
Published as a conference paper at ICLR 2023

3D SEGMENTER: 3D TRANSFORMER BASED
SEMANTIC SEGMENTATION VIA 2D PANORAMIC
DISTILLATION

Zhennan Wu1,2, Yang Li1, Yifei Huang1,3, Lin Gu ∗2,1 , Tatsuya Harada1,2, Hiroyuki Sato1

1 The University of Tokyo
2 RIKEN Center for Advanced Intelligence Project
3 Shanghai AI Laboratory

ABSTRACT

Recently, 2D semantic segmentation has witnessed a significant advancement
thanks to the huge amount of 2D image datasets available. Therefore, in this
work, we propose the first 2D-to-3D knowledge distillation strategy to enhance
3D semantic segmentation model with knowledge embedded in the latent space
of powerful 2D models. Specifically, unlike standard knowledge distillation,
where teacher and student models take the same data as input, we use 2D panora-
mas properly aligned with corresponding 3D rooms to train the teacher network
and use the learned knowledge from 2D teacher to guide 3D student. To facili-
tate our research, we create a large-scale, fine-annotated 3D semantic segmenta-
tion benchmark, containing voxel-wise semantic labels and aligned panoramas
of 5175 scenes. Based on this benchmark, we propose a 3D volumetric se-
mantic segmentation network, which adapts Video Swin Transformer as back-
bone and introduces a skip connected linear decoder. Achieving a state-of-the-art
performance, our 3D Segmenter is computationally efficient and only requires
3.8% of the parameters compared to the prior art. Our code is released on
https://github.com/swwzn714/3DSegmenter.

1 INTRODUCTION

Semantic segmentation assigns each 2D pixel(Long et al., 2015) or 3D point(Qi et al.,
2017a)/voxel(Çiçek et al., 2016) to a separate category label representing the corresponding object
class. As a fundamental computer vision technique, semantic segmentation has been widely applied
to medical image analysis(Ronneberger et al., 2015), autonomous driving(Cordts et al., 2016) and
robotics(Ainetter & Fraundorfer, 2021). Most of the existing efforts are invested in 2D settings
thanks to great amount of public 2D semantic segmentation datasets(Zhou et al., 2017; Cordts et al.,
2016; Nathan Silberman & Fergus, 2012). Nowadays, the wide availability of consumer 3D sensors
also largely promotes the need for 3D semantic segmentation (Han et al., 2020; Choy et al., 2019;
Thomas et al., 2019; Graham et al., 2018b; Nekrasov et al., 2021).

We have seen great success in semantic segmentation in 2D images. However, such success does
not fully transfer to the 3D domain. One reason is that, given the same scene, processing the 3D data
usually requires orders of magnitude more computations than processing a 2D image. E.g. using
a volumetric 3D representation, the number of voxels grows O(n3) with the size of the scene. As
a result, existing 3D semantic segmentation methods usually need to use smaller receptive fields or
shallower networks than 2D models to handle large scenes.

This motivates us to facilitate 3D semantic segmentation using 2D models. Specifically, we propose
a novel 2D-to-3D knowledge distillation method to enhance 3D semantic segmentation by leverag-
ing the knowledge embedded in a 2D semantic segmentation network. Unlike traditional knowledge
distillation approaches, where student and teacher models should take the same input, in our case,
the 2D teacher model is pre-trained on a large-scale 2D image repository and finetuned by panora-
mas rendered from 3D scenes. The panorama image is rendered at the center of the 3D scans with
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360◦ receptive field, i.e. it contains the global context of the environment. Our 3D student model
takes the 3D scene as input and outputs 3D volumetric semantic segmentation. Through differen-
tiable panoramic rendering of 3D semantic segmentation prediction, we could obtain the mapping
from the 2D teacher’s prediction to the 3D student’s prediction. Then we transfer the class distribu-
tions of the pixel produced from the 2D teacher to the corresponding voxel of the 3D student. To the
best of our knowledge, this is the first solution to distill from a pre-trained 2D model to enhance the
3D computer vision task.

To facilitate this 2D-to-3D knowledge distillation design, we create a large-scale indoor dataset
called PanoRooms3D. PanoRooms3D contains 5917 rooms diversely furnished by 3D CAD objects
and augmented by randomly sampled floor and wall textures. We manually filter out scenes that
contain unlabeled furniture. We prepare for each room a dense 3D volume, and a corresponding 2D
panorama that is rendered in the center of the room with 360◦ receptive field, both containing clean
semantic labels. Upon finding panorama-to-volume correspondence, the knowledge distillation from
2D to 3D is then enabled.

As our 3D student backbone, we propose a novel efficient architecture, 3D Segmenter, for semantic
segmentation of 3D volumetric data. Inspired by Video Swin Transformer(Liu et al., 2022a), 3D
Segmenter employ a pure-transformer structure with an efficient linear decoder. We demonstrate
that our 3D Segmenter achieves superior performance and only requires 3.8% of the parameters
compared to the prior art that uses 3D convolutional backbones.

Our contributions are three-fold:

• We propose the first 2D-to-3D knowledge distillation method to utilize the data-abundant
and pretrain-ready 2D semantic segmentation to improve 3D semantic segmentation.

• We propose PanoRooms3D, a large-scale 3D volumetric dataset with a clean voxel-wise
semantic label and well-aligned corresponding 2D panoramic renderings with pixel-wise
semantic labels.

• We propose a novel efficient pure-transformer-based network for the 3D semantic segmen-
tation task. Our 3D Segmenter outperforms prior art that uses 3D convolutional backbone
with only 3.8% of the parameters.

We proved through experiments that our baseline variants have already achieved SoTA performance.
The distilled knowledge from 2D further widened our lead. Considering the difficulty of 3D data
collection, and the cubic memory consumption of 3D models, our model paves the way to bridge
2D and 3D vision tasks.

2 RELATED WORKS

2.1 2D SEMANTIC SEGMENTATION

The success of deep convolutional neural networks (Simonyan & Zisserman, 2014; He et al., 2016)
for object classification led researchers to exploit the possibility of working out dense prediction
problems. Fully Convolutional Networks (FCN)(Long et al., 2015) based encoder-decoder architec-
tures have dominated the research of semantic segmentation since 2015. Later works extend FCN
on different facets. Follow-up approaches (Badrinarayanan et al., 2017; Lin et al., 2017; Pohlen
et al., 2017; Ronneberger et al., 2015; Zhao et al., 2017) leverage multi-scale feature aggrega-
tion. (Fu et al., 2019; Yin et al., 2020; Yu et al., 2020; Yuan et al., 2018; Zhao et al., 2018) ap-
ply attention mechanism to model long-range dependencies. Recently, ConNeXt(Liu et al., 2022b)
modernizes the CNNs to achieve higher performance than transformers, suggesting the effective-
ness of convolutional methods. On the other hand, ViT(Dosovitskiy et al., 2020) successfully in-
troduced Transformer(Vaswani et al., 2017) to computer vision. Later, SETR(Zheng et al., 2021)
demonstrates the feasibility of using Transformer-based semantic segmentation. PVT(Pyramid Vi-
sion Transformer)(Wang et al., 2021) combines pyramid structures and ViT for dense prediction.
SegFormer(Xie et al., 2021) proposes a hierarchical Transformer encoder and a lightweight MLP
decoder to fuse multi-level features and predict the semantic segmentation mask. Using vanilla ViT
and DeiT(Touvron et al., 2021) as backbone, Segmenter(Strudel et al., 2021) designed a trainable
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mask decoder to decode a patch-level embedding and interpolate to the original resolution. Com-
bine with UPerNet(Xiao et al., 2018) structure, Swin Transformer (Liu et al., 2021) shows excellent
performance on semantic segmentation.

2.2 3D SEMANTIC SEGMENTATION

PointNet and PointNet++ (Qi et al., 2017a;b) are the pioneer works using MLP (Multi-layer Percep-
tron) to directly process 3D coordinates for classification and semantic segmentation. Later works
specially design convolution operations to extract features inside the neighborhood for the point
clouds. Kpconv(Thomas et al., 2019) designs both rigid and deformable kernel point convolution
operators for 3D point clouds nearing a set of kernel points. Minkowski Engine (Choy et al., 2019)
proposes a sparse convolution to process high-dimensional data efficiently. Occuseg(Han et al.,
2020) voxelized the input and uses occupancy signal to achieve instance segmentation.

The aforementioned 3D semantic segmentation works generally use 3D point cloud as represen-
tation. Apart from point cloud, volumetric representation is another widely used 3D shape repre-
sentation. 3D U-Net (Çiçek et al., 2016) extends convolutional U-Net(Ronneberger et al., 2015)
to 3D biomedical data segmentation. SSCNet (Song et al., 2017a) proposed to jointly do semantic
segmentation and completion on RGB-D images. Scancomplete (Dai et al., 2018) propose a coarse-
to-fine structure to complete scene and predict semantics. U-net structure with 3D CNN kernels is
the dominant backbone in this research field.

2.3 TRANSFORMERS IN COMPUTER VISION

Transformer(Vaswani et al., 2017) was proposed to model long-range dependence between words in
NLP tasks. Vision Transformer (Dosovitskiy et al., 2020) firstly introduce transformer to computer
vision research by embedding image into non-overlapping patches, which serve as tokens for self-
attention computation. Variants of ViT such as T2T-ViT(Yuan et al., 2021) , TNT(Han et al., 2021),
CrossViT (Chen et al., 2021), LocalViT (Li et al., 2021),Msg-TransformerFang et al. (2022), CvT
(Wu et al., 2021), and XCiT(Ali et al., 2021) optimized vanilla ViT for further image classification
performance gain. Apart from image classification, PVT (Wang et al., 2021), Swin Transformer (Liu
et al., 2021), CoaT (Xu et al., 2021), LeViT(Graham et al., 2021) and Twins (Chu et al., 2021) refer
to the hierarchical design of FCN(Long et al., 2015), tailor transformer model for dense prediction
tasks. Because of the remarkable performance of transformers in modeling long-range dependence,
we adopt a pure-transformer architecture in this work.

2.4 KNOWLEDGE DISTILLATION

The idea of model compression first came out in 2006 where (Buciluǎ et al., 2006) proposed to
transfer knowledge from large model to smaller model without much performance drop. (Hinton
et al., 2015) systematically summarized existing knowledge distillation ideas. They demonstrated
the effectiveness of student-teacher strategy and response-based knowledge distillation. Following
Hinton, many works (Ge et al., 2020; Pham et al., 2021; Li et al., 2020; Xie et al., 2020; Mirzadeh
et al., 2020; Yang et al., 2019; Zhang et al., 2020; Wu & Gong, 2021; Touvron et al., 2021) further ex-
plore the technique of training response-based knowledge distillation models. Since the knowledge
conveyed by output layers is limited, many researchers focus on distillation through intermediate
layers. Fitnets(Romero et al., 2014) firstly introduce intermediate layer distillation by using hints
from the teachers’ hidden layers to guide the training of the student. the idea of feature-based distil-
lation was carried forward by following researches (Zagoruyko & Komodakis, 2016; Tung & Mori,
2019; Guan et al., 2020; Ahn et al., 2019; Heo et al., 2019; Kim et al., 2018). Recently, BP-Net(Hu
et al., 2021) utilizes a bidirectional projection module with symmetric 2D and 3D architectures to
achieve mutual enhancement between 2D and 3D. Compared to our distillation design, BP-Net relies
on 2D-3D paired input in both training and testing process.
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Figure 1: Overview of our 3D Segmenter pipeline. On the left-hand side is the encoder: the input
blocks are partitioned and embedded into a sequence of tokens before flowing forward through 3D
Swin Transformer. On the right-hand side is the Decoder: a linear-layers-only decoder with a skip
connection. Receiving a sequence of tokens from the encoder, the decoder maps the class embedding
to per-voxel semantic label.

3 3D SEGMENTER

3.1 ENCODER

An overview of the 3D Segmenter pipeline is shown in Figure 1.

We adapt Video Swin Transformer(Liu et al., 2022a) as our backbone. The encoder takes a Truncated
Signed Distance Function (Curless & Levoy, 1996)(TSDF) block x = [xtsdf , xrgb] ∈ RX×Y×Z×4

as input , where X × Y × Z specifies the size of the block and 4 channels consist of one TSDF
channel and three RGB color channels.

TSDF is an implicit regular 3D shape representation that stores distance to the nearest surface in
each voxel. It is proficient in producing high-quality real-time rendering. The encoder split input
into small overlappable patches before outputting a sequence of feature embedding.

Different from 2D images, when applying transformer models for 3D tasks, the length of the token
sequence grows cubically with the size of the input. The shifted window design proposed by Swin
Transformer(Liu et al., 2021) is efficient in limiting the sequence length of each Multi-head Self
Attention (MSA) computation, which makes it has linear computational complexity to image size.
For efficient and scalable 3D computation, we choose Video Swin Transformer (Liu et al., 2022a)
as our encoder backbone.

Our model is trained on fixed-sized 3D blocks cropped from 3D scenes. Receiving an input block
x = [xtsdf , xrgb] ∈ RX×Y×Z×4, we regard each 3D patch of spatial size P × P × P as a token.
Therefore, each 3D block x is partitioned into X

P × Y
P × Z

P tokens. A single 3D convolution layer
embeds each token from 4 channels to feature dimension of size denoted by D.

To formulate hierarchical architecture, Video Swin Transformer reduces the number of tokens
through patch merging between blocks. They use a 3D patch merging operation that concatenates
the C dimensional features of 2 × 2 spatially neighboring patches to 4C. The token size on the
temporal dimension is kept the same during merging. This reduces the number of tokens by a mul-
tiple of 2 × 2 = 4. To keep the resolution consistent with typical convolutional networks, the 4C
dimensional concatenated feature is downsampled to 2C using a linear layer. Following this design,
we use a patch merging layer to merge neighboring 2× 2× 2 patches into 8C and downsample it to
2C.

Our encoder is comprised of h Swin Transformer blocks. Patch merging is performed between every
two blocks. Therefore, the output of encoder is a sequence with N = X

P×2h−1 × Y
P×2h−1 × Z

P×2h−1

tokens. The dimension of each token is D × 2h−1.
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3.2 DECODER

The decoder maps tokens coming from the encoder to voxel-wise prediction ŷsem ∈ RX×Y×Z×K ,
where K is the number of categories in this task. In this work, we propose a decoder with only two
linear layers.

Accepting token sequence of shape N × (D × 2h−1) from the encoder, a token-wise linear layer is
applied to the sequence, getting a N ×K class embedding. The class embedding is then rearranged
to patch-wise class embedding X

P×2h−1 × Y
P×2h−1 × Z

P×2h−1 × K and trilinearly interpolated to
original resolution to get yf ∈ RX×Y×Z×K .

We use a skip connection here to ’remind’ the model of the input x. By adding a small number
of parameters, the skip connection effectively enhances our performance. Concretely, we concate-
nate x and yf and feed them through a linear layer to predict the output ŷsem ∈ RX×Y×Z×K =
Linear(Concatenate(yf ,x)) The model is trained using cross entropy loss LCE between ŷsem
and ground truth ysem.

4 2D TO 3D DISTILLATION

Figure 2: Overview of our proposed 2D-to-3D panoramic knowledge distillation. The panorama and
3D volume are fed into the 2D Segmentor and 3D Segmentor in parallel, and predict the semantic
distributions in 2D and 3D respectively. Then we apply differentiable rendering on the predicted 3D
semantic volume to obtain its panoramic projection. Finally, the knowledge is distilled from 2D to
3D projection using a Kullback–Leibler divergence loss.

As shown in Figure 2, We use pairs of panoramic renderings Ir and 3D rooms r = [rtsdf , rrgb] ∈
RX′×Y ′×Z′×4 as our input for 2D-to-3D distillation.

The 2D teacher is pretrained on large scale 2D repository and finetuned on 2D panoramas Ir and
2D semantic ground truth rendered from 3D rooms. The 3D Segmenter, as the student model in
distillation, is first trained to converge using fix-sized block data. Then, the knowledge distillation
from 2D teacher to 3D student is performed on the scene level.

Suppose we have a input room r = [rtsdf , rrgb] ∈ RX′×Y ′×Z′×4, we feed it to the student model
and get voxel-level semantic segmentation ŷr ∈ RX′×Y ′×Z′×K . The 2D panoramic image could be
acquired from panoramic camera placed at any position that is not occupied by objects. Here, we
place it at the center of the room for sake of simplification. Combining 3D semantic segmentation
prediction ŷr and input geometry rtsdf , a mapping between pixels and voxels is required to project
ŷr to 2D. The mapping is determined by raycasting. For each pixel in the image, we construct a ray
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from the view and march along the ray through rtsdf . Trilinear interpolation is used to determine
TSDF values along the ray. The surface voxel is located when zero-crossing is detected. In this way,
we establish a mapping between a pixel and a voxel. Through this mapping, 6 squared semantic
segmentation maps are rendered from +X , −X , +Y , −Y , +Z, −Z directions with 90◦ field of
view. The 6 views are then stitched into a panorama through pixel mapping and interpolation. The
total process is differentiable, making it possible for gradient backpropagates from 2D to 3D. We
project a panoramic view of ŷr.

StudentSegMap = PanoramicProjecting(rtsdf , ŷr) (1)

where StudentSegMap ∈ RH×W×K , H and W is the height and width of rendered panorama.

After forwarding Ir through the teacher model, we receive a TeacherSegMap ∈ RH×W×K which
contains the teacher model’s learned knowledge. We follow (Hinton et al., 2015) to formulate a Kull-
back–Leibler divergence loss to measure the difference of distribution between StudentSegMap
and TeacherSegMap. We have

LDist = τ2KLDiv(StudentSegMap/τ, TeacherSegMap/τ) (2)

Where τ refers to distillation temperature. The model is trained using the sum of 2D-to-3D distilla-
tion loss LDist and 3D cross-entropy loss LCE .

5 PANOROOMS3D DATASET

Figure 3: Sample of PanoRooms3D: a pair of input scene and its panoramic rendering.

To facilitate the knowledge distillation from the advanced 2D segmentation models to 3D models,
we need a large-scale dataset of 3D scans with their corresponding panorama images. Existing
datasets such as ScanNet (Dai et al., 2017) and Matterport3D (Chang et al., 2017) usually require
intensive annotation effort, contain noisy labels, and do not cover complete scene geometry, while
SUNCG (Song et al., 2017b) does have clean annotation but is limited to narrow field-of-view RGBD
images. To this end, we propose a novel large TSDF-based semantic segmentation dataset called
PanoRooms3D.

To achieve a human-like understanding of the 3D environment, we use professional designed room
layouts from 3D-FRONT (Fu et al., 2021a), furnished by 3D-FUTURE(Fu et al., 2021b), a large-
scale 3D CAD shapes with high-resolution informative textures.

To diversify the generation, we augment each scene with randomly sampled floor/wall textures. To
obtain the TSDF representation together with semantic labels, we randomly sample camera poses
inside the rooms with a height between 1.4m and 1.8m. This process simulates users holding RGB-
D cameras to capture indoor scenes like (Chang et al., 2017; Dai et al., 2017; Hua et al., 2016;
Armeni et al., 2017). RGB-D plus semantic frames are rendered at all camera poses and later
fused into 3D scenes and semantic ground truth using TSDF fusion. A total of 2,509,873 RGB-D
images and corresponding pixel-wise semantic segmentation maps are rendered. We set each voxel
a 4cm cube. We use 120 NVIDIA Tesla V100 GPU to render for 48 hours. 3D-FRONT includes
99 semantic categories. In practice, considering the semantical consistency between labels, we
consolidate similar labels, merging the original 99 classes into 30 hyper classes. Since many scenes
contain furniture that is left unlabeled, we manually filter out noisy rooms. 5917 TSDF-based living
rooms and bedrooms are created. We split 5325 rooms for training, 297 for validation, and 295 for
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Input Scene 3D U-net 3DSeg-L Ground Truth

Figure 4: Qualitative comparison between our variant 3DSeg-L and convolutional baseline 3D
U-Net(Çiçek et al., 2016) on our PanoRooms3D dataset(top two rows) and Scannet(Dai et al.,
2017)(bottom two rows)

testing. For the convenience of window partition, we pad the all spatial dimensions of scenes to the
multiples of 128.

To get panoramic images for the training of 2D teachers, we place a camera at the center of each
room. The camera renders 6 square images from +X , −X , +Y , −Y , +Z, −Z directions with
a field of view of 90◦, which constitute a skybox. The skybox is then converted to an equirectan-
gular panorama through pixel mapping and bilinear interpolation. A sample of PanoRooms3D is
visualized in Figure 3.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAIL

In our training of 3D Segmenters on our PanoRooms3D dataset, we slice the 5325 rooms for training
into 128×128×128 cubes as the training set. The patch size P is set to 4, resulting 128

4 × 128
4 × 128

4 =
32768 tokens at the beginning. The number of Swin Transformer blocks h is set to 2, with h−1 = 1
patch merging layer in between. The decoder receives N = 32768

(2h−1)3
= 4096 tokens from encoder.

The number of class K is 30. We change the number of layers and number of MSA heads within
each Swin Transformer block and embedding dimension D to create different sizes of variants.
Variants of encoder architecture include:

• 3DSeg-T(iny), D = 48, Swin Layers [2, 2], Num Heads [3, 3], #PARAM 0.38M

• 3DSeg-B(ase), D = 48, Swin Layers [2, 4], Num Heads [3, 3], #PARAM 0.62M

• 3DSeg-M(iddle), D = 64, Swin Layers [3, 6], Num Heads [4, 4], #PARAM 1.55M

• 3DSeg-L(arge), D = 96, Swin Layers [4, 8], Num Heads [6, 6], #PARAM 4.43M

We train our 3D Segmenter on NVIDIA Ampere A100 80GB, using the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 0.001 and batch size of 8. It takes 48 hours for our models to
converge.
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For 2D to 3D knowledge distillation, we operate the experiments taking room as a unit. we render
the 3D rooms for train/val/test sets to get 2D panoramas and 2D ground truth segmentation for
train/val/test sets respectively. The 2D training set is used to finetune the 2D teacher model. The
size of rendered panorama is set to (H,W ) = (512, 1024). We manually filter out noisy renderings
in 5323 training rooms caused by objects that block the view. We use the 5175 panoramas after
filtration paired up with their original 3D rooms to do distillation.

We choose 2D Segmenter(Strudel et al., 2021) Seg-B-Mask/16 and Seg-L-Mask/16 as the 2D teacher
models. Pretrained on ImageNet-21K(Steiner et al., 2021), the models are finetuned on our rendered
2D panoramas training set for 200 epochs.

Because the scale of rooms varies, we train/validate the distillation with a batch size of 1. We train
the distillation for 45000 iterations and validate every 1500 iterations. The distillation temperature
τ is set to 20 in all of our experiments.

Apart from our PanoRoom3D dataset, we also include the Scannet (Dai et al., 2017) for baseline
comparison. We random split the 1513 rooms into train/val/test 1361/77/75 respectively. All rooms
are fused with a voxel resolution of 4cm.All spatial dimensions of scenes are padded to the multiples
of 128. For training, the rooms are sliced into 128× 128× 128 cubes.

6.2 BASELINE COMPARISON

aAcc↑ IoU↑ Acc↑ Dice↑ Fscore↑ Precision↑ Recall↑ #Param↓
3D U-Net 98.98 58.54 76.88 65.73 80.89 65.20 76.88 16.32M
Sparseconv 98.50 47.33 65.27 54.52 72.00 63.13 65.27 0.64M
VT-UNet 98.74 47.90 71.87 54.75 75.58 59.46 71.87 20.89M
3DSeg-T 98.83 56.69 73.60 64.34 78.38 70.56 73.60 0.38M
3DSeg-T Dist 98.82 58.06 73.65 65.89 78.22 72.03 73.65 0.38M
3DSeg-B 98.88 60.41 75.81 68.28 80.05 73.62 75.81 0.62M
3DSeg-B Dist 98.87 61.58 75.21 69.69 80.18 75.88 75.21 0.62M
3DSeg-M 98.93 62.57 76.11 70.55 80.54 76.47 76.11 1.55M
3DSeg-M Dist 98.92 63.14 75.94 71.20 80.41 77.57 75.94 1.55M
3DSeg-L 98.95 64.23 76.48 72.32 80.98 78.43 76.48 4.43M
3DSeg-L Dist 98.95 64.67 76.83 72.84 81.08 78.86 76.83 4.43M

Table 1: Quantitative comparison of our proposed 3D Segmenter with FCN baseline 3D U-
Net(Çiçek et al., 2016), SparseConvNet(Graham et al., 2018a) and VT-UNet(Peiris et al., 2022)
on our PanoRoom3D dataset. All of the metrics are reported in percentage.

aAcc↑ IoU↑ Acc↑ Dice↑ Fscore↑ Precision↑ Recall↑ #Param↓
3D U-Net 77.73 33.71 63.64 40.01 67.82 44.33 63.64 16.32M
3DSeg-T 72.33 28.96 52.22 36.04 59.54 44.98 52.22 0.38M
3DSeg-B 74.37 32.83 55.80 40.30 62.34 48.27 55.80 0.62M
3DSeg-M 76.91 37.65 59.39 45.33 65.72 53.13 59.39 1.55M
3DSeg-L 77.45 39.83 61.07 47.42 66.83 54.47 61.07 4.44M

Table 2: Quantitative comparison of our proposed 3D Segmenter with FCN baseline 3D U-
Net(Çiçek et al., 2016) on Scannet(Dai et al., 2017) dataset. All of the metrics are reported in
percentage.

All of the quantitative metrics are run on a room-level. Metrics evaluated from different rooms
are weighted with the corresponding rooms’ volume. Here we compare our four variants and four
distilled models with Fully Convolutional Network 3D U-Net(Çiçek et al., 2016), sparse convolu-
tion(Graham et al., 2018a) based model and recent transformer-based model VT-UNet(Peiris et al.,
2022) . We Report 7 metrics used in semantic segmentation: overall accuracy(aAcc), mean intersec-
tion over union(mIoU), mean accuracy(Acc), Dice, Fscore, Precision, Recall. Among these metrics,
mIoU is the most representative one. 3DSeg-T Dist distills knowledge from 2D Segmenter (Strudel
et al., 2021) Seg-B-Mask/16. 3DSeg-B Dist, 3DSeg-M Dist and 3D Seg-L Dist distill knowledge
from Seg-L-Mask/16. See the quantitative comparison in table 1. 3DSeg-B already outperforms 3D
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U-Net even with only 3.8% parameters. The distillation schemes achieve a higher mIoU score with-
out adding extra parameters. This implies that our 2D-to-3D panoramic distillation demonstrates
the feasibility of training powerful 3D networks with 2D knowledge. Our baseline comparison on
Scannet (Dai et al., 2017) is shown in table 2. The result shows that our proposed 3D Segmenter
also achieves the best performance on real world data.

We also conduct a complexity comparison of our four baseline variants and 3D U-Net. We randomly
choose 20 scenes to calculate the total inference time. Since some of the scenes are too large to be
run on GPU for 3D U-Net, we run our inference time comparison on CPU. The total inference
time of our four variants is 43.62s, 44.79s, 61.08s, 95.89s from Tiny to Large, and 254.75s for 3D
U-Net.

6.3 ABLATION STUDY

The effectiveness of 2D-to-3D distillation. Our 3D Segmenter is pretrained on fixed-size blocks
and then distilled at room level. To control variables and validate the effectiveness of our proposed
distillation strategy, we conduct two experiments by finetuning 3DSeg-T and 3DSeg-B at room level
with 3D cross-entropy loss only.

aAcc↑ IoU↑ Acc↑ Dice↑ Fscore↑ Precision↑ Recall↑ #Param↓
3DSeg-T 98.83 56.69 73.60 64.34 78.38 70.56 73.60 0.38M
3DSeg-T Finetune 98.85 56.62 74.58 64.17 78.72 69.31 74.58 0.38M
3DSeg-T Dist 98.82 58.06 73.65 65.89 78.22 72.03 73.65 0.38M
3DSeg-B 98.88 60.41 75.81 68.28 80.05 73.62 75.81 0.62M
3DSeg-B Finetune 98.90 60.87 76.15 68.79 80.09 73.95 76.15 0.62M
3DSeg-B Dist 98.87 61.58 75.21 69.69 80.18 75.88 75.21 0.62M

Table 3: Quantitative ablation study of distillation effectiveness. All of the metrics are reported in
percentage.

We can see from Table 3 that compared with directly finetune the model on rooms, our panoramic
distillation design can steadily improve the mIoU performance.

The necessity of skip connection. While introducing the decoder of 3D Segmenter, we use a skip
connection to ’remind’ our model of the input x. We validate the necessity of the design in this
experiment.

aAcc↑ IoU↑ Acc↑ Dice↑ Fscore↑ Precision↑ Recall↑ #Param↓
3DSeg-T 98.83 56.69 73.60 64.34 78.38 70.56 73.60 0.38M
3DSeg-T w/o skip 97.79 51.35 68.81 60.35 73.0 66.06 68.81 0.37M
3DSeg-B 98.88 60.41 75.81 68.28 80.05 73.62 75.81 0.62M
3DSeg-B w/o skip 97.86 54.44 69.18 63.81 74.12 70.10 69.18 0.62M
3DSeg-M 98.93 62.57 76.11 70.55 80.54 76.47 76.11 1.55M
3DSeg-M w/o skip 97.92 56.20 70.72 65.66 74.87 71.23 70.72 1.55M

Table 4: Quantitative ablation study of the skip connection. All of the metrics are reported in
percentage.

We can see in Table 4 by adding a skip connection before output significantly improves the overall
performance by adding a small number of parameters.

7 DISCUSSIONS

In this work, we propose the first 2D-to-3D knowledge distillation method to utilize the data abun-
dant and pretrain-ready 2D semantic segmentation to improve 3D semantic segmentation. Experi-
ments demonstrate our technique significantly improves the 3D model over the baseline. We have
also introduced a PanoRooms3D dataset that contains a large variety of indoor scenes with dense
3D volumes and their corresponding panorama renderings.
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A APPENDIX

Limitations. However, a few limitations are yet to be addressed. First, though the panorama images
could provide the global context of the environment, the single-camera rendering inevitably suffers
from occlusion, a promising direction is to directly leverage the full 2D textures from the surface of
the 3D scans, as done in TextureNet (Huang et al., 2019). Second, currently, we do not consider the
similarity between different models, we leave this as future work.

Input Scene 3D U-net 3DSeg-L Ground Truth

Figure 5: Qualitative comparison between our variant 3DSeg-L and convolutional baseline 3D U-
Net(Çiçek et al., 2016) on our PanoRooms3D dataset.
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