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Abstract

This paper presents a dual-stream text-to-001
speech (TTS) model, SyncSpeech, capable002
of receiving streaming text input from up-003
stream models while simultaneously generat-004
ing streaming speech, facilitating seamless in-005
teraction with large language models. Sync-006
Speech has the following advantages: Low la-007
tency, as it begins generating streaming speech008
upon receiving the second text token; High ef-009
ficiency, as it decodes all speech tokens cor-010
responding to the each arrived text token in011
one step. To achieve this, we propose a tem-012
poral masked transformer as the backbone of013
SyncSpeech, combined with token-level dura-014
tion prediction to predict speech tokens and the015
duration for the next step. Additionally, we016
design a two-stage training strategy to improve017
training efficiency and the quality of gener-018
ated speech. We evaluated the SyncSpeech on019
both English and Mandarin datasets. Compared020
to the recent dual-stream TTS models, Sync-021
Speech significantly reduces the first packet022
delay of speech tokens and accelerates the real-023
time factor. Moreover, with the same data scale,024
SyncSpeech achieves performance comparable025
to that of traditional autoregressive-based TTS026
models in terms of both speech quality and027
robustness. Speech samples are available at028
https://SyncSpeech.github.io/.029

1 Introduction030

In recent years, with advancements in generative031

models and the expansion of training datasets, text-032

to-speech (TTS) models (Wang et al., 2023; Le033

et al., 2023; Ju et al., 2024) have made break-034

through progress in naturalness and quality, gradu-035

ally approaching the level of real recordings. How-036

ever, low-latency and efficient dual-stream TTS,037

which involves processing streaming text inputs038

while simultaneously generating speech in real039

time, remains a challenging problem (Dang et al.,040

2024). These models are ideal for integration with041

upstream tasks, such as large language models 042

(LLMs) (OpenAI, 2023) and streaming translation 043

models (Barrault et al., 2023), which can gener- 044

ate text in a streaming manner. Addressing these 045

challenges can improve live human-computer in- 046

teraction, paving the way for various applications, 047

such as speech-to-speech translation and personal 048

voice assistants. 049

Recently, inspired by advances in image gen- 050

eration, denoising diffusion (Ho et al., 2020; 051

Song et al., 2021), flow matching (Lipman et al., 052

2023), and masked generative models (Chang 053

et al., 2022) have been introduced into non- 054

autoregressive (NAR) TTS (Anastassiou et al., 055

2024; Chen et al., 2024b; Kim et al., 2023; Wang 056

et al., 2024), demonstrating impressive perfor- 057

mance in offline inference. During this process, 058

these offline TTS models first add noise or apply 059

masking guided by the predicted duration. Subse- 060

quently, context from the entire sentence is lever- 061

aged to perform temporally-unordered denoising or 062

mask prediction for speech generation. However, 063

this temporally-unordered process hinders their ap- 064

plication to streaming speech generation1. 065

When it comes to streaming speech generation, 066

autoregressive (AR) TTS models (Wang et al., 067

2023; Song et al., 2024) hold a distinct advan- 068

tage because of their ability to deliver outputs in a 069

temporally-ordered manner. However, compared 070

to recently proposed NAR TTS models, AR TTS 071

models have a distinct disadvantage in terms of 072

generation efficiency (Li et al., 2024). Specifically, 073

the autoregressive steps are tied to the frame rate of 074

speech tokens, resulting in slower inference speeds. 075

While advancements like VALL-E 2 (Chen et al., 076

2024a) have boosted generation efficiency through 077

group code modeling, the challenge remains that 078

the manually set group size is typically small, sug- 079

1Here, “temporally” refers to the physical time of audio
samples, not the iteration step t ∈ [0, 1] of the above NAR
TTS models.
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gesting room for further improvements. In addition,080

most current AR TTS models (Dekel et al., 2024)081

cannot handle stream text input and they only be-082

gin streaming speech generation after receiving083

the complete text, ignoring the latency caused by084

the streaming text input. The most closely related085

works to SyncSpeech are CosyVoice2 (Du et al.,086

2024b) and IST-LM (Yang et al., 2024b), both of087

which employ interleaved speech-text modeling088

to accommodate dual-stream scenarios. However,089

their autoregressive process generates only one090

speech token per step, leading to low efficiency.091

To seamlessly integrate with upstream LLMs092

and facilitate dual-stream speech synthesis, this pa-093

per introduces SyncSpeech, designed to keep the094

generation of streaming speech in synchronization095

with the incoming streaming text. SyncSpeech has096

the following advantages: 1) low latency, which097

means it begins generating speech in a streaming098

manner as soon as the second text token is received,099

and 2) high efficiency, which means for each arriv-100

ing text token, only one decoding step is required101

to generate all the corresponding speech tokens.102

SyncSpeech is based on the proposed Temporal103

Masked generative Transformer (TMT). During104

inference, SyncSpeech adopts the Byte Pair Encod-105

ing (BPE) token-level duration prediction, which106

can access the previously generated speech tokens107

and performs top-k sampling. Subsequently, mask108

padding and greedy sampling are carried out based109

on the duration prediction from the previous step.110

Moreover, sequence input is meticulously con-111

structed to incorporate duration prediction and112

mask prediction into a single decoding step. During113

the training process, we adopt a two-stage training114

strategy to improve training efficiency and model115

performance. First, high-efficiency masked pre-116

training is employed to establish a rough align-117

ment between text and speech tokens within the118

sequence, followed by fine-tuning the pre-trained119

model to align with the inference process.120

Our experimental results demonstrate that, in121

terms of generation efficiency, SyncSpeech oper-122

ates at 6.4 times the speed of the current dual-123

stream TTS model for English and at 8.5 times124

the speed for Mandarin. When integrated with125

LLMs, SyncSpeech achieves latency reductions126

of 3.2 and 3.8 times, respectively, compared to127

the current dual-stream TTS model for both lan-128

guages. Moreover, with the same scale of training129

data, SyncSpeech performs comparably to tradi-130

tional AR models in terms of the quality of gener-131

ated English speech. For Mandarin, SyncSpeech 132

demonstrates superior quality and robustness com- 133

pared to current dual-stream TTS models. This 134

showcases the potential of SyncSpeech as a foun- 135

dational model to integrate with upstream LLMs. 136

2 Related Work 137

2.1 Text-to-Speech 138

Text-to-Speech, the transformation of text into au- 139

dible signals understandable by humans, is piv- 140

otal for human-computer interaction. TTS systems 141

can be mainly divided into AR-based and NAR- 142

based categories. For AR-based systems, VALL- 143

E (Wang et al., 2023) predicts the first layer of 144

acoustic tokens extracted by EnCodec (Défossez 145

et al., 2023) using an AR codec language model, 146

while a NAR model is used to predict the remain- 147

ing layers. CosyVoice (Du et al., 2024a) employs 148

an AR model to predict supervised semantic repre- 149

sentations and combines flow matching to predict 150

acoustic representations. AR-based TTS models, 151

with their in-context learning capability, can gen- 152

erate natural, prosody-diverse speech in a stream- 153

ing manner. However, AR-based TTS models ex- 154

hibit shortcomings in generation efficiency. Be- 155

sides the previously mentioned VALL-E 2 (Chen 156

et al., 2024a), MEDUSA (Li et al., 2024) and 157

VALL-E R (Han et al., 2024) introduce specula- 158

tive decoding (Leviathan et al., 2023) and a codec- 159

merging method, respectively, to accelerate autore- 160

gressive generation. Nonetheless, the efficiency 161

gains achieved by these approaches remain limited, 162

unable to perform synchronized decoding steps 163

with text tokens. 164

For NAR-based TTS models, most previous ap- 165

proaches require speech duration prediction condi- 166

tioned on the input text, followed by upsampling 167

the text representations to match the acoustic fea- 168

ture length before feeding them into the genera- 169

tion model. Following FastSpeech (Ren et al., 170

2021), VoiceBox (Le et al., 2023) and Natural- 171

Speech 2 (Shen et al., 2024) predict phone-level 172

durations using a regression-based approach. Natu- 173

ralSpeech 3 (Ju et al., 2024) adopts a discrete diffu- 174

sion model, combining classification loss and du- 175

ration prompts for duration prediction, which out- 176

performs text-dependent regression-based duration 177

prediction in terms of speech robustness and quality. 178

However, NaturalSpeech 3 requires an additional 179

duration prediction model, which complicates the 180

pipeline, whereas SyncSpeech integrates duration 181
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Figure 1: An overview of the proposed SyncSpeech, comprising a text tokenizer, a speech tokenizer, a temporal
masked generative transformer and a chunk-aware speech decoder. The figure shows that, with the random number
n = 2 and text look-ahead value q = 1, it estimates all speech tokens (from s8 to s12) corresponding to the text
token y2 and the duration (l3) of the next text token y3 in one decoding step.

and speech token predictions into a unified frame-182

work. The NAR TTS model most relevant to Sync-183

Speech is MaskGCT (Wang et al., 2024), which184

predicts the total duration of the speech and then185

performs temporally-unordered multi-step mask186

prediction. Unlike MaskGCT, SyncSpeech em-187

ploys temporally-ordered mask prediction and BPE188

token-level duration prediction to achieve speech189

generation in a dual-stream scenario.190

2.2 Speech Large Language Models191

Speech Large Language Models (SLLMs) em-192

power LLMs to interact with users through speech,193

responding to user’s instruction with low latency194

(Ji et al., 2024a). A basic approach (Huang et al.,195

2024) to achieve this speech interaction involves196

a cascade of automatic speech recognition (ASR),197

LLM and TTS models, where the ASR transcribes198

the users’ speech instruction into text, and the TTS199

model converts the LLM’s textual response into200

speech. However, most current AR TTS models201

cannot process streaming text input, resulting in202

significant latency in the aforementioned cascaded203

systems. In contrast, some end-to-end speech-204

language models have been proposed that can gen-205

erate speech tokens directly, thereby achieving ex-206

tremely low response latency. LLaMA-Omni (Fang207

et al., 2024) aligns the hidden states of LLMs with208

discrete HuBERT (Hsu et al., 2021) representa-209

tions using CTC loss, but the generated speech210

exhibits less natural prosody. Mini-Omni (Xie and211

Wu, 2024) employs a parallel decoder approach 212

to generate text and speech tokens simultaneously. 213

However, due to the significantly longer length of 214

speech tokens compared to text tokens, its gener- 215

ation efficiency remains low. The proposed Sync- 216

Speech can process streaming text input and gener- 217

ates speech in synchronization, with the potential 218

to unite with LLMs to become end-to-end SLLMs. 219

3 Method 220

A dual-stream TTS model simultaneously pro- 221

cesses streaming text input and generates speech in 222

a streaming manner. Upon receiving newly gener- 223

ated text tokens yarr from the upstream LLMs, the 224

objective of the dual-streaming TTS it to estimate 225

p(xarr|yarr,xpre,ypre). In this context, xarr repre- 226

sents the speech waveform segment corresponding 227

to yarr, while ypre and xpre denote the preceding 228

text tokens and its corresponding speech waveform, 229

respectively. 230

SyncSpeech is a two-stage TTS system, con- 231

sisting of the text-to-token and token-to-speech 232

stages. The estimation of p(xarr|yarr,xpre,ypre) 233

is decomposed into a text-to-token model 234

p(sarr|yarr,xpre,ypre) and a token-to-speech model 235

p(xarr|sarr), where sarr is the speech tokens cor- 236

responding to the speech waveform segment xarr. 237

Specifically, the proposed TMT is adopted as the 238

backbone of text-to-token model. Then, an off- 239

the-shelf chunk-aware speech decoder (Du et al., 240

2024b) is adopted as the token-to-speech model. 241
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The proposed TMT module is based on a llama-242

style Transformer (Touvron et al., 2023). We have243

specifically designed a novel attention mask to ac-244

commodate temporally-ordered mask generation.245

Below, I will detail the two-stage training strategy246

of the TMT-based text-to-token model and its atten-247

tion mask, cover the details of the other modules,248

and describe the inference process.249

3.1 Training250

Given a dataset of transcribed speech (x̃, ỹ), where251

x̃ and ỹ denote an audio sample and its tran-252

script, respectively, the transcript ỹ is tokenized253

into a BPE token sequence y = [y1, y2, y3, ..., yL],254

where L is the number of BPE tokens. An off-255

the-shelf speech tokenizer is used to encode the256

speech sample x̃ into T frame discrete speech to-257

kens s = [s1, s2, s3, ..., sT ]. We further define258

duration tokens a = [a1, a2, a3, ..., aL] as the posi-259

tions indicating the end time of each corresponding260

BPE token within the speech token sequence, with261

aL = T. For a pair of (x̃, ỹ), a can be obtained262

through an open-source alignment tool.263

As shown in Figure 1, to maintain consistency264

with the inference process (see Section 3.4), the265

sequence input is then constructed as follows. We266

select a random number n ∈ [1, L], which in-267

dicates that when receiving streaming text input,268

SyncSpeech needs to generate the speech tokens269

corresponding to the n-th BPE token at this mo-270

ment. To avoid unnatural pauses, SyncSpeech al-271

lows look ahead q text tokens, obtaining a trun-272

cated text token sequence y′ = [y1, y2, y3, ..., yL′ ],273

where L′ = min(L, n + q). Based on the dura-274

tion tokens a, the truncated speech token sequence275

s1:an = [s1, s2, ...., san ] is obtained. Then, we de-276

fine the masked speech token sequence s′ and and277

corresponding binary mask m as follows,278

s′ = s1:an ⊙m, (1)279
280

m = [mi]
an
i=1,m1:an−1 = 0,man−1:an = 1. (2)281

That is all speech tokens corresponding to xn are282

replaced with the specific mask token, while the283

rest remain unchanged. Then, the truncated text284

token sequence y′, along with the masked speech285

token sequence s′ and duration tokens a, are used286

to construct the input sequence as follows,287

f = [y′, E,D, s′1:a1 , ..., D, s′an−1:an , D], (3)288

where E is end-of-text token, D is a placeholder for289

duration prediction. Based on the duration tokens290

a, D is used to separate the masked speech token 291

sequence corresponding to different BPE tokens. 292

In practice, E is inserted only when n = L . 293

The sequence f is used as input for the TMT 294

with the mask prediction and duration prediction 295

as training objectives. Specifically, the sequence f 296

is fed into the TMT forward to obtain the hidden 297

states, which then pass through two different linear 298

layers to predict the speech tokens corresponding 299

to text token yn and the duration of the next text 300

token yn+1. This enables us to integrate duration 301

prediction and mask prediction into a single de- 302

coding step during inference, except for the first 303

text token duration prediction (Details are provided 304

in Section 3.4). We minimize the following nega- 305

tive log-likelihood function for masked generative 306

training and duration training, 307

L1
mask = − log p

(
san−1:an | f ; θ

)
, (4) 308

309
L1

duration = − log p (ln+1 | f ; θ) , (5) 310

where θ represents the neural network parameters 311

of TMT, ln+1 = an+1−an and a0 = 0. In this way, 312

we simulate the scenario of receiving streaming text 313

input during the training process and are able to 314

generate speech in sync. 315

We design a corresponding attention mask, as 316

shown in Figure 1. Specifically, a causal mask is 317

used for the truncated text sequence y′ and duration 318

placeholder parts. For the masked speech token 319

sequence s′, a dynamic chunk attention mask is 320

applied based on the duration tokens a, enabling it 321

to attend all historical tokens, as well as all speech 322

tokens and mask tokens corresponding to their own 323

text BPE tokens. 324

3.2 Pretraining 325

While the aforementioned method aligns with the 326

prediction process, it suffers from low training ef- 327

ficiency. This training inefficiency arises because, 328

during each training step, only the gradients of 329

speech tokens san−1:an and durations for yn+1 are 330

backpropagated. To further improve the training 331

efficiency, we first perform masked pre-training on 332

the TMT. 333

Given speech tokens s of a speech sample, we 334

obtain the masked speech tokens ŝ = s⊙m̂, where 335

m̂ = [m̂i]
aL
i=1 is a binary mask of speech tokens. 336

We design the masking rules primarily from two 337

perspectives, high masking probability and con- 338

sistency with the prediction process as much as 339

possible. Specifically, the binary mask m̂bpe of 340
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text tokens is constructed first, where the first value341

is distributed according to a Bernoulli distribution342

(p = 0.5) and the subsequent adjacent values can-343

not be the same. Based on the duration tokens a,344

the text token mask m̂bpe is converted into the cor-345

responding speech token mask m̂. Then, we build346

the following sequence as the input for TMT,347

f̂ = [y, E,D, ŝ1:a1 , ..., D, ŝaL−1:aL ], (6)348

and the TMT is optimized to minimize the negative349

log-likelihood for masked generative training and350

duration training as follows,351

L2
mask = −

∑
j∈J

log p
(
saj−1:aj | f̂≤aj ; θ

)
, (7)352

353

L2
duration = −

∑
j∈J

log p
(
lj | f̂≤aj−1

; θ
)
, (8)354

where J denote the sequence where each ele-355

ment satisfies the condition m̂j = 1, f̂≤aj =356

[y, E,D, ŝ1:a1 , ..., D, ŝaj−1:aj ] and lj = aj−aj−1.357

Additionally, the attention mask mentioned above358

is also utilized for pretrain.359

In summary, an efficient masked pretraining is360

initially performed with a high masking probability361

to facilitate the alignment between text and speech362

tokens. Subsequently, we fine-tune the pretrained363

model using a training strategy consistent with the364

prediction process. This approach enhances the365

efficiency of the training process, and the masked366

pretraining also contributes to the robustness of the367

generated speech.368

3.3 Other Modules369

In this subsection, we introduce the other mod-370

ules in SyncSpeech besides TMT. 1) Text BPE371

tokenizer: To facilitate interaction with upstream372

LLMs, we utilize the Qwen tokenizer (Yang et al.,373

2024a) directly. 2) Speech tokenizer: the open-374

source supervised speech semantic (S3) tokenizer375

(Du et al., 2024b) is selected, which operates at376

25 Hz. The S3 tokenizer is developed by integrat-377

ing finite scalar quantization (FSQ) (Mentzer et al.,378

2024) into the intermediate representations of an379

ASR model trained on large-scale data, and then380

fine-tuning it for the ASR task. 3) The off-the-381

shelf speech decoder (Du et al., 2024b) is based382

on the conditional flow matching (CFM) decoder383

and HiFi-GAN vocoder (Kong et al., 2020). The384

CFM decoder employs a chunk-aware training strat-385

egy, enabling the streaming generation of Mel-386

spectrograms from the chunk-size input speech to-387

kens. These Mel-spectrograms are then converted388

Algorithm 1: Inference in Python Style
Input: Streaming text input y
Output: Streaming speech output o

1 sequence input f = [] ;
2 speech tokens s = [];
3 if length(y)> q then
4 for Index, y in enumerate(y) do
5 f = build_seq(y, f );
6 # Follow Equation3 ;
7 if Index== 0 then
8 dur = TMT(f ) ;
9 f = pad_seq(f , dur) ;

10 pre_dur = dur

11 scur, dur = TMT(f ) ;
12 s.append(scur) ;
13 f [pre_dur-1:-1] = s ;
14 f = pad_seq(f , dur) ;
15 pre_dur = dur;
16 if length(s)≥ chunk then
17 o = decoder(s);
18 # output new generated speech ;
19 s.update();

into speech using the vocoder, which operates in 389

parallel with a fully convolutional network. 390

3.4 Inference 391

During the inference process, SyncSpeech pro- 392

cesses text in a streaming manner and syn- 393

chronously generates speech, with the general al- 394

gorithm flow shown in Algorithm 1. Specifically, 395

when the number of input text BPE tokens y ex- 396

ceeds the look-ahead number q, the input sequence 397

f = [y, D] is built, which is fed into TMT to pre- 398

dict the duration of speech tokens corresponding 399

to y1. Then, based on the predicted duration, we 400

perform sequence padding by inserting the mask 401

tokens and a duration prediction placeholder. Sub- 402

sequently, the sequence is fed back into TMT for 403

synchronous mask prediction of y1 and the duration 404

prediction of y2, followed by the input sequence 405

s update and padding. For subsequent BPE token 406

input, the above prediction step, update step, and 407

padding step are repeated to generate speech tokens 408

in a streaming manner. In the process described 409

above, once the number of generated speech tokens 410

surpasses the chunk size of the off-the-shelf speech 411

decoder, these tokens and the speaker prompt can 412

be utilized to stream speech output. 413
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Additionally, existing speech tokens can be ac-414

cessed during duration prediction and speech token415

generation, which allows SyncSpeech to control the416

prosody of the generated speech with in-context417

learning. Specifically, given a speech prompt,418

we construct the prompt sequence according to419

Equation 3, serving as the generated sequence for420

prosody control. Figure 2 in the Appendix shows421

detailed inference visualizations.422

4 Experiments423

4.1 Experimental Settings424

Datasets We trained SyncSpeech on datasets in425

both English and Mandarin, including the 585-426

hour LibriTTS (Zen et al., 2019) dataset and 600427

hours of internal Mandarin datasets. The internal428

Mandarin dataset was further expanded to approxi-429

mately 2000 hours, employing techniques such as430

speed alteration and pitch shifting. The Montreal431

Forced Aligner (MFA) (McAuliffe et al., 2017)432

aligned transcripts according to its phone set, after433

which the alignment was transformed into text BPE-434

level format. We evaluated SyncSpeech using three435

benchmarks: (1) LibriSpeech text-clean (Panay-436

otov et al., 2015), a standard English TTS evalu-437

ation set; (2) SeedTTS test-zh (Anastassiou et al.,438

2024), with 2,000 samples from the out-of-domain439

Mandarin DiDiSpeech dataset (Guo et al., 2021);440

and (3) SeedTTS test-hard, containing approxi-441

mately 400 difficult cases to evaluate TTS model442

robustness with repeated text, tongue twisters, and443

other complex synthesis scenarios.444

Settings We set the number of text tokens to look445

ahead q = 1. The chunk size of speech decoder is446

15. TMT has 16 layers, 16 attention heads, 1024-447

dimensional embeddings, and 2048-dimensional448

feed-forward layers. SyncSpeech was trained on 4449

NVIDIA A800 80G GPUs. The pre-training stage450

lasts for 70K steps, and the second stage lasts for451

20K steps.452

Baseline Models This paper focuses on low-453

latency and efficient TTS in dual-stream scenar-454

ios. Under the same data scale, we reproduced455

the following baseline models for comparison:456

CosyVoice (Du et al., 2024a) and recently pro-457

posed CosyVoice2 (Du et al., 2024b). CosyVoice458

requires complete text input before speech gen-459

eration. CosyVoice2 uses interleaved text-speech460

modeling to process streaming text input and simul-461

taneously generate streaming speech. We trained462

CosyVoice, CosyVoice2, and SyncSpeech using 463

the same speech tokenizer and text tokenizer, and 464

employed the same open-source streaming speech 465

decoder. We utilized the official code2 to repro- 466

duce the model and adopted a Llama-style Trans- 467

former, matching the size of SyncSpeech, as the 468

backbone of the text-to-speech model. Addition- 469

ally, we compared the open-sourced TTS model 470

MaskGCT (Wang et al., 2024), F5-TTS (Chen et al., 471

2024b), and VALL-E (Wang et al., 2023), which 472

were trained on large-scale data. More details about 473

baseline models can be found in the Appendix A. 474

Evaluation Metrics For the three benchmarks, 475

we evaluated speech quality, latency, and efficiency. 476

For speech robustness, we chose Whisper-V3 and 477

Paraformer as the ASR models for English and 478

Mandarin, respectively, to transcribe the generated 479

speech. Then, we calculated the WER compared 480

to the original transcriptions to evaluate the spech 481

robustness. We adopted the ERes2Net-based (Chen 482

et al., 2023) speaker verification model3 to evaluate 483

speaker similarity (SS). We selected 100 sentences 484

from each system and invited 10 native listeners to 485

conduct a subjective MOS evaluation for speech 486

naturalness (MOS-N), scoring from 1 to 5. In terms 487

of latency and efficiency, we compared the perfor- 488

mance of various models on a single A800 GPU. 489

Due to the off-the-shelf speech decoder, we evalu- 490

ate the latency and efficiency of the text-to-token 491

stage across all models, except for F5-TTS. We cal- 492

culated the time required for the number of speech 493

tokens to reach the chunk size of the speech de- 494

coder as First-packet latency (FPL). There are two 495

scenarios: one assumes the text is already available 496

(FPL-A), while the other involves receiving output 497

from the upstream LLM model (FPL-L), account- 498

ing for the time required for text generation. For 499

the real-time factor (RTF), we measure the ratio of 500

the total duration of generated speech to the total 501

time taken by the model. More details about FPL 502

and RTF can be found in the Appendix B. 503

4.2 Main Results 504

The evaluation results for SyncSpeech and the base- 505

line models are presented in Table 1. 506

Speech Robustness We found that SyncSpeech 507

exhibits different performance compared to the 508

baselines across the three benchmarks. Specifically, 509

2https://github.com/FunAudioLLM/CosyVoice
3https://github.com/modelscope/3D-Speaker
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Model #Scenario #Data(hrs) WER(%) ↓ SS(%) ↑ FPL-A(s)↓ FPL-L(s) ↓ RTF(%) ↓ MOS-N ↑
LibriSpeech test-clean

Ground Truth - - 2.12 69.67 - - - 4.62±0.12

F5-TTS* Offline 100K Multi. 2.51 73.10 1.27 1.98 0.23 -
MASK-GCT* Offline 100K Multi. 2.77 70.81 2.15 2.55 0.37 -
VALL-E* Output Stream 60K EN 5.90 59.71 0.75 1.47 1.41 -
CosyVoice Output Stream 585 EN 3.47 63.52 0.22 0.94 0.45 4.39±0.12

CosyVoice2 Dual-Stream 585 EN 3.00 63.48 0.22 0.35 0.45 4.48±0.13

SyncSpeech Dual-Stream 585 EN 3.07 63.47 0.06 0.11 0.07 4.48±0.14

Seed test-zh
Ground Truth - - 1.26 75.15 - - - 4.68±0.10

CosyVoice Output Stream 2K ZH 3.03 61.51 0.22 0.62 0.43 4.34±0.14

CosyVoice2 Dual-Stream 2K ZH 3.31 61.89 0.22 0.35 0.43 4.37±0.13

SyncSpeech Dual-Stream 2K ZH 2.38 62.14 0.04 0.09 0.05 4.45±0.11

Seed test-hard
CosyVoice Output Stream 2K ZH 26.26 66.71 0.22 1.22 0.44 3.84±0.15

CosyVoice2 Dual-Stream 2K ZH 21.61 67.13 0.22 0.35 0.44 3.86±0.14

SyncSpeech Dual-Stream 2K ZH 17.21 67.21 0.05 0.10 0.08 3.86±0.11

Table 1: The evaluation results of SyncSpeech and baseline models across the three benchmarks. * indicates the
model trained on the large-scale dataset. Underline indicates the best performance in terms of WER and SS with the
585 hours training scale. #Data refers to the used training dataset in hours.

on the LibriSpeech test-clean benchmark, the per-510

formance of SyncSpeech was very close to that of511

CosyVoice2 based on the WER metric, with only a512

minor difference of 0.07%. SyncSpeech achieved a513

lower WER score on the Seed test-zh set compared514

to CosyVoice and CosyVoice2, with improvements515

of 0.65% and 0.93%, respectively. A key difference516

between the English and Mandarin datasets is the517

higher compression rate of the LLM tokenizer for518

Mandarin. In English, one word typically equals519

one token, while in Mandarin, a common phrase520

often corresponds to a single token. This means521

that, compared to the baseline model, SyncSpeech522

is better suited to the high compression rate tok-523

enizer of the upstream large model. Furthermore,524

on the Seed test-hard set, the robustness advantage525

of SyncSpeech was even more pronounced, with526

the improvements 9.05% and 4.40%, respectively.527

In handling complex text, the explicit duration mod-528

eling in SyncSpeech helped the model learn the529

alignment between text and speech.530

Speaker Similarity Due to the same speech de-531

coder and the excellent voice disentanglement532

capability of the speech tokens, SyncSpeech,533

CosyVoice, and CosyVoice2 exhibited similar per-534

formance in terms of speaker similarity.535

Speech Naturalness The MOS-N scores for536

SyncSpeech and CosyVoice2 were quite similar537

on the LibriSpeech text-clean, indicating that the538

naturalness of the generated speech was generally539

comparable. On the Seed test-zh benchmark, Sync-540

Speech outperformed CosyVoice2 by 0.08. In the 541

Seed test-hard benchmark, high WER and uncom- 542

mon text led to unnatural prosody and generally 543

low MOS-N scores in the generated speech. 544

Latency SyncSpeech has made a breakthrough 545

in terms of latency, as shown in Table 1. Specif- 546

ically, on the LibriSpeech test-clean benchmark, 547

SyncSpeech was approximately 4 times faster than 548

traditional AR models and over 20 times faster than 549

the SOTA offline models in terms of FPL-A. On 550

the Seed test-zh benchmark, SyncSpeech achieved 551

speed improvements of over 5 times and 30 times, 552

respectively. When receiving streaming text from 553

the upstream large model (FPL-L), SyncSpeech 554

can begin generating speech with just two text to- 555

kens. In contrast, CosyVoice2 requires five tokens, 556

while CosyVoice and other baseline models need 557

the entire text input. This highlights the distinct 558

advantage of SyncSpeech in practical applications. 559

Efficiency In terms of RTF, SyncSpeech is about 560

6.4 times faster on the LibriSpeech test-clean 561

benchmark and about 8.6 times faster on the Seed 562

test-zh benchmark compared to previous AR mod- 563

els. On the Seed test-hard set, due to the increased 564

number of text tokens caused by the uncommon 565

text, the efficiency of SyncSpeech is slightly re- 566

duced. Theoretically, the time complexity of AR 567

models is O(T ), while the time complexity of Sync- 568

Speech is O(L), where T represents the number 569

of speech tokens and L denotes the number of text 570

tokens, thereby significantly improving efficiency. 571
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Sampling Strategy WER(%)↓ UTMOSv2↑
Duration Prediction

Ground Truth 2.59 3.45
Greedy Search 2.50 3.44
Top-k 3 2.44 3.46
Top-k 5 2.93 3.44
Top-k 10 2.76 3.41

Speech Token Prediction
Greedy Search 2.44 3.46
Top-k 3 3.82 3.43
Top-k 5 4.23 3.43

Table 2: Performance across various Top-k thresholds
for duration prediction and speech token prediction on
the LibriTTS validation set.

5 Analysis572

Sampling Strategy In the LibriSpeech valida-573

tion set, we provided the ground-truth durations574

and applied greedy search along with different Top-575

k thresholds for duration prediction, as shown in576

Table 2. We found that, in terms of speech robust-577

ness, both Top-k 3 and greedy search outperformed578

the use of ground-truth durations in terms of the579

WER metric. This is because the model struggled580

to effectively generalize to anomalies in the ground-581

truth durations. We employed UTMOSv24 as a582

surrogate objective metric of MOS-N. In terms of583

speech naturalness, the results of Top-k 3 sampling584

are slightly better than those with the given ground-585

truth durations. Additionally, we applied differ-586

ent Top-k thresholds for speech token prediction.587

SyncSpeech exhibited superior performance during588

greedy search, which is different from the previous589

AR TTS models or offline models. This is because590

the speech tokens obtained through single-step de-591

coding have the temporal dependency, which can-592

not be compensated by subsequent generation.593

Number of Look-ahead Tokens We evaluated594

how varying the number of tokens to look ahead595

affects speech robustness and speech naturalness596

on two validation sets, with the results presented597

in Table 3. We discovered that the optimal number598

of look-ahead text tokens varies across different599

languages in terms of WER performance. This600

is influenced by the difference in the compression601

rate of text tokens and the contextual dependency in602

different languages. In terms of speech naturalness,603

when the look-ahead number q is greater than 2,604

the generated speech exhibits slightly more natural605

pauses and speed, but it results in increased latency.606

4https://github.com/sarulab-speech/UTMOS22

LH Num. WER(%)↓ FPL-L(s)↓ UTMOS-v2↑

EN

q=1 2.44 0.11 3.46
q=2 2.87 0.13 3.41
q=3 2.52 0.16 3.48
q=4 2.52 0.19 3.48

ZH

q=1 2.51 0.09 -
q=2 2.49 0.12 -
q=3 2.41 0.14 -
q=4 2.41 0.17 -

Table 3: Performance with different numbers of look-
ahead text tokens across two validation sets.

English Mandarin
SyncSpeech 2.44 2.41
w/o pretrain 3.61 3.47
w/o designed Mask 8.19 7.97

Table 4: WER (%) results of the ablation study across
the two validation sets.

Ablation Study We conducted an ablation study 607

on the pre-training strategy by directly training 608

the randomly initialized model in a manner consis- 609

tent with the prediction process. The WER results 610

on the two validation sets are shown in Table 4. 611

We found that pre-training significantly improved 612

the speech robustness of the model, improving the 613

WER metric by 1.17% and 1.06% on the two lan- 614

guages, respectively. This indicated that masked 615

pre-training not only improved training efficiency 616

but also enhanced the robustness of the synthesized 617

speech. Additionally, a standard causal attention 618

mask was applied to replace the designed atten- 619

tion mask, as shown in Table 4. If the mask token 620

sequence of the same text token cannot attend to 621

each other during inference, the robustness of the 622

generated speech significantly decreased. This fur- 623

ther demonstrated the effectiveness of the designed 624

attention mask. 625

6 Conclusion 626

This paper presents SyncSpeech, a dual-stream 627

speech generation model built on a temporal 628

masked transformer. SyncSpeech can efficiently 629

generate low-latency streaming speech from the 630

real-time text input, maintaining the high qual- 631

ity and robustness of the generated speech. We 632

conducted comprehensive performance evaluations 633

and analysis experiments in both English and Man- 634

darin, demonstrating its capability as a founda- 635

tional model for integration with upstream LLMs. 636

In the future, SyncSpeech will be trained on larger 637

datasets to further improve its performance. 638
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7 Limitations639

In this section, we will analyze the limitations640

of SyncSpeech and discuss potential future work.641

SyncSpeech requires token-level alignment infor-642

mation, which is challenging to achieve for sen-643

tences with mixed languages, and preprocessing644

becomes time-consuming on large-scale datasets.645

In the future, we will explore semi-supervised du-646

ration prediction, which only requires the duration647

of a complete sentence without strict token-level648

alignment information, and integrate SyncSpeech649

into SLLM as a speech generation module. In ad-650

dition, since the off-and-shelf streaming speech de-651

coder relies on flow matching, it limits the off-the-652

shelf RTF and the FPL. Moreover,‘ current single-653

codebook acoustic tokens, such as WavTokenizer654

(Ji et al., 2024b), do not support streaming decod-655

ing. In the future, we will investigate efficient and656

low-latency streaming speech decoders.657
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Temporal Masked Generative
Transformer

Temporal Masked Generative
Transformer Temporal Masked Generative Transformer

Step 1 Step 2 Step 3

Temporal Masked Generative Transformer

....... .......

Step 3* with Speech Prompt to Control Prosody

Figure 2: Illustrations of the inference process in two scenarios.The upper part represents the scenario without using
speech prompts to control prosody, where in the first step, the duration of the first character needs to be predicted
separately; in the subsequent decoding steps, both the current speech token and the duration of the next text token
are predicted simultaneously. The lower part shows the illustration of using speech prompts to control prosody,
where yp and sp denote the text tokens and speech tokens of the speech prompt, respectively.

of the quantization encoder. 2) Interleaved text-972

speech modeling is employed, allowing for stream-973

ing text input. 3) A chunk-aware speech decoder974

is used for streaming speech generation. We use975

the official code and the 25Hz version of the pre-976

trained checkpoint6.977

VALL-E A large-scale TTS system employs978

both an autoregressive and an auxiliary non-979

autoregressive model to predict discrete tokens de-980

rived from the Encodec (Défossez et al., 2023). We981

used an open-source checkpoint for inference. As982

there is currently no open-source streaming speech983

decoder for Encodec, we assumed 15 frames when984

calculating the FPL metric for a fair comparison.985

MaskGCT (Wang et al., 2024) This is a large-986

scale, two-stage trained model. In the first stage,987

the model utilizes text to predict semantic tokens988

extracted from a speech self-supervised learning989

(SSL) model. In the second stage, it predicts acous-990

tic tokens based on these semantic tokens. During991

training, MaskGCT learns to predict masked se-992

mantic or acoustic tokens given specific conditions993

and prompts. During inference, MaskGCT gen-994

erates speech through multi-step temporally non-995

sequential masked prediction. Here, we use the996

official code and pre-trained checkpoint7.997

F5-TTS (Chen et al., 2024b) a fully non-998

autoregressive text-to-speech system based on flow999

matching with Diffusion Transformer (DiT). The1000

text input is simply padded with filler tokens to the1001

6https://github.com/FunAudioLLM/CosyVoice
7https://github.com/openmmlab/Amphion

same length as input speech, and then the denoising 1002

is performed for speech generation. F5-TTS does 1003

not utilize speech tokens and directly maps text to 1004

acoustic features. Here, we use the official code 1005

and pre-trained checkpoint8. 1006

B Details of Latency and Efficiency 1007

Evaluation Metrics 1008

The first-package latency (FPL) and real-time fac- 1009

tor (RTF) are two import metrics for streaming 1010

TTS models. We define dLLM as the average time 1011

required by the upstream LLM to generate one text 1012

token and dTTS as the the time for the correspond- 1013

ing AR TTS models to forward one step and for the 1014

NAR TTS models to perform one sampling. The 1015

FPL-L of baseline models and SyncSpeech are as 1016

follows, 1017

L
CosyVoice
FPL-L = L · dLLM + 15 · dTTS, (9) 1018

LVALL-E
FPL-L = L · dLLM + 15 · dTTS, (10) 1019

L
CosyVoice2
FPL-L = 5 · dLLM + 15 · dTTS, (11) 1020

LMaskGCT
FPL-L = L · dLLM + b · dTTS, (12) 1021

LF5-TTS
FPL-L = L · dLLM + b · dTTS, (13) 1022

L
SyncSpeech
FPL-L = (k + 1) · dLLM + c · dTTS, (14) 1023

where b represents the number of sampling itera- 1024

tions for the NAR model, and c denotes the number 1025

of BPE text tokens when the generated speech to- 1026

kens surpass the decoder’s chunk size, typically 1027

ranging from 1 to 3. Here, we assume the upstream 1028

LLM model is Qwen-7B, and when running on a 1029

8https://github.com/SWivid/F5-TTS
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Modulation Factor 0.8 0.9 1.0 1.1 1.2 1.3
LibriSpeech 14.3 4.20 3.07 2.85 3.22 4.31
SeedTTS test-zh 12.1 3.38 2.38 2.15 2.53 3.48

Table 5: Performance comparison with different modu-
lation factors for duration control in terms of WER.

single NVIDIA A800 GPU, we obtain an average1030

token generation time dLLM = 25ms. When the1031

first term in FPL-L is omitted, it becomes FPL-1032

A. It is important to note that when calculating1033

above metrics, we did not apply any engineering1034

optimizations, such as KV cache.1035

We also conducted a brief theoretical analysis of1036

RTF for SyncSpeech. The RTF for SyncSpeech is1037

calculated as follows,1038

LRTF =
(L+ 1) · dTTS

T · F
, (15)1039

where L and T represent the number of BPE to-1040

kens and speech tokens, respectively F refers to1041

the frame length of the speech tokens. The time1042

complexity for SyncSpeech to generate an entire1043

sentence can be simplified to O(L), whereas the1044

time complexity for concurrent approaches, such1045

as CosyVoice2 and IST-LM, is O(T ). As a result,1046

SyncSpeech can significantly expedite speech gen-1047

eration.1048

C Duration Control1049

Since we have implemented duration prediction1050

and control, we can multiply the predicted dura-1051

tions by a modulation factor to adjust speech rate.1052

The results, shown in Table 5, indicate that the ro-1053

bustness of synthesized speech is optimal when the1054

modulation factor is 1.1. However, when the mod-1055

ulation factor is too small or too large, the WER of1056

the synthesized speech by SyncSpeech increases1057

significantly. This is because when we multiply1058

the predicted duration of each text token by a fixed1059

modulation factor of less than 1, SyncSpeech’s con-1060

textual learning capability causes the subsequent1061

tokens to be spoken increasingly faster, leading to1062

a surge in WER. When the modulation factor is1063

set to 0.8, the average total duration of the synthe-1064

sized speech is 0.68 times that when the modulation1065

factor is 1. Therefore, more reasonable duration1066

control requires two inference processes: the dura-1067

tion obtained from the first inference is multiplied1068

by a modulation factor during the second inference1069

to control the speech rate.1070

D Other Strategies for Sequence 1071

Construction 1072

We also experimented with other sequence con- 1073

struction strategies. (1) One approach is to separate 1074

duration prediction and speech tokens prediction 1075

into two steps. This method reduces efficiency by 1076

half but achieves better speech robustness, with 1077

a WER of around 2.75 on the LibriSpeech test- 1078

clean dataset. (2) We also tried removing the du- 1079

ration placeholder and using the last speech token 1080

of the previous text token to predict the number 1081

of speech tokens corresponding to the current text 1082

token. However, we found that this sequence con- 1083

struction made the corresponding pre-training less 1084

effective than it is now. (3) We also attempted 1085

a method similar to ELLA-V (Song et al., 2024), 1086

where the corresponding text token is placed before 1087

each placeholder. However, we found that this se- 1088

quence generated speech that was unnatural, with 1089

a noticeable disconnection between words. 1090
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