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ABSTRACT

Feature based explanations, that provide importance of each feature towards the
model prediction, is arguably one of the most intuitive ways to explain a model.
In this paper, we establish a novel set of evaluation criteria for such feature based
explanations by robustness analysis. In contrast to existing evaluations which
require us to specify some way to “remove” features that could inevitably introduces
biases and artifacts, we make use of the subtler notion of smaller adversarial
perturbations. By optimizing towards our proposed evaluation criteria, we obtain
new explanations that are loosely necessary and sufficient for a prediction. We
further extend the explanation to extract the set of features that would move the
current prediction to a target class by adopting targeted adversarial attack for the
robustness analysis. Through experiments across multiple domains and a user study,
we validate the usefulness of our evaluation criteria and our derived explanations.

1 INTRODUCTION

There is an increasing interest in machine learning models to be credible, fair, and more generally
interpretable (Doshi-Velez & Kim, 2017). Researchers have explored various notions of model
interpretability, ranging from trustability (Ribeiro et al., 2016), fairness of a model (Zhao et al., 2017),
to characterizing the model’s weak points (Koh & Liang, 2017; Yeh et al., 2018). Even though
the goals of these various model interpretability tasks vary, the vast majority of them use so called
feature based explanations, that assign importance to individual features (Baehrens et al., 2010;
Simonyan et al., 2013; Zeiler & Fergus, 2014; Bach et al., 2015; Ribeiro et al., 2016; Lundberg &
Lee, 2017; Ancona et al., 2018; Sundararajan et al., 2017; Zintgraf et al., 2017; Shrikumar et al.,
2017; Chang et al., 2019). There have also been a slew of recent evaluation measures for feature
based explanations, such as completeness (Sundararajan et al., 2017), sensitivity-n (Ancona et al.,
2018), infidelity (Yeh et al., 2019), causal local explanation metric (Plumb et al., 2018), and most
relevant to the current paper, removal- and preservation-based criteria (Samek et al., 2016; Fong &
Vedaldi, 2017; Dabkowski & Gal, 2017; Petsiuk et al., 2018). A common thread in all these evaluation
measures is that for a good feature based explanation, the most salient features are necessary, in that
removing them should lead to a large difference in prediction score, and are also sufficient in that
removing non-salient features should not lead to a large difference in prediction score.

Thus, common evaluations and indeed even methods for feature based explanations involve measuring
the function difference after “removing features”, which in practice is done by setting the feature
value to some reference value (also called baseline value sometimes). However, this would favor
feature values that are far way from the baseline value (since this corresponds to a large perturbation,
and hence is likely to lead to a function value difference), causing an intrinsic bias for these methods
and evaluations. For example, if we set the feature value to black in RGB images, this introduces a
bias favoring bright pixels: explanations that optimize such evaluations often omit important dark
objects such as a dark-colored dog. An alternative approach to “remove features” is to sample from
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Figure 1: Illustration of our explanation highlighting both perti-
nent positive and negative features that support the prediction of “2”.
The blue circled region corresponds to pertinent positive features
that when its value is perturbed (from white to black) will make
the digit resemble “7”; while the green and yellow circled region
correspond to pertinent negative features that when turned on (black
to white) will shape the digit into “0”,“8”, or “9”.

some predefined distribution or a generative model (Chang et al., 2019). This nevertheless in turn
incurs the bias inherent to the generative model, and accurate generative models that approximate the
data distribution well might not be available in all domains.

In this work, instead of defining prediction changes with “removal” of features (which introduces
biases as we argued), we alternatively consider the use of small but adversarial perturbations. It is
natural to assume that adversarial perturbations on irrelevant features should be ineffective, while
those on relevant features should be effective. We can thus measure the necessity of a set of relevant
features, provided by an explanation, by measuring the consequences of adversarially perturbing their
feature values: if the features are indeed relevant, this should lead to an appreciable change in the
predictions. Complementarily, we could measure the sufficiency of the set of relevant features via
measuring consequences of adversarially perturbing its complementary set of irrelevant features: if
the perturbed features are irrelevant, this should not lead to an appreciable change in the predictions.
We emphasize that by our definition of “important features”, our method may naturally identify
both pertinent positive and pertinent negative features (Dhurandhar et al., 2018) since both pertinent
positive and pertinent negative features are the most susceptible to adversarial perturbations, and
we demonstrate the idea in Figure 1. While exactly computing such an effectiveness measure is
NP-hard (Katz et al., 2017), we can leverage recent results from test-time robustness (Carlini &
Wagner, 2017; Madry et al., 2017), which entail that perturbations computed by adversarial attacks
can serve as reasonably tight upper bounds for our proposed evaluation. Given this adversarial
effectiveness evaluation measure, we further design feature based explanations that optimize this
evaluation measure.

To summarize our contributions:

• We define new evaluation criteria for feature based explanations by leveraging robustness
analysis involving small adversarial perturbations. These reduce the bias inherent in other
recent evaluation measures that focus on “removing features” via large perturbations to
some reference values, or sampling from some reference distribution.

• We design efficient algorithms to generate explanations that optimize the proposed criteria by
incorporating game theoretic notions, and demonstrate the effectiveness and interpretability
of our proposed explanation on image and language datasets: via our proposed evaluation
metric, additional objective metrics, as well as qualitative results and a user study.1

2 RELATED WORK

Our work defines a pair of new objective evaluation criteria for feature based explanations, where
existing measurements can be roughly categorized into two families. This first family of explanation
evaluations are based on measuring fidelity of the explanation to the model. Here, the feature based
explanation is mapped to a simplified model, and the fidelity evaluations measure how well this
simplified model corresponds to the actual model. A common setting is where the feature vectors
are locally binarized at a given test input, to indicate presence or “removal” of a feature. A linear
model with the explanation weights as coefficients would then equal to the sum of attribution values
for all present features. Completeness or Sum to Delta requires the sum of all attributions to equal
the prediction difference between the original input and a baseline input (Sundararajan et al., 2017;
Shrikumar et al., 2017), while Sensitivity-n further generalize this to require the sums of subsets
of attribution values to equal the prediction difference of the input with features present or absent
corresponding to the subset, and the baseline (Ancona et al., 2018). Local accuracy (Ribeiro et al.,
2016; Lundberg & Lee, 2017) measures the fidelity of local linear regression model corresponding to
explanation weights; while Infidelity is a framework that encompasses these instances above (Yeh

1Code available at https://github.com/ChengYuHsieh/explanation_robustness.
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et al., 2019). The second family of explanation evaluations are removal- and preservation-based
measurements (Samek et al., 2016; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017; Petsiuk et al.,
2018), which evaluate the ranking of feature attribution score, with the key insight that removing
the most (least) salient features should lead to the most (least) significant function value difference.
Unlike previous evaluations, our proposed evaluation criteria are based on more nuanced and smaller
adversarial perturbations which do not rely on operationalizing “feature removal”.

Another close line of research is counterfactual and contrastive explanations (Wachter et al., 2017;
Dhurandhar et al., 2018; Hendricks et al., 2018; van der Waa et al., 2018; Chang et al., 2019; Goyal
et al., 2019; Joshi et al., 2019; Poyiadzi et al., 2020), which answer the question: “what to alter
in the current input to change the outcome of the model”. These studies enable interpretation of
a model decision through a contrastive perspective and facilitate actionable means that one can
actually undertake to change the model prediction (Joshi et al., 2019; Poyiadzi et al., 2020). While
“the closest possible world” provided by counterfactual explanations sheds light on the features
that are “necessary” for the prediction, it could fail to identify relevant features that are “sufficient”
for the current prediction. Xu et al. (2018) add group sparsity regularization to adversarial attacks
that improves the semantic structure of the adversarial perturbations. Instead of outputting general
adversarial perturbations, our work focuses specifically on identifying necessary and sufficient
relevant features by measuring their susceptibility to adversarial perturbations. Ribeiro et al. (2018)
find a set of features that once fixed, the prediction does not change much with high probability when
perturbing other features. They measure this via a sampling approach, which could be infeasible
for high-dimensional images without super-pixels. In contrast, our method considers the class of
adversarial perturbations, which is much more computationally feasible compared to sampling high-
dimensional spaces. Guidotti et al. (2019) exploit latent feature space to learn local decision rules with
image exemplars that support the current prediction and counter-exemplars that contrast the current
prediction. While the explanation is capable of highlighting both areas pertinent to the prediction and
areas that pushes the prediction towards another class, the method relies on an effective generative
model which might not always be available in different applications.

3 ROBUSTNESS ANALYSIS FOR EVALUATING EXPLANATIONS

3.1 PROBLEM NOTATION

We consider the setting of a general K-way classification problem with input space X ⊆ Rd, output
space Y = {1, . . . ,K}, and a predictor function f : X → Y where f(x) denotes the output class for
some input example x = [x1, . . . ,xd] ∈ X . Then, for a particular prediction f(x) = y, a common
goal of feature based explanations is to extract a compact set of relevant features with respect to
the prediction. We denote the set of relevant features provided by an explanation as Sr ⊆ U where
U = {1, . . . , d} is the set of all features, and use Sr = U \ Sr, the complementary set of Sr, to
denote the set of irrelevant features. We further use xS to denote the features within x that are
restricted to the set S.

3.2 EVALUATION THROUGH ROBUSTNESS ANALYSIS

A common thread underlying evaluations of feature based explanations (Samek et al., 2016; Petsiuk
et al., 2018), even ranging over axiomatic treatments (Sundararajan et al., 2017; Lundberg & Lee,
2017), is that the importance of a set of features corresponds to the change in prediction of the model
when the features are removed from the original input. Nevertheless, as we discussed in previous
sections, operationalizing such a removal of features, for instance, by setting them to some reference
value, introduces biases (see Appendix A and Section 5.2 for formal discussion and empirical results
on the impact of reference values). To finesse this, we leverage adversarial robustness, but to do so in
this context, we rely on two key intuitive assumptions that motivate our method:

Assumption 1: When the values of the important features are anchored (fixed), perturbations
restricted to the complementary set of features has a weaker influence on the model prediction.

Assumption 2: When perturbations are restricted to the set of important features, fixing the values
of the rest of the features, even small perturbations could easily change the model prediction.

Based on these two assumptions, we propose a new framework leveraging the notion of adversarial
robustness on feature subsets, as defined below, to evaluate feature based explanations.
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Definition 3.1 Given a model f , an input x, and a set of features S ⊆ U where U is the set of all
features, the minimum adversarial perturbation norm on xS , which we will also term Robustness-S
of x is defined as:

ε∗xS
= g(f,x, S) =

{
min
δ
‖δ‖p s.t. f(x+ δ) 6= y, δS = 0

}
, (1)

where y = f(x), S = U \ S is the complementary set of features, and δS = 0 means that the
perturbation is constrained to be zero along features in S.

Suppose that a feature based explanation partitions the input features of x into a relevant set Sr, and
an irrelevant set Sr, Assumption 1 implies that the quality of the relevant set can be measured by
ε∗xSr

– by keeping the relevant set unchanged, and measuring the adversarial robustness norm by
perturbing only the irrelevant set. Specifically, from Assumption 1, a larger coverage of pertinent
features in set Sr entails a higher robustness value ε∗xSr

. On the other hand, from Assumption 2, a
larger coverage of pertinent features in set Sr would in turn entail a smaller robustness value ε∗xSr

,
since only relevant features are perturbed. More formally, we propose the following twin criteria for
evaluating the quality of Sr identified by any given feature based explanation.

Definition 3.2 Given an input x and a relevant feature set Sr, we define Robustness-Sr and
Robustness-Sr of the input x as the following:

Robustness-Sr = ε∗xSr
. Robustness-Sr = ε∗xSr

.

Following our assumptions, a set Sr that has larger coverage of relevant features would yield higher
Robustness-Sr and lower Robustness-Sr.

Evaluation for Feature Importance Explanations. While Robustness-Sr and Robustness-Sr are
defined on sets, general feature attribution based explanations could also easily fit into the evaluation
framework. Given any feature attribution method that assigns importance score to each feature, we
can sort the features in descending order of importance weights, and provide the top-K features as
the relevant set Sr. The size of K (or |Sr|), can be specified by the users based on the application.
An alternative approach that we adopt in our experiments is to vary the size of set K and plot
the corresponding values of Robustness-Sr and Robustness-Sr over different values of K. With
a graph where the X−axis is the size of K and the Y−axis is Robustness-Sr or Robustness-Sr,
we are then able to plot an evaluation curve for an explanation and in turn compute its the area
under curve (AUC) to summarize its performance. A larger (smaller) AUC for Robustness-Sr
(Robustness-Sr) indicates a better feature attribution ranking. Formally, given a curve represented by
a set of points C = {(x0, y0), . . . , (xn, yn)} where xi−1 < xi, we calculate the AUC of the curve by:
AUC(C) =

∑n
i=1(yi + yi−1)/2 ∗ (xi − xi−1).

Relation to Insertion and Deletion Criteria. We relate the proposed criteria to a set of commonly
adopted evaluation metrics: the Insertion and Deletion criteria (Samek et al., 2016; Petsiuk et al.,
2018; Sturmfels et al., 2020). The Insertion score measures the model’s function value when only
the top-relevant features, given by an explanation, are presented in the input while the others are
removed (usually by setting them to some reference value representing feature missingness). The
Deletion score, on the other hand, measures the model’s function value when the most relevant
features are masked from the input. As in our evaluation framework, we could plot the evaluation
curves for Insertion (Deletion) score by progressively increasing the number of top-relevant features.
A larger (smaller) AUC under Insertion (Deletion) then indicates better explanation, as the identified
relevant features could indeed greatly influence the model prediction. We note that optimizing the
proposed Robustness-Sr and Robustness-Sr could roughly be seen as optimizing a lower bound
for the Insertion and Deletion score respectively. This follows from the intuition: Robustness-
Sr considers features that when anchored, would make the prediction most robust to “adversarial
perturbation”. Since adversarial perturbation is the worst case of “any arbitrary perturbations”,
the prediction will also be robust to different removal techniques (which essentially correspond to
different perturbations) considered in the evaluation of Insertion score; The same applies to the
connection between Robustness-Sr and Deletion score. We shall see in the experiment section
that explanation optimizing our robustness measurements enjoys competitive performances on the
Insertion / Deletion criteria.
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Untargeted v.s. Targeted Explanation. Definition 3.1 corresponds to the untargeted adversarial
robustness – a perturbation that changes the predicted class to any label other than y is considered
as a successful attack. Our formulation can also be extended to targeted adversarial robustness,
where we replace Eqn. 1 by:

ε∗xS ,t =

{
min
δ
‖δ‖p s.t. f(x+ δ) = t; δS = 0

}
, (2)

where t is the targeted class. Using this definition, our approach will try to address the question
“Why is this example classified as y instead of t” by highlighting the important features that contrast
between class y and t. Further examples of the “targeted explanations” are in the experiment section.

Robustness Evaluation on Feature Subset. It is known that computing the exact minimum dis-
tortion distance in modern neural networks is intractable (Katz et al., 2017), so many different
methods have been developed to estimate the value. Adversarial attacks, such as C&W (Carlini
& Wagner, 2017) and projected gradient descent (PGD) attack (Madry et al., 2017), aim to find a
feasible solution of Eqn. 1, which leads to an upper bound of ε∗xS

. They are based on gradient based
optimizers which are usually efficient. On the other hand, neural network verification methods aim
to provide a lower bound of ε∗xS

to ensure that the model prediction will not change within certain
perturbation range (Singh et al., 2018; Wong & Kolter, 2018; Weng et al., 2018; Gehr et al., 2018;
Zhang et al., 2018; Wang et al., 2018; Zhang et al., 2019). The proposed framework can be combined
with any method that aims to approximately compute Eqn. 1, including attack, verification, and
some other statistical estimations (see Appendix B for more discussions on estimating adversarial
robustness for different types of model). However, for simplicity we only choose to evaluate Eqn. 1
by the state-of-the-art PGD attack (Madry et al., 2017), since the verification methods are too slow
and often lead to much looser estimation as reported in some recent studies (Salman et al., 2019).
Our additional constraint restricting perturbation to only be on a subset of features specifies a set that
is simple to project onto, where we set the corresponding coordinates to zero at each step of PGD.

4 EXTRACTING RELEVANT FEATURES THROUGH ROBUSTNESS ANALYSIS

Our adversarial robustness based evaluations allow us to evaluate any given feature based explanation.
Here, we set out to design new explanations that explicitly optimize our evaluation measure. We
focus on feature set based explanations, where we aim to provide an important subset of features
Sr. Given our proposed evaluation measure, an optimal subset of feature Sr would aim to maximize
(minimize) Robustness-Sr (Robustness-Sr), under a cardinality constraint on the feature set, leading
to the following set of optimization problems:

maximize
Sr⊆U

g(f,x, Sr) s.t. |Sr| ≤ K (3)

minimize
Sr⊆U

g(f,x, Sr) s.t. |Sr| ≤ K (4)

where K is a pre-defined size constraint on the set Sr, and g(f,x, S) computes the the minimum
adversarial perturbation from Eqn. 1, with set-restricted perturbations.

It can be seen that this sets up an adversarial game for Eqn. 3 (or a co-operative game for Eqn. 4).
In the adversarial game, the goal of the feature set explainer is to come up with a set Sr such that
the minimal adversarial perturbation is as large as possible, while the adversarial attacker, given
a set Sr, aims to design adversarial perturbations that are as small as possible. Conversely in the
co-operative game, the explainer and attacker cooperate to minimize the perturbation norm. Directly
solving these problems in Eqn. 3 and Eqn. 4 is thus challenging, which is exacerbated by the discrete
input constraint that makes it intractable to find the optimal solution. We therefore propose a greedy
algorithm in the next section to estimate the optimal explanation sets.

4.1 GREEDY ALGORITHM TO COMPUTE OPTIMAL EXPLANATIONS

We first consider a greedy algorithm where, after initializing Sr to the empty set, we iteratively add
to Sr the most promising feature that optimizes the objective at each local step until Sr reaches the
size constraint. We thus sequentially solve the following sub-problem at every step t:

arg max
i

g(f,x, Str ∪ i), or arg min
i

g(f,x, Str ∪ i), ∀i ∈ Str (5)

where Str is the relevant set at step t, and S0
r = ∅. We repeat this subprocedure until the size of set

Str reaches K. A straightforward approach for solving Eqn. 5 is to exhaustively search over every

5



Published as a conference paper at ICLR 2021

single feature. We term this method Greedy. While the method eventually selects K features for
the relevant set Sr, it might lose the sequence in which the features were selected. One approach
to encode this order would be to output a feature explanation that assigns higher weights to those
features selected earlier in the greedy iterations.

4.2 GREEDY BY SET AGGREGATION SCORE

The main downside of using the greedy algorithm to optimize the objective function is that it ignores
the interactions among features. Two features that may seem irrelevant when evaluated separately
might nonetheless be relevant when added simultaneously. Therefore, in each greedy step, instead of
considering how each individual feature will marginally contribute to the objective g(·), we propose
to choose features based on their expected marginal contribution when added to the union of Sr and
a random subset of unchosen features. To measure such an aggregated contribution score, we draw
from cooperative game theory literature (Dubey & Shapley, 1979; Hammer & Holzman, 1992) to
reduce this to a linear regression problem. Formally, let Str and Str be the ordered set of chosen and
unchosen features at step t respectively, and P(Str) be all possible subsets of Str. We measure the
expected contribution that including each unchosen feature to the relevant set would have on the
objective function by learning the following regression problem:

wt, ct = arg min
w,c

∑
S∈P(St

r)

((wT b(S) + c)− v(Str ∪ S))2, (6)

where b : P(Str) → {0, 1}|S
t
r| is a function that projects a set into its corresponding binary vector

form: b(S)[j] = I(Str[j] ∈ S), and v(·) is set to be the objective function in Eqn. 3 or Eqn. 4:
v(Sr) = g(f,x, Sr) for optimizing Eqn. 3; v(Sr) = g(f,x, Sr) for optimizing Eqn. 4. We note that
wt corresponds to the well-known Banzhaf value (Banzhaf III, 1964) when Str = ∅, which can be
interpreted as the importance of each player by taking coalitions into account (Dubey & Shapley,
1979). Hammer & Holzman (1992) show that the Banzhaf value is equivalent to the optimal solution
of linear regression with pseudo-Boolean functions as targets, which corresponds to Eqn. 6 with
Str = ∅. At each step t, we can thus treat the linear regression coefficients wt in Eqn. 6 as each
corresponding feature’s expected marginal contribution when added to the union of Sr and a random
subset of unchosen features.

We thus consider the following set-aggregated variant of our greedy algorithm in the previous section,
which we term Greedy-AS. In each greedy step t, we choose features that are expected to contribute
most to the objective function, i.e. features with highest (for Eqn. 3) or lowest (for Eqn. 4) aggregation
score (Banzhaf value), rather than simply the highest marginal contribution to the objective function
as in vanilla greedy. This allows us to additionally consider the interactions among the unchosen
features when compared to vanilla greedy. The chosen features each step are then added to Str and
removed from Str. When Str is not ∅, the solution of Eqn. 6 can still be seen as the Banzhaf value
where the players are the unchosen features in Str, and the value function computes the objective
when a subset of players is added into the current set of chosen features Str. We solve the linear
regression problem in Eqn. 6 by sub-sampling to lower the computational cost, and we validate the
effectiveness of Greedy and Greedy-AS in the experiment section. 2

5 EXPERIMENTS

In this section, we first evaluate different model interpretability methods on the proposed criteria.
We justify the effectiveness of the proposed Greedy-AS. We then move onto further validating the
benefits of the explanations extracted by Greedy-AS through comparisons to various existing methods
both quantitatively and qualitatively. Finally, we demonstrate the flexibility of our method with the
ability to provide targeted explanations as mentioned in Section 3.2. We perform the experiments on
two image datasets, MNIST LeCun et al. (2010) and ImageNet (Deng et al., 2009), as well as a text
classification dataset, Yahoo! Answers (Zhang et al., 2015). On MNIST, we train a convolutional
neural network (CNN) with 99% testing accuracy. On ImageNet, we deploy a pre-trained ResNet
model obtained from the Pytorch library. On Yahoo! Answers, we train a BiLSTM sentence classifier
which attains testing accuracy of 71%.

2We found that concurrent to our work, greedy with choosing the players with the highest restricted Banzhaf
was used in Elkind et al. (2017).
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Table 1: AUC of Robustness-Sr and Robustness-Sr for various explanations on different datasets.
The higher the better for Robustness-Sr; the lower the better for Robustness-Sr.

Datasets Explanations Grad IG EG SHAP LOO BBMP CFX Random Greedy-AS

MNIST Robustness-Sr 88.00 85.98 93.24 75.48 74.14 78.58 69.88 64.44 98.01
Robustness-Sr 91.72 91.97 91.05 101.49 104.38 176.61 102.81 193.75 82.81

ImageNet Robustness-Sr 27.13 26.01 26.88 18.25 22.29 21.56 27.12 17.98 31.62
Robustness-Sr 45.53 46.28 48.82 60.02 58.46 158.01 46.10 56.11 43.97

Yahoo!Answer Robustness-Sr 1.97 1.86 1.96 1.81 1.74 - 1.95 1.71 2.13
Robustness-Sr 2.91 3.14 2.99 3.34 4.04 - 2.96 7.64 2.41

Setup. In the experiments, we consider p = 2 for ‖ · ‖p in Eqn. 1 and Eqn. 2. We note that Eqn. 1
is defined for a single data example. Given n multiple examples {xi}ni=1 with their corresponding
relevant sets provided by some explanation {Si}ni=1, we compute the overall Robustness-Sr (-Sr) by
taking the average: for instance, 1

n

∑n
i=1 g(f,xi, Si) for Robustness-Sr. We then plot the evaluation

curve as discussed in Section 3.2 and report the AUC for different explanation methods. For all
quantitative results, we report the average over 100 random examples. For the baseline methods, we
include vanilla gradient (Grad) (Shrikumar et al., 2017), integrated gradient (IG) (Sundararajan et al.,
2017), and expected gradient (EG) (Erion et al., 2019; Sturmfels et al., 2020) from gradient-based
approaches; leave-one-out (LOO) (Zeiler & Fergus, 2014; Li et al., 2016), SHAP (Lundberg & Lee,
2017) and black-box meaningful perturbation (BBMP) (only for image examples) (Fong & Vedaldi,
2017) from perturbation-based approaches (Ancona et al., 2018); counterfactual explanation (CFX)
proposed by Wachter et al. (2017); Anchor (Ribeiro et al., 2018) for text examples; and a Random
baseline that ranks feature importance randomly. Following common setup (Sundararajan et al., 2017;
Ancona et al., 2018), we use zero as the reference value for all explanations that require baseline. We
leave more implementation detail in Appendix C due to space limitation.

5.1 ROBUSTNESS ANALYSIS ON MODEL INTERPRETABILITY METHODS

Here we compare Greedy-AS and various existing explanation methods under the proposed evaluation
criteria Robustness-Sr and Robustness-Sr. We list the results in Table 1, with the detailed plots in
Appendix D. We as well compare Greedy-AS with its ablated variants in Appendix E.

Comparisons between Different Explanations. From Table 1, we observe that the proposed
Greedy-AS consistently outperforms other explanation methods on both criteria (see Appendix G
for the statistical significance). On one hand, this suggests that the proposed algorithm indeed
successfully optimizes towards the criteria; on the other hand, this might indicate the proposed criteria
do capture different characteristics of explanations which most of the current explanations do not
possess. Another somewhat interesting finding from the table is that while Grad has generally been
viewed as a baseline method, it nonetheless performs competitively on the proposed criteria. We
conjecture the phenomenon results from the fact that Grad does not assume any reference value as
opposed to other baselines such as LOO which sets the reference value as zero to mask out the inputs.
Indeed, it might not be surprising that Greedy-AS achieves the best performances on the proposed
criteria since it is explicitly designed for so. To more objectively evaluate the usefulness of the
proposed explanation, we demonstrate different advantages of our method by comparing Greedy-AS
to other explanations quantitatively on existing commonly adopted measurements, and qualitatively
through visualization in the following subsections.

5.2 EVALUATING GREEDY-AS

The Insertion and Deletion Metric. To further justify the proposed explanation not only performs
well on the very metric it optimizes, we evaluate our method on the suite of quantitative measurements
mentioned above: the Insertion and Deletion criteria (Samek et al., 2016; Petsiuk et al., 2018;
Sturmfels et al., 2020). Recall that evaluations on Insertion and Deletion score require specifying
a reference value to represent feature missingness. Here, we first focus on the results when the
reference values are randomly sampled from an uniform distribution, i.e., U(0, 1) for image inputs
and random word vector for text inputs, and we shall discuss the impact on varying such reference
value shortly. We plot the evaluation curves (in Appendix F) and report corresponding AUCs in
Table 2. On these additional two criteria, we observe that Greedy-AS performs favorably against other
explanations (see Appendix G for the statistical significance). The results further validate the benefits
of the proposed criteria where optimizing Robustness-Sr (-Sr) has tight connection to optimizing the
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Table 2: AUC of the Insertion and Deletion criteria for various explanations on different datasets.
The higher the better for Insertion; the lower the better for Deletion.

Datasets Explanations Grad IG EG SHAP LOO BBMP CFX Random Greedy-AS

MNIST Insertion 174.18 177.12 228.64 125.93 121.99 108.97 102.05 51.71 270.75
Deletion 153.58 150.90 113.21 213.32 274.77 587.08 137.69 312.07 94.24

ImageNet Insertion 86.16 109.94 150.81 28.06 63.90 135.98 97.33 31.73 183.66
Deletion 276.78 256.51 244.88 143.27 290.10 615.13 281.12 314.82 219.52

Yahoo!Answers Insertion 0.06 0.06 0.20 0.07 0.18 - 0.05 0.10 0.21
Deletion 2.57 2.96 2.07 2.23 2.07 - 2.35 2.63 1.56

Insertion (Deletion) score. We note that on ImageNet, SHAP obtains a better performance under the
Deletion criterion. We however suspect such performance comes from adversarial artifacts (features
vulnerable to perturbations while not being semantically meaningful) since SHAP seems rather noisy
on ImageNet (as shown in Figure 3), and the Deletion criterion has been observed to favor such
artifacts in previous work (Dabkowski & Gal, 2017; Chang et al., 2019). We note that although
Greedy-AS exploits regions that are most susceptible to adversarial attacks, such regions may still be
meaningful as shown in our visualization result.

Impact and Potential Bias of Reference Value. From Table 2, one might wonder why explana-
tions like IG and SHAP would suffer relatively low performance although some of these methods
(e.g., SHAP) are intentionally designed for optimizing Insertion- and Deletion-like measurements.
We anticipate that such inferior performances are due to the mismatch between the intrinsic reference
values used in the explanations and the ones used in the evaluation (recall that we set the intrinsic
reference value to zero for all explanation methods, but utilize random value for Insertion and Dele-
tion). To validate the hypothesis, we evaluate all explanations on Insertion and Deletion criteria with
different reference values (0, 0.25, 0.5, 0.75, 1), and list the results in Appendix H. We validate that
zero-baseline SHAP and IG perform much stronger when the reference value used in Insertion /
Deletion is closer to zero (matching the intrinsically-used baseline) and perform significantly worse
when the reference value is set to 0.75, 1, or U(0, 1). On the other hand, we observe EG that does
not rely on a single reference point (but instead averaging over multiple baselines) performs much
more stably across different reference values. Finally, we see that Greedy-AS performs stably among
the top across different reference values, which could be the merits of not assuming any baselines
(but instead consider the worst-case perturbation). These empirical results reveal potential risk of
evaluations (and indeed explanations) that could largely be affected by the change of baseline values.

Sanity Check and Sensitivity Analysis. In Appendix I, we conduct experiments to verify that
Greedy-AS could indeed pass the sanity check proposed by Adebayo et al. (2018). We as well
conduct sensitivity analysis (Yeh et al., 2019) on Greedy-AS in Appendix J.

5.3 QUALITATIVE RESULTS

Image Classification. To complement the quantitative measurements, we show several visualiza-
tion results on MNIST and ImageNet in Figure 2 and Figure 3. More examples could be found in
Appendix K and L. On MNIST, we observe that existing explanations tend to highlight mainly on the
white pixels in the digits; among which SHAP and LOO show less noisy explanations comparing
to Grad and IG. On the other hand, the proposed Greedy-AS focuses on both the “crucial positive”
(important white pixels) as well as the “pertinent negative” (important black regions) that together
support the prediction. For example, in the first row, a 7 might have been predicted as a 4 or 0 if the
pixels highlighted by Greedy-AS are set to white. Similarly, a 1 may be turned to a 4 or a 7 given
additional white pixels to its left, and a 9 may become a 7 if deleted the lower circular part of its head.
From the results, we see that Greedy-AS focuses on “the region where perturbation on its current
value will lead to easier prediction change”, which includes both the crucial positive and pertinent
negative pixels. Such capability of Greedy-AS is also validated by its superior performance on the
proposed robustness criteria, on which methods like LOO that highlights only the white strokes of
digits show relatively low performance. The capability of capturing pertinent negative features has
also been observed in explanations proposed in some recent work Dhurandhar et al. (2018); Bach
et al. (2015); Oramas et al. (2019), and we further provide more detailed discussions and comparisons
to these methods in Appendix M. From the visualized ImageNet examples shown in Figure 3, we
observe that our method provides more compact explanations that focus mainly on the actual objects
being classified. For instance, in the first image, our method focuses more on the face of the Maltese
while others tend to have noisier results; in the last image, our method focuses on one of the Japanese
Spaniel whereas others highlight both the dogs and some noisy regions.
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Figure 2: Visualization on top 20 percent rele-
vant features provided by different explanations
on MNIST. We see Greedy-AS highlights both
crucial positive and pertinent negative features
supporting the prediction.

Figure 3: Visualization of different explanations
on ImageNet, where the predicted class for each
input is “Maltese”, “hippopotamus”, “zebra”,
and “Japanese Spaniel”. Greedy-AS focuses
more compactly on objects.

Figure 4: Explanations on a text classification model which correctly predicts the label “sport”.
Unlike most other methods, the top-5 relevant keywords highlighted by Greedy-AS are all related to
the concept “sport”.

Figure 5: Visualization of targeted explanation. For each input, we highlight relevant regions
explaining why the input is not predicted as the target class. We see the explanation changes in a
semantically meaningful way as the target class changes.

Text Classification. Here we demonstrate our explanation method on a text classification model
that classifies a given sentence into one of the ten classes (Society, Science, . . . , Health). We
showcase an example in Figure 4 (see Appendix O for more examples). We see that the top-5
keywords highlighted by Greedy-AS are all relevant to the label “sport”, and Greedy-AS is less likely
to select stop words as compared to other methods. Additionally, we conduct an user study where we
observe that Greedy-AS generates explanation that matches user intuition the most, and we report
detailed setup of the user study in Appendix P.

Targeted Explanation Analysis. In section 3.2, we discussed about the possibility of using targeted
adversarial perturbation to answer the question of “why the input is predicted as A but not B”. In
Figure 5, for each input digit, we provide targeted explanation towards two different target classes.
Interestingly, as the target class changes, the generated explanation varies in an interpretatble way.
For example, in the first image, we explain why the input digit 7 is not classified as a 9 (middle
column) or a 2 (rightmost column). The resulting explanation against 9 highlights the upper-left part
of the 7. Semantically, this region is indeed pertinent to the classification between 7 and 9, since
turning on the highlighted pixel values in the region (currently black in the original image) will then
make the 7 resemble a 9. However, the targeted explanation against 2 highlights a very different but
also meaningful region, which is the lower-right part of the 7; since adding a horizontal stroke on the
area would turn a 7 into a 2.

6 CONCLUSION
In this paper, we establish the link between a set of features to a prediction with a new evaluation
criteria, robustness analysis, which measures the minimum tolerance of adversarial perturbation.
Furthermore, we develop a new explanation method to find important set of features to optimize
this new criterion. Experimental results demonstrate that the proposed new explanations are indeed
capturing significant feature sets across multiple domains.
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A BIAS FOR REFERENCE-VALUE METHODS

In Appendix A.1, we show that many explanations are biased to reference value (IG, SHAP, LRP,
DeepLift). For example, if the reference value is a zero vector (which means black pixels in image),
then any black pixel will get a zero attribution value no matter if the object of interest is actually
back. We note that the Expected Gradient (Erion et al., 2019) is not biased to reference value by this
theoretic definition since the baseline is actually a distribution. However, for feature values that are
close to the distribution of , the attribution score will be lower (but not 0 as our theoretic definition),
when feature values are far from the distribution of , the the attribution score will be larger, which still
has some biased involve. We leave further investigation of the problem to future work to use more
advanced analysis to quantify such a bias for explanations when the baseline follows a distribution.

In Appendix A.2, we added theoretical analysis that when a feature is equal to the replaced reference
value, no matter how important it actually is, it will not contribute to the Deletion score nor the
Insertion score. However, the lower the deletion score is better, and the higher the insertion score is
better, and choosing an important feature that corresponds to the reference value will inevitably not
improve the Deletion score and Insertion score. The reference values such as blurring out or adding
noise may still make the original features unchanged (such as when the main part of the image is
already blurred, blurring the image will not change the image, and thus the main part of the image is
biased to blurred baseline).

A.1 BIAS FOR REFERENCE-VALUE BASED EXPLANATIONS

Theorem A.1 For any reference-value based explanation with the form φ(f, x, x′) = (x − x′) ⊗
K(f, x, x′) for any meta-function K, we know that if xi = x′i, φi(f, x) = 0. That is, when ever a
feature value coincides with the baseline value x′, it will get 0 attribution even if it is the main feature
contributing to the prediction. We call such explanations biased to the reference value x′.

Corollary A.1 IG, LRP, DeepLift are biased to the reference value x′.

Following the definition in (Ancona et al., 2018), let ∂
gxc

∂xi
=
∑
p∈Pic

∏
wp
∏
g(z)p where Pic is the

set of all paths that connect an unit i to unit c in a deep neural network, wp are the weights existing in
path p, z be the value of an unit before nonlinear activation, and g() be any generic function. Note
that if g() = f ′(), the definition corresponds to the standard partial derivative of unit c to unit i.

φIGi (f, x) = (xi − x′i) ·K(f, x, x′), where K(f, x, x′) =

∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα (7)

φLRPi (f, x) = (xi − x′i) ·K(f, x, x′), where x′ = 0 and K(f, x, x′) =
∂gf(x)

∂xi
with g =

f(z)

z
(8)

φDeepLifti (f, x) = (xi − x′i) ·K(f, x, x′), where K(f, x, x′) =
∂gf(x)

∂xi
with g =

f(z)− f(z′)

z − z′
(9)

For example, if the reference value x′ is a zero vector (which means black pixels in image), then any
black pixel will get a zero attribution value no matter if the object of interest is actually back.

Theorem A.2 For any average reference-value based explanation with the form φ(f, x, x′) =
Ex′∼pb [(x − x′) ⊗K(f, x)] for some meta function K, if xi = Ex′∼pb [x′i], φi(f, x) = 0. That is,
they are biased to the reference value Ex′∼pb [x′].

Corollary A.2 Averaging LRP over multiple baselines are bias to the reference value Ex′∼pb [x′].

φavgLRPi (f, x, x′) = Ex′∼pb [(xi − x′i) ·K(f, x)], (10)

where K(f, x) =
∂gf(x)

∂xi
with g =

f(z)

z
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Theorem A.3 The baseline Shapley value (Sundararajan & Najmi, 2019) is biased to reference
value x′.

φBShapi (f, x, x′) =
∑

S⊆N\i

|S|! · (|N | − |S| − 1)!

|N |!
(v(S ∪ i)− v(S)) (11)

where v(s) = f(xS ;x′N\S) and N is the set of all features.

These above analysis shows that more explanations are also biased to reference value. We note that
by Expected Gradient (Erion et al., 2019) is not biased to reference value by this theoretic definition
since the baseline x′ is actually a distribution. However, for feature values xi that are close to the
distribution of x′i, the attribution score will be lower (but not 0 as our theoretic definition), when
feature values xi are far from the distribution of x′i, the the attribution score will be larger, which still
shows some level of bias. We leave this to future work to use more advanced analysis techniques to
quantify such a biased for explanations when the baseline follows a distribution.

A.2 BIAS FOR REFERENCE-VALUE BASED EVALUATIONS

Definition A.1 (Informal) Given a data point x, a reference point x′, the deletion score of a model
f given a set of important features S (and denote the complement of S as S̄), which we abbreviate
as DEL(x, x′, S), is defined as f(x′S ;xS̄). Here, x′ can be a fixed value or a random value, or
even a blurred component (by a slight abuse of notations). Similarly, we define the insertion
score for a data point x, a reference point x′, important set of features S, and a model f as
INSR(x, x′, S) = f(xS ;x′

S̄
).

Note that the lower the DEL score is better, and the higher the INSR score is better.

Theorem A.4 If xi = x′i, then DEL(x, x′, S) = DEL(x, x′, S ∪ i) for i 6⊆ S. Similarly, if xi = x′i,
INSR(x, x′, S) = INSR(x, x′, S ∪ i) for i 6⊆ S

The implication of Thm. A.4 is that if a feature happens to correspond to the reference value, no
matter how important it actually is, it will not contribute to the DEL score nor the INSR score.
However, the lower the DEL score is better, and the higher the INSR score is better, and choosing
an important feature that corresponds to the reference value will inevitably not improve the DEL
score and INSR score. Thus, DEL score and INSR score will deem feature with the same value as the
reference value as non-important even if the features are actually crucial.

B MORE ON ESTIMATING ADVERSARIAL ROBUSTNESS

Our work relies on measuring the adversarial perturbation norm on a subset of features, which can be
seen as a constrained adversarial robustness problem. Adversarial robustness has been extensively
studied in the past few years. The adversarial robustness of a machine learning model on a given
sample can be defined as the shortest distance from the sample to the decision boundary, which
corresponds to our definition in Eqn. 1. Algorithms have been proposed for finding adversarial
examples (feasible solutions of Eqn. 1), including (Goodfellow et al., 2014; Carlini & Wagner, 2017;
Madry et al., 2017). However, those algorithms only work for neural networks, while for other
models such as tree based models or nearest neighbor classifiers, adversarial examples can be found
by decision based attacks (Brendel et al., 2017; Cheng et al., 2018; Chen et al., 2019). Therefore the
proposed framework can also be used in other decision based classifiers. On the other hand, several
works aim to solve the neural network verification problem, which is equivalent to finding a lower
bound of Eqn. 1. Examples include (Singh et al., 2018; Wong & Kolter, 2018; Zhang et al., 2018). In
principal, our work can also apply these verification methods for getting an approximate solution of
Eqn. 1, but in practice they are very slow to run and often gives loose lower bounds on regular trained
networks.
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C IMPLEMENTATION DETAIL

Underlying Models Used. In the experiments conducted on MNIST dataset, we train a convolu-
tional neural network (CNN) with 99% testing accuracy. The training and testing split used in the
experiments are the default split as provided by the original dataset. For each instance, the inputs
are loaded into the range of [0, 1] . On ImageNet dataset, we deploy a pre-trained ResNet model
obtained from the Pytorch library.3 For each image, the inputs are first loaded into the range of [0, 1]
and normalized using mean = [0.485, 0.456, 0.406] and standard deviation = [0.229, 0.224, 0.225].
On Yahoo! Answers dataset, we train a BiLSTM sentence classifier which attains testing accuracy of
71%. For the model configuration and training hyperparameters, we strictly follow the official GLUE
repository 4. Specifically, we first tokenize the dataset by word-level tokenizer; and then we use the
pretrained GloVe word embedding to initialize the LSTM embedding layer where the hidden size is
300.

Method Implementation Details and Hyperparameters. For the proposed Greedy and Greedy-
AS, at each greedy iteration, we include the top-5% features with highest scores into the relevant
set to further speed up the selection process. As discussed in Section 3.2, we use PGD attack with
binary search to approximately compute the robustness value in Eqn. 1. In the experiments, we set the
PGD attack step size to be 1.0 and number of steps to be 100. The hyperparameters are chosen such
that the PGD attack could most efficiently provide the tightest upper bound on the true robustness
value. As mentioned in Section 4.2, we solve Eqn. 6 by subsampling from all possible subsets of Str.
Specifically, we compute the coefficients w with respect to 5000 sampled subsets when learning the
regression.

For CFX, since the original objective in (Wachter et al., 2017) has no control over the number
of features that could differ from the input, we add L0-norm constraint to enforce sparsity in the
difference and enable selection of top-K most relevant features.

For text classification models, in the experiments, we evaluate the top-5 keywords selected by different
explanations with the proposed Robustness-Sr (-Sr) measurements and the existing Insertion and
Deletion scores with different baseline values. In the experiments, we represent a length-n sentence
by n embedding vectors where each embedding vector is itself d-dimensional. To calculate the
Robustness-Sr of an input sentence where the relevant set contains a set of indices of the top-
k keywords, we restrict the embedding vectors of the top-k words to be fixed and only allow
perturbations on the remaining (n− k) · d dimensions. Similarly for Robustness-Sr, we only allow
perturbations on the d · k dimensions corresponding to the embedding vectors of the top-k keywords.
For Insertion and Deletion score, we follow the same to replace the embedding vectors of the masked
words by some selected reference value.

Evaluation Curves. To plot the evaluation curves of a given explanation, we measure the expla-
nation’s Robustness-Sr and Robustness-Sr at different sizes of relevant set |Sr|. Specifically, we
measure the explanation’s performance when |Sr| equals to 5%, 10%, . . ., 45% of the total number of
features. Similarly for the Insertion and Deletion criteria, we progressively evaluate the explanation’s
performance when 5%, 10%, . . ., 45% of the features are inserted (or removed) from the inputs.
After the evaluation curves are plotted, we then calculate the area under curves to summarize the
explanation’s overall performance under each criterion.

Hardware and Code. All the experiments were performed on Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz and NVIDIA GeForce GTX 1080 Ti GPU. We release our source code along with an
example Jupyter notebook for more information.

3https://github.com/pytorch/pytorch
4https://github.com/nyu-mll/GLUE-baselines
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D EVALUATION CURVES UNDER ROBUSTNESS-Sr AND ROBUSTNESS-Sr

We show the evaluation curves of different methods under the proposed robustness criteria on MNIST,
ImangeNet, and Yahoo!Answers in Figure 6, Figure 7, and Figure 8 respectively.

Figure 6: Greedy-AS and other existing methods on MNIST.

Figure 7: Greedy-AS and other existing methods on ImageNet.

Figure 8: Greedy-AS and other existing methods on Yahoo!Answers.
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Table 3: AUC of Robustness-Sr and Robustness-Sr for Greedy-AS and its variants. The higher the
better for Robustness-Sr; the lower the better for Robustness-Sr.

Datasets Explanations Greedy-AS Greedy One-Step Banzhaf

MNIST Robustness-Sr 98.01 83.57 86.37
Robustness-Sr 82.81 171.56 83.59

ImageNet Robustness-Sr 31.62 21.16 24.54
Robustness-Sr 43.97 58.45 47.07

E ABLATION STUDY ON GREEDY-AS

As discussed in Section 4.2, Greedy-AS could be seen as a combination of the original greedy
procedure with the approximated contribution of each feature computed by a regression. Here, we
examine the importance of both components by comparing the Greedy-AS method to two baselines,
where one selects important features based only on the pure Greedy method (Section 4.1) and the
other utilizes only a single step of regression without the iterative greedy procedure. As the latter
essentially corresponds to the Banzhaf value, we term this method as One-Step Banzhaf. As shown in
Table 3, the pure Greedy method suffers degraded performances comparing to Greedy-AS under both
criteria. The inferior performance could be explained by the ignorance of feature correlations which
ultimately results in the introduction of noise (see Figure 9). In addition, we also see that Greedy-AS
performs better than One-Step Banzhaf. This could result from the fact that One-Step Banzhaf
considers the feature interactions among all features with equal probability. However, in our objective,
we only care about those interactions with the most important features. By iteratively selecting the
features with highest Banzhaf value in Greedy-AS, we give more weight on the interactions among
the most important features through iterations, and as a result lead to better performance.

Figure 9: Visualization on our proposed methods. The top features selected by Greedy-AS are less
noisy.
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F EVALUATION CURVES UNDER INSERTION AND DELETION

We show the evaluation curves of different methods under the Insertion and Deletion criteria on
MNIST and ImageNet in Figure 10, Figure 11, and Figure 12 respectively.

Figure 10: Greedy-AS and other existing methods on MNIST.

Figure 11: Greedy-AS and other existing methods on ImageNet.

Figure 12: Greedy-AS and other existing methods on Yahoo!Answers.
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G STUDENT’S t-TEST ON THE PERFORMANCE IMPROVEMENT OF GREEDY-AS
OVER EXISTING METHODS

We conduct a set of Student’s t-tests to further verify that the outperformances of the proposed
Greedy-AS over existing methods are indeed statistically significant. We compare the AUCs of
Greedy-AS and other methods across different criteria. In Table 4, we show the t-test results on
the AUCs of Robustness-Sr and Robustness-Sr, as well as the results on the AUCs of Insertion and
Deletion criteria. In the tables, win (loss) indicates that the performance improvement (drop) of
Greedy-AS to the baselines is statistically significant; otherwise, we use draw to indicate insignificant
difference between the performances. From the results, we positively verify the statistical significance
of the performance improvements of our proposed method over existing explanations on various
criteria.

Table 4: The proposed Greedy-AS versus other explanations under various criteria with Student’s
t-test at 95% confidence level.

Greedy-AS vs.

Datasets Criteria Grad IG SHAP LOO BBMP CFX

MNIST Robustness-Sr win win win win win win
Robustness-Sr win win win win win win

Insertion win win win win win win
Deletion win win win win win win

ImageNet Robustness-Sr win win win win win win
Robustness-Sr draw win win win win draw

Insertion win win win win win win
Deletion draw draw loss win win draw
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H ANALYSIS ON THE EFFECT OF REFERENCE VALUE

We provide in Table 5 and Table 6 an empirical analysis on how different reference values would
affect the evaluation results of different explanation methods. The corresponding evaluation curves
are shown in Figure 14, Figure 15, Figure 16, and Figure 17. We as well summarize the performances
of different explanations across different reference values in Figure 13. We see that Greedy-AS
performs most stably among the top across different reference values, while methods like IG, SHAP,
and LOO suffer performance degradation when the reference value (used in Insertion/Deletion)
moves away from zero, the intrinsic reference value these methods rely on.

Table 5: AUC of the Insertion and Deletion criteria with different reference values for various
explanations on MNIST. The higher the better for Insertion; the lower the better for Deletion.

Reference Values Explanations Grad IG SHAP LOO BBMP CFX EG Random Greedy-AS

Reference value = rand Insertion 174.18 177.12 125.93 121.99 108.97 102.05 228.64 51.71 270.75
rand ∼ Unifrom(0, 1) Deletion 153.58 150.90 213.32 274.77 587.08 137.69 113.21 312.07 94.24

Reference value = 0 Insertion 393.25 802.57 656.55 706.63 212.12 81.59 450.37 120.65 502.32
Deletion 214.81 134.64 66.36 119.91 362.95 840.78 138.57 453.01 252.44

Reference value = 0.25 Insertion 293.92 424.45 412.87 453.29 142.00 77.33 341.05 78.73 455.74
Deletion 162.24 133.06 115.88 204.75 442.23 354.05 161.28 426.21 90.89

Reference value = 0.5 Insertion 218.18 317.55 136.51 189.87 42.76 86.80 382.31 49.15 479.92
Deletion 209.83 258.50 271.11 424.66 549.11 90.50 195.47 392.69 155.59

Reference value = 0.75 Insertion 220.90 204.92 79.28 125.73 21.97 163.46 285.66 67.35 325.47
Deletion 305.17 305.38 481.67 712.46 708.93 89.38 250.57 451.18 176.85

Reference value = 1 Insertion 234.61 206.54 89.83 128.71 25.31 229.02 276.48 81.44 313.66
Deletion 364.01 372.18 647.68 956.88 823.90 101.31 310.50 495.91 223.99

Table 6: AUC of the Insertion and Deletion criteria with different reference values for various
explanations on ImageNet. The higher the better for Insertion; the lower the better for Deletion.

Reference Values Explanations Grad IG SHAP LOO BBMP CFX EG Random Greedy-AS

Reference value = rand Insertion 86.16 109.94 28.06 63.90 135.98 97.33 150.81 31.73 183.66
rand ∼ Unifrom(0, 1) Deletion 276.78 256.51 143.27 290.10 615.13 281.12 244.88 314.82 219.52

Reference value = 0 Insertion 125.32 214.85 85.57 61.37 138.00 135.31 183.47 69.57 182.61
Deletion 313.04 260.75 181.11 262.78 665.49 333.98 288.52 312.66 234.34

Reference value = 0.25 Insertion 291.06 329.24 39.74 163.81 243.92 287.58 245.46 103.63 293.30
Deletion 408.95 395.37 328.50 365.03 686.75 421.56 433.78 516.56 322.50

Reference value = 0.5 Insertion 301.78 343.77 45.77 178.18 250.25 270.03 348.66 129.65 305.87
Deletion 431.17 412.70 345.84 388.64 689.08 421.89 420.31 546.30 321.11

Reference value = 0.75 Insertion 222.63 217.26 29.39 131.92 243.44 215.11 248.74 87.38 286.40
Deletion 364.28 340.24 279.51 325.71 701.97 375.87 329.11 402.97 262.36

Reference value = 1 Insertion 109.89 136.10 55.29 89.26 135.06 109.44 170.96 59.23 189.96
Deletion 245.57 218.09 207.57 234.28 658.54 329.20 203.84 217.39 191.96

Figure 13: Ranking among different explanations. From left to right: MNIST Insertion/Deletion;
ImageNet Insertion/Deletion. Rankings correspond to the relative rank among all methods, i.e. 1 - 9.
We see performances of zero-baseline explanations, e.g. IG/SHAP/LOO, degrade as the reference
value moves away from zero.
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(a) Insertion with random baseline (b) Insertion with 0 baseline (c) Insertion with 0.25 baseline

(d) Insertion with 0.5 baseline (e) Insertion with 0.75 baseline (f) Insertion with 1 baseline

Figure 14: Evaluation curves of Insertion criteria on MNIST with different reference values.

(a) Deletion with random baseline (b) Deletion with 0 baseline (c) Deletion with 0.25 baseline

(d) Deletion with 0.5 baseline (e) Deletion with 0.75 baseline (f) Deletion with 1 baseline

Figure 15: Evaluation curves of Deletion criteria on MNIST with different reference values.
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(a) Insertion with random baseline (b) Insertion with 0 baseline (c) Insertion with 0.25 baseline

(d) Insertion with 0.5 baseline (e) Insertion with 0.75 baseline (f) Insertion with 1 baseline

Figure 16: Evaluation curves of Insertion criteria on ImageNet with different reference values.

(a) Deletion with random baseline (b) Deletion with 0 baseline (c) Deletion with 0.25 baseline

(d) Deletion with 0.5 baseline (e) Deletion with 0.75 baseline (f) Deletion with 1 baseline

Figure 17: Evaluation curves of Deletion criteria on ImageNet with different reference values.
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I SANITY CHECK

Recent literature has pointed out that an appropriate explanation should be related to the model being
explained (Adebayo et al., 2018). To ensure that our proposed explanation does indeed reflect the
model behavior, we conduct the sanity check proposed by Adebayo et al. (2018) to check if our
explanations are adequately different when the model parameters are randomly re-initialized. In the
experiment, we randomly re-initialize the last fully-connected layer of the neural network model.
We then compute the rank correlation between explanation computed w.r.t. the original model and
that w.r.t. the randomized model. From Table 7, we observe that Greedy-AS has a much lower rank
correlation comparing to Grad, IG, and LOO, suggesting that Greedy-AS is indeed sensitive to model
parameter change and is able to pass the sanity check.

Table 7: Rank correlation between explanations with respect to original and randomized model.

Grad IG SHAP LOO BBMP CFX Greedy-AS

Corr. 0.30 0.30 0.11 0.49 0.17 0.26 0.18

J EXPLANATION SENSITIVITY ANALYSIS

In a recent study, Yeh et al. (2019) proposed a sensitivity measurement to evaluate how large an
explanation would change when small perturbation is applied to the original input. The measurement
could be seen as the lower bound of the local Lipschitz (Alvarez Melis & Jaakkola, 2018) of an
explanation functional, and could be calculated efficiently by sampling. Following Yeh et al. (2019),
we define a similar sensitivity measurement for set explanation as follows.

Definition J.1 Given a black-box model to be explained f , an input x, an explanation functional
Φ(f, x) that returns a set of relevant features, and a radius r defining a local neighborhood around
x, we define the sensitivity for an explanation as:

SENS(Φ, f, x, r) = 1− max
‖y−x‖≤r

|Φ(f, y) ∩ Φ(f, x)|
|Φ(f, x)|

. (12)

By Eqn. 12, we see that the sensitivity of an explanation equals 0 when the relevant set returned by the
explanation remains the same in all local neighborhood of radius r centered around the original input
x. On the other hand, the sensitivity equals 1 when there exists some y within the local neighborhood
of x where the relevant set returned by Φ(f, y) is totally disjoint from Φ(f, x). We shall however
note that the sensitivity alone should not serve as the sole measurement for an explanation, since a
meaningless constant explanation could always achieve 0 sensitivity. We show in Table 8 a sensitivity
analysis of different explanations on MNIST dataset where we consider Φ(f, x) to be the top-20%
relevant features selected by an explanation method, and set r = 0.1 in the experiments.

From Table 8, we see that Expected Gradient has the least sensitivity since EG could be seen as a
variant of the smoothing technique (Smilkov et al., 2017) (discussed in (Sturmfels et al., 2020)), which
is shown to be an effective approach to reduce explanation sensitivity (Yeh et al., 2019). While the
proposed Greedy-AS has relatively large sensitivity, we believe such result might be highly correlated
to the underlying sensitivity of the model f itself (since Greedy-AS aims to faithfully reflect the
decision boundary of the model around an input). Thus, one possible way to reduce the sensitivity of
Greedy-AS is to consider an adversarially more robust underlying model whose decision boundary
is less sensitive to perturbations. Another possible way is to consider smoothing the explanation
provided by Greedy-AS. We leave further improvement on the sensitivity of Greedy-AS as a future
direction.

Table 8: Sensitivity of Different Explanations.

Explanation Grad IG LOO BBMP SHAP CFX EG Random Greedy-AS

Sensitivity 0.45 0.38 0.31 0.38 0.52 0.57 0.20 0.85 0.61
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K VISUALIZATION ON MNIST

We provide more examples on visualized explanations on MNIST in Figure 18.

Figure 18: Visualization of different explanations on MNIST. The highlighted pixels are the top 20%
relevant pixels selected by different methods. We see that Greedy-AS focuses both on crucial positive
and pertinent negative regions.
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L VISUALIZATION ON IMAGENET

We provide more examples on visualized explanations on ImageNet in Figure 19.

Figure 19: Visualization of different explanations on ImageNet. We see that Greedy-AS focuses
more compactly on the areas containing the actual objects being classified.
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(a) Targeted explanation for 2 against 0 and 7 respec-
tively.

(b) Targeted explanation for 6 against 4 and 2 respec-
tively.

Figure 20: Comparisons between different methods for targeted explanation against different target
classes on MNIST. We note that Oramas et al. (2019) could not handle arbitrarily specified target
class and thus is not available to produce different explanations for different target classes.

M COMPARISONS WITH OTHER EXPLANATIONS CAPTURING PERTINENT
NEGATIVE FEATURES

While the capability of capturing not only the crucial positive but also the pertinent negative features
have also been observed in some recently proposed explanations. Most current methods are not
explicitly designed to handle the targeted explanation task which attempt to answer the question “what
are the important features that lead to the prediction of class A but not class B”, and thus has different
limitations. For example, the ability of LRP Bach et al. (2015) to capture pertinent negative features
heavily depends on the input range. In Samek et al. (2016), the input images are normalized to have
zero mean and a standard deviation of one where the black background will have non-zero value.
In such case, LRP would have non-zero attributions on the black background pixels which allows
the explanation to capture pertinent negative features. However, as later shown in Dhurandhar et al.
(2018), if the input pixel intensity is normalized into the range between 0 and 1 where the background
pixels have the values of 0, LRP failed to highlight pertinent negative pixels since the background
would always have zero attribution. This is due to the fact that LRP is equivalent to multiplication
between Grad and input in a Rectified Linear Unit (ReLU) network as shown in Ancona et al. (2018).
In Oramas et al. (2019), unlike our targeted explanation where we know exactly which targeted
class the explanation is suggesting against (and by varying the targeted class we observe varying
corresponding explanation given), their method by design does not convey such information. The
pertinent negative features highlighted by their method by construction is not directly related to a
specific target class, and users would need to infer by themselves what target class the pertinent
negative features are preventing against. To further grasp the difference, we compare our explanation
with theirs in Figure 20. We borrow the results from Oramas et al. (2019) for visualization of their
method. Qualitatively, we observe that our method gives the most intuitive explanations. For example,
in Figure 20a, the first row shows different explanations that highlight different relevant regions
supporting the prediction of a 2 instead of 0. Among the explanations, our method is the only one
that highlights the right tail part (green circled) of the digit 2 which also serves as crucial evidence
of 2 against 0 in addition to the left vertical gap (which when presented would make 2 looks like a
0) that is roughly highlighted by all three methods. Furthermore, as we change the target class to 7
(as shown in the second row), the explanation provided by LRP does not seem to differ much. This
suggests that LRP is not sensitive to the target class change and might fail to provide useful insights
towards targeted explanation. On the contrary, we observe that our explanation has a drastic change
between different target classes. When explaining against the target 7, our explanation highlights the
lower left green circled part which when turned off will make 2 becomes a 7. These results might
suggest our method is more capable of handling such targeted explanation task.
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N QUANTITATIVE RESULTS ON TEXT DATASET

In this section, we conduct a set of quantitative analysis on different explanations for text classification
model on Yahoo!Answers dataset.

Table 9: AUC of the different evaluation criteria for various explanations on Yahoo!Answers. The
higher the better for Robustness-Sr and Insertion; the lower the better for Robustness-Sr and Deletion.

Criteria Grad IG SHAP LOO EG Random Greedy-AS CFX

Robustness-Sr 1.97 1.86 1.81 1.74 1.96 1.71 2.13 1.95
Robustness-Sr 2.91 3.14 3.34 4.04 2.99 7.64 2.41 2.96

Insertion (random baseline) 0.06 0.06 0.07 0.18 0.20 0.10 0.21 0.05
Deletion (random baseline) 2.57 2.96 2.23 2.07 2.07 2.63 1.56 2.35

Insertion (zero baseline) 2.59 6.31 8.63 3.61 3.34 0.34 3.64 2.95
Deletion (zero baseline) 5.28 5.64 1.52 3.81 5.12 6.30 4.60 5.83

(a) Robustness-Sr (b) Insertion (random baseline) (c) Insertion (zero baseline)

(d) Robustness-Sr (e) Deletion (random baseline) (f) Deletion (zero baseline)

Figure 21: Evaluation curves on Yahoo!Answers dataset.
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O QUALITATIVE RESULTS ON TEXT DATASET

(a) Label for the sentence is: “Sports”. (b) Label for the sentence is: “Sports”

(c) Label for the sentence is: “Politics & Gov-
ernment”

(d) Label for the sentence is: “Entertainment &
Music”

(e) Label for the sentence is: “Science & Math-
ematics”

(f) Label for the sentence is: “Computers &
Internet”

(g) Label for the sentence is: “Society & Cul-
ture” (h) Label for the sentence is: “Entertainment &

Music”

Figure 22: More examples for explanations on text classification model.
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P USER STUDY ON TEXT DATASET

To further compare the top-5 relevant keywords provided by various explanations, we conducted an
user study involving 30 different text examples (sentences) and 30 different users with Computer
Science background by convenience sampling. In the study, each user is presented with a set of
sentences and their corresponding categories. We then asked each user to highlight 5 to 7 keywords
for each sentence that they consider to be most relevant to the ground truth label of the corresponding
sentence. After collecting the feedback, for each sentence, we have 10 sets of different labels provided
by the users. For each sentence, we then select the keywords that have the highest frequency of
being marked among the users and treat those keywords as the ground truth explanation for the
corresponding sentence.

We leverage such user labels to calculate the precision@k and mean Average Precision (mAP) for
each explanation method. We show the results in Table 10 5. We observe that Greedy-AS has the
highest overall precision score, while the top-1 keyword selected by Anchor and IG match user
intuition the most. If we believe that users can correctly pick the correct keywords that are responsible
for the model prediction, then the p@k and mAP measure how well the explanation captures the
correct keywords that are responsible for the model prediction. We believe the good result on user
study provides extra evidence that our method identifies features that are responsible for the actual
prediction.

Table 10: Precision of Explanations with User Labeled Ground Truth

p@1 p@2 p@3 p@4 p@5 mAP

Greedy-AS 0.83 0.78 0.78 0.75 0.68 0.76
Grad 0.83 0.70 0.72 0.67 0.61 0.71
IG 0.83 0.67 0.56 0.52 0.50 0.61
SHAP 0.73 0.75 0.61 0.58 0.51 0.64
LOO 0.67 0.67 0.52 0.48 0.45 0.56
EG 0.90 0.75 0.69 0.67 0.63 0.73
Anchor 0.93 - - - - -
CFX 0.83 0.68 0.67 0.61 0.57 0.67
Random 0.17 0.27 0.28 0.29 0.27 0.25

Q RUNTIME ANALYSIS

We show below the average runtime (wall clock time) of different methods for computing explanation
for a single image on MNIST and ImageNet. For Greedy and Greedy-AS, we show the time needed
to compute the top-20% relevant features.

Table 11: Runtime of Different Explanations.

Explanation Grad IG LOO BBMP SHAP CFX EG Greedy Greedy-AS

MNIST Runtime (second) 0.005 0.023 0.004 4.154 9.673 8.582 6.123 9.532 13.621

ImageNet Runtime (second) 0.024 0.138 0.849 8.536 111.794 25.577 64.270 117.781 135.838

5Note that as Anchor tends to select only one keyword in each sentence, we provide only its precision@1 in
Table 10.
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