
yi, if i ∈ V train;

0, otherwise,
(6)

We use the training label ytrain and validation label yval

to train the Conformal GNN and get the parameters θ1 and
θ2, respectively. Then, we will predict residuals for the
calibration set and calculate the nonconformity score for
each node from the calibration set.

V calib = s
(
gθ1

(W ,X) , gθ2
(W ,X) ,Vcalib

)
, (7)

where the nonconformity score is calculated only on the
calibration set. Next, we will get an interval factor, d, which
is a quantile of nonconformity scores according to the sig-
nificant level. The predicted interval for a test data point
is

C = [l(gθ1
(W ,X) , gθ2

(W ,X) , d,Vtest),

u(gθ1 (W ,X) , gθ2 (W ,X) , d,Vtest)], (8)

where l(.) and u(.) represent the lower and upper bound of
the prediction interval, which are calculated based on the
predicted node label of the test set.

3.2 RR-GNN ON EDGE WEIGHT PREDICTION

3.2.1 Conformal GAE for Edge Weight Prediction

The GAE Kipf and Welling [2016b], Ahn and Kim [2021]
is used for edge weight prediction tasks by learning node
embeddings across various types of graphs, including di-
rected graphs Kollias et al. [2022], weighted graphs Zulaika
et al. [2022], and graphs with different edge types Samanta
et al. [2020]. The edge weight is then given by the similar-
ity of node embeddings. There are two kinds of problem
settings in link prediction shown in Figure 1 in appendices
material including transductive setting and inductive setting.
We focus on the first one. We can see the details in the first
part in Figure 5 appendices material. We integrate CP in
GAE’s framework by making the encoder produce a triple
output. We use Z,Zα/2, and Z1−α/2 ∈ Rn×d to represent
the mean, α/2 quantile, and (1 − α/2) quantile of node
embedding matrix obtained from a Conformal GAE model.
This differs from having three single-output GAE encoders
because most network parameters are shared across the three
embeddings. The resulting embedding is

[Z,Zα/2,Z1−α/2] = fθ(X,A), (9)

where fθ is the structure of the encoder, and θ is a learnable
parameter. Note that the traditional GNN model is applicable
because it could generate d-dimentional output for each
node, which represents node embeddings. Directed GAE
designed for the directed graph Kollias et al. [2022] is more
flexible, using separate source and target embeddings, Z =
[ZS ,ZT]. As for undirected GAE, ZS = ZT . It is similar
for Zα/2 and Z1−α/2.

We take the directed graph as an example for the following
description. We next reconstruct the weighted adjacency
matrix from the inner product between node embeddings,
which is the Conformal GNN-based model.

gθ1(X,A) = [Ŵ , Ŵ α/2, Ŵ 1−α/2] = [ZS(ZT)
⊤
,

ZS,α/2(ZT,α/2)
⊤
,ZS,1−α/2(ZT,1−α/2)

⊤
]. (10)

where Ŵ , Ŵ α/2, and Ŵ 1−α/2 be the mean, α/2, and (1-
α/2) quantiles of the edge weights.

The loss function LConformal−GNN is given by:

LGAE +
∑

(i,j)∈Etrain

ρα/2

(
W train

ij , Ŵ
α/2
ij

)
+ ρ1−α/2

(
W train

ij , Ŵ
1−α/2
ij

)
. (11)

where LGAE is the squared error loss defined in (9) The
second term is the pinball loss referenced to Romano et al.
[2019], Steinwart and Christmann [2011], defined as

ρα(y, ŷ) :=

{
α(y − ŷ) if y > ŷ

(1− α)(y − ŷ) otherwise

The first term is added to train the mean estimator, Ŵ .

LGAE = ∥Atrain ⊙ Ŵ −W train∥. (12)

3.2.2 RR-GNN on Edge Weight Prediction

We train a separate Residual GAE model to predict the error
of the edge weight prediction of the gθ1

,

R̂val
ij = gθ2

((i, j);A,X) , (13)

where the label is Rval
ij = W val

ij − Ŵ val
ij , Ŵ val

ij =

gθ1

(
(i, j);Aval,X

)
is the output of conformal GAE, and

the RR-GAE is trained by minimizing

LResidual GNN = ∥Aval ⊙ R̂
val

−Rval∥F . (14)

We use the standard deviation of these predictions as a proxy
of the residual. More concretely, we propose a new noncon-
formity score function, which is the interval of predicted

edge weight reweighted according to the absolute value of
the residual as predicted by the RR-GNN model (13).

V RR
ij = max

{
Ŵ

α/2
ij −W calib

ij∣∣R̂ij

∣∣ ,
W calib

ij − Ŵ
1−α/2
ij∣∣R̂ij

∣∣
}
,

(15)
(i, j) ∈ Ecalib, (16)

where Ŵ α/2 and Ŵ 1−α/2 is the predicted edge weight
quantile of the Conformal GAE based on the calibration
set. Let dRR

(m) be the k-th smallest value in {V RR
ij |(i, j) ∈

Ecalib
(m) } for the cluster m, where k = ⌈(n/2 + 1)(1− α)⌉

where n is size of Ecalib
(m) . The RR prediction intervals for

cluster m are:

C
(m)
ab =

[
Ŵ

α/2
ab − dRR

(m)

∣∣R̂ab

∣∣, Ŵ 1−α/2
ab + dRR

(m)

∣∣R̂ab

∣∣],
(17)

(a, b) ∈ Etest
(m) , (18)

The theoretical guarantees on interval validity can be refer-
enced to Luo and Colombo [2025].

Algorithm 2 Residual Reweighted Conformalized Graph
Neural Network for Edge Weight Prediction

1: Input: The binary adjacency matrix A ∈ {0, 1}n×n,
edge weight matrix W ∈ Rn×n, node features X ∈
Rn×m, training edges and weights Etrain and W train,
validation edges and weights Eval and W val (used for
training Residual GNN), calibration edges and weights
Ecalib and W calib, and test edges Etest, user-specified
error rate α ∈ (0, 1), two GNN models gθ1

and gθ2

with trainable parameters θ1 and θ2.
2: Cluster the whole graph E = Etrain∪Eval∪Ecalib∪

Etest into K clusters using Louvain clustering.
3: Train the models gθ1 and gθ2 with A, X , W train and

W val according to Algorithm 1.
4: Predict the interval [Ŵα/2

ij , Ŵ
1−α/2
ij] as the output of

gθ1 and the residual R̂ij as the output of gθ2 using the
calibration data as input.

5: Compute the nonconformity score V RR
ij for the calibra-

tion data according to (15).
6: Compute d(m) = the k-th smallest value in

{V RR
ij |(i, j) ∈ Ecalib

(m) }, where k = ⌈(|Ecalib
(m) |+1)(1−

α)⌉.
7: Construct a prediction interval for test edges according

to (17).
8: Output: Prediction of confidence intervals for the test

edges (a, b) ∈ Etest with the coverage guarantee ac-
cording to (17).

3.3 RR-GNN ON NODE REGRESSION

We apply RR-GNN for the node regression task to predict a
continuous target variable yi associated with each node i in a

Table 1: Performance comparison of the proposed models

GNN Model On Chicago Data GraphConv SAGEConv GCNConv GATConv
Score Method-CP coverx ineff coverx ineff coverx ineff coverx ineff
GAE 0.7984±0.1181 3.6659±0.3313 0.8297±0.1264 3.6350±0.2231 0.8234±0.1213 3.6918±0.2454 0.9524±0.0333 3.3493±0.5910

DiGAE 0.8081±0.1257 3.5721±0.1951 0.8196±0.1215 3.5978±0.1884 0.8135±0.1361 3.5846±0.2050 0.8135±0.1319 3.6346±0.2432

LGNN 0.9174±0.0238 6.7157±0.1325 0.9152±0.0256 6.5865±0.1577 0.9151±0.0246 6.5265±0.1426 0.9075±0.0618 6.0679±0.1862

Average 0.8477 4.6512 0.8548 4.5998 0.8507 4.6010 0.8912 4.3506
Score Method-CQR coverx ineff coverx ineff coverx ineff coverx ineff

GAE 0.9514±0.0144 3.3652±0.1312 0.9517±0.0141 3.5878±0.2107 0.9578±0.0420 4.0504±1.2916 0.9524±0.0333 3.3292±0.5866

DiGAE 0.9205±0.0498 3.3135±0.1172 0.9223±0.0469 3.3872±0.1260 0.9250±0.0479 3.4241±0.1271 0.9089±0.0611 3.6158±0.2348

LGNN 0.9284±0.0296 3.4362±0.1029 0.9305±0.0258 3.4844±0.1233 0.9290±0.0284 3.6514±0.1050 0.9379±0.0261 4.0805±0.5445

Average 0.9334 3.3716 0.9348 3.4865 0.9373 3.7086 0.9331 3.6752
Score Method-CQR-cluster coverx ineff coverx ineff coverx ineff coverx ineff
GAE 0.9519±0.0318 3.3721±0.021 0.9532±0.028 3.4862±0.035 0.9557±0.024 3.7083±0.041 0.9541±0.032 3.6749±0.019

DiGAE 0.9412±0.025 3.3645±0.018 0.9428±0.031 3.4821±0.027 0.9443±0.029 3.7058±0.033 0.9437±0.026 3.6724±0.022

LGNN 0.9315±0.037 3.3582±0.015 0.9332±0.034 3.4789±0.029 0.9351±0.031 3.7023±0.036 0.9345±0.028 3.6698±0.024

Average 0.9415 3.3649 0.9424 3.4824 0.9450 3.7055 0.9438 3.6720
Score Method-CQR-RR coverx ineff coverx ineff coverx ineff coverx ineff
GAE 0.9482±0.019 3.3018±0.017 0.9497±0.021 3.3976±0.023 0.9513±0.016 3.4241±0.025 0.9508±0.018 3.5372±0.020

DiGAE 0.9395±0.026 3.2954±0.019 0.9411±0.028 3.3921±0.024 0.9428±0.022 3.4207±0.027 0.9432±0.025 3.5346±0.021

LGNN 0.9316±0.035 3.2893±0.014 0.9335±0.032 3.3875±0.026 0.9357±0.029 3.4174±0.028 0.9364±0.027 3.5319±0.023

Average 0.9442 3.2945 0.9414 3.3920 0.9433 3.4207 0.9435 3.5346
Score Method-CQR-RR-Cluster coverx ineff coverx ineff coverx ineff coverx ineff

GAE 0.9578±0.0134 3.1297±0.1401 0.9578±0.0189 3.0985±0.1478 0.9527±0.0123 3.1614±0.1622 0.9520±0.0145 2.8927±0.1223

DiGAE 0.9513±0.0415 3.0262±0.1412 0.9501±0.0312 2.8976±0.1393 0.9507±0.0456 2.9347±0.1139 0.9442±0.0735 3.0321±0.2134

LGNN 0.9438±0.0396 3.3562±0.0355 0.9473±0.0423 3.1422±0.0423 0.9497±0.0323 2.9913±0.0732 0.9507±0.0324 3.5195±0.1231

Average 0.9510 3.1707 0.9517 3.0461 0.9510 3.0291 0.9490 3.1481

graph. Firstly, we train a traditional GNN model (Conformal
GNN) for the node regression task using the training set.
The GNN model learns a function f : G → Rn, where G
is the input graph and f(G)i represents the predicted target
variable for node i. Node regression minimizes the distance
between the direct output and labels.

ŷ = fGNN(X,A) (19)

L = |y − ŷ|2 (20)

Here, we use the GNN-based model, GAE, to deal with sev-
eral cases, which generates the embedding using an encoder
function and generate node regression using the decoder
function. For the following steps, a Residual GNN predicts
the residual of the node labels, generating the weight for
the non-conformity measure when computing prediction
sets. The details of the algorithm are shown in appendices
Algorithm 2.

3.4 RR-GNN ON NODE CLASSIFICATION

The node classification problem is a fundamental task in
graph-based machine learning, where the goal is to predict
a discrete label or class for each node in a given graph.

We first trained the Conformal GNN model, a function
f : G → {0, 1, ...,K}n, that maps the node features to
the corresponding labels with K classes. Compared with re-
gression, node classification uses binary cross-entropy loss
as the loss function:

ŷ = fGNN(X,A) (21)

L = − 1

N

N∑
i=1

K∑
k=1

yi,k log(ŷi,k) (22)

We then generate the residual of the predicted value and
the actual label as the label for the Residual GNN. We

do a softmax operation to get a vector, representing the
probability of the node belonging to each class:

l̂ = softmax(ŷ) (23)

The residual r̂ is obtained by:

r̂ = l̂− y (24)

Where y is the one-hot label of which class the node be-
longs to. In Algorithm 4 appendices material, we set a small
positive real number ϵ (1e-9) to avoid the denominator equal
to 0. In addition, we need the differentiable quantile method
in equation (21). Since the non-conformity score is usually
differentiable, it only requires differentiable quantile calcu-
lation where there are well-established methods available
Chernozhukov et al. [2010], Blondel et al. [2020].

4 RESULTS

4.1 EMPIRICAL ANALYSIS

In this section, we showcase the application of the proposed
RR-GNN on 15 datasets for edge weight prediction, node
regression, and node classification problems. We conduct
a comparative analysis of the performance of RR-GNN
and four competitors based on two metrics. For the data
split, 30% of the data was designated for training, 30%
for validation, 20% for testing, and the remaining 20% for
calibration.

Datasets: To evaluate the effectiveness of RR-GNN algo-
rithm, we conduct experiments on four categories of bench-
mark graph datasets: 1) traffic datasets, 2) citation connec-
tion datasets, 3) social network datasets, and 4) additional
datasets.

Table 2: Results of RR-GNN on Node Regression Datasets

Dataset GraphSAGE SGC GCN GATS
Metrics coverx ineff coverx ineff coverx ineff coverx ineff

Anaheim: CF-GNN 0.9520±0.0669 1.9231±0.0483 0.9559±0.0617 2.2031±0.0241 0.9519±0.0531 2.3782±0.0533 0.9523±0.0302 2.1499±0.0463

Anaheim: Cluster-GNN 0.9532±0.042 1.8954±0.037 0.9561±0.035 2.1423±0.031 0.9528±0.041 2.2451±0.029 0.9541±0.028 2.0321±0.025

Anaheim: RR-GAE 0.9539±0.038 1.8732±0.032 0.9567±0.031 2.0987±0.028 0.9532±0.036 2.1934±0.026 0.9563±0.024 1.9623±0.022

Anaheim: Clsuter-RR-GAE 0.9543±0.0320 1.9647±0.0197 0.9577±0.0657 2.0188±0.0246 0.9585±0.0413 2.2179±0.0254 0.9638±0.0302 1.8996±0.0249

Chicago: CF-GNN 0.9448±0.0519 2.3426±0.0384 0.9486±0.0247 1.0423±0.0372 0.9505±0.0447 2.0456±0.0443 0.9508±0.0569 1.1396±0.0686

Chicago: Cluster-GNN 0.9461±0.039 2.2894±0.034 0.9492±0.031 1.1895±0.029 0.9513±0.037 1.8742±0.031 0.9516±0.042 1.1254±0.045

Chicago: RR-GAE 0.9472±0.035 2.2673±0.029 0.9498±0.028 1.2567±0.026 0.9519±0.033 1.6923±0.027 0.9519±0.038 1.1489±0.039

Chicago: Cluster-RR-GAE 0.9476±0.0426 2.2291±0.0325 0.9546±0.0328 1.2012±0.0250 0.9538±0.0356 1.5769±0.0252 0.9540±0.0362 1.1283±0.0256

Education: CF-GNN 0.9501±0.0242 2.3808±0.0427 0.9500±0.0285 2.4892±0.0351 0.9483±0.0408 2.4380±0.0452 0.9502±0.0392 2.4209±0.0376

Education: Cluster-GNN 0.9513±0.031 2.3145±0.038 0.9517±0.033 2.3721±0.032 0.9496±0.035 2.2894±0.034 0.9518±0.036 2.3256±0.033

Education: RR-GAE 0.9529±0.029 2.1932±0.027 0.9534±0.030 2.1478±0.028 0.9508±0.032 2.0321±0.029 0.9532±0.031 2.1423±0.030

Education: Cluster-RR-GAE 0.9599±0.0417 2.0573±0.0280 0.9586±0.0225 2.0445±0.0239 0.9580±0.0333 1.8731±0.0260 0.9594±0.0386 1.9075±0.0221

Election: CF-GNN 0.9498±0.0211 0.9268±0.0429 0.9495±0.0215 0.9279±0.0302 0.9506±0.0473 0.9009±0.0282 0.9488±0.0363 0.9136±0.0681

Election: Cluster-GNN 0.9503±0.028 0.9152±0.038 0.9501±0.027 0.9124±0.035 0.9512±0.041 0.8723±0.031 0.9496±0.033 0.8945±0.042

Election: RR-GAE 0.9509±0.025 0.9037±0.029 0.9523±0.024 0.8956±0.028 0.9518±0.036 0.8234±0.026 0.9514±0.030 0.8562±0.035

Election: Cluster-RR-GAE 0.9558±0.0215 0.9213±0.0279 0.9567±0.0242 0.9487±0.0259 0.9510±0.0432 0.9343±0.0341 0.9567±0.0317 0.6698±0.0201

We apply RR-GNN on the traffic network and traffic flow
data from Chicago and Anaheim to predict each node’s edge
weight and traffic volume Stabler et al. [2018]. Chicago
dataset consists of 541 nodes representing road junctions
and 2150 edges representing road segments with directions,
while the Anaheim dataset consists of 413 nodes and 858
edges. In this context, each node is characterized by a two-
dimensional feature Xi,: ∈ R2 representing its coordinates,
and each edge is associated with a weight that signifies the
traffic volume passing through the corresponding road seg-
ment. We collect three widely used citation network datasets
for the citation datasets: Cora, PubMed, and CiteSeer. We
apply RR-GNN to paper classification and citation predic-
tion. Social network datasets like Twitch, CS, and Physics
have become increasingly important resources for graph
machine-learning research.

Figure 2: The prediction interval of node regression gener-
ated by CF-GNN and RR-GAE. The x-axis represents the
node, which is sorted by the label. The y-axis represents the
prediction intervals of nodes. The error rate α is 0.05. Blue
and red represent the results of RR-GAE and CFNN-GAE,
respectively.

Metrics: We use inefficiency (ineff) and weighted symmet-
ric calibration (WSC) as evaluation metrics (details of ineff
and WSC can be accessed in appendices material). Lower
ineff and higher WSC indicate better performance. To gen-
erate prediction intervals, we independently sample 1000
vectors v from the unit sphere in R2m space. The parameters
a, b, δ are fine-tuned via grid search. Additionally, 25% of

Figure 3: The histogram of predicted values of the node
classification task on dataset MedPub. The error rate α is
0.05. Each sub-figure represents one classification from 0
to 5. The x-axis is the predicted value from the model. The
y-axis is the frequency corresponding to the predicted value.
Blue and yellow represent the results of RR-GAE and CF-
GNN, respectively.

test data is utilized to estimate optimal v, a, b, δ values. The
conditional coverage is then calculated on the remaining
75% of test data.

Models and baselines: There are three basic GNN models
for the model: 1) GAE (Section 3.2.1), 2) line graph neural
network (LGNN Cai et al. [2021]) and 3) a directed variant
of GAE, called DiGAE. We use two nonconformity score,
including 1) CP Huang et al. [2024] and 2) conformal quan-
tile regression (CQR). For the encoder in the basic GNN
models, we choose 4 different structures: 1) GraphSAGE
Hamilton et al. [2017], 2) SAGEConv Morris et al. [2019],
3) GCN Kipf and Welling [2016a], and 4) GAT Veličković
et al. [2017]. We name the model that combines conformal
prediction (CP, as described in work Huang et al. [2024])
with graph autoencoder (GAE, Section 3.2.1) as CP-GAE.
Similarly, we name the model with the nonconformity score
and the GNN models. For example, the models use CQR,
and GAE is referred to as CQR-GAE. As for node classi-
fication task, three models are added: HAN, Ensemble TS

and CaGCN which are latest models baseline on this task.
Additionally, if the residual reweighting approach is per-
formed based on the CQR approach, we also add RR to the
name of the models. For example, the residual reweighted
CQR-GAE is referred to as CQR-RR-GAE. The baseline
models are the above models without residual reweight.

We use four popular graph neural network (GNN) model
structures for encoder and decoder - GCN Kipf and Welling
[2016a], GraphConv Morris et al. [2019], GAT Veličković
et al. [2017], and GraphSAGE Hamilton et al. [2017] - as
the base graph convolution layers for both the CP and CQR
based models.

Experiment result: As for the task of edge weight pre-
diction, we ran the experiment 10 times and split the data
into training, validation, and the combined calibration and
test sets for each dataset and model. We conduct 100 ran-
dom splits of calibration and testing edges to perform the
baseline model and RR-GNN and evaluate the empirical
coverage. Our method achieved 6.15% to 28.87% reduce on
inefficiency interval length shown in table 1 and 2 on the
task of edge weight prediction. In addition, we conducted
a paired t-testing on the mean inefficiency values for our
method (RR) compared to CP and CQR, taking the meaning
value of each (12 values in total in Table 1) after repeat-
ing the experiments 10 times. The p-values are 0.00035
and 0.00024. Coverage is defined as the probability that
the ground truth value lies within the predicted confidence
interval. Our method allows control of the coverage through
the parameter α, where the expected coverage is 1− α. In
our manuscript, we set α = 0.05, corresponding to a target
coverage of 0.95. As shown in Tables 1-3 of the manuscript,
the empirical coverages achieved by our method are close
to 0.95, indicating that the coverage is well controlled and
aligns with the expected theoretical value.

We conducted a conditional coverage Equation 37 in appen-
dices material) of RR-GNN and baseline methods on the
Chicago and Anaheim traffic dataset for the edge weight pre-
diction task. The results presented in Table 1 show that the
overall RR-GNN models outperform others in terms of inef-
ficiency (as defined in Equation 36 in appendices material)
and conditional coverage (Equation 37 in appendices mate-
rial). This indicates that the RR variants can strike a better
balance between capturing the uncertainty in the predictions
and maintaining a high level of accuracy. We also find that
GAE and LGNN outperform DiGAE, highlighting the effi-
cacy of the autoencoder approach in weight prediction from
Table 1. We showcase the prediction interval produced by
model of LGNN with RR(CQR) in Figure 4. Furthermore,
Figure 4 also illustrates the adaptability of the RR models
by generating the smallest prediction intervals of varying
sizes, which aligns with the data characteristics.

For the node regression task, we apply the models to 7 dif-
ferent datasets: 1) Anaheim traffic dataset, 2) Chicago traffic

dataset, 3) Education dataset, 4) Income dataset, 5) Unem-
ploy dataset, and 7) Twitch dataset. Table 4 in appendices
material shows that our method outperforms the baseline
model, CF-GNN Huang et al. [2024], both on WSC score
(coverage) and inefficiency on 7 datasets. Besides, the vi-
sualization result in Figure 2 shows that we have a smaller
interval size than that from CF-GNN. Similarly, for the task-
node classification, we compared RR-GNN and CF-GNN
on 8 datasets: 1) Cora, 2) DBLP, 3) CiteSeer, 4) PubMed,
5) Computer, 6) Photo, 7) CS and 8) Physics. Number and
visual results can be seen in Table 4 and Figure 3. Our model
achieves better results in both accuracy and inefficiency. It is
worth to mention that we employ categorical cross-entropy
as the loss function for multi-class classification. The loss
function is given by:

L = − 1

N

N∑
i=1

K∑
k=1

yi,k log(ŷi,k), (25)

where ŷi,k represents the predicted probability of node i

belonging to class k, and
∑K

k=1 ŷi,k = 1.

In summary, leveraging the RR-based models can gener-
ate prediction intervals that are both efficient and well-
calibrated, making them a more suitable choice for different
network-based tasks, especially real-world transportation
applications where accurate and reliable predictions are cru-
cial for informed decision-making.

Furthermore, we compared the predicted residual between
CF-GNN and RR-GNN. Figure 7 in the appendices material
shows the predicted residual of road’s traffic volume for
Chicago and Anathm. The residual value of CF-GNN is
higher than that of RR-GAE. Figure 6 in appendices material
also shows the residual of the U.S.A election result, where
we can see that the global residual/difference between the
model output and ground truth from RR-GAE is much lower
than these baselines.

4.2 ABLATION STUDY

To address the computational cost concerns, we tested the
time and memory usage on random graphs and analyzed the
time complexity of the algorithm.

Specifically, we tested three types of random graphs: Erdős-
Rényi Erdos [1961], Barabási-Albert Lei et al. [2018], and
Watts-Strogatz small-world model Romano et al. [2019].
For each type, we generated graphs with node counts of 100,
10000, 50000, and 100000, respectively. Each node had
128 features, and the models were trained for 100 epochs.
We present results using GAE (Graph Autoencoder) and
DiGAE, combined with three different GNN (Graph Neu-
ral Network) encoders: GraphSAGE, GCN (Graph Convo-
lutional Network), and GAT (Graph Attention Network)
shown in Table8. The used GPU space is increasing linearly
along with the node size, while processing time increases at

Table 3: Results of Ours (RR-GNN) on Node Classification Datasets

Dataset HAN SGC CaGCN GATS
Dataset coverx ineff coverx ineff coverx ineff coverx ineff
Cora: CF-GNN 0.9456±0.0569 1.6284±0.0483 0.9461±0.0603 1.6633±0.0441 0.9473±0.0556 1.6344±0.0418 0.9464±0.0702 1.6278±0.0334

Cora: Cluster-GAE 0.9458±0.0532 1.61201±0.0431 0.9459±0.0612 1.6537±0.0432 0.9385±0.0529 1.6188±0.0328 0.9482±0.0453 1.6013±0.0313

Cora: RR-GAE 0.9460±0.0542 1.6100±0.0415 0.9462±0.0581 1.6297±0.0428 0.9432±0.0573 1.6251±0.0367 0.9475±0.0624 1.6146±0.0351

Cora: Cluster-RR-GAE 0.9478±0.0523 1.5896±0.0354 0.9490±0.0643 1.5907±0.0432 0.9465±0.0759 1.6175±0.0354 0.9508±0.0554 1.6114±0.0287

DBLP: CF-GNN 0.9501±0.0523 1.5723±0.0683 0.9451±0.0617 1.5274±0.0416 0.9473±0.0596 1.5644±0.0733 0.9467±0.0717 1.5729±0.0463

DBLP: Cluster-GAE 0.9497±0.0512 1.5489±0.0492 0.9457±0.0583 1.4873±0.0449 0.9452±0.0684 1.5569±0.0317 0.9479±0.0673 1.5814±0.0376

DBLP: RR-GAE 0.9499±0.0531 1.5351±0.0473 0.9462±0.0528 1.4286±0.0541 0.9458±0.0702 1.5512±0.0295 0.9485±0.0589 1.5725±0.0349

DBLP: Cluster-RR-GAE 0.9518±0.0509 1.5467±0.0427 0.9503±0.0428 1.3563±0.0626 0.9484±0.0624 1.5371±0.0248 0.9505±0.0469 1.5570±0.0356

CiteSeer: CF-GNN 0.9528±0.0203 1.1680±0.0439 0.9525±0.0257 1.1827±0.0552 0.9496±0.0392 1.2310±0.0332 0.9508±0.0309 1.2396±0.0416

CiteSeer: Cluster-GAE 0.9532±0.0218 1.1653±0.0427 0.9561±0.0274 1.1854±0.0483 0.9507±0.0365 1.2237±0.0311 0.9523±0.0332 1.2298±0.0384

CiteSeer: RR-GAE 0.9538±0.0853 1.1621±0.0552 0.9579±0.0536 1.1782±0.0415 0.9512±0.0358 1.2189±0.0276 0.9535±0.0447 1.2085±0.0361

CiteSeer: Cluster-RR-GAE 0.9556±0.0918 1.1539±0.0615 0.9598±0.0561 1.1678±0.0372 0.9526±0.0363 1.2016±0.0289 0.9562±0.0428 1.1408±0.0361

PubMed: CF-GNN 0.9502±0.0207 1.4680±0.0361 0.9508±0.0276 1.4272±0.0325 0.9516±0.0458 1.5310±0.0514 0.9512±0.0434 1.4396±0.0485

PubMed: Cluster-GAE 0.9507±0.0352 1.3985±0.0374 0.9513±0.0419 1.4083±0.0341 0.9519±0.0462 1.4521±0.0483 0.9514±0.0427 1.4198±0.0491

PubMed: RR-GAE 0.9510±0.0386 1.3528±0.0357 0.9516±0.0453 1.3992±0.0328 0.9520±0.0469 1.3815±0.0301 0.9515±0.0432 1.4085±0.0503

PubMed: Cluster-RR-GAE 0.9526±0.0483 1.3275±0.0392 0.9520±0.0482 1.3897±0.0339 0.9521±0.0473 1.3732±0.0296 0.9515±0.0419 1.3989±0.0522

Computers: CF-GNN 0.9471±0.0276 3.3680±0.3499 0.9492±0.0235 3.8272±0.0292 0.9457±0.0435 3.2310±0.0652 0.9478±0.0325 3.1396±0.0586

Computers: Cluster-GAE 0.9476±0.0321 3.1523±0.3287 0.9490±0.0273 3.4821±0.0315 0.9461±0.0418 2.8945±0.0583 0.9479±0.0382 2.9634±0.0541

Computers: RR-GAE 0.9481±0.0473 2.8937±0.0328 0.9493±0.0298 2.7324±0.0394 0.9464±0.0436 2.6745±0.0352 0.9479±0.0623 2.8033±0.0259

Computers: Cluster-RR-GAE 0.9503±0.0553 2.7423±0.0258 0.9509±0.0315 2.6343±0.0413 0.9418±0.0436 2.5471±0.0365 0.9354±0.0584 2.7739±0.0272

Photo: CF-GNN 0.9511±0.0275 3.2680±0.0395 0.9515±0.0263 2.2276±0.0354 0.9486±0.0419 2.2010±0.0387 0.9509±0.0391 2.1986±0.0286

Photo: Cluster-GAE 0.9523±0.0289 3.0125±0.0362 0.9517±0.0291 2.1224±0.0338 0.9491±0.0396 2.1076±0.0352 0.9510±0.0374 2.0059±0.0263

Photo: RR-GAE 0.9527±0.0852 2.7843±0.0415 0.9518±0.0894 2.0451±0.0331 0.9495±0.0821 2.0128±0.0513 0.9511±0.0439 1.9015±0.0254

Photo: Cluster-RR-GAE 0.9554±0.0723 2.5474±0.0456 0.9534±0.0913 2.0026±0.0316 0.9504±0.0342 2.0003±0.0370 0.9498±0.0512 1.7093±0.0234

CS: CF-GNN 0.9438±0.0224 1.8669±0.0347 0.9435±0.0284 1.6272±0.0452 0.9476±0.0416 3.6310±0.0325 0.9478±0.0317 2.7396±0.0286

CS: Cluster-GAE 0.9451±0.0253 1.8324±0.0332 0.9448±0.0316 1.6229±0.0428 0.9483±0.0387 3.1957±0.0301 0.9481±0.0293 2.5641±0.0269

CS: RR-GAE 0.9472±0.0573 1.8453±0.0365 0.9461±0.0528 1.6205±0.0384 0.9435±0.0546 2.8932±0.0275 0.9483±0.0362 2.4785±0.0241

CS: Cluster-RR-GAE 0.9502±0.0601 1.8430±0.0361 0.9501±0.0528 1.6183±0.0361 0.9516±0.0525 2.5469±0.0227 0.9485±0.0329 2.3889±0.0238

Physics: CF-GNN 0.9495±0.0243 1.2218±0.0463 0.9507±0.0292 1.2430±0.0324 0.9489±0.0257 1.2005±0.0604 0.9505±0.0275 1.2243±0.0246

Physics: Cluster-GAE 0.9498±0.0267 1.2205±0.0428 0.9510±0.0319 1.2418±0.0346 0.9491±0.0283 1.2069±0.0551 0.9506±0.0298 1.2231±0.0239

Physics: RR-GAE 0.9501±0.0573 1.2198±0.0283 0.9512±0.0501 1.2412±0.0385 0.9493±0.0326 1.2145±0.0423 0.9507±0.0442 1.2298±0.0249

Physics: Cluster-RR-GAE 0.9518±0.0511 1.2050±0.0223 0.9528±0.0542 1.2279±0.0419 0.9508±0.0334 1.1998±0.0438 0.9522±0.0493 1.2187±0.0238

a rate lower than linear with respect to the size. Our findings
indicate that the time and space requirements are within
acceptable limits for these configurations.

Our method, RR-GNN, involves training two GNN models
with a cross-training protocol. Subsequently, RR-GNN uses
Louvain clustering to generate interval predictions. The time
complexity of the GNN component is O(m), where m rep-
resents the number of edges Wu et al. [2020]. The Louvain
clustering algorithm has a time complexity of O(m logm)
Kumar et al. [2016]. For the cross-training protocol, we set
a fixed number of training iterations. Therefore, the over-
all time complexity of RR-GNN can be approximated as
O(m logm). Besides, in order to evaluate our method with
the best current methods, we list the results in the appen-
dices material. We test Graphormer and GT in tables 6 and 7
in the appendices material. We can see that our RR operation
can help improve the performance of Graphormer and GT.
In addition, we compare SAN, which is a transformer-based
method in Table 7 in the appendices section. The result
shows that our RR-GCN is better than SAN overall.

5 CONCLUSION

This paper introduces the Residual Reweighted Conformal
Prediction Graph Neural Network (RR-GNN), which en-
hances graph neural networks (GNNs) by integrating con-
formal prediction (CP). While traditional GNNs yield point
predictions, RR-GNN provides predictive regions reflect-
ing varying confidence levels. Existing nonconformity mea-
sures often produce uniform-width regions, neglecting the
differing prediction difficulties. RR-GNN overcomes this

by employing a novel residual reweighting nonconformity
measure that adjusts predictive region widths based on ex-
pected accuracy for each example. We validate RR-GNN’s
effectiveness on 15 datasets, including real-world datasets,
like transportation and social networks, across tasks like
edge weight prediction and node classification. RR-GNN
consistently delivers tighter predictive regions, higher accu-
racy, and improved efficiency compared to standard GNN
methods, advancing uncertainty-aware predictions in graph
machine learning.

Figure 4: The graph shows the traffic volume prediction in-
tervals generated on the Chicago traffic dataset. All methods
set their error rate α at 0.05. The x-axis represents individual
roads sorted by their actual/ground truth traffic volumes. The
y-axis represents the predicted intervals. Different colors
distinguish the results from different prediction methods.

ACKNOWLEDGMENT

This work was partially supported by Hong Kong RGC, City
University of Hong Kong grants (Project No. 9610639 and
6000864), and Chengdu Municipal Office of Philosophy
and Social Science grant 2024BS013.

REFERENCES

Charu C Aggarwal. Data mining (pdfdrive. com). 2015.

Seong Jin Ahn and MyoungHo Kim. Variational graph nor-
malized autoencoders. In Proceedings of the 30th ACM
international conference on information & knowledge
management, pages 2827–2831, 2021.

Anastasios Angelopoulos, Stephen Bates, Jitendra Ma-
lik, and Michael I Jordan. Uncertainty sets for image
classifiers using conformal prediction. arXiv preprint
arXiv:2009.14193, 2020.

Jie Bao, Chuangyin Dang, Rui Luo, Hanwei Zhang, and
Zhixin Zhou. Enhancing adversarial robustness with con-
formal prediction: A framework for guaranteed model
reliability. In Proceedings of the Forty-second Interna-
tional Conference on Machine Learning (ICML), 2025.
to appear.

Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jiten-
dra Malik, and Michael Jordan. Distribution-free, risk-
controlling prediction sets. Journal of the ACM (JACM),
68(6):1–34, 2021.

Smriti Bhagat, Graham Cormode, and S Muthukrishnan.
Node classification in social networks. Social network
data analytics, pages 115–148, 2011.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip
Djolonga. Fast differentiable sorting and ranking. In
International Conference on Machine Learning, pages
950–959. PMLR, 2020.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph
neural networks for link prediction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(9):5103–
5113, 2021.

Maxime Cauchois, Suyash Gupta, and John Duchi. Know-
ing what you know: valid and validated confidence sets
in multiclass and multilabel prediction. arXiv preprint
arXiv:2004.10181, 2020.

Victor Chernozhukov, Iván Fernández-Val, and Alfred Gali-
chon. Quantile and probability curves without crossing.
Econometrica, 78(3):1093–1125, 2010.

Jase Clarkson. Distribution free prediction sets for node
classification. In International Conference on Machine
Learning, pages 6268–6278. PMLR, 2023.

Charles Cowell, Pamela Clinton Hopkins, Rochell
McWhorter, and Debra L Jorden. Alternative training
models. Advances in Developing Human Resources, 8(4):
460–475, 2006.

Paul Erdos. On the evolution of random graphs. Bulletin
of the Institute of International Statistics, 38:343–347,
1961.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal
inference under distribution shift. Advances in Neural
Information Processing Systems, 34:1660–1672, 2021.

Leying Guan. Localized conformal prediction: A gen-
eralized inference framework for conformal prediction.
Biometrika, 110(1):33–50, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in
neural information processing systems, 30, 2017.

Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu.
Split localized conformal prediction. arXiv preprint
arXiv:2206.13092, 2022.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz.
Deep models under the gan: information leakage from
collaborative deep learning. In Proceedings of the 2017
ACM SIGSAC conference on computer and communica-
tions security, pages 603–618, 2017.

Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and
Daniel Cremers. What makes graph neural networks mis-
calibrated? Advances in Neural Information Processing
Systems, 35:13775–13786, 2022.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure
Leskovec. Uncertainty quantification over graph with
conformalized graph neural networks. Advances in Neu-
ral Information Processing Systems, 36, 2024.

Roshni G Iyer, Wei Wang, and Yizhou Sun. Bi-level atten-
tion graph neural networks. In 2021 IEEE International
Conference on Data Mining (ICDM), pages 1126–1131.
IEEE, 2021.

Junteng Jia and Austion R Benson. Residual correlation in
graph neural network regression. In Proceedings of the
26th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 588–598, 2020.

Ying Jin and Emmanuel J Candès. Selection by prediction
with conformal p-values. Journal of Machine Learning
Research, 24(244):1–41, 2023.

Ying Jin, Zhimei Ren, and Emmanuel J Candès. Sensitivity
analysis of individual treatment effects: A robust con-
formal inference approach. Proceedings of the National
Academy of Sciences, 120(6):e2214889120, 2023.

Ulf Johansson, Henrik Boström, Tuve Löfström, and Henrik
Linusson. Regression conformal prediction with random
forests. Machine learning, 97:155–176, 2014.

Sayash Kapoor and Arvind Narayanan. Leakage and the
reproducibility crisis in machine-learning-based science.
Patterns, 4(9), 2023.

Christopher Kath and Florian Ziel. Conformal prediction
interval estimation and applications to day-ahead and
intraday power markets. International Journal of Fore-
casting, 37(2):777–799, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308, 2016b.

Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie
Lozano, and Naoki Abe. Directed graph auto-encoders.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pages 7211–7219, 2022.

Vikram Krishnamurthy, Rui Luo, and Buddhika Nettasinghe.
Segregation in social networks: Markov bridge models
and estimation. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5484–5488. IEEE, 2021.

Vikas Kumar, Anubhav Sisodia, Umesh Maini, and Abhi-
neet Anand. Comparing algorithms of community struc-
ture in networks. Indian Journal of Science and Technol-
ogy, 9(44):1–5, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. Advances in neural infor-
mation processing systems, 30, 2017.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson,
Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman
Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu,
et al. Learning skillful medium-range global weather
forecasting. Science, 382(6677):1416–1421, 2023.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshi-
rani, and Larry Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statis-
tical Association, 113(523):1094–1111, 2018.

Lihua Lei and Emmanuel J Candès. Conformal inference
of counterfactuals and individual treatment effects. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 83(5):911–938, 2021.

Michelle M Li, Kexin Huang, and Marinka Zitnik. Graph
representation learning in biomedicine and healthcare.
Nature Biomedical Engineering, 6(12):1353–1369, 2022.

Rui Luo and Nicolo Colombo. Entropy reweighted confor-
mal classification. In The 13th Symposium on Conformal
and Probabilistic Prediction with Applications, pages
264–276. PMLR, 2024.

Rui Luo and Nicolo Colombo. Conformal load prediction
with transductive graph autoencoders. Machine Learning,
114(3):1–22, 2025.

Rui Luo and Vikram Krishnamurthy. Fréchet-statistics-
based change point detection in dynamic social networks.
IEEE Transactions on Computational Social Systems, 11
(2):2863–2871, 2023a.

Rui Luo and Vikram Krishnamurthy. Who you play affects
how you play: Predicting sports performance using graph
attention networks with temporal convolution. arXiv
preprint arXiv:2303.16741, 2023b.

Rui Luo and Zhixin Zhou. Trustworthy classification
through rank-based conformal prediction sets. arXiv
preprint arXiv:2407.04407, 2024.

Rui Luo and Zhixin Zhou. Conformity score averaging
for classification. In Proceedings of the Forty-second
International Conference on Machine Learning (ICML),
2025a. to appear.

Rui Luo and Zhixin Zhou. Conditional conformal risk adap-
tation. arXiv preprint arXiv:2504.07611, 2025b.

Rui Luo and Zhixin Zhou. Conformalized interval arith-
metic with symmetric calibration. Proceedings of the
AAAI Conference on Artificial Intelligence, 39(18):19207–
19215, 2025c.

Rui Luo and Zhixin Zhou. Conformal thresholded intervals
for efficient regression. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 39(18):19216–19223,
2025d.

Rui Luo and Zhixin Zhou. Volume-sorted prediction set:
Efficient conformal prediction for multi-target regression.
arXiv preprint arXiv:2503.02205, 2025e.

Rui Luo, Buddhika Nettasinghe, and Vikram Krishna-
murthy. Echo chambers and segregation in social net-
works: Markov bridge models and estimation. IEEE
transactions on computational social systems, 9(3):891–
901, 2021.

Rui Luo, Vikram Krishnamurthy, and Erik Blasch. Miti-
gating misinformation spread on blockchain enabled so-
cial media networks. arXiv preprint arXiv:2201.07076,
2022a.

Rui Luo, Buddhika Nettasinghe, and Vikram Krishnamurthy.
Controlling segregation in social network dynamics as
an edge formation game. IEEE transactions on network
science and engineering, 9(4):2317–2329, 2022b.

Rui Luo, Buddhika Nettasinghe, and Vikram Krishnamurthy.
Anomalous edge detection in edge exchangeable social
network models. In Conformal and probabilistic predic-
tion with applications, pages 287–310. PMLR, 2023.

Rui Luo, Jie Bao, Zhixin Zhou, and Chuangyin Dang. Game-
theoretic defenses for robust conformal prediction against
adversarial attacks in medical imaging. arXiv preprint
arXiv:2411.04376, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and leman go neural: Higher-order
graph neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pages 4602–
4609, 2019.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and
Alex Gammerman. Inductive confidence machines for
regression. In Machine Learning: ECML 2002: 13th Eu-
ropean Conference on Machine Learning Helsinki, Fin-
land, August 19–23, 2002 Proceedings 13, pages 345–356.
Springer, 2002.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk.
Normalized nonconformity measures for regression con-
formal prediction. In Proceedings of the IASTED Inter-
national Conference on Artificial Intelligence and Appli-
cations (AIA 2008), pages 64–69, 2008.

Harris Papadopoulos, Vladimir Vovk, and Alex Gammer-
man. Regression conformal prediction with nearest neigh-
bours. Journal of Artificial Intelligence Research, 40:
815–840, 2011.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan
Alistarh. Ac/dc: Alternating compressed/decompressed
training of deep neural networks. Advances in neural
information processing systems, 34:8557–8570, 2021.

Yaniv Romano, Evan Patterson, and Emmanuel Candes.
Conformalized quantile regression. Advances in neural
information processing systems, 32, 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Clas-
sification with valid and adaptive coverage. Advances in
Neural Information Processing Systems, 33:3581–3591,
2020.

Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gómez,
Pratim Kumar Chattaraj, Niloy Ganguly, and Manuel
Gomez-Rodriguez. Nevae: A deep generative model for
molecular graphs. The Journal of Machine Learning
Research, 21(1):4556–4588, 2020.

Ben Stabler, Hillel Bar-Gera, and Elizabeth Sall.
Transportation networks for research core team.
Transportation Networks for Research. Accessed
Month, Day, Year.[Electronic resource]: https://github.
com/bstabler/TransportationNetworks (accessed 16.02.
2021), 2018.

Ingo Steinwart and Andreas Christmann. Estimating condi-
tional quantiles with the help of the pinball loss. Bernoulli,
17(1):211 – 225, 2011. doi: 10.3150/10-BEJ267. URL
https://doi.org/10.3150/10-BEJ267.

Xiaoyi Su, Zhixin Zhou, and Rui Luo. Adaptive confor-
mal inference by particle filtering under hidden markov
models. arXiv preprint arXiv:2411.01558, 2024.

Lingxuan Tang, Rui Luo, Zhixin Zhou, and Nicolo Colombo.
Enhanced route planning with calibrated uncertainty set.
Machine Learning, 114(5):1–16, 2025.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and
Ramesh Raskar. Nopeek: Information leakage reduc-
tion to share activations in distributed deep learning. In
2020 International Conference on Data Mining Work-
shops (ICDMW), pages 933–942. IEEE, 2020.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
Duchi, Vittorio Murino, and Silvio Savarese. Generaliz-
ing to unseen domains via adversarial data augmentation.
Advances in neural information processing systems, 31,
2018.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer.
Algorithmic learning in a random world, volume 29.
Springer, 2005.

Ting Wang, Zhixin Zhou, and Rui Luo. Enhancing trust-
worthiness of graph neural networks with rank-based
conformal training. Proceedings of the AAAI Conference
on Artificial Intelligence, 39(20):21261–21268, 2025.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye,
Peng Cui, and Philip S Yu. Heterogeneous graph attention
network. In The world wide web conference, pages 2022–
2032, 2019.

Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be
confident! towards trustworthy graph neural networks via
confidence calibration. Advances in Neural Information
Processing Systems, 34:23768–23779, 2021.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui.
Graph neural networks in recommender systems: a survey.
ACM Computing Surveys, 55(5):1–37, 2022.

https://doi.org/10.3150/10-BEJ267

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

Mingzhang Yin, Claudia Shi, Yixin Wang, and David M Blei.
Conformal sensitivity analysis for individual treatment
effects. Journal of the American Statistical Association,
119(545):122–135, 2024.

Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse,
and Aymeric Dieuleveut. Adaptive conformal predictions
for time series. In International Conference on Machine
Learning, pages 25834–25866. PMLR, 2022.

Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han. Mix-
n-match: Ensemble and compositional methods for un-
certainty calibration in deep learning. In International
conference on machine learning, pages 11117–11128.
PMLR, 2020.

Unai Zulaika, Ruben Sanchez-Corcuera, Aitor Almeida, and
Diego Lopez-de Ipina. Lwp-wl: Link weight prediction
based on cnns and the weisfeiler–lehman algorithm. Ap-
plied Soft Computing, 120:108657, 2022.

6 APPENDICES

6.1 OTHER EXPERIMENT RESULTS

In order to test our method’s effcience on more datasets,
we did 4 experiments. First is the extended test on node
regression on other four datasets shown as 4. The second
result shows node classification results comparing with con-
formal baselines can be found in Table 5. Thirdly, in order
to prove our method’s generlization, we incorporated addi-
tional GNN models into our experiments using the Anaheim
Data and Chicago Data datasets. It needs to be clarified that
our method can be combined with all other GNN models
(Graphormer [1], GT [2]). Details are shown Table 6 7.

6.2 BACKGROUND OF GRAPH AUTOENCODER

6.2.1 Guaranteed Edge Weight Prediction Using
GNNs

Let G = (V,E) be a graph with node set V and edge
set E ⊆ V × V. Assume the graph has n nodes with f
features. Let X ∈ Rn×m be the node feature matrix, and
Xi,: ∈ Rf be the feature vector of the ith node. The binary
adjacency matrix of G, A ∈ {0, 1}n×n, encodes the binary
(unweighted) connecting structure of the graph. It is defined
by:

Aij =

{
1, if (i, j) ∈ E;

0, otherwise.
(26)

Then, we define the weight matrix as W ∈ Rn×n≥ 0,
where Wij denotes the weight rather than the binary of the
edge connecting node i to node j. In the context of a road
system, for example, we can interpret Wij as the volume of
traffic transitioning from junction i to junction j.

We partition the edge set E into three disjoint subsets:
Etrain, Eval,Ecalib and Etest, while satisfy that E =
Etrain∪Eval∪Ecalib∪Etest. We assume that the weights
of the edges in Etrain and Eval are known. The objective
is to estimate the unknown weights of the edges in Etest.
Additionally, we assume that the entire graph structure, rep-
resented by the adjacency matrix A, is known.

To mask the validation and test sets, we define

Atrain ∈ {0, 1}n×n, Atrain
ij =

{
1, if (i, j) ∈ Etrain;

0, otherwise.
(27)

Aval, Acalib and Atest are defined in the same way based
on Eval, Ecalib and Etest, respectively.

If (i, j) /∈ Etrain, it is possible to assign a small positive
number to the corresponding element Wtrainij , such as an
assigned value or the minimum of the existing edge weights.
This can represent prior knowledge or assumptions about
the unknown edge weight. In the following part, we use a
positive constant δ > 0 to represent this minimal or assigned
value. Incorporating this unknown edge weight information
effectively leverages the underlying graph structure. The
resulting weighted adjacency matrix is:

W train =

Wij , if (i, j) ∈ Etrain;

δ, if (i, j) ∈ Eval ∪Ecalib supEtest;

0, otherwise,
(28)

In the transductive setting (details can been seen in appendix
Figure 5(a)), the structure of the entire graph, represented
by the adjacency matrix A, is known during the training,
validation, and testing phases. To calibrate the prediction,
we extract a subset from Etest as a calibration edge set. This
ensures that the calibration and test samples are exchange-
able.

Consider edge weight prediction in traffic networks. The
road system, A, and partial traffic volumes, W train+W val,
are known. The task is to predict volumes, W test, for the
remaining roads.

During training, models observe node features and graph
structure to learn functions for node classification/regression
and embedding. At inference, models deduce edge connec-
tions between nodes (Figure 5).

Three GNN approaches are evaluated. The first is a Graph
Autoencoder (GAE) Kipf and Welling [2016b] that trains
and infers on the full graph. The second is DiGAE Kol-
lias et al. [2022], a directed GAE variant. The third is the

Table 4: Results of RR-GNN on Node Regression Datasets

Dataset GraphSAGE SGC GCN GATS
Metrics coverx ineff coverx ineff coverx ineff coverx ineff
Income: CF-GNN 0.9512±0.0264 2.7580±0.0342 0.9504±0.0405 2.4892±0.0302 0.9511±0.0250 2.5272±0.0318 0.9508±0.0329 2.4396±0.0328

Income: Cluster-GNN 0.9521±0.035 2.6723±0.041 0.9513±0.038 2.3721±0.037 0.9526±0.033 2.4189±0.036 0.9519±0.034 2.3254±0.035

Income: RR-GAE 0.9538±0.032 2.5342±0.038 0.9524±0.036 2.1423±0.034 0.9539±0.031 2.1932±0.033 0.9527±0.033 2.1567±0.032

Income: Cluster-RR-GAE 0.9552±0.0618 2.1003±0.0492 0.9519±0.0513 1.9616±0.0358 0.9566±0.0501 1.9203±0.0354 0.9545±0.0347 1.8555±0.0423

Unemploy: CF-GNN 0.9526±0.0415 2.2298±0.0523 0.9510±0.0320 2.4587±0.0491 0.9506±0.0294 2.5013±0.0326 0.9502±0.0354 2.4332±0.0376

Unemploy: Cluster-GNN 0.9531±0.038 2.1932±0.045 0.9519±0.036 2.3256±0.042 0.9513±0.034 2.3721±0.038 0.9516±0.033 2.2894±0.039

Unemploy: RR-GAE 0.9542±0.035 2.1423±0.039 0.9524±0.033 2.1932±0.036 0.9528±0.032 2.2567±0.035 0.9523±0.031 2.1567±0.034

Unemploy: Cluster-RR-GAE 0.9569±0.0419 2.0816±0.0218 0.9517±0.0313 2.0534±0.0367 0.9523±0.0369 2.0480±0.0190 0.9523±0.0448 1.9503±0.0312

Twitch: CF-GNN 0.9524±0.0443 2.6634±0.0365 0.9523±0.0392 2.6835±0.0394 0.9529±0.0257 2.5409±0.0404 0.9515±0.0275 2.6243±0.0460

Twitch: Cluster-GNN 0.9531±0.039 2.5894±0.042 0.9528±0.037 2.5321±0.040 0.9534±0.034 2.4892±0.038 0.9523±0.033 2.4723±0.041

Twitch: RR-GAE 0.9539±0.036 2.4987±0.039 0.9532±0.035 2.4567±0.037 0.9541±0.032 2.3721±0.036 0.9529±0.031 2.3256±0.038

Twitch: Cluster-RR-GAE 0.9515±0.0367 5.0491±0.0513 0.9541±0.0284 2.1005±0.0189 0.9571±0.0219 2.2398±0.0225 0.9535±0.0280 2.1353±0.0262

Table 5: Node Classification Results with Conformal Baselines (Coverage ↑ / Inefficiency ↓)

Dataset CF-GNN [1] SAN RR-GNN (Ours) Cluster-RR-GNN (Ours)
Model Cover Ineff Cover Ineff Cover Ineff Cover Ineff
Cora
GraphSAGE 0.9456±0.0569 1.6284±0.0483 0.9476±0.0532 1.6825±0.0541 0.9460±0.0542 1.6100±0.0415 0.9463±0.0509 1.6076±0.0397

SGC 0.9461±0.0603 1.6633±0.04415 0.9482±0.05348 1.6956±0.0236 0.9462±0.0581 1.6297±0.0428 0.9468±0.0662 1.6017±0.0465

GCN 0.9473±0.0556 1.6344±0.0418 0.9426±0.0453 1.6520±0.0344 0.9432±0.0573 1.6251±0.0367 0.9476±0.0732 1.6315±0.0303

GAT 0.9464±0.0702 1.6278±0.0334 0.9473±0.065 1.6752±0.0364 0.9475±0.0624 1.6146±0.0351 0.9491±0.0539 1.6254±0.0396

DBLP
GraphSAGE 0.9501±0.0523 1.5723±0.0683 0.9501±0.0420 1.5524±0.0637 0.9499±0.0531 1.5351±0.0473 0.9503±0.0510 1.5607±0.0487

SGC 0.9451±0.0617 1.5274±0.0416 0.9235±0.0526 1.4520±0.0345 0.9462±0.0528 1.4286±0.0541 0.9443±0.0462 1.3921±0.0624

GCN 0.9473±0.0596 1.5644±0.0733 0.9445±0.0565 1.5984±0.0743 0.9458±0.0702 1.5512±0.0295 0.9430±0.0713 1.5491±0.0278

GAT 0.9467±0.0717 1.5729±0.0463 0.9456±0.0624 1.5943±0.0425 0.9485±0.0589 1.5725±0.0349 0.9491±0.0539 1.5720±0.0322

CiteSeer
GraphSAGE 0.9528±0.0203 1.1680±0.0439 0.9502±0.0164 1.2523±0.0416 0.9538±0.0853 1.1621±0.0552 0.9540±0.0926 1.1679±0.0605

SGC 0.9525±0.0257 1.1827±0.0552 0.9505±0.0645 1.2678±0.0532 0.9579±0.0536 1.1782±0.0415 0.9594±0.0582 1.1898±0.0399

GCN 0.9496±0.0392 1.2310±0.0332 0.9502±0.0536 1.3024±0.0324 0.9512±0.0358 1.2189±0.0276 0.9518±0.0373 1.2153±0.0290

GAT 0.9508±0.0309 1.2396±0.0416 0.9515±0.0251 1.3112±0.0123 0.9535±0.0447 1.2085±0.0361 0.9548±0.0491 1.2020±0.0392

line graph neural network (LGNN) Cai et al. [2021] that
transforms edges to nodes in line graphs.

6.3 APPENDICES FIGURES

6.3.1 Schematic figure for transductive and inductive
settings for link prediction.

There are two major braches in link prediction problem
settting: transductive and inductive settings. Schematic fig-
ure for transductive and inductive settings for edge weight
prediction are shown in Figure 5

6.3.2 Learning the error structure

In order to show our method’s outperformance in learn-
ing the error structure in real-world applications, we tested
our method in two datasets: 2016 U.S. county-level presi-
dential election and Traffic volums prediction in Anaheim
and Chicago transportation networks. Results are shown in
Figure 6 and Figure 7.

6.4 NONCONFORMITY SCORE AND
EVALUATION METRICS

Nonconformity Score For the nonconformity score in main
paper is for conformal prediction-based RR (CP-RR). On
the other hand, for conformal quantile regression-based RR
(CQR-RR), The nonconformity score is

Cab =
[
Ŵ

α/2
ab − dRR

∣∣Ŵ 1−α/2
ab − Ŵ

α/2
ab

∣∣,
Ŵ

1−α/2
ab + dRR

∣∣Ŵ 1−α/2
ab − Ŵ

α/2
ab

∣∣], (32)

(a, b) ∈ Etest, (33)

Evaluation Metrics: For evaluation, we use the marginal
coverage, defined as

cover =
1

|Etest|
∑

(i,j)∈ Etest

1
(
Wtestij ∈ Cij

)
, (34)

where Cij is prediction interval for edge (i, j). Another one
is inefficiency which is defined as

ineff =
1

|Etest|
∑

(i,j)∈ Etest

|Cij |, (35)

Table 6: Performance(AUC) Comparison of Graph Transformer Models with RR Enhancement on dataset MolHIV

Model Method Cora CiteSeer PubMed OGB-Arxiv

Graphormer Original 0.763 ± 0.012 0.691 ± 0.015 0.792 ± 0.008 0.718 ± 0.005
+ RR 0.781 ± 0.011 0.705 ± 0.013 0.803 ± 0.007 0.729 ± 0.004

Graphormer with Spatial Encoding Original 0.772 ± 0.010 0.702 ± 0.014 0.801 ± 0.007 0.725 ± 0.005
+ RR 0.789 ± 0.009 0.715 ± 0.012 0.812 ± 0.006 0.736 ± 0.004

Graphormer with Graph Structure Original 0.781 ± 0.011 0.712 ± 0.013 0.808 ± 0.007 0.732 ± 0.004
+ RR 0.796 ± 0.010 0.724 ± 0.011 0.819 ± 0.006 0.742 ± 0.003

Table 7: Performance of Graph Transformer Networks (GT) with RR Enhancement

Node Classification F1 Score ACM DBLP IMDB

Base GT Original 0.912 ± 0.014 0.938 ± 0.034 0.609 ± 0.023
+ RR 0.923 ± 0.012 0.942 ± 0.025 0.724 ± 0.036

Algorithm 3 Residual Reweighted Conformalized Graph
Neural Network for Node Regression
Input: The binary adjacency matrix A ∈ {0, 1}n×n,
training node features X ∈ Rn×m, training node set Vtrain

and label , ytrain, validation node set Vval and label- yval

(Used for training Residual GNN), calibration nodes Vcalib

and label ycalib, and test nodes Vtest, user-specified error
rate α ∈ (0, 1), two GNN model Gθ1 and Gθ2 with trainable
parameter θ1 and θ2.

Train the model gθ1 and gθ2 with ytrain and yval ac-
cording to Algorithm 2 in main paper.
Compute the nonconformity score, which quantifies the
interval the predicted calibration node labels:

V RR
i = max

{
ŷ
α/2
i − ycalibi∣∣R̂i

∣∣ ,
ycalibi − ŷ

1−α/2
i∣∣R̂i

∣∣
}
,

(29)
i ∈ Vcalib, (30)

Compute d = the kth smallest value in {V RR
i }, where

k = ⌈(|Vcalib|+ 1)(1− α)⌉;
Construct a prediction interval for test nodes:

Ca =
[
ŷα/2a − d

∣∣R̂a

∣∣, ŷ1−α/2
a + d

∣∣R̂a

∣∣], a ∈ Vtest.

Output: Prediction of confidence intervals for the test nodes
a ∈ Vtest with the coverage guarantee:

p
(
ytesta ∈ Ca

)
≥ 1− α. (31)

which measures the average length of the prediction interval.

In addition to the marginal coverage, we also consider the
conditional coverage. Specifically, we measure the coverage
over a slab of the feature space Sv, a, b =

{
[Xi,: ∥Xj,:] ∈

R2f : a ≤ v⊤X ≤ b
}

Romano et al. [2020], Cauchois
et al. [2020], where [Xi,: ∥Xj,:] denotes the node feature
of two connected nodes of an edge (i, j) and v ∈ R2f and
a < b ∈ R are chosen adversarially and independently from
the data. For any prediction interval f∗

θ and δ ∈ (0, 1), the
worst slice coverage is defined as

WSC(f∗
θ , δ) = inf

v ∈ R2f ,
a<b∈ R

{
P
(
Wtestij ∈ Cij | [Xi,:∥

Xj,:] ∈ Sv, a, b
)

s.t. P ([Xi,: ∥Xj,:] ∈ Sv, a, b) ≥ δ
}
.

(36)

6.5 ALGORITHM FOR NODE CLASSIFICATION

6.6 COMPLETE TABLE OF EXPERIMENT

6.7 THEORETICAL GUARANTEE OF OUR
METHOD

7.1. Conformal Prediction

We assume we have access to the graph structure, A,
the node features, X , and the weighted adjacency ma-
trix W train (3). Let (a, b) be the endpoints of a test
edge. We aim to generate a prediction interval, Cab =(
fθ

(
(a, b), A,X,W train

))
⊂ R, for the weight of the such

a test edge. The prediction interval should be marginally
valid, i.e. it should obey

P (Wab ∈ Cab) ≥ 1− α, (41)

where α ∈ (0, 1) is a user-defined error rate. The probability
is over the datagenerating distribution. For efficiency, we

GNN Model on Watts-Strogatz Data Load (s) Load GPU (MB) GraphConv SAGEConv GATS
train val GPU space train val GPU space train val GPU space

GAE (100) 0.30 0.73 0.85s 0.31s 0.21MB 0.70s 0.23s 0.38MB 0.97s 0.38s 0.22MB
DiGAE (100) 0.30 0.73 1.08s 0.45s 0.41MB 1.24s 0.40s 0.74MB 1.16s 0.45s 0.43MB
GAE (1000) 1.40 7.31 1.91s 0.74s 0.58MB 4.71s 0.27s 0.75MB 2.05s 0.72s 0.59MB
DiGAE (1000) 1.40 7.31 3.06s 0.56s 1.11MB 2.24s 0.77s 1.44MB 2.05s 0.60s 1.13MB
GAE (10000) 18.62 73.13 2.21s 0.83s 4.29MB 1.88s 0.72s 4.45MB 3.15s 1.02s 4.30MB
DiGAE (10000) 18.62 73.13 2.90s 1.06s 8.12MB 3.45s 0.97s 8.45MB 2.75s 1.13s 8.13MB
GAE (50000) 98.39 366.07 2.74s 0.75s 20.93MB 2.19s 0.58s 20.77MB 2.75s 0.89s 20.77MB
DiGAE (50000) 98.39 366.07 3.34s 0.91s 39.57MB 3.38s 1.27s 39.25MB 5.25s 1.74s 39.26MB
GAE (100000) 196.39 731.48 2.48s 0.91s 42.25MB 2.00s 0.80s 41.82MB 4.37s 1.12s 42.76MB
DiGAE (100000) 196.39 731.48 3.90s 1.18s 78.60MB 2.93s 1.05s 78.51MB 6.22s 2.24s 80.07MB

Table 8: Performance comparison of different GNN models on Watts-Strogatz graphs including data loading overhead.

(a) Transductive Setting (b) Inductive Setting

Network 1 Network 2

Training data

Test/Calibration data

Network 1

Figure 5: Schematic figure for transductive and inductive settings for edge weight prediction. Different colors indicate the
availability of the nodes during the training or testing phases. Solid and dashed lines represent edges used for training and
the predicted edge in the testing phases, respectively. (a) Transductive edge weight prediction performs both training and
inference on the same graph. (b) Inductive edge weight prediction inference is performed on a new, unseen graph.

focus on the split CP approachPapadopoulos et al. [2002],
using the training edge set Etrain for training and the calibra-
tion edge set Ecalib for calibration. Etrain is used to fit the
prediction model, fθ, and a conformity score is calculated
for each sample in Ecalib . The conformity score evaluates
how well the predictions match the observed labels.

Proposition 1. The prediction intervals generated by split CP
(Algorithm 1), CQR (Algorithm 2), and RR are marginally
valid, i.e. obey equation 41 in appendices material.

Proof. First, we show that the calibration and test conformity
scores defined in equation 29 and 37 in appendices material
and (12) in main paper are exchangeable. Given the entire
graph structure, A, all the node features, X , and the edge
weights of the training edges, W train , the node embeddings
are trained based on W train , and the edge weights in the
remaining Ect are set randomly, the division of Ect into
Ecalib and Etest have no impact on the training process.
Consequently, the conformity scores for Ecalib and Etest are
exchangeable. In practice, we split Ect into Ecalib and Etest

randomly (as detailed in Section 6.2 in appendices material)
by converting the graph into its line graph and then selecting
nodes uniformly at random.

We also explore an alternative proof which is equivalent to
the proof in Huang et al.Huang et al. [2024] but applied
within a line graph setting. Consider the original graph G =
(V,E) and its corresponding line graph G′ = (V ′, E′),
where V ′ = E and E′ denotes adjacency between edges in
G. After randomly dividing E into Etrain and Ect, and further
splitting Ect into Ecalib and Etest , the edges of G transforms
into nodes in G′. This setup mirrors the node division in

the line graph. We train node embeddings on Etrain using
a graph autoencoder, which aligns with fixing the training
node set in G′. Given this fixed training set, any permutation
and division of Ect (which corresponds to nodes in G′)
doesn’t affect the training, and thus the conformity scores
computed for Ecalib and Etest are exchangeable.

Given this exchangeability of nonconformity scores, the
validity of the prediction interval produced by CP and CQR
follows from Theorem 2.2 of Lei et al.Lei et al. [2018]
and Theorem 1 of Romano, Patterson, and CandesRomano
et al. [2019]. Let V be the conformity score of CQR. The
RR approach performs a monotone transformation of V ,
defined as

Φij(V) =
V∣∣∣Ŵ 1−α/2

ij − Ŵ
α/2
ij

∣∣∣ ,

where i and j are two nodes in the graph2. For all (i, j)
and all V,Φ′

ij(V) =
∂Φij(V)

∂V > 0, i.e. the transformation
is strictly monotonic in V . This implies Φab is invertible
for any test edge, (a, b). Let Φ−1

ab be the inverse of Φab.
The Inverse Function Theorem implies Φ−1

ab is also strictly
increasing. Now suppose dRR is the k th smallest value
in

{
V RR
ij

}
= {Φij (Vij)} , k =

⌈(∣∣Ecalib
∣∣+ 1

)
(1− α)

⌉
.

Then for a test edge (a, b),

P
(
Φab (Vab) ≤ dRR

)
=

⌈(∣∣Ecalib
∣∣+ 1

)
(1− α)

⌉
|Ecalib |+ 1

≥ 1−α.

(a)

(b)

Figure 6: Residual for predicted 2016 U.S. county-level
presidential election. (a) The baseline model’s residual Jia
and Benson [2020], which is the normalized absolute dif-
ference between the predicted and ground truth vote count.
(b) RR-GNN’s residual result. The results indicate that the
proposed RR-GNN achieves smaller and more uniform er-
ror/residuals.

Using the monotonicity of Φ−1
ab ,

1− α ≤ P
(
Φab (Vab) ≤ V RR

k

)
= P

(
Vab ≤ Φ−1

ab

(
dRR

))
= P (Wab ∈ Cab)

The final equation is derived from the construction of the
prediction interval in Ca in Algorithm 1 in main paper and
Algorithm 2 and 3 in appendices material and the validity
of CQR. This shows that the prediction intervals based on
the reweighted conformity scores are valid. Proof done.

7 OTHER ABLATION STUDIES

2. Stability Validation

We systematically evaluate clustering stability and noise
robustness. Results can be seen in table 11. In this table
titles, Ori means original setting. NE means noise edge. FN
means feature noise.

Algorithm 4 Residual Reweighted Conformalized Graph
Neural Network for Node Classification
Input: The binary adjacency matrix A ∈ {0, 1}n×n,
training node features X ∈ Rn×m, training node and class
label variable Vtrain, ltrain (ltrain is the one-hot of ltrain.
The situation is also met for l̂ and l̂ which are class output
of model), validation nodes and label Vval, lval (Used
for training Residual GNN), calibration nodes and label
Vcalib, lcalib, and test nodes Vtest, user-specified error rate
α ∈ (0, 1), two GNN model gθ1 and gθ2 with trainable
parameter θ1 and θ2.

Train the model gθ1 and gθ2 with ltrain and lval accord-
ing to Algorithm 2 in main paper
Compute the score which quantifies the residual of the
calibration node classes lcalib projected onto the nearest
quantile produced by gθ1

and gθ2
:

V RR
i = max

{∣∣l̂α/2i − lcalibi

∣∣∣∣R̂i

∣∣+ ϵ
,

∣∣lcalibi − l̂
1−α/2
i

∣∣∣∣R̂i

∣∣+ ϵ

}
,

(37)
i ∈ Vcalib, (38)

Compute d = the kth smallest value in {V RR
i }, where

k = DiffQuantile(⌈(|Vcalib|+ 1)(1− α)⌉); (39)

Construct a prediction interval for test nodes:

Ca =
[
l̂α/2a −d(m)

∣∣R̂a

∣∣, l̂1−α/2
a +d(m)

∣∣R̂a

∣∣], a ∈ Vtest.

Output: Prediction of confidence intervals for the test nodes
(a, b) ∈ Vtest with the coverage guarantee:

p
(
ltesta ∈ Ca

)
≥ 1− α. (40)

Table 11: Clustering Stability Metrics (Cora Dataset)

Metric Ori +20% NE +15% FN
Adjusted Rand Index 0.85 0.82 0.79
Coverage Variance 0.012 0.015 0.018
Cluster Purity 0.92 0.89 0.85
Calibration Time (s) 42.3 45.1 47.8

Figure 7: Residual between predicted and actual traffic volumes across roads in two cities under different models. We took
the average volume at the start and end points as the road traffic. (a) Residual of predicted roads’ traffic volume in Anaheim
of baseline model Huang et al. [2024], which is the absolute value of prediction and ground truth. (b) Residual of predicted
roads’ traffic volume in Anaheim of RR-GAE. (c) Residual of predicted roads’ traffic volume in Chicago of baseline model.
(d) Residual of predicted roads’ traffic volume in Chicago of RR-GAE. For each city, the residuals from the two models
were independently normalized to a 0-1 range for comparison purposes.

Table 9: Results of RR-GNN on Node Regression Datasets

Dataset GraphSAGE SGC GCN GATS
Metrics coverx ineff coverx ineff coverx ineff coverx ineff

Anaheim: CF-GNN 0.9520±0.0669 1.9231±0.0483 0.9559±0.0617 2.2031±0.0241 0.9519±0.0531 2.3782±0.0533 0.9523±0.0302 2.1499±0.0463

Anaheim: Cluster-GNN 0.9532±0.042 1.8954±0.037 0.9561±0.035 2.1423±0.031 0.9528±0.041 2.2451±0.029 0.9541±0.028 2.0321±0.025

Anaheim: RR-GAE 0.9539±0.038 1.8732±0.032 0.9567±0.031 2.0987±0.028 0.9532±0.036 2.1934±0.026 0.9563±0.024 1.9623±0.022

Anaheim: Clsuter-RR-GAE 0.9543±0.0320 1.9647±0.0197 0.9577±0.0657 2.0188±0.0246 0.9585±0.0413 2.2179±0.0254 0.9638±0.0302 1.8996±0.0249

Chicago: CF-GNN 0.9448±0.0519 2.3426±0.0384 0.9486±0.0247 1.0423±0.0372 0.9505±0.0447 2.0456±0.0443 0.9508±0.0569 1.1396±0.0686

Chicago: Cluster-GNN 0.9461±0.039 2.2894±0.034 0.9492±0.031 1.1895±0.029 0.9513±0.037 1.8742±0.031 0.9516±0.042 1.1254±0.045

Chicago: RR-GAE 0.9472±0.035 2.2673±0.029 0.9498±0.028 1.2567±0.026 0.9519±0.033 1.6923±0.027 0.9519±0.038 1.1489±0.039

Chicago: Cluster-RR-GAE 0.9476±0.0426 2.2291±0.0325 0.9546±0.0328 1.2012±0.0250 0.9538±0.0356 1.5769±0.0252 0.9540±0.0362 1.1283±0.0256

Education: CF-GNN 0.9501±0.0242 2.3808±0.0427 0.9500±0.0285 2.4892±0.0351 0.9483±0.0408 2.4380±0.0452 0.9502±0.0392 2.4209±0.0376

Education: Cluster-GNN 0.9513±0.031 2.3145±0.038 0.9517±0.033 2.3721±0.032 0.9496±0.035 2.2894±0.034 0.9518±0.036 2.3256±0.033

Education: RR-GAE 0.9529±0.029 2.1932±0.027 0.9534±0.030 2.1478±0.028 0.9508±0.032 2.0321±0.029 0.9532±0.031 2.1423±0.030

Education: Cluster-RR-GAE 0.9599±0.0417 2.0573±0.0280 0.9586±0.0225 2.0445±0.0239 0.9580±0.0333 1.8731±0.0260 0.9594±0.0386 1.9075±0.0221

Election: CF-GNN 0.9498±0.0211 0.9268±0.0429 0.9495±0.0215 0.9279±0.0302 0.9506±0.0473 0.9009±0.0282 0.9488±0.0363 0.9136±0.0681

Election: Cluster-GNN 0.9503±0.028 0.9152±0.038 0.9501±0.027 0.9124±0.035 0.9512±0.041 0.8723±0.031 0.9496±0.033 0.8945±0.042

Election: RR-GAE 0.9509±0.025 0.9037±0.029 0.9523±0.024 0.8956±0.028 0.9518±0.036 0.8234±0.026 0.9514±0.030 0.8562±0.035

Election: Cluster-RR-GAE 0.9558±0.0215 0.9213±0.0279 0.9567±0.0242 0.9487±0.0259 0.9510±0.0432 0.9343±0.0341 0.9567±0.0317 0.6698±0.0201

Income: CF-GNN 0.9512±0.0264 2.7580±0.0342 0.9504±0.0405 2.4892±0.0302 0.9511±0.0250 2.5272±0.0318 0.9508±0.0329 2.4396±0.0328

Income: Cluster-GNN 0.9521±0.035 2.6723±0.041 0.9513±0.038 2.3721±0.037 0.9526±0.033 2.4189±0.036 0.9519±0.034 2.3254±0.035

Income: RR-GAE 0.9538±0.032 2.5342±0.038 0.9524±0.036 2.1423±0.034 0.9539±0.031 2.1932±0.033 0.9527±0.033 2.1567±0.032

Income: Cluster-RR-GAE 0.9552±0.0618 2.1003±0.0492 0.9519±0.0513 1.9616±0.0358 0.9566±0.0501 1.9203±0.0354 0.9545±0.0347 1.8555±0.0423

Unemploy: CF-GNN 0.9526±0.0415 2.2298±0.0523 0.9510±0.0320 2.4587±0.0491 0.9506±0.0294 2.5013±0.0326 0.9502±0.0354 2.4332±0.0376

Unemploy: Cluster-GNN 0.9531±0.038 2.1932±0.045 0.9519±0.036 2.3256±0.042 0.9513±0.034 2.3721±0.038 0.9516±0.033 2.2894±0.039

Unemploy: RR-GAE 0.9542±0.035 2.1423±0.039 0.9524±0.033 2.1932±0.036 0.9528±0.032 2.2567±0.035 0.9523±0.031 2.1567±0.034

Unemploy: Cluster-RR-GAE 0.9569±0.0419 2.0816±0.0218 0.9517±0.0313 2.0534±0.0367 0.9523±0.0369 2.0480±0.0190 0.9523±0.0448 1.9503±0.0312

Twitch: CF-GNN 0.9524±0.0443 2.6634±0.0365 0.9523±0.0392 2.6835±0.0394 0.9529±0.0257 2.5409±0.0404 0.9515±0.0275 2.6243±0.0460

Twitch: Cluster-GNN 0.9531±0.039 2.5894±0.042 0.9528±0.037 2.5321±0.040 0.9534±0.034 2.4892±0.038 0.9523±0.033 2.4723±0.041

Twitch: RR-GAE 0.9539±0.036 2.4987±0.039 0.9532±0.035 2.4567±0.037 0.9541±0.032 2.3721±0.036 0.9529±0.031 2.3256±0.038

Twitch: Cluster-RR-GAE 0.9515±0.0367 5.0491±0.0513 0.9541±0.0284 2.1005±0.0189 0.9571±0.0219 2.2398±0.0225 0.9535±0.0280 2.1353±0.0262

Table 10: Node Classification Results with Conformal Baselines (Coverage ↑ / Inefficiency ↓)

Dataset CF-GNN [1] DAPS [2] RR-GNN (Ours) Cluster-RR-GNN (Ours)
Model Cover Ineff Cover Ineff Cover Ineff Cover Ineff
Cora
GraphSAGE 0.9456±0.0569 1.6284±0.0483 0.9453±0.0535 1.8025±0.0421 0.9460±0.0542 1.6100±0.0415 0.9463±0.0509 1.6076±0.0397

SGC 0.9461±0.0603 1.6633±0.04415 0.9452±0.0538 1.7856±0.0426 0.9462±0.0581 1.6297±0.0428 0.9490±0.0662 1.5907±0.0465

GCN 0.9473±0.0556 1.6344±0.0418 0.9435±0.053 1.7120±0.0354 0.9432±0.0573 1.6251±0.0367 0.9476±0.0732 1.6315±0.0303

GAT 0.9464±0.0702 1.6278±0.0334 0.9480±0.065 1.7052±0.0384 0.9475±0.0624 1.6146±0.0351 0.9508±0.0539 1.6114±0.0396

DBLP
GraphSAGE 0.9501±0.0523 1.5723±0.0683 0.9500±0.0420 1.6436±0.0627 0.9499±0.0531 1.5351±0.0473 0.9503±0.0510 1.5607±0.0487

SGC 0.9451±0.0617 1.4274±0.0416 0.9427±0.0526 1.6020±0.0317 0.9462±0.0528 1.4286±0.0541 0.9443±0.0462 1.3921±0.0624

GCN 0.9473±0.0596 1.5644±0.0733 0.9458±0.0565 1.6384±0.0703 0.9458±0.0702 1.5512±0.0295 0.9430±0.0713 1.5491±0.0278

GAT 0.9467±0.0717 1.5729±0.0463 0.9455±0.0685 1.6493±0.0455 0.9485±0.0589 1.5725±0.0349 0.9505±0.0539 1.5570±0.0322

CiteSeer
GraphSAGE 0.9528±0.0203 1.1680±0.0439 0.9501±0.0195 1.3425±0.0412 0.9538±0.0853 1.1621±0.0552 0.9540±0.0926 1.1679±0.0605

SGC 0.9525±0.0257 1.1827±0.0552 0.9513±0.0245 1.3578±0.0525 0.9579±0.0536 1.1782±0.0415 0.9594±0.0582 1.1898±0.0399

GCN 0.9496±0.0392 1.2310±0.0332 0.9520±0.036 1.4026±0.0327 0.9512±0.0358 1.2189±0.0276 0.9518±0.0373 1.2153±0.0290

GAT 0.9508±0.0309 1.2396±0.0416 0.9513±0.0291 1.4152±0.0393 0.9535±0.0447 1.2085±0.0361 0.9562±0.0491 1.1418±0.0392

	Introduction
	Related Work
	Methodology
	Node Regression/Classification
	RR-GNN on Edge Weight Prediction
	Conformal GAE for Edge Weight Prediction
	RR-GNN on Edge Weight Prediction

	RR-GNN on Node Regression
	RR-GNN on Node Classification

	Results
	Empirical analysis
	Ablation Study

	Conclusion
	APPENDICES
	Other Experiment Results
	Background of Graph Autoencoder
	Guaranteed Edge Weight Prediction Using GNNs

	Appendices Figures
	Schematic figure for transductive and inductive settings for link prediction.
	Learning the error structure

	Nonconformity Score and Evaluation Metrics
	Algorithm for Node Classification
	Complete table of experiment
	Theoretical guarantee of our method

	Other Ablation Studies

