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Abstract

We introduce the Path Divergence Objective (PDO), an information-theoretic
model of boundedly-rational decision-making in stochastic, partially-observable
environments. The PDO is derived from physical principles, modelling the inherent
costs of information processing in model-based planning for embodied agents.
This framework enables us to model key features observed in real-world agent
behaviour, such as curiosity-driven exploration, novelty-seeking, and the intention-
behaviour gap. By adjusting a single parameter, the PDO can describe a continuous
spectrum of decision-making strategies, ranging from highly irrational to perfectly
rational. This flexibility makes the PDO applicable to a wide range of scenarios,
including modelling biological organisms, simulating interactions between agents
with varying degrees of bounded rationality, addressing AI alignment challenges,
and designing AI systems that interact more effectively with humans.

1 Introduction

Accurately predicting and modelling the decisions of real-world agents—from humans to AI sys-
tems—remains a fundamental challenge across cognitive science, neuroscience, and artificial intelli-
gence, including the alignment of AI systems to human preferences. While machine learning methods
and capabilities have advanced significantly, progress in modelling real-world decision-making under
cognitive and informational constraints has been comparatively slower. To address this gap, we
propose the Path Divergence Objective (PDO), a novel objective for modelling and building agents
with bounded rationality in Partially Observable Markov Decision Processes (POMDPs).
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Figure 1: Illustration of the framework. The agent possesses an internal model, which is decomposed
into a world model and a preference model, minimising the discrepancy (PDO) between them. The
agent’s interface to the external world is known as its Markov blanket [38, 24, 58], which is comprised
of active and sensory paths, which are state trajectories that mediate the interactions between internal
and external paths.

The concept of bounded rationality, originally developed to more realistically model (the limits of)
human decision-making [64, 65], has broader applications in modelling any teleological physical
system. This includes not only humans but also AI systems and other biological entities. The univer-
sality of this approach stems from the fact that all physical systems operate within thermodynamic
constraints, converting available energy into useful work [19, 21, 24, 40, 71].

Our proposed framework builds upon and generalises an information-theoretic model of bounded
rationality [53, 54], focusing on the computational cost of finding a good policy. This model
offers a principled approach to modelling decision-making in complex, uncertain environments,
naturally capturing trade-offs between information processing and goal attainment. We anticipate
its applicability to a wide range of agents with varying internal structures and levels of intelligence,
from individual neurons to advanced AI systems, providing a unified framework for understanding
decision-making across different scales of complexity.

Bounded Rationality and Rational Inattention: The PDO formalizes and extends Simon’s
original concept of bounded rationality [64] in three key ways: 1) It introduces partial observability
to information-theoretic models of bounded rationality [9, 53, 54], which models agents across
a spectrum of rationality levels; 2) It completes the bridge to active inference models [16, 57],
demonstrating features like information-seeking behaviour which are a common feature of such
models; and 3) It expands the applicability of models like rational inattention [48, 49, 66] to dynamic,
sequential decision-making under partial-observability, modelling how agents balance information
costs with rewards over time.

Resource and Computational Rationality: Our model can also be viewed through the lens of
resource-rationality [6, 45], which is centered on the idea of viewing boundedly-rational agents as
making "rational use of limited cognitive resources" for decision-making, and has been found to
predict various facets of human decision-making better than existing models [7, 35]. Closely related
is the notion of computational rationality [44, 30], who recognise the importance of modelling the
tradeoffs that exist between computation and expected utility.

Active Inference and Divergence Objectives: The PDO shares conceptual foundations with active
inference, a framework for modelling perception and action based on free-energy minimisation [16,
22, 23, 29, 57]. Indeed, one view of this work is as a derivation of a broader class of active inference
or divergence objectives from the starting point of bounded rationality [50], which includes several
existing objectives such as the Expected Free Energy [11, 26], the Free Energy of the Expected
Future [51], and Action Perception as Divergence minimization [32].
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Reinforcement Learning and Control Theory: The field of Reinforcement Learning (RL) [67] has
long benefitted from concepts in information theory and statistical mechanics, including entropy/KL-
divergence/mutual information regularisation [8, 31, 39, 43, 70, 2].

KL-divergence or mutual information regularisation has seen increasingly widespread adoption in
reinforcement learning as a practical approach to updating an agent’s policy [1, 2, 13, 59]. Another
complementary perspective is to start from an information-theoretic objective, such as path entropy [5]
or empowerment [68], and incorporate reward-seeking biases as constraints or regularisers. In both
approaches, one arrives at a family of objectives that encode the inherent tradeoffs between goal
attainment and information processing/acquisition.

Similarly, the PDO offers a principled framework for incorporating these ideas into partially observ-
able settings, which, to our knowledge, has not been studied as an RL objective. Our approach may
provide a theoretical foundation for understanding how RL agents might balance exploration and
exploitation in a more sample-efficient manner that more closely mimics human decision-making,
potentially leading to more robust and adaptive AI systems.

Main contributions: 1) The derivation and introduction of the Path Divergence Objective, a novel
framework for modelling bounded rationality in partially observable environments; 2) An analysis of
the PDO through various decompositions to understand the decision-making trade-offs underlying
PDO-minimisation; 3) An efficient algorithm to compute the PDO in certain environments; and 4) A
comparative analysis of the PDO with expected utility maximisation and the (Sophisticated) Expected
Free Energy [16, 23], illustrating novel insights and predictions provided by our approach.

2 Preliminaries

POMDPs, Policies, and World Models: A Partially Observable Markov Decision Process [3, 4] is
a tuple M “ pS,A,Ω, O, T, p, I,Uq, where: 1) S is a finite set of states; 2) A is a finite set of actions;
3) Ω is a finite set of observations; 4) O : AˆS á ∆pΩq is the partial observation likelihood function;
5) T P Z` is a finite time horizon; 6) p : S ˆ A Ñ ∆pSq is the probabilistic transition function; 7)
I P ∆pSq is the initial state distribution; 8) U : H Ñ R is the history utility function which models
the agent’s preferences, where H is the set of all histories h0:t “ s0o0a0s1 . . . stot, t P t1, . . . , T u.
We similarly use the notation s0:t, o0:t, and a0:t to denote state, observation, and action trajectories
respectively. A policy function π : O Ñ ∆pAq maps each observation history of the agent to a
probability distribution over their actions. We let Π denote the set of all policies.

In a POMDP, an agent does not have direct access to the true state of the environment. Instead, it
receives observations that provide partial information about the state. The agent’s goal is to maximise
the expected utility of its trajectories. The goal, as defined here, accounts for a wide range of special
cases commonly encountered in reinforcement learning, such as the expected sum of discounted
rewards [67] and non-Markovian rewards generated by, e.g., a reward machine [36]. In order to
compute expected rewards in M, we define the reach probability of a history h under a policy π as
pph;πq.2 Additionally, we assume that agents possess a probabilistic world model Qph0:t;πq, which
captures their beliefs about the past and future.

Value functions and Solution Concepts: Perhaps the central concept of interest in control theory
and RL is the (objective) value function, which measures the expected reward/utility to-go for
the agent from a given time point t until the end of the episode, under the policy π. Formally,
the value function of the agent is given by Vpo0:t;πq “ Epph0:T | o0:t;πq rUph0:T qs , where h0:T “

h0:t atst`1 . . . sT oT . By Vpπq “ VpH;πq, we denote the total expected utility under π.

2Please refer to Appendix B.2 for formal mathematical definitions.
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3 Path Divergence Objective

Here, we introduce the PDO, outlining its derivation and discussing some of its properties. In this
framework, we make three additional assumptions: 1) The agent has a sufficiently accurate world
model such that the objective value function Vpπq can be replaced by a subjective value function
V pπq :“ EQph0:T ;πq rUph0:T qs; 2) The agent has a prior policy π0, which represents their a priori
current best guess at what a good policy might be. The prior policy can be thought of as an agent’s
default or habitual policy when they do not devote any time to planning. Hence, this ‘cognitive effort’
can be read as the mental exertion required to overcome one’s habitual or instinctual behaviour [56];
3) Observing that information processing incurs a cost [41], and that agents expend effort when
computing a posterior policy to improve the value function, we assume that this expenditure reduces
the agent’s utility linearly, and that the cost incurred can be measured by the Kullback-Leibler (KL)
divergence [54, 56]. Thus, the optimisation problem that the agent appears to be solving is

max
πPΠ

EQph0:T ;πq rUph0:T qs ´
1

β
DKL rQph0:T ;πq || Qph0:T ;π0qs , (1)

for some β ą 0. Now, suppose that we define a probability distribution P̃ ph0:T q :“ exppβUph0:T qq

Zpβ;Uq
,

where we let Zpβ;Uq :“
ř

h1
0:T PHT

exp pβUph1
0:T qq. We call this distribution the preference model,

as it is another way of representing the agent’s preferences in the form of a probability distribution.
Then, re-writing the problem using the preference model, we have the following result3:
Lemma 1. The optimisation problem in (1) is equivalent to the following optimisation problem:

min
πPΠ

DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

´ EQph0:T ;πq rlogQph0:T ;π0qs . (2)

Thus, we see that the planning objective for a boundedly-rational agent can be viewed as finding a
policy that minimises the KL divergence between its prediction model and a preference model P̃ ,
with an additional cross entropy term that acts as a penalty for large differences between π and π0. In
other words, one can think of the KL divergence term as the expected excess surprise when the agent
wishfully believes that trajectories are distributed according to P̃ , when its actual belief is Q.
Definition 2. The Path Divergence Objective (PDO) for an agent i in a POMDP M given a prior
policy π0 and a posterior policy π is given by:

Gpπ;π0q :“ DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

´ EQph0:T ;πq rlogQph0:T ;π0qs . (3)

Decomposition of the PDO. The PDO can be decomposed in several ways, which sheds light on its
connections to active inference and intrinsic motivation in reinforcement learning [16, 18, 57, 62].
Firstly, interpreting (negative) expected utility as an energy, the PDO is an upper bound on expected
energy minus entropy:

Gpπ;π0q “ EQph0:T ;πq

”

´ log P̃ ph0:T q

ı

loooooooooooooooomoooooooooooooooon

-Value (Energy)

` DKL
“

Qph0:T ;πq || Qph0:T ;π0q
˘‰

loooooooooooooooooooomoooooooooooooooooooon

Divergence from prior

ě EQph0:T ;πq

”

´ log P̃ ph0:T q

ı

loooooooooooooooomoooooooooooooooon

-Value (Energy)

´H
`

Qph0:T ;πq
˘

loooooooomoooooooon

Entropy

.

One way of thinking of the PDO is therefore as a free energy relative to some knowledge in the form
of a prior distribution.

Furthermore, decomposing the divergence term in the PDO reveals a natural decomposition in terms
of epistemic value, pragmatic value, and an intention-behaviour gap,4 all of which have been robustly
empirically observed in human behaviour [10, 12, 15].

3All proofs are deferred to the appendices.
4For a more detailed discussion of the decomposition, please refer to Appendix A.4
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Figure 2: Schematic representation of the T-Maze environment. The maze consists of a start position
from which two goal arms (left and right) extend, along with a third cue arm (bottom). The maze
randomly starts in one of two states: a reward in the left arm and a punishment in the right arm, or
vice versa. This state is initially hidden from the agent, but the information about the hidden state
is positioned in the cue arm. The agent can visit two locations in a single experiment. We set the
reward to +1 and the punishment to -4 in order to disincentivize visiting random arms, and the cost of
visiting the cue to Ccue.

Theorem 3. If P̃ ps0:T |o0:T , a0:T q “ Qps0:T |o0:T , a0:T q, then the divergence term in the PDO can
be decomposed as:

DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

“ ´EQpo0:T ,a0:T ;πq rDKL rQps0:T |o0:T , a0:T q || Qps0:T |a0:T qss
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Epistemic Value

` EQps0:T ,a0:T ;πq

”

DKL

”

Qpo0:T |s0:T , a0:T q || P̃ po0:T |a0:T q

ıı

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Pragmatic Value

` DKL

”

Qpa0:T ;πq || P̃ pa0:T q

ı

loooooooooooooooomoooooooooooooooon

Intention-Behaviour Gap

.

4 Algorithmic and experimental results

Optimal policy search. We propose and implement an efficient algorithm to compute a PDO-
minimising policy under the following assumtions: 1) an environment with perfect recall of actions,
i.e. every reachable observation sequence o0:t uniquely determines the sequence of actions a0:t´1

that has led to it. Secondly, a decomposition of P̃ into temporal factors P̃t such that we have
P̃ ph0:T q “

śT´1
t“0 P̃tpat, st`1, ot`1|a0:t´1, o0:t, stq.

The algorithm computes the optimal policy π minimising Gpπ;π0q for any such environment, any
given π0, and any P̃t as above, in time Op|O0:ăT ||S|pTP̃t

` TQqq , where S is the set of all states,
O0:ăT is the set of all prefixes of reachable sequences of observations, and TP̃t

and TQ are the times
required to evaluate P̃t resp Q. See Appendix A.6 for details.

Experimental demonstration of PDO. We study properties of the PDO on a standard T-Maze
environment with a cue [17, 25, 52]. This a minimally effective and commonly-used task for studying
cognition, information-seeking, and decision-making under uncertainty. See Figure 2 for a description
of the environment.

Figure 3 compares the expected reward of an agent’s policy π under various models of decision-
making: the PDO for various values of β, the expected-value-maximising policy, and two other
models of agency and information-seeking under uncertainty: the Expected Free Energy (EFE) [63]
and the Sophisticated Expected Free Energy [23]. Note that the primary goal here is not to try to
maximise the expected value, but rather to demonstrate some of the qualitative differences between
the models in the context of bounded rationality.
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Figure 3: A plot of the mean reward obtained by several decision-making models depending on Ccue.
The EV maximiser plays the optimal strategy: when the cost of visiting the cue is over 1.0, it is
optimal to do nothing. The PDO models various degrees of rationality (β) and smoothly approaches
this optimum for β Ñ 8; for β Ñ 0, this would correspond to playing π0 (here a uniform policy).
The EFE and Sophisticated EFE exhibit different types of bounded rationality and decide suboptimally
in different ranges: EFE stops visiting the cue when the Ccue is larger than its information gain term.
Sophisticated EFE visits the cue even for 1.0 ă Ccue ă 1.5, over-estimating the value of the cue
information, and then for Ccue ą 1.5 it still learns the value of the cue indirectly by visiting a random
arm and inferring the cue from there, correcting the action on the second turn to get mean reward
-0.5. (Note: the plot lines are slightly ofset to minimize visual overlap.)

5 Conclusion

In this paper, we have introduced the Path Divergence Objective, a novel objective for modelling
boundedly-rational model-based planning in partially observable environments. Derived from an
information-theoretic model of bounded rationality, the PDO balances reward-seeking behavior with
information processing constraints, parameterised by a single “rationality” parameter β. We have
then demonstrated how to naturally decompose the PDO into epistemic value, pragmatic value, and
intention-behaviour gap, and derived an efficient algorithm for computing PDO-optimal policies in
perfect recall environments. Importantly, the PDO converges to expected value maximisation as β
approaches infinity, establishing a clear link to classical decision theory [69].

Future research directions include applying the PDO to behavioural modelling, incentive design,
AI alignment, and game theory. We aim to develop more scalable algorithms using MCTS-like
approaches and function approximators, and empirically compare the PDO’s behaviour against
existing RL and POMDP algorithms. This flexible, theoretically-grounded framework opens up new
possibilities for developing robust AI systems and advancing our understanding of the foundational
principles of cognition. We also plan to investigate learning dynamics under the PDO and develop
more detailed models incorporating additional cognitive structures, potentially inspiring novel direc-
tions in AI research and cognitive modelling. Current limitations include, e.g., not accounting for
the cost of learning world model parameters, inferring posteriors, and imperfect plan execution. We
hope that further development of the PDO will lead to a versatile toolset for analysing and designing
decision-makers to accommodate a wide range of cognitive constraints and real-world scenarios.
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Tomáš Gavenčiak and Jan Kulveit are supported by a Charles University grant PRIMUS 22/HUM/020
(Complex Risks in Complex Systems). Michael Wooldridge was supported by a UKRI AI World
Leading Researcher Fellowship (grant number EP/W002949/1).

References
[1] ABDOLMALEKI, A., LIOUTIKOV, R., PETERS, J. R., LAU, N., PUALO REIS, L., AND

NEUMANN, G. Model-based relative entropy stochastic search. Advances in Neural Information
Processing Systems 28 (2015).

[2] ARUMUGAM, D., HO, M. K., GOODMAN, N. D., AND VAN ROY, B. Bayesian reinforcement
learning with limited cognitive load. Open Mind 8 (04 2024), 395–438.

[3] ÅSTRÖM, K. J. Optimal control of Markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications 10, 1 (Feb. 1965), 174–205.

[4] BARTO, A., AND SUTTON, R. Reinforcement Learning: An Introduction. 1992.

[5] BERRUETA, T. A., PINOSKY, A., AND MURPHEY, T. D. Maximum diffusion reinforcement
learning. Nature Machine Intelligence (2024), 1–11.

[6] BHUI, R., LAI, L., AND GERSHMAN, S. J. Resource-rational decision making. Current
Opinion in Behavioral Sciences 41 (2021), 15–21.

[7] BINZ, M., AND SCHULZ, E. Modeling human exploration through resource-rational reinforce-
ment learning. Advances in neural information processing systems 35 (2022), 31755–31768.

[8] BOTVINICK, M., AND TOUSSAINT, M. Planning as inference. Trends in cognitive sciences 16,
10 (2012), 485–488.

[9] BRAUN, D. A., AND ORTEGA, P. A. Information-theoretic bounded rationality and ε-optimality.
Entropy 16, 8 (2014), 4662–4676.

[10] BROMBERG-MARTIN, E. S., AND MONOSOV, I. E. Neural circuitry of information seeking.
Current Opinion in Behavioral Sciences 35 (2020), 62–70.
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A Notation, Proofs and Technical Details

A.1 Notation

Let Y be a finite set. We let ∆pY q be the set of probability distributions over Y . For a discrete
random variable X with distribution P , we write HrXs for the Shannon entropy of X . For two
probability distributions P and Q defined over the same domain X , we write DKL rP pxq || Qpxqs to
denote the Kullback-Leibler (KL) divergence or relative entropy from Q to P .

A.2 Formal definitions in POMDPs

The reach probability of a history h0:T under a policy π is defined as

pph;πq :“ Ips0q ¨

˜

T´1
ź

τ“0

Opoτ |aτ´1, sτ q ¨ πpaτ |o0:τ q ¨ ppsτ`1|sτ , aτ q

¸

¨ OpoT |sT q,

where πpaτ |o0:τ q :“
śn

i“1 πpaτ |o0:τ q.

The world model is formally defined as

Qph0:t ; πq :“ Qps0q ¨

˜

t´1
ź

τ“0

Qpoτ |sτ q ¨ Qpsτ`1|sτ , aτ q ¨ πpaτ |o0:τ q

¸

¨ Qpot|stq.

A.3 Derivation of the PDO

Lemma 1. The optimisation problem in 1 is equivalent to the following optimisation problem:

min
πPΠ

DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

´ EQph0:T ;πq rlogQph0:T ;π0qs . (4)

Proof. Recall assumptions 1-3:

Qph0:T ;πq « pph0:T ;πq;

The agent has a prior policy π0;

The agent trades off between utility and information processing additively. Under these, the agent
can be seen as optimising the following objective function:

max
πPΠ

EQph0:T ;πq rUph0:T qs ´
1

β
DKL rQph0:T ;πq || Qph0:T ;π0qs . (5)

Now, defining the preference model as

P̃ ph0:T q :“
exp pβUph0:T qq

Zpβ;Uq
,

we can rearrange this for U , and we obtain

Uph0:T q “
1

β
¨ log

”

P̃ ph0:T q ¨ Zpβ;Uq

ı

. (6)

11



Using this, we obtain the equivalent problem

max
πPΠ

1

β
EQph0:T ;πiq

”

log P̃ ph0:T q ` logZpβ;Uq

ı

´
1

β
DKL rQph0:T ;πq || Qph0:T ;π0qs

“max
πPΠ

EQph0:T ;πiq

”

log P̃ ph0:T q ` logZpβ;Uq ´ logQph0:T ;πq ` logQph0:T ;π0q

ı

“min
πPΠ

EQph0:T ;πq

”

logQph0:T ;πq ´ log P̃ ph0:T q ´ logZpβ;Uq ´ logQph0:T ;π0q

ı

“min
πPΠ

DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

´ EQph0:T ;πq rlogQph0:T ;π0qs .

A.4 Decomposition of the PDO

Theorem 3. If P̃ ps0:T |o0:T , a0:T q “ Qps0:T |o0:T , a0:T q, then the divergence term in the PDO can
be decomposed as:

DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

“ ´EQpo0:T ,a0:T ;πq rDKL rQps0:T |o0:T , a0:T q || Qps0:T |a0:T qss
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Epistemic Value

` EQps0:T ,a0:T ;πq

”

DKL

”

Qpo0:T |s0:T , a0:T q || P̃ po0:T |a0:T q

ıı

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Pragmatic Value

` DKL

”

Qpa0:T ;πq || P̃ pa0:T q

ı

loooooooooooooooomoooooooooooooooon

Intention-Behaviour Gap

.

Proof. We can write the divergence term DKL

”

Qph0:T ;πq || P̃ ph0:T q

ı

under the assumption that

P̃ ps0:T |o0:T , a0:T q “ Qps0:T |o0:T , a0:T q as follows:

EQph0:T ;πq rlogQps0:T |a0:T q ` logQpo0:T |s0:T , a0:T q ` logQpa0:T q

´ log P̃ ps0:T |o0:T , a0:T q ´ log P̃ po0:T |a0:T q ´ log P̃ pa0:T q

ı

“EQph0:T ;πq rlogQps0:T |a0:T q ` logQpo0:T |s0:T , a0:T q ` logQpa0:T q

´ logQps0:T |o0:T , a0:T q ´ log P̃ po0:T |a0:T q ´ log P̃ pa0:T q

ı

“ ´EQpo0:T ,a0:T ;πq rDKL rQps0:T |o0:T , a0:T q || Qps0:T |a0:T qss
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Epistemic Value

` EQps0:T ,a0:T ;πq

”

DKL

”

Qpo0:T |s0:T , a0:T q || P̃ po0:T |a0:T q

ıı

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Pragmatic Value

` DKL

”

Qpa0:T ;πq || P̃ pa0:T q

ı

loooooooooooooooomoooooooooooooooon

Intention-Behaviour Gap

.

The condition in Theorem 3 can be interpreted as the assumption that agents’ preferences are only
defined over components of their interface with the environment, i.e., their Markov blanket, and
not directly over underlying states of the world. This represents what we might call preference
empiricism, where the stance is taken that an agent’s preferences can only be defined over parts of
the world which are observable or controllable by them. In the case of metacognitive agents [61],
preferences may not be restricted only to one’s observations or actions, but could also be defined over
one’s own internal world model.

Unpacking this decomposition intuitively, we observe the following:
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1. The epistemic value, also known as the expected information gain [28, 55, 60], scores the
expected reduction in uncertainty about the state trajectory before and after knowing the
observation trajectory. Notice that since the distributions which are being compared are
conditional on the chosen action trajectory, the agent has a bias towards active data sampling
to advance their understanding about the underlying state of the world [14, 46, 47].

2. The pragmatic value similarly scores the expected divergence between the
agent’s predictions about their own observations and their preferences over the
same [27]. We can additionally decompose the pragmatic value term further as
EQps0:T ,a0:T ;πq

”

´HrQpo0:T |s0:T , a0:T qs ´ EQpo0:T |s0:T ,a0:T q

”

P̃ po0:T |a0:T q

ıı

. The first
term can be interpreted as an entropy-regulariser which motivates the agent to seek out
diverse or novel experiences [5, 42], while the second term can be interpreted as the
expected utility.

3. The intention-behaviour gap, or value-action gap, can be interpreted as capturing the
difference between an agent’s preferences over their own actions and what their expectations
over the same, given the posterior policy [15]. Such a gap is one contributor towards the
experience of cognitive dissonance [20, 33] or predictive dissonance [37], which agents
will attempt to minimise under this decomposition. The situation of this term amongst
the epistemic and pragmatic value components may partially explain why individuals do
not always act in a way consistent with their stated preferences, that is, the epistemic or
pragmatic benefits of acting in a certain manner may outweigh the intention-behaviour gap
induced by such behaviour.

A.5 Recursive formulations of the PDO

Theorem 4. Under the assumption that the world model Q is fixed for the transition and observation
likelihood functions, the Path Divergence Objective can be expressed in the following recursive forms:

a) With P̃ over the full path:

Gpπ;π0q “ EQps0,o0qG
P
0 pπ|s0, o0;π0q, where (7)

GP
t pπ|h0:t;π0q “ DKL rπpat|o0:tq || π0pat|o0:tqs ` EQpat,st`1,ot`1|h0:t;πqG

P
t`1pπ|h0:t`1;π0q (8)

GP
T pπ|h0:T ;π0q “ ´ log P̃ ph0:T q. (9)

b) With P̃ as conditionals: For any decomposition of P̃ into a chain of conditional distributions of
the form

P̃ pat, st`1, ot`1|h0:tq “

T´1
ź

t“0

P̃tpat, st`1, ot`1|h0:tq

we can express the PDO as

Gpπ;π0q “ EQps0,o0qG
C
0 pπ|s0, o0;π0q, where (10)

GC
t pπ|h0:t;π0q “ DKL rπpat|o0:tq || π0pat|o0:tqs `

` EQpat,st`1,ot`1|h0:t;πq

”

GC
t`1pπ|h0:t`1;π0q ´ log P̃tpat, st`1, ot`1|h0:tq

ı

(11)

GC
T pπ|h0:T ;π0q “ 0. (12)
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c) Markovian preferential distribution: Assuming that P̃t from b) only depends on the previous state
and the observation history, i.e. P̃tpat, st`1, ot`1|h0:tq “ P̃tpat, st`1, ot`1|o0:t, stq, we have

Gpπ;π0q “ EQps0qQpo0|s0qG
M
0 pπ|o0, s0;π0q, where (13)

GM
t pπ|o0:t, st;π0q “ DKL rπpat|o0:tq || π0pat|o0:tqs ` Eπpat|o0:tqQpst`1|st,atqQpot`1|st`1q

”

´ log P̃tpat, st`1, ot`1|o0:t, stq ` GM
t`1pπ|o0:t`1, st`1;π0q

ı

(14)

(15)

GM
T pπ|o0:T , sT ;π0q “ 0. (16)

Proof. All of the variants are shown by expanding the KL-divergence in the Definition 2, and then
introducing a telescopic products over P̃ and Q.

Gpπ;π0q “EQph0:T ;πq

”

logQph0:t;πq ´ logQph0:t;π0q

ı

´ EQph0:T ;πq log P̃ ph0:T q (17)

“EQph0:t;πq

”

T
ÿ

t“0

logQpat, st`1, ot`1|h0:t;πq ´ logQpat, st`1, ot`1|h0:t;π0q

ı

´ EQph0:T ;π

”

log P̃ ph0:T q

ı

(18)

“EQph0:t;πq

”

T
ÿ

t“0

log πpat|o0:tq ´ log π0pat|o0:tq
ı

´ EQph0:T ;π

”

log P̃ ph0:T q

ı

, (19)

where the last equality follows from the fact that

Qpat, st`1, ot`1|h0:t;πq “ πpat|o0:tqQpst`1|st, atqQpot`1|st`1q,

so all non-policy terms cancel out under the assumption that these are fixed.

Now we rearrange the components of the sum into a tree of T levels by matching prefixes of h0:t,
decomposing the expectation EQph0:T ;πq into a chain of expectations

śT´1
t“0 EQpat,st`1,ot`1|h0:t;πq.

This can be then directly rewritten in the recursive form of a) by leaving P̃ intact as in (17), or b) by
decomposing P̃ into factors P̃t. Variant c) is derived analogously to b) using the stated assumptions
and subsequently removing irrelevant variables (i.e. at and all but the last st) from the parameters of
G.

A.6 Algorithm computing the PDO

A perfect recall environment is one where the agent observes and remembers not just all its observa-
tions but also all its actions, i.e. any reachable sequence o0:t uniquely determines the only sequence
of a0:t´1 that may have lead to it. Each action sequence may lead to multiple observation sequences
(non-determinism), there may be unreachable observation sequences.

Theorem 5. Assume that conditions of Theorem 4.c hold, that is P̃ can be decomposed into factors
P̃t such that P̃ pat, st`1, ot`1|h0:tq “

śT´1
t“0 P̃tpat, st`1, ot`1|h0:tq and P̃t only depends on the

previous state and the observation history, i.e. P̃tpat, st`1, ot`1|h0:tq “ P̃tpat, st`1, ot`1|o0:t, stq.
Then there is an efficient algorithm for finding the π̂ minimizing Gpπ;π0q for any given perfect recall
environment, any such P̃t, and any given π0.

The algorithm runs in time Op|O||S|pTP̃t
` TQqq , where S is the set of all states, O is the set of all

reachable sequences of observations (within the time horizon) and their prefixes, and TP̃t
and TQ are

the times required to evaluate P̃t and Q, respectively.

Note that this algorithm can also work for a "full path" formulation similar to Theorem 4.a if P̃
only depends on the observation sequence and the last state (i.e. P̃ ph0:T q “ P̃ pa0:T´1, o0:T , sT q,
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as P̃t can be assumed to be trivial (e.g. uniform) for all t ă T , and only have nontrivial
P̃T paT´1, sT , oT |o0:T´1q “ P̃ pa0:T´1, o0:T , sT q (note that due to the perfect recall assumption,
past actions are implied by the past observations).

Proof. First, define GM1

, a variant of GM where the conditioning is not on the last state but rather on
a distribution (belief) of the last state, St.

Gpπ;π0q “ EQpo0qG
M1

0 pπ|o0, S0 “ QpS0|o0q;π0q, where (20)

GM1

t pπ|o0:t, St;π0q “ Eπpat|o0:tq

”

log πpat|o0:tq ´ log π0pat|o0:tq ` EQpSt`1|St,atqQpot`1|St`1q

“

´ Est`1„St`1 log P̃ pat, st`1, ot`1|o0:tq ` GM1

t`1pπ|o0:t`1, St`1;π0q
‰

ı

(21)

“ Eπpat|o0:tq

”

log πpat|o0:tq ` Ftpat, o0:t, St, π0q

ı

(22)

GM1

T pπ|o0:T , ST ;π0q “ 0 (23)

Here Ftpat, o0:t, St, π0q merely collects all the terms of the outer expectation in (21) except the first.
Notably, it does not depend on π and can be evaluated for every individual at independently.

The algorithm to find π̂ proceeds as if evaluating GM1

0 pπ|o0, S0q by expanding it recursively, finding
the optimal π̂ along the way and returning it, along with the final value of G. We start with several
observations before stating the algorithm.

Observe that in the evaluation tree, GM’
t is only evaluated once for any given o0:t, and πpat|o0:tq

only appears in that one evaluation, and moreover πpat|o0:tq can be chosen independently from π
for all other observations. Further observe that GM1

can in fact be minimised by minimizing each
GM1

po0:t, Stq independently, since GM1

only appears as a positive term in other GM1

(. . . )’s, and the
value of St`1 passed down the recursion does not depend on π but rather is conditioned on a single
action at.

Therefore, πpat|o0:tq can be optimised locally after first evaluating all GM1

t`1pπ|o0:t`1, St`1;π0q. The

πpat|o0:tq minimizing Eπpat|o0:tq

”

log πpat|o0:tq `Ftpat, o0:t, St, π0q

ı

is the Boltzmann distribution
where F plays the role of the expected energy of the action:

π̂pat|o0:tq “
e´Ftpat,o0:t,St,π0q

Ztpo0:t, St, π0q
, (24)

where Ztpo0:t, St, π0q is a distribution-normalization constant.

The algorithm is then as follows: Traverse the tree of evaluating GM1

recursively. While evaluating the
tree node GM1

t pπ|o0:t, St;π0q, first evaluate GM1

t`1pπ|o0:t`1, St`1;π0q for all at and ot`1 recursively,
combining the returned partial policies π̂. Then set π̂pat|o0:tq according to equation (24), and return
the updated policy along with the (directly computed) value of GM1

t pπ|o0:t, St;π0q.

The runtime follows from visiting each o0:t P O only once, and each evaluation does Op|S|pTP̃t
`

TQqq work. The algorithm is efficient since every algorithm without further assumptions on P̃t and Q

needs to evaluate them on all observation sequences, otherwise we can engineer P̃t and Q that would
encode an exceedingly high reward in the omitted branch.
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B Supplementary Materials for Experiments

Here we include the omitted materials regarding our experimental results and design.

The experiments were carried out with the PyMDP library [34], adding our own implementation of
the PDO-minimizing and an expectation-maximizing algorithms into the framework. Our code can
be found at https://github.com/gavento/pymdp/tree/neurips2024-v1 with the implemen-
tation of PDO and expected value minimization under pymdp/pdo_agents/ and the code to execute
our experiments and generate the plots under notebooks/. We hope our algorithm will be eventually
merged into the PyMDP library.
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Figure 4: The divergence of action distribution under Q when playing according to π vs according
to π0. With an observation-agnostic prior policy π0, this can be seen as the expected divergence
řT

t“0 EQpo0:t;πqDKL rπpo0:tq || π0po0:tqs of the policies in πpo0:tq from the prior policy π0po0:tq,
where the expectation is over observations seen by an agent acting according to π. Note that β “ 0
implies playing π0 (here a uniform policy), perfect control requires 4 bits (2 for each round) and
higher values of β mostly require the same level of control regardless of Ccue with the exception of a
region around Ccue “ 1.0 where there are multiple almost-optimal courses of action.
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