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Abstract

In animals and humans, curriculum learning—presenting data in a curated order—
is critical to rapid learning and effective pedagogy. A long history of experiments
has demonstrated the impact of curricula in a variety of animals but, despite its
ubiquitous presence, a theoretical understanding of the phenomenon is still lacking.
Surprisingly, in contrast to animal learning, curricula strategies are not widely used
in machine learning and recent simulation studies reach the conclusion that curric-
ula are moderately effective or even ineffective in most cases. This stark difference
in the importance of curriculum raises a fundamental theoretical question: when
and why does curriculum learning help? In this work, we analyse a prototypical
neural network model of curriculum learning in the high-dimensional limit, employ-
ing statistical physics methods. We study a task in which a sparse set of informative
features are embedded amidst a large set of noisy features. We analytically derive
average learning trajectories for simple neural networks on this task, which estab-
lish a clear speed benefit for curriculum learning in the online setting. However,
when training experiences can be stored and replayed the advantage of curricu-
lum in standard neural networks disappears, in line with observations from the
deep learning literature. Inspired by synaptic consolidation techniques developed
to combat catastrophic forgetting, we propose curriculum-aware algorithms that
consolidate synapses at curriculum change points and investigate whether this can
boost the benefits of curricula. We derive generalisation performance as a function
of consolidation strength (implemented as an L regularisation/elastic coupling
connecting learning phases), and show that curriculum-aware algorithms can yield
a large improvement in test performance. Our reduced analytical descriptions help
reconcile apparently conflicting empirical results, trace regimes where curriculum
learning yields the largest gains, and provide experimentally-accessible predictions
for the impact of task parameters on curriculum benefits. More broadly, our results
suggest that fully exploiting a curriculum may require explicit adjustments in the
loss.

1 Introduction

Presenting learning materials in a meaningful order according to a curriculum greatly helps learning
in animals and humans [} [2, 3, 4], and is considered an essential aspect of good pedagogy [5].
For example, humans have been shown to learn visual discriminations faster when presented with
examples that exaggerate the relevant difference between classes, a phenomenon known as “fading”
[6, 7, 18]]. Beyond humans, curricula in the form of “shaping” or “staircase” procedures are a near-
universal feature of task designs in animal studies, without which training often fails entirely. For
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instance, the International Brain Laboratory task, a standardised perceptual decision-making training
paradigm in mice, involves six stages of increasing difficulty before reaching final performance [9].

Building from this intuition, a seminal series of papers proposed a similar curriculum learning
approach for machine learning (ML) [10} [11} [12]. In striking contrast to the clear benefits of
curriculum in biological systems, however, curriculum learning has generally yielded equivocal
benefits in artificial systems. Experiments in a variety of domains [13|[14] have found usually modest
speed and generalisation improvements from curricula. Recent extensive empirical analyses have
found minimal benefits on standard datasets [[15]. Indeed, a common intuition in deep learning
practice holds that training distributions should ideally be as close as possible to testing distributions,
a notion which runs counter to curriculum. Perhaps the only areas where curricula are actively used
are in large language models [16] and certain reinforcement learning settings [[17].

This gap between the effect of curriculum in biological and artificial learning systems poses a puzzle
for theory. When and why is curriculum learning useful? What properties of a task determine the
extent of possible benefits? What ordering of learning material is most beneficial? And can new
learning algorithms better exploit curricula? Compared to the empirical investigations of curriculum
learning, theoretical results on curriculum learning remain sparse. Most notably, [[18} [19] show that
curriculum can lead to faster learning in a simple setting, but the effects of curriculum on asymptotic
generalisation and the dependence on task structure remain unclear. A hint that indeed curriculum
learning might lead to statistically different minima comes from a connection between constraint-
satisfaction problems and physics results on flow networks [20], but to our knowledge no direct result
has been reported in the modern theoretical ML literature.

In this work we study the impact of curriculum using the analytically tractable teacher-student
framework and the tools of statistical physics [21} [22| 23] [24]. High-dimensional teacher-student
models are a popular approach for systematically studying learning behaviour in neural networks
[25} 126} 22]], and have recently been leveraged to analyse a variety of phenomena [27, 128 29, 30,131,
32]. Using a simple model to build structured data [[12], we examine the impact of ordering examples
by increasing difficulty (curriculum), decreasing difficulty (anti-curriculum), or standard shuffled
training. We derive exact expressions for the online learning dynamics and the performance of batch
learning. However, in the latter, curriculum confers no benefit under standard training in our model
setting. Motivated by theories of synaptic consolidation and elastic weight consolidation [33} [34],
we introduce elastic penalties (Gaussian priors) that regularise training toward solutions obtained
in prior curriculum phases, instantiating a long-term memory effect. With these priors, curriculum
yields benefits both in the online [3|and in the batch [ settings.

Further related work. The first empirical investigation of curriculum learning appeared in 1927
[35]], consisting in a visual discrimination task for dogs under curriculum and no-curriculum
paradigms. Later behavioural studies proved curricula to be beneficial independent of the ani-
mal (dogs, mice, rats, pigeons, humans) and the data modality (visual, auditory, or tactile stimuli)
(3611112137138} 16]]. However, these experimental observations were not observed in standard artificial
neural networks (ANNSs). Several ideas in the connectionist community were proposed in order to
show curriculum effects in the learning dynamics of ANNs 39,140, |10} [11]. While these studies were
able to match previous experimental data, they also required substantial changes in the architecture of
the ANN and/or in the learning rule.

Except for very few instances [[16} [17], standard ML practice tends to avoid taking curricula into
account. An obvious obstacle is the fact that most datasets do not provide meta-data about sample
difficulties. An interesting line of research pointed out the possible relevance of implicit curricula,
based on the observation that neural networks tend to consistently learn the samples in a certain order
[41]. Thus, a possible way of addressing the lack of difficulty labels would be to use the natural
learning order as indicative of the various difficulties of the training samples. However, a recent
work [[15]], which compared several heuristics for curriculum learning —including implicit curricula—
in a variety of settings, showed limited benefits with this strategy.

The picture that emerges from the literature seems contradictory: on the one hand, curricula appear
fundamental to biological learning; on the other hand, curricula appear largely irrelevant in many
machine learning settings. The core motivation behind our work is to reconcile these views and
contribute to a theoretical understanding of curriculum learning.
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Figure 1: Teacher-student setting for curriculum learning. (a) Illustration of teacher-student
setting in which a “student” network is trained from i.i.d. inputs with labels from a “teacher” network.
Since the teacher network is sparse, its output depends only on a subset of relevant input features.
(b) We consider curricula which order examples by difficulty, here taken to be the variance in the
irrelevant feature dimensions. We refer to increasing, decreasing, and random difficulty order as
curriculum, anti-curriculum, and no curriculum, respectively. (c) Example test error on hard examples
for the student over training. The switch-point between easy and hard samples lies at & = 1/2. Solid
lines show numerical simulations, while dashed lines show theoretical predictions derived in Section
[3] For this particular parameter setting, curriculum speeds learning but only modestly improves final
performance at o = 1. Parameters: oy = 1,0 = 1, A1 =0, Ay = 1,7 =107%,1n = 3.

2 Model definition and overview of approach

In the following, we revisit a prototypical model of curriculum learning from [12]] that finds corre-
spondence to the fading literature 6] as highlighted in Sec.[5] Our setting is summarised in Fig.[T]
The model entails a simple teacher-student setup, where teacher and student are each shallow 1-layer
neural networks of size N (also known as perceptrons). The learning task for the student is a binary
classification problem, with dataset D = {(y*,2*)} L, where the ground-truth labels are produced
by the teacher network y* = sign W - &*. The student learns via empirical risk minimisation of an
L5 regularised convex loss.

A key feature of this model is that the teacher network is sparse, with only a fraction p < 1 of
~ N(0,1) non-zero components. Therefore, in order to achieve a good test accuracy, the student
has to guess which components should be set to zero and align the relevant weights in the correct
direction. A large range of 0 < p < 1 could give rise to the phenomenology we seek to analyse. In
the remainder of the paper we will focus on the case p = 0.5.

We model the variable degree of difficulty in the samples by decomposing each input vector as
zt = [zt x!'] € RY, where z/* € R?Y denotes the relevant components of the input, and z!' €

RPN the irrelevant ones. Note that, crucially, the sparse teacher network is completely blind
to the irrelevant part of the input: y* = sign 2551 Wr jat ;. While 2’ ; i.i.d. N(0,1) ,Vu we
consider the variance for the irrelevant components to be sample-dependent xf i~ N(0,A*). A
smaller variance in the irrelevant part induces a higher SNR in the student learning problem.

The dataset is partitioned according to difficulty levels given by the variances of the irrelevant inputs.
For simplicity we consider only two partitions in most of our analysis, but generalisations to multiple
difficulty levels follow straightforwardly. We thus have a dataset with M = (a; + ag)N = aN
samples in total. In the first oy N samples the irrelevant inputs have variance A1, while for the
remaining o N samples the variance is Ay > Aj. In the curriculum learning condition we present
the easy examples first, while in the anti-curriculum condition we present the hard examples first.
Standard learning presents examples shuffled in random order.

'In [12] the input distribution is uniform between 0 and 1, but this does not qualitatively change the results.



3 Online dynamical solution in the large input limit

We start by focusing on the same online learning setting explored in [12]. We consider a 1-layer
student network with sigmoidal activation function, o(-) = erf(-/1/2), that learns to minimise a mean
square error loss with Lo regularisation of intensity -, using gradient descent. This yields the updates
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The dynamics of the model can be analysed in the high-dimensional limit N, M — co with a =
M/N = O(1). Generalising the results of [26]42]] on the online stochastic gradient descent dynamics
in single-layer regression problems, we obtain a precise description of the performance at all times,
as a function of several order parameters: the squared norm of the relevant and irrelevant part of the
student weights @, = %WT -W"and Q; = %Wi - W', respectively; the overlap of the relevant
weights of the student and teacher R = %WT - W; and the squared norm of the teacher vector

T = %WT - Wr. In particular, given Q,., @;, R and T, the test loss (i.e. average loss on a new
example) on a dataset with variance A in the irrelevant inputs is given by
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If the dataset contains a random mixture of different difficulty levels Aj, Ao, ..., the loss and

accuracy can be obtained by taking a weighted average over the partitions.

To understand how test performance changes through learning, we study the evolution of the order
parameters. Combining their definition with the definition of the dynamics (I)) and the fact that the
random variables concentrate in the high-dimension as N — oo, we obtain an analytic form for the
updateS: QT — er (QT’ Qia R) T) ’ Qi «— fQL (QT7 Qi7 Ra T) ) R« fR (Q’H Qia R) T)7 where .fQT’
foq, and fr are long but explicit expressions that are reported in the supplementary material (SM).

Dynamical advantages of curriculum. With these theoretical results in hand, we can now char-
acterise the performance of curricula in the online setting. We obtain a description of the learning
trajectories for each learning protocol, yielding the evolution of training and test accuracies, and of
other observables such as the norm of the student and its overlap with the teacher.

Solving the dynamical equations gives two key advantages relative to simulating models in this
setting. First, they are free of finite size effects and stochastic fluctuations. And second, their
evaluation is very fast (up to 6 orders of magnitude in simulation time reduction see SM ??), enabling
systematic exploration of the parameter space of the problem, along with fine-grained optimisation
over hyper-parameters such as learning rate, weight decay and scaling in the initialisation.

Optimising final test accuracy separately for each curriculum strategy, we find that curriculum learning
is the optimal strategy, followed by baseline (no-curriculum) and lastly anti-curriculum. In Fig. [Tk
we show typical learning trajectories for a dataset with equal numbers of easy and hard samples. The
results of the simulations (solid lines) are well-described by our theoretical equations (dashed lines),
and show that the curriculum strategy leads to better performance throughout training. Fig. |l shows
the evolution during training of the test accuracy computed on the whole dataset.

Next, we systematically trace the effect of curriculum for a range of total dataset sizes (v + «2)
and number of easy examples a; in the phase diagram in Fig.[2] This diagram shows in panels (a)
and (b) the accuracies on hard instances reached at the end of training, by curriculum learning and
anti-curriculum learning respectively, normalised by the accuracy reached by the standard strategy.
The two heatmaps show that curriculum learning always outperforms standard learning and that, on
the other hand, anti-curriculum learning outperforms standard learning only in part of the diagram.
Comparing the two strategies, in Fig.[2](c), we can observe that there is a region for small o and oy
where anti-curriculum learning is the best strategy, while in the majority of the situations curriculum
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Figure 2: Phase diagram of online learning performance gap with optimal parameters. The
colour scale shows the ratio of the accuracy on hard instances reached by curriculum over no-
curriculum (a), anti-curriculum over no-curriculum (b), and curriculum over anti-curriculum (c), as a
function of the total dataset size (o1 + a2) and easy dataset size (o). Curriculum broadly benefits
performance and anti-curriculum is effective in certain regions, but the size of the improvement is
modest. Parameters: p = 0.50, A; =0, Ay = 1.

learning is best. Interestingly, there is a sizeable region of the diagram in which both curriculum
and anti-curriculum help, possibly explaining why both have been recommended in prior work
[12,[14]143)144,145]]. A possible intuition behind this counter-intuitive phenomenon highlighted by
our analysis is that, in some settings, the large amount of noise contained in the hard data will always
be too disruptive for effective learning. Thus, leaving the easy (cleaner) data for last could allow the
model to better exploit it.

Further, we find that our setting, in which a small task-relevant signal is embedded in large task-
irrelevant variation, is critical to the benefit of curriculum. Fig. [ shows performance as a function
of sparsity p, additional details are deferred in the SM ??. Non-sparse tasks do not benefit. Hence
curriculum aids tasks with many irrelevant factors of variation. Interestingly, the literature from
human psychology shows precisely this: no curriculum benefits for low-dimensional tasks or tasks
with no variation in irrelevant dimensions [6].

Our results also highlight the intricate dependence of curriculum on parameters of the learning setup.
If not all parameters are correctly optimised, we can observe more complex scenarios. For instance,
the initialisation condition for the norm of the weights of the student plays an important role. We
explore this dependence by changing the variance of the normal distribution from which the initial
weights are sampled from. We observe that anti-curriculum learning becomes the best strategy when
the variance is large, as shown in Fig. [3]for weights of order 1. In this case, curriculum learning shows
an advantage only in the first phase when easy examples are shown, which is consistent with the
results of [19]. However, in the next phase when hard examples are shown, the curriculum strategy
does not extract enough information and it is outperformed by the other two strategies. The fact that
curriculum or anti-curriculum can look better depending on the parameter setting might help explain
the confusion in the literature over the best protocol [12, (14} 143} /44]|45]. At least in this model, better
performance from anti-curriculum is a signature of a sub-optimal choice of the parameters.

To summarise our findings in this online learning setting, curriculum mainly offers a dynamical
advantage: it speeds up learning but has minimal impact on asymptotic performance.

4 Batch learning solution

The previous section discussed the online case where each example is used once and then discarded.
However, in common machine learning practice, neural networks typically revisit each sample repeat-
edly until convergence. Therefore an important question is: can curricula lead to a generalisation
improvement when trained on the same dataset until convergence?

We investigate this question by considering a student that learns from slices of a dataset in distinct
optimisation phases, where in each phase the student optimises a Lo-regularised logistic loss. Without
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Figure 3: Performance gap starting from high initialisation norm. The first two figures show the
accuracy-gap on hard instances between curriculum learning and the baseline (a) and anti-curriculum
learning and the baseline (b). Contrary to the phase diagram in Fig.[2] curriculum learning is not
always the optimal and anti-curriculum is not always the worst strategy. The right panel shows the
accuracy evaluated on the hard samples for a; = ag = 0.5.

further modification, curriculum can have no effect in this setting: due to the convex nature of the
teacher-student setup [22], the network is bound to converge to a minimum uniquely determined
by the final slice of data, with no memory of the progress made at intermediate steps. This simple
observation may help explain empirical observations on real data, such as [15], which find no benefit
of curriculum in standard settings. In fact, in principle curriculum could still influence non-convex
problems [12] but empirical results in the ML field are not showing clear signals of memory retention.
A possible explanation of this is that relying on dynamical memory effects requires careful tuning
of the learning rate and of the number of training epochs, while typical choices for these hyper-
parameters could lead to memory loss and performance inconsistencies. These observations raise the
theoretical question of how to better implement curriculum learning to induce a non-vanishing effect
also in batch learning settings.

To instantiate a long-term memory effect in our model, we propose biasing the optimisation landscape
via a Gaussian prior, centred around the optimiser of the previous learning phase. The additional term
in the loss acts as an elastic coupling between the successive phases, and the associated intensity ;2
is then an additional hyper-parameter of the model. This scheme is similar to regularisation methods
proposed against catastrophic interference in continual learning, such as Synaptic Intelligence [46].
Changing the loss according to the curriculum prescription effectively makes the learning algorithm
aware of the different levels of difficulty in the dataset.

Tools from statistical physics can be used to analytically compute test performance under this scheme.
In order to simplify the presentation, we first consider just two learning phases. It is natural to frame
this setting as a 2-level problem, involving two systems with independent copies of the network
weights W1 and W,. In a typical statistical physics approach, we associate a Boltzmann-Gibbs
measure to the systems, with an energy function determined by the regularised logistic loss £.,. While
the statistical properties of the first system can be determined self-consistently, the added elastic
interaction creates a dependence of the second measure on the configurations of the first system. In
mathematical terms, the coupled system is represented by the following partition function:

e—B1Ly (W1,D1)

Z(Wa,W1: Dy, Do), = | dW, &~
(ZW2. WD Do), = [ W1

log/dW2 o P2(Lay (W2, D2)+ 742 |[W2—-W,3)

3)

where D1, D5 denote the two dataset slices. This object represents the normalisation of the Boltzmann-
Gibbs measure, and allows one to extract relevant information on the asymptotic behaviour of our
model. The optimisations entailed in each learning phase can be described in the “low noise” limit
of 81, 82 — oo, where the measures focus on the minimisers of the respective losses. In order to
study a self-averaging quantity that does not depend on a specific realisation of the dataset, we aim to
compute the associated average free-energy:

. . 1
¢ = ngnoo 51,151211;00 ﬁ27N <10g <Z(W2’W1; D1, D2)>W1>D1,D2 ’ )
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Figure 4: Effect of elastic coupling (Gaussian prior) between curriculum phases. (a) comparison
between asymptotic performance of curricula (full lines) and single batch learning, at o = 1 ag = 1,
with a regularisation ~y; that yields the best generalisation when learning the entire dataset (in principle
not optimal for the other strategies). The points represent the results from 10 numerical simulations at
size N = 2000. Parameters: p = 0.50, A; = 0 and Ay = 1. (b) ratio between the accuracy reached
by curriculum learning over anti-curriculum as a function of the number of easy samples in a dataset
of dimension a1 + a2 = 1, and of the sparsity level of the teacher p. Note that p can also be seen as
the fraction of relevant components in the inputs. A; = 0 and A; = 1. 43 = 2 and 12 where set
the values that optimise test performance.

This quantity can be seen as a special case of the so-called Franz-Parisi potential computation [47,, 48],
and the entailed double average can be evaluated through the replica method. Refer to SM for details.

Similar to the online case, in high-dimensions the free-entropy concentrates on a deterministic
function that depends on several order parameters that capture the geometrical distribution of teacher
and student configurations. In addition to those already introduced in Sec.[3] we also have 6¢), which
is linked to the variance of the student norm. Moreover, for each order parameter we also need to
introduce a conjugate parameter, denoted in the following with the hat symbol. The final expression
for the free-energy reads:

b = extr[ - (RR + % ((Q(SQ - 5@@)7‘“)) + g5(71,72,712) + a1 g (A1) + a2 gr (Az)}
(5)

where gg and gg are two scalar functions, often called entropic and energetic channels, that encode
the dependence of the optimisation problem on the Gaussian prior and the logistic loss respectively.
The extremum condition for the free-energy yields a system of fixed-point equations that converge
to an asymptotic prediction for the order parameters, comparable with the results of numerical
simulations on large instances, Fig. |4l At convergence, the order parameters can be inserted again in
Eq. [2]to obtain an estimate of the test accuracy. Note that this formalism is not limited to two phases,
but can be extended to the case of a discrete number of sequential stages.

The importance of sparsity. Sparsity is a key ingredient in determining the impact of curriculum
strategies. It naturally introduces a notion of relevant and irrelevant inputs, and defines a secondary
learning goal: identifying what part of the presented data should be disregarded by the model.
Curriculum learning can aid this identification process, since the easy samples are more transparent
to this structure. This is also observed in human experiments [6]. However, the relative difficulty
of the problem of inferring the support of the teacher and the problem of aligning with its non-zero
components depends on the degree of sparsity p, so the effectiveness of curriculum can vary with it.

In the right panel of Fig.[d] we explore the interplay between the sparsity of the teacher p and the
fraction of easy samples in the dataset a;, comparing curriculum with the no-curriculum baseline.
The phase diagram highlights the variability in the impact of the curriculum ordering:

* Curriculum is most effective at low values of p and close to the diagonal, where the fraction
of easy examples in the dataset is comparable to the fraction of relevant dimensions.



* When p > 0.5, the possible gain from ordering the samples according to difficulty is
counterbalanced by the instrinsic cost of splitting the information content into two blocks,
thus curriculum can become detrimental.

* When «; is too small compared to p (above diagonal), the first stage in the curriculum
strategy can only help in the support identification problem, but will not allow a good
estimation of the direction of the teacher. Because of the elastic prior, the second stage
cannot improve too much over it and the effect of curriculum is small.

* When « is larger than the sparsity (below diagonal), the easy examples contain sufficient
information for solving both the support and the teacher estimation problems, and this
information is also exploited by the baseline. Thus the improvement of curriculum becomes
negligible.

We refer to the SM for an in-depth comparison with anti-curriculum.
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Figure 5: Phase diagram for the performance gap in the batch setting. The colour scale shows
the ratio of the accuracy on hard instances for curriculum over no-curriculum (a), anti-curriculum
over no-curriculum (b), and curriculum over anti-curriculum (c), as a function of the total dataset
size (a1 + a2) and easy dataset size («1). In contrast to the online case, performance benefits are
greater and curriculum is strictly better than anti-curriculum. Both v, = 5 and 2 are optimised
point-wise, in order to yield the best test accuracy. Parameters: p = 0.50, A; = 0, Ay = 1.

Asymptotic advantages of curriculum. Contrary to the case of online SGD, if the fraction of
relevant directions is small, batch learning with elastic coupling notably improves test accuracy of
both curriculum and anti-curriculum above the baseline. This confirms the utility of curriculum
strategies when the signal is partially "hidden in clutter" [49].

Fig.[5|shows similar phase diagrams to Fig. 2] but for the batch setting. At each point in the phase
diagram the regularisation level v;1 = 79 and the coupling 75 are optimised to yield the best
accuracy. We find that the performance order is nearly always preserved: curriculum followed by
anti-curriculum followed by baseline. In the SM we see similar improvements by applying the elastic
coupling strategy both in the online setting and on real data.

In summary, in the batch setting, splitting the learning process in stages might not be advantageous
per se. However, our observations show that if the loss is modified to reduce memory loss between
the learning stages, curriculum learning strategies can offer a measurable asymptotic advantage.

5 Connection with experimental literature

Recent work has suggested that curriculum learning could provide an important window into the
learning algorithms at work in biology [51]]. Our analysis makes several predictions for curriculum
effects. In this section we assess these predictions based on connections to extant experiments and
propose future experimental tests.

First, we find that a curriculum strategy yields a speed up in learning in all the tested settings (see
Fig.[Ik). This acceleration is broadly consistent with the findings from cognitive science [} [2,6]. By
contrast, our results show that the speed improvement does not necessarily translate into a sizeable
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Figure 6: Connection with psychology experiments. (a) Top: Accuracy ratio of different strategies
in the model, with curriculum/no-curriculum in green and curriculum/anti-curriculum in orange. The
ratio shows non-monotonic behaviour. Bottom: The accuracy ratio obtained by [50]]. Parameters
p =05 A1 =00, Ay = 1.0, a3 = 1, ap = 1 and optimal learning rate, norm at initialisation
and weight decay intensity. (b) Top: Dependence on the sparsity of the generalisation gain of
curriculum over no-curriculum, measured as ratio between final accuracy, for fixed total dataset
size (o1 + a2 = 1). Bottom: The ratio obtained from experiments 3 and 4 of [6]. (c) Example
cartoon stimuli from the “fading” paradigm used in [6]], where participants distinguish daemons of
the old world from daemons of the new world. The distinguishing feature (horn length) is diluted
among many irrelevant features (colour, eye size, mouth size). Highlighting the relevant feature to
participants leads to better and faster learning.

generalisation error improvement, and the performance achieved at the end of training can even
deteriorate when learning hyperparameters are not fully optimised (c.f. Fig.[3). Deterioration due to
curricula has generally not been reported in the psychology literature, though it has been observed in
ML [15]]. This fact may suggest that animals naturally learn with near-optimal hyperparameters such
that curricula generally confer benefits.

A more specific observation concerns the performance on different difficulties after learning. As
reported in [S0], human and rodent subjects trained in an auditory task using curricula showed the
greatest improvement for intermediate levels of difficulty as depicted in Fig. [6p bottom panel. The
same conclusion can be drawn from the experiment of [7, 8], where, surprisingly, subjects trained
with curricula to classify medical images showed poor performance in hard tasks compared to the
control group. To address this phenomenon, we calculate accuracy as a function of difficulty in
the model in Fig. [6h top panel. Consistent with these experiments, we find regimes where the gap
between curriculum learning and the baseline is non-monotonic, with the largest performance gain for
intermediate difficulties. Contrary to [[7, 8], however, we do not observe negative effects of curriculum
for high difficulties. Further experiments that more systematically manipulate training and transfer
difficulties could provide a stronger test of these predictions.

A key ingredient in our model is the role of sparsity, such that a small signal is embedded amidst many
irrelevant features. Experimentally, the importance of having many factors of variation to obtaining
a curriculum effect has been documented in the “fading” experiments of [6]. Human subjects
were trained on classification tasks involving stimuli with one task-relevant feature dimension and
a variable number of task-irrelevant feature dimensions. Example cartoon “daemon” stimuli are
depicted in Fig. Bk, where for instance horn height might be the distinguishing feature while colour,
eye size, and mouth size might constitute task-irrelevant features. Without any irrelevant factors of
variation (p = 1), they report no curriculum benefit. By contrast when 75% of features are irrelevant
(p = .25), they record a strong curriculum effect, as shown in Fig. [6p bottom. This qualitative trend
is also observed in our model (Fig.[6p top). While these experiments tested only two sparsity levels,
further experiments could sample this dimension more extensively and test for interactions with the
fraction of easy and hard examples. We note that while the connectionist literature has addressed the
effect of curriculum in several settings [39, 40, [10, [11], we found that easy-to-hard effects appear
even in a simple setup without need for complex networks and/or dynamics.

Finally, our results may shed light on self-generated curricula during human development [52, 53]
Children undergo a vocabulary spurt that coincides with their ability to grasp and centre objects in the
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Figure 7: Experimental setting on CIFAR10-derived data. (a) Input samples combine a task-
relevant image with a distractor image, and become progressively harder from left to right. (b) Ratio
between final accuracy on hard instances for curriculum learning versus no curriculum. 7, 7, 12, init,
and stopping time are optimised.

visual field [53]]. Quantitative estimates of the amount of clutter (irrelevant objects) in self-generated
views decrease due to this grasping ability, yielding a self-generated curriculum [49} 54]. Our model
similarly predicts that reducing clutter should improve learning speed and performance.

Real-World Demonstration. To verify this prediction in a richer visual setting, we construct a
simple cluttered object classification task from the CIFAR10 dataset [53] by patching two images
together into a 32 x 64 input image (Fig.[7h). The task is to produce the class label of the image
on the left. The right image is a distractor that is irrelevant to the classification. To vary difficulty,
we scale the contrast of the irrelevant image (Fig.[7p-d). We train a single-layer network with the
cross-entropy loss and the curriculum protocol with Gaussian prior between two curriculum stages,
implemented in Pytorch Lightning to ensure that training parameters accord with standard practice.
We optimised hyperparameters in each curriculum phase separately. We trained all combinations of
five elastic penalties log spaced between le — 3 and 1e2, and weight decay parameters {0, .2,.5}. We
then compute the best performing model for five random seeds and take the mean over seeds. Further
dataset, model and experimental details are given in Appendix ??. As shown in Fig. [7p, curriculum
improves performance, particularly when easy examples make up a large proportion of the dataset,
confirming that curricula that reduce clutter can benefit learning.

6 Conclusions

We analysed a model of curriculum learning introduced by and amenable of analytical treatment.
This simple setting sheds light on results observed in the cognitive science and machine learning
literature, and the theoretical tractability allows for exploration of a wide range of parameters that
would be costly to obtain through experiments. Future work will need to move beyond models with
simple loss landscapes to address the impact of curricula in complex tasks like reinforcement learning.
Nevertheless, the model recapitulates a variety of observations in the literature [50} 56 [57], revealing
that easy-to-hard effects can appear when a sparse signal is embedded in many irrelevant dimensions
of variation. We find that making the algorithm curriculum-aware by modifying the loss can better
exploit curricula, offering a potential route for improved practical algorithms. Other curriculum-aware
approaches are possible such as adapting the learning algorithm [58]] or the architecture [10]. On
the psychology side, our predictions can help in designing new experiments, for instance testing the
counter-intuitive benefit of anti-curriculum learning for intermediate sparsity.
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