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Abstract

This paper presents a dual-stream text-to-
speech (TTS) model, SyncSpeech, capable
of receiving streaming text input from up-
stream models while simultaneously generat-
ing streaming speech, facilitating seamless in-
teraction with large language models. Sync-
Speech has the following advantages: Low la-
tency, as it begins generating streaming speech
upon receiving the second text token; High ef-
ficiency, as it decodes all speech tokens cor-
responding to the each arrived text token in
one step. To achieve this, we propose a tem-
poral masked transformer as the backbone of
SyncSpeech, combined with token-level dura-
tion prediction to predict speech tokens and the
duration for the next step. Additionally, we
design a two-stage training strategy to improve
training efficiency and the quality of gener-
ated speech. We evaluated the SyncSpeech on
both English and Mandarin datasets. Compared
to the recent dual-stream TTS models, Sync-
Speech significantly reduces the first packet
delay of speech tokens and accelerates the real-
time factor. Moreover, with the same data scale,
SyncSpeech achieves performance comparable
to that of traditional autoregressive-based TTS
models in terms of both speech quality and
robustness. Speech samples are available at
https://SyncSpeech.github.io/.

1 Introduction

In recent years, with advancements in generative
models and the expansion of training datasets, text-
to-speech (TTS) models (Wang et al., 2023; Le
et al., 2023; Ju et al., 2024) have made break-
through progress in naturalness and quality, gradu-
ally approaching the level of real recordings. How-
ever, low-latency and efficient dual-stream TTS,
which involves processing streaming text inputs
while simultaneously generating speech in real
time, remains a challenging problem (Dang et al.,
2024). These models are ideal for integration with

upstream tasks, such as large language models
(LLMs) (OpenAl, 2023) and streaming translation
models (Barrault et al., 2023), which can gener-
ate text in a streaming manner. Addressing these
challenges can improve live human-computer in-
teraction, paving the way for various applications,
such as speech-to-speech translation and personal
voice assistants.

Recently, inspired by advances in image gen-
eration, denoising diffusion (Ho et al., 2020;
Song et al., 2021), flow matching (Lipman et al.,
2023), and masked generative models (Chang
et al., 2022) have been introduced into non-
autoregressive (NAR) TTS (Anastassiou et al.,
2024; Chen et al., 2024b; Kim et al., 2023; Wang
et al.,, 2024), demonstrating impressive perfor-
mance in offline inference. During this process,
these offline TTS models first add noise or apply
masking guided by the predicted duration. Subse-
quently, context from the entire sentence is lever-
aged to perform temporally-unordered denoising or
mask prediction for speech generation. However,
this temporally-unordered process hinders their ap-
plication to streaming speech generation'.

When it comes to streaming speech generation,
autoregressive (AR) TTS models (Wang et al.,
2023; Song et al., 2024) hold a distinct advan-
tage because of their ability to deliver outputs in a
temporally-ordered manner. However, compared
to recently proposed NAR TTS models, AR TTS
models have a distinct disadvantage in terms of
generation efficiency (Li et al., 2024). Specifically,
the autoregressive steps are tied to the frame rate of
speech tokens, resulting in slower inference speeds.
While advancements like VALL-E 2 (Chen et al.,
2024a) have boosted generation efficiency through
group code modeling, the challenge remains that
the manually set group size is typically small, sug-

"Here, “temporally” refers to the physical time of audio
samples, not the iteration step ¢ € [0, 1] of the above NAR
TTS models.
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gesting room for further improvements. In addition,
most current AR TTS models (Dekel et al., 2024)
cannot handle stream text input and they only be-
gin streaming speech generation after receiving
the complete text, ignoring the latency caused by
the streaming text input. The most closely related
works to SyncSpeech are CosyVoice2 (Du et al.,
2024b) and IST-LM (Yang et al., 2024b), both of
which employ interleaved speech-text modeling
to accommodate dual-stream scenarios. However,
their autoregressive process generates only one
speech token per step, leading to low efficiency.

To seamlessly integrate with upstream LLMs
and facilitate dual-stream speech synthesis, this pa-
per introduces SyncSpeech, designed to keep the
generation of streaming speech in synchronization
with the incoming streaming text. SyncSpeech has
the following advantages: 1) low latency, which
means it begins generating speech in a streaming
manner as soon as the second text token is received,
and 2) high efficiency, which means for each arriv-
ing text token, only one decoding step is required
to generate all the corresponding speech tokens.

SyncSpeech is based on the proposed Temporal
Masked generative Transformer (TMT). During
inference, SyncSpeech adopts the Byte Pair Encod-
ing (BPE) token-level duration prediction, which
can access the previously generated speech tokens
and performs top-k sampling. Subsequently, mask
padding and greedy sampling are carried out based
on the duration prediction from the previous step.

Moreover, sequence input is meticulously con-
structed to incorporate duration prediction and
mask prediction into a single decoding step. During
the training process, we adopt a two-stage training
strategy to improve training efficiency and model
performance. First, high-efficiency masked pre-
training is employed to establish a rough align-
ment between text and speech tokens within the
sequence, followed by fine-tuning the pre-trained
model to align with the inference process.

Our experimental results demonstrate that, in
terms of generation efficiency, SyncSpeech oper-
ates at 6.4 times the speed of the current dual-
stream TTS model for English and at 8.5 times
the speed for Mandarin. When integrated with
LLMs, SyncSpeech achieves latency reductions
of 3.2 and 3.8 times, respectively, compared to
the current dual-stream TTS model for both lan-
guages. Moreover, with the same scale of training
data, SyncSpeech performs comparably to tradi-
tional AR models in terms of the quality of gener-

ated English speech. For Mandarin, SyncSpeech
demonstrates superior quality and robustness com-
pared to current dual-stream TTS models. This
showcases the potential of SyncSpeech as a foun-
dational model to integrate with upstream LLMs.

2 Related Work

2.1 Text-to-Speech

Text-to-Speech, the transformation of text into au-
dible signals understandable by humans, is piv-
otal for human-computer interaction. TTS systems
can be mainly divided into AR-based and NAR-
based categories. For AR-based systems, VALL-
E (Wang et al., 2023) predicts the first layer of
acoustic tokens extracted by EnCodec (Défossez
et al., 2023) using an AR codec language model,
while a NAR model is used to predict the remain-
ing layers. CosyVoice (Du et al., 2024a) employs
an AR model to predict supervised semantic repre-
sentations and combines flow matching to predict
acoustic representations. AR-based TTS models,
with their in-context learning capability, can gen-
erate natural, prosody-diverse speech in a stream-
ing manner. However, AR-based TTS models ex-
hibit shortcomings in generation efficiency. Be-
sides the previously mentioned VALL-E 2 (Chen
et al., 2024a), MEDUSA (Li et al., 2024) and
VALL-E R (Han et al., 2024) introduce specula-
tive decoding (Leviathan et al., 2023) and a codec-
merging method, respectively, to accelerate autore-
gressive generation. Nonetheless, the efficiency
gains achieved by these approaches remain limited,
unable to perform synchronized decoding steps
with text tokens.

For NAR-based TTS models, most previous ap-
proaches require speech duration prediction condi-
tioned on the input text, followed by upsampling
the text representations to match the acoustic fea-
ture length before feeding them into the genera-
tion model. Following FastSpeech (Ren et al.,
2021), VoiceBox (Le et al., 2023) and Natural-
Speech 2 (Shen et al., 2024) predict phone-level
durations using a regression-based approach. Natu-
ralSpeech 3 (Ju et al., 2024) adopts a discrete diffu-
sion model, combining classification loss and du-
ration prompts for duration prediction, which out-
performs text-dependent regression-based duration
prediction in terms of speech robustness and quality.
However, NaturalSpeech 3 requires an additional
duration prediction model, which complicates the
pipeline, whereas SyncSpeech integrates duration
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Figure 1: An overview of the proposed SyncSpeech, comprising a text tokenizer, a speech tokenizer, a temporal
masked generative transformer and a chunk-aware speech decoder. The figure shows that, with the random number
n = 2 and text look-ahead value ¢ = 1, it estimates all speech tokens (from sg to s12) corresponding to the text
token yo and the duration (I3) of the next text token 3 in one decoding step.

and speech token predictions into a unified frame-
work. The NAR TTS model most relevant to Sync-
Speech is MaskGCT (Wang et al., 2024), which
predicts the total duration of the speech and then
performs temporally-unordered multi-step mask
prediction. Unlike MaskGCT, SyncSpeech em-
ploys temporally-ordered mask prediction and BPE
token-level duration prediction to achieve speech
generation in a dual-stream scenario.

2.2 Speech Large Language Models

Speech Large Language Models (SLLMs) em-
power LLMs to interact with users through speech,
responding to user’s instruction with low latency
(Ji et al., 2024a). A basic approach (Huang et al.,
2024) to achieve this speech interaction involves
a cascade of automatic speech recognition (ASR),
LLM and TTS models, where the ASR transcribes
the users’ speech instruction into text, and the TTS
model converts the LLM’s textual response into
speech. However, most current AR TTS models
cannot process streaming text input, resulting in
significant latency in the aforementioned cascaded
systems. In contrast, some end-to-end speech-
language models have been proposed that can gen-
erate speech tokens directly, thereby achieving ex-
tremely low response latency. LLaMA-Omni (Fang
et al., 2024) aligns the hidden states of LLMs with
discrete HUBERT (Hsu et al., 2021) representa-
tions using CTC loss, but the generated speech
exhibits less natural prosody. Mini-Omni (Xie and

Wu, 2024) employs a parallel decoder approach
to generate text and speech tokens simultaneously.
However, due to the significantly longer length of
speech tokens compared to text tokens, its gener-
ation efficiency remains low. The proposed Sync-
Speech can process streaming text input and gener-
ates speech in synchronization, with the potential
to unite with LLMs to become end-to-end SLLMs.

3 Method

A dual-stream TTS model simultaneously pro-
cesses streaming text input and generates speech in
a streaming manner. Upon receiving newly gener-
ated text tokens y,,, from the upstream LLMs, the
objective of the dual-streaming TTS it to estimate
P(Zarr|Yarrs Tpres Ypre)- In this context, @y repre-
sents the speech waveform segment corresponding
t0 Yy, While y,,,. and xpre denote the preceding
text tokens and its corresponding speech waveform,
respectively.

SyncSpeech is a two-stage TTS system, con-
sisting of the text-to-token and token-to-speech
stages. The estimation of p(Zar|Yarrs Tpres Ypre)
is decomposed into a text-to-token model
P(Sarr|Yarrs Tpre, Ypre) @nd a token-to-speech model
P(@are| Sarr), Where s, is the speech tokens cor-
responding to the speech waveform segment x;;;.
Specifically, the proposed TMT is adopted as the
backbone of text-to-token model. Then, an off-
the-shelf chunk-aware speech decoder (Du et al.,
2024b) is adopted as the token-to-speech model.



The proposed TMT module is based on a llama-
style Transformer (Touvron et al., 2023). We have
specifically designed a novel attention mask to ac-
commodate temporally-ordered mask generation.
Below, I will detail the two-stage training strategy
of the TMT-based text-to-token model and its atten-
tion mask, cover the details of the other modules,
and describe the inference process.

3.1 Training

Given a dataset of transcribed speech (&, ¢), where
& and gy denote an audio sample and its tran-
script, respectively, the transcript g is tokenized
into a BPE token sequence y = [y1, Y2, Y3, ..., Y],
where L is the number of BPE tokens. An off-
the-shelf speech tokenizer is used to encode the
speech sample  into 7" frame discrete speech to-
kens s = [s1, s2,S83,...,s7]. We further define
duration tokens a = [a1, az, as, ..., ar] as the posi-
tions indicating the end time of each corresponding
BPE token within the speech token sequence, with
ajy, = T'. For a pair of (&, ¥), a can be obtained
through an open-source alignment tool.

As shown in Figure 1, to maintain consistency
with the inference process (see Section 3.4), the
sequence input is then constructed as follows. We
select a random number n € [1, L], which in-
dicates that when receiving streaming text input,
SyncSpeech needs to generate the speech tokens
corresponding to the n-th BPE token at this mo-
ment. To avoid unnatural pauses, SyncSpeech al-
lows look ahead ¢ text tokens, obtaining a trun-
cated text token sequence ¥y’ = [y1, Y2, Y3, ---» Y/
where L' = min(L,n + ¢). Based on the dura-
tion tokens a, the truncated speech token sequence
S1.a, = [S1, 82, ..., Sq,,] is Obtained. Then, we de-
fine the masked speech token sequence s’ and and
corresponding binary mask m as follows,

s’ = 81,4, ®m, (1)

m = [mi]?gl7m1:an71 = 07 manflzan = 1 (2)

That is all speech tokens corresponding to x,, are
replaced with the specific mask token, while the
rest remain unchanged. Then, the truncated text
token sequence ¥’, along with the masked speech
token sequence s’ and duration tokens a, are used
to construct the input sequence as follows,

f= [y’,E,D,s’MI, ..D,s D], 3)

anp—1:an’?

where F is end-of-text token, D is a placeholder for
duration prediction. Based on the duration tokens

a, D is used to separate the masked speech token
sequence corresponding to different BPE tokens.
In practice, E is inserted only whenn = L .

The sequence f is used as input for the TMT
with the mask prediction and duration prediction
as training objectives. Specifically, the sequence f
is fed into the TMT forward to obtain the hidden
states, which then pass through two different linear
layers to predict the speech tokens corresponding
to text token y,, and the duration of the next text
token vy, 1. This enables us to integrate duration
prediction and mask prediction into a single de-
coding step during inference, except for the first
text token duration prediction (Details are provided
in Section 3.4). We minimize the following nega-
tive log-likelihood function for masked generative
training and duration training,

ﬁrlnask = —logp (San71:an | I; 6) ) “4)

=—logp(lns1 | £:0), (5

where 6 represents the neural network parameters
of TMT, l,4+1 = an4+1—ay and ag = 0. In this way,
we simulate the scenario of receiving streaming text
input during the training process and are able to
generate speech in sync.

We design a corresponding attention mask, as
shown in Figure 1. Specifically, a causal mask is
used for the truncated text sequence y’ and duration
placeholder parts. For the masked speech token
sequence s’, a dynamic chunk attention mask is
applied based on the duration tokens a, enabling it
to attend all historical tokens, as well as all speech
tokens and mask tokens corresponding to their own
text BPE tokens.

1
‘Cduration

3.2 Pretraining

While the aforementioned method aligns with the
prediction process, it suffers from low training ef-
ficiency. This training inefficiency arises because,
during each training step, only the gradients of
speech tokens s,,,_,.q, and durations for y, 11 are
backpropagated. To further improve the training
efficiency, we first perform masked pre-training on
the TMT.

Given speech tokens s of a speech sample, we
obtain the masked speech tokens § = s©n, where
m = [1n;];X, is a binary mask of speech tokens.
We design the masking rules primarily from two
perspectives, high masking probability and con-
sistency with the prediction process as much as
possible. Specifically, the binary mask 77y, of



text tokens is constructed first, where the first value
is distributed according to a Bernoulli distribution
(p = 0.5) and the subsequent adjacent values can-
not be the same. Based on the duration tokens a,
the text token mask 77y is converted into the cor-
responding speech token mask 772. Then, we build
the following sequence as the input for TMT,

f: [yaEaDagl:ap-"aDvgaL_lzaL]a (6)
and the TMT is optimized to minimize the negative
log-likelihood for masked generative training and
duration training as follows,

Eilask - = Zlogp (saj_lzaj ’ fgaj§9> , (D

jedJ

E?iuration == Z logp (lj | fgaj,l;‘9> ) (8)
jedJ
where J denote the sequence where each ele-
ment satisfies the condition m,; = 1, f <a; =
[’y, E, D, §1:a17 ooy D, §a]._1;a].] and lj =a;—a5-1.
Additionally, the attention mask mentioned above
is also utilized for pretrain.

In summary, an efficient masked pretraining is
initially performed with a high masking probability
to facilitate the alignment between text and speech
tokens. Subsequently, we fine-tune the pretrained
model using a training strategy consistent with the
prediction process. This approach enhances the
efficiency of the training process, and the masked
pretraining also contributes to the robustness of the
generated speech.

3.3 Other Modules

In this subsection, we introduce the other mod-
ules in SyncSpeech besides TMT. 1) Text BPE
tokenizer: To facilitate interaction with upstream
LLMs, we utilize the Qwen tokenizer (Yang et al.,
2024a) directly. 2) Speech tokenizer: the open-
source supervised speech semantic (S3) tokenizer
(Du et al., 2024b) is selected, which operates at
25 Hz. The S3 tokenizer is developed by integrat-
ing finite scalar quantization (FSQ) (Mentzer et al.,
2024) into the intermediate representations of an
ASR model trained on large-scale data, and then
fine-tuning it for the ASR task. 3) The off-the-
shelf speech decoder (Du et al., 2024b) is based
on the conditional flow matching (CFM) decoder
and HiFi-GAN vocoder (Kong et al., 2020). The
CFM decoder employs a chunk-aware training strat-
egy, enabling the streaming generation of Mel-
spectrograms from the chunk-size input speech to-
kens. These Mel-spectrograms are then converted

Algorithm 1: Inference in Python Style
Input: Streaming text input y
Output: Streaming speech output o

1 sequence input f =[] ;

2 speech tokens s = [];
3 if length(y)> ¢ then

4 for Index, y in enumerate(y) do
5 f =build_seq(y, f);

6 # Follow Equation3 ;

7 if Index== 0 then

8 dur = TMT(f) ;

9 f =pad_seq(f, dur) ;

10 pre_dur = dur
1 Scur, dur = TMT(f) ;

12 s.append(Scyr) ;

13 flpre_dur-1:-1] =s;

14 f =pad_seq(f, dur) ;

15 pre_dur = dur;

16 if length(s)> chunk then

17 o = decoder(s);

18 # output new generated speech ;
19 s.update();

into speech using the vocoder, which operates in
parallel with a fully convolutional network.

3.4 Inference

During the inference process, SyncSpeech pro-
cesses text in a streaming manner and syn-
chronously generates speech, with the general al-
gorithm flow shown in Algorithm 1. Specifically,
when the number of input text BPE tokens y ex-
ceeds the look-ahead number ¢, the input sequence
f = [y, D] is built, which is fed into TMT to pre-
dict the duration of speech tokens corresponding
to y1. Then, based on the predicted duration, we
perform sequence padding by inserting the mask
tokens and a duration prediction placeholder. Sub-
sequently, the sequence is fed back into TMT for
synchronous mask prediction of y; and the duration
prediction of y, followed by the input sequence
s update and padding. For subsequent BPE token
input, the above prediction step, update step, and
padding step are repeated to generate speech tokens
in a streaming manner. In the process described
above, once the number of generated speech tokens
surpasses the chunk size of the off-the-shelf speech
decoder, these tokens and the speaker prompt can
be utilized to stream speech output.



Additionally, existing speech tokens can be ac-
cessed during duration prediction and speech token
generation, which allows SyncSpeech to control the
prosody of the generated speech with in-context
learning. Specifically, given a speech prompt,
we construct the prompt sequence according to
Equation 3, serving as the generated sequence for
prosody control. Figure 2 in the Appendix shows
detailed inference visualizations.

4 Experiments

4.1 Experimental Settings

Datasets We trained SyncSpeech on datasets in
both English and Mandarin, including the 585-
hour LibriTTS (Zen et al., 2019) dataset and 600
hours of internal Mandarin datasets. The internal
Mandarin dataset was further expanded to approxi-
mately 2000 hours, employing techniques such as
speed alteration and pitch shifting. The Montreal
Forced Aligner (MFA) (McAuliffe et al., 2017)
aligned transcripts according to its phone set, after
which the alignment was transformed into text BPE-
level format. We evaluated SyncSpeech using three
benchmarks: (1) LibriSpeech text-clean (Panay-
otov et al., 2015), a standard English TTS evalu-
ation set; (2) SeedTTS test-zh (Anastassiou et al.,
2024), with 2,000 samples from the out-of-domain
Mandarin DiDiSpeech dataset (Guo et al., 2021);
and (3) SeedTTS test-hard, containing approxi-
mately 400 difficult cases to evaluate TTS model
robustness with repeated text, tongue twisters, and
other complex synthesis scenarios.

Settings We set the number of text tokens to look
ahead ¢ = 1. The chunk size of speech decoder is
15. TMT has 16 layers, 16 attention heads, 1024-
dimensional embeddings, and 2048-dimensional
feed-forward layers. SyncSpeech was trained on 4
NVIDIA A800 80G GPUs. The pre-training stage
lasts for 70K steps, and the second stage lasts for
20K steps.

Baseline Models This paper focuses on low-
latency and efficient TTS in dual-stream scenar-
i0s. Under the same data scale, we reproduced
the following baseline models for comparison:
CosyVoice (Du et al., 2024a) and recently pro-
posed CosyVoice2 (Du et al., 2024b). CosyVoice
requires complete text input before speech gen-
eration. CosyVoice2 uses interleaved text-speech
modeling to process streaming text input and simul-
taneously generate streaming speech. We trained

CosyVoice, CosyVoice2, and SyncSpeech using
the same speech tokenizer and text tokenizer, and
employed the same open-source streaming speech
decoder. We utilized the official code” to repro-
duce the model and adopted a Llama-style Trans-
former, matching the size of SyncSpeech, as the
backbone of the text-to-speech model. Addition-
ally, we compared the open-sourced TTS model
MaskGCT (Wang et al., 2024), F5-TTS (Chen et al.,
2024b), and VALL-E (Wang et al., 2023), which
were trained on large-scale data. More details about
baseline models can be found in the Appendix A.

Evaluation Metrics For the three benchmarks,
we evaluated speech quality, latency, and efficiency.
For speech robustness, we chose Whisper-V3 and
Paraformer as the ASR models for English and
Mandarin, respectively, to transcribe the generated
speech. Then, we calculated the WER compared
to the original transcriptions to evaluate the spech
robustness. We adopted the ERes2Net-based (Chen
et al., 2023) speaker verification model? to evaluate
speaker similarity (SS). We selected 100 sentences
from each system and invited 10 native listeners to
conduct a subjective MOS evaluation for speech
naturalness (MOS-N), scoring from 1 to 5. In terms
of latency and efficiency, we compared the perfor-
mance of various models on a single A800 GPU.
Due to the off-the-shelf speech decoder, we evalu-
ate the latency and efficiency of the text-to-token
stage across all models, except for F5-TTS. We cal-
culated the time required for the number of speech
tokens to reach the chunk size of the speech de-
coder as First-packet latency (FPL). There are two
scenarios: one assumes the text is already available
(FPL-A), while the other involves receiving output
from the upstream LLM model (FPL-L), account-
ing for the time required for text generation. For
the real-time factor (RTF), we measure the ratio of
the total duration of generated speech to the total
time taken by the model. More details about FPL
and RTF can be found in the Appendix B.

4.2 Main Results

The evaluation results for SyncSpeech and the base-
line models are presented in Table 1.

Speech Robustness We found that SyncSpeech
exhibits different performance compared to the
baselines across the three benchmarks. Specifically,

“https://github.com/FunAudioLLM/Cosy Voice
3https://github.com/modelscope/3D-Speaker



Model #Scenario #Data(hrs) WER(%).| SS(%)1 FPL-A(s)] FPL-L(s)| RTF(%)| MOS-N1
LibriSpeech test-clean
Ground Truth - - 2.12 69.67 - - - 4.6240.12
CF5-TTS* Offline 100K Multi. 2,51 7310 127 198 023 -
MASK-GCT* Offline 100K Multi. 2.77 70.81 2.15 2.55 0.37 -
VALL-E* Output Stream 60K EN 5.90 59.71 0.75 1.47 1.41 -
CosyVoice Output Stream 585 EN 3.47 63.52 0.22 0.94 0.45 4.3940.12
CosyVoice2 Dual-Stream 585 EN 3.00 63.48 0.22 0.35 0.45 4.48.0 .13
SyncSpeech Dual-Stream 585 EN 3.07 63.47 0.06 0.11 0.07 4.48.014
Seed test-zh
Ground Truth - - 1.26 75.15 - - - 4.6840.10
" CosyVoice  Output Stream  2KZH 3.03 6151 022 062 043 434014
CosyVoice2 Dual-Stream 2K ZH 3.31 61.89 0.22 0.35 0.43 4.3710.13
SyncSpeech Dual-Stream 2K ZH 2.38 62.14 0.04 0.09 0.05 445,011
Seed test-hard
CosyVoice Output Stream 2K ZH 26.26 66.71 0.22 1.22 0.44 3.8410.15
CosyVoice2 Dual-Stream 2K ZH 21.61 67.13 0.22 0.35 0.44 3.8640.14
SyncSpeech Dual-Stream 2K ZH 17.21 67.21 0.05 0.10 0.08 3.8640.11

Table 1: The evaluation results of SyncSpeech and baseline models across the three benchmarks. * indicates the
model trained on the large-scale dataset. Underline indicates the best performance in terms of WER and SS with the
585 hours training scale. #Data refers to the used training dataset in hours.

on the LibriSpeech test-clean benchmark, the per-
formance of SyncSpeech was very close to that of
Cosy Voice2 based on the WER metric, with only a
minor difference of 0.07%. SyncSpeech achieved a
lower WER score on the Seed test-zh set compared
to CosyVoice and CosyVoice2, with improvements
of 0.65% and 0.93%, respectively. A key difference
between the English and Mandarin datasets is the
higher compression rate of the LLM tokenizer for
Mandarin. In English, one word typically equals
one token, while in Mandarin, a common phrase
often corresponds to a single token. This means
that, compared to the baseline model, SyncSpeech
is better suited to the high compression rate tok-
enizer of the upstream large model. Furthermore,
on the Seed fest-hard set, the robustness advantage
of SyncSpeech was even more pronounced, with
the improvements 9.05% and 4.40%, respectively.
In handling complex text, the explicit duration mod-
eling in SyncSpeech helped the model learn the
alignment between text and speech.

Speaker Similarity Due to the same speech de-
coder and the excellent voice disentanglement
capability of the speech tokens, SyncSpeech,
Cosy Voice, and Cosy Voice2 exhibited similar per-
formance in terms of speaker similarity.

Speech Naturalness The MOS-N scores for
SyncSpeech and CosyVoice2 were quite similar
on the LibriSpeech text-clean, indicating that the
naturalness of the generated speech was generally
comparable. On the Seed test-zh benchmark, Sync-

Speech outperformed Cosy Voice2 by 0.08. In the
Seed test-hard benchmark, high WER and uncom-
mon text led to unnatural prosody and generally
low MOS-N scores in the generated speech.

Latency SyncSpeech has made a breakthrough
in terms of latency, as shown in Table 1. Specif-
ically, on the LibriSpeech fest-clean benchmark,
SyncSpeech was approximately 4 times faster than
traditional AR models and over 20 times faster than
the SOTA offline models in terms of FPL-A. On
the Seed fest-zh benchmark, SyncSpeech achieved
speed improvements of over 5 times and 30 times,
respectively. When receiving streaming text from
the upstream large model (FPL-L), SyncSpeech
can begin generating speech with just two text to-
kens. In contrast, CosyVoice?2 requires five tokens,
while CosyVoice and other baseline models need
the entire text input. This highlights the distinct
advantage of SyncSpeech in practical applications.

Efficiency In terms of RTF, SyncSpeech is about
6.4 times faster on the LibriSpeech ftest-clean
benchmark and about 8.6 times faster on the Seed
test-zh benchmark compared to previous AR mod-
els. On the Seed test-hard set, due to the increased
number of text tokens caused by the uncommon
text, the efficiency of SyncSpeech is slightly re-
duced. Theoretically, the time complexity of AR
models is O(T"), while the time complexity of Sync-
Speech is O(L), where T represents the number
of speech tokens and L denotes the number of text
tokens, thereby significantly improving efficiency.



Sampling Strategy WER(%)] UTMOSv2{
Duration Prediction

Ground Truth 2.59 3.45
" Greedy Search 250 344
Top-k 3 2.44 3.46
Top-k 5 2.93 3.44
Top-k 10 2.76 3.41
Speech Token Prediction
Greedy Search 2.44 3.46
Top-k 3 3.82 3.43
Top-k 5 4.23 3.43

Table 2: Performance across various Top-k thresholds
for duration prediction and speech token prediction on
the LibriTTS validation set.

5 Analysis

Sampling Strategy In the LibriSpeech valida-
tion set, we provided the ground-truth durations
and applied greedy search along with different Top-
k thresholds for duration prediction, as shown in
Table 2. We found that, in terms of speech robust-
ness, both Top-k 3 and greedy search outperformed
the use of ground-truth durations in terms of the
WER metric. This is because the model struggled
to effectively generalize to anomalies in the ground-
truth durations. We employed UTMOSvV2* as a
surrogate objective metric of MOS-N. In terms of
speech naturalness, the results of Top-k 3 sampling
are slightly better than those with the given ground-
truth durations. Additionally, we applied differ-
ent Top-k thresholds for speech token prediction.
SyncSpeech exhibited superior performance during
greedy search, which is different from the previous
AR TTS models or offline models. This is because
the speech tokens obtained through single-step de-
coding have the temporal dependency, which can-
not be compensated by subsequent generation.

Number of Look-ahead Tokens We evaluated
how varying the number of tokens to look ahead
affects speech robustness and speech naturalness
on two validation sets, with the results presented
in Table 3. We discovered that the optimal number
of look-ahead text tokens varies across different
languages in terms of WER performance. This
is influenced by the difference in the compression
rate of text tokens and the contextual dependency in
different languages. In terms of speech naturalness,
when the look-ahead number ¢ is greater than 2,
the generated speech exhibits slightly more natural
pauses and speed, but it results in increased latency.

*https://github.com/sarulab-speech/UTMOS22

LHNum. WER(%), FPL-L(s)] UTMOS-v2}
g=1 2.44 0.11 3.46
q=2 2.87 0.13 3.41
EN =3 2.52 0.16 3.48
q=4 2.52 0.19 3.48
g=1 251 0.09 -
q=2 2.49 0.12 -
ZH s 241 0.14 -
q=4 2.41 0.17 -

Table 3: Performance with different numbers of look-
ahead text tokens across two validation sets.

English Mandarin

SyncSpeech 244 241
w/o pretrain 3.61 3.47
w/o designed Mask 8.19 7.97

Table 4: WER (%) results of the ablation study across
the two validation sets.

Ablation Study We conducted an ablation study
on the pre-training strategy by directly training
the randomly initialized model in a manner consis-
tent with the prediction process. The WER results
on the two validation sets are shown in Table 4.
We found that pre-training significantly improved
the speech robustness of the model, improving the
WER metric by 1.17% and 1.06% on the two lan-
guages, respectively. This indicated that masked
pre-training not only improved training efficiency
but also enhanced the robustness of the synthesized
speech. Additionally, a standard causal attention
mask was applied to replace the designed atten-
tion mask, as shown in Table 4. If the mask token
sequence of the same text token cannot attend to
each other during inference, the robustness of the
generated speech significantly decreased. This fur-
ther demonstrated the effectiveness of the designed
attention mask.

6 Conclusion

This paper presents SyncSpeech, a dual-stream
speech generation model built on a temporal
masked transformer. SyncSpeech can efficiently
generate low-latency streaming speech from the
real-time text input, maintaining the high qual-
ity and robustness of the generated speech. We
conducted comprehensive performance evaluations
and analysis experiments in both English and Man-
darin, demonstrating its capability as a founda-
tional model for integration with upstream LLMs.
In the future, SyncSpeech will be trained on larger
datasets to further improve its performance.



7 Limitations

In this section, we will analyze the limitations
of SyncSpeech and discuss potential future work.
SyncSpeech requires token-level alignment infor-
mation, which is challenging to achieve for sen-
tences with mixed languages, and preprocessing
becomes time-consuming on large-scale datasets.
In the future, we will explore semi-supervised du-
ration prediction, which only requires the duration
of a complete sentence without strict token-level
alignment information, and integrate SyncSpeech
into SLLM as a speech generation module. In ad-
dition, since the off-and-shelf streaming speech de-
coder relies on flow matching, it limits the off-the-
shelf RTF and the FPL. Moreover,* current single-
codebook acoustic tokens, such as WavTokenizer
(Ji et al., 2024b), do not support streaming decod-
ing. In the future, we will investigate efficient and
low-latency streaming speech decoders.
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Figure 2: Illustrations of the inference process in two scenarios.The upper part represents the scenario without using
speech prompts to control prosody, where in the first step, the duration of the first character needs to be predicted
separately; in the subsequent decoding steps, both the current speech token and the duration of the next text token
are predicted simultaneously. The lower part shows the illustration of using speech prompts to control prosody,
where y? and sP denote the text tokens and speech tokens of the speech prompt, respectively.

of the quantization encoder. 2) Interleaved text-
speech modeling is employed, allowing for stream-
ing text input. 3) A chunk-aware speech decoder
is used for streaming speech generation. We use
the official code and the 25Hz version of the pre-
trained checkpoint®.

VALL-E A large-scale TTS system employs
both an autoregressive and an auxiliary non-
autoregressive model to predict discrete tokens de-
rived from the Encodec (Défossez et al., 2023). We
used an open-source checkpoint for inference. As
there is currently no open-source streaming speech
decoder for Encodec, we assumed 15 frames when
calculating the FPL metric for a fair comparison.

MaskGCT (Wang et al., 2024) This is a large-
scale, two-stage trained model. In the first stage,
the model utilizes text to predict semantic tokens
extracted from a speech self-supervised learning
(SSL) model. In the second stage, it predicts acous-
tic tokens based on these semantic tokens. During
training, MaskGCT learns to predict masked se-
mantic or acoustic tokens given specific conditions
and prompts. During inference, MaskGCT gen-
erates speech through multi-step temporally non-
sequential masked prediction. Here, we use the
official code and pre-trained checkpoint’.

F5-TTS (Chen et al.,, 2024b) a fully non-
autoregressive text-to-speech system based on flow
matching with Diffusion Transformer (DiT). The
text input is simply padded with filler tokens to the

®https://github.com/FunAudioLLM/Cosy Voice
"https://github.com/openmmlab/Amphion
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same length as input speech, and then the denoising
is performed for speech generation. F5-TTS does
not utilize speech tokens and directly maps text to
acoustic features. Here, we use the official code
and pre-trained checkpoint®.

B Details of Latency and Efficiency
Evaluation Metrics

The first-package latency (FPL) and real-time fac-
tor (RTF) are two import metrics for streaming
TTS models. We define dy v as the average time
required by the upstream LLM to generate one text
token and drs as the the time for the correspond-
ing AR TTS models to forward one step and for the
NAR TTS models to perform one sampling. The
FPL-L of baseline models and SyncSpeech are as
follows,

LSSEV_‘L’“% =L -dim + 15 - drrs, )
LR = L - dum + 15 - drrs, (10)
LENO? = 5 dip + 15 - drrs, (11)
LYEKOCT = L - dyim + b - drrs, (12)
L' 1® = L-dim + b - drs, (13)
L™ = (k+1) - dum + ¢ drrs,  (14)

where b represents the number of sampling itera-
tions for the NAR model, and ¢ denotes the number
of BPE text tokens when the generated speech to-
kens surpass the decoder’s chunk size, typically
ranging from 1 to 3. Here, we assume the upstream
LLM model is Qwen-7B, and when running on a

8https://github.com/SWivid/F5-TTS



Modulation Factor 0.8 09 1.0 1.1 1.2 13

143 420 3.07 285 322 431
12.1 338 238 215 253 348

LibriSpeech
SeedTTS test-zh

Table 5: Performance comparison with different modu-
lation factors for duration control in terms of WER.

single NVIDIA A800 GPU, we obtain an average
token generation time drry; = 25ms. When the
first term in FPL-L is omitted, it becomes FPL-
A. It is important to note that when calculating
above metrics, we did not apply any engineering
optimizations, such as KV cache.

We also conducted a brief theoretical analysis of
RTF for SyncSpeech. The RTF for SyncSpeech is
calculated as follows,

(L+1)-drrs

e (15)

Lrrr =
where L and T represent the number of BPE to-
kens and speech tokens, respectively F' refers to
the frame length of the speech tokens. The time
complexity for SyncSpeech to generate an entire
sentence can be simplified to O(L), whereas the
time complexity for concurrent approaches, such
as CosyVoice2 and IST-LM, is O(T'). As a result,
SyncSpeech can significantly expedite speech gen-
eration.

C Duration Control

Since we have implemented duration prediction
and control, we can multiply the predicted dura-
tions by a modulation factor to adjust speech rate.
The results, shown in Table 5, indicate that the ro-
bustness of synthesized speech is optimal when the
modulation factor is 1.1. However, when the mod-
ulation factor is too small or too large, the WER of
the synthesized speech by SyncSpeech increases
significantly. This is because when we multiply
the predicted duration of each text token by a fixed
modulation factor of less than 1, SyncSpeech’s con-
textual learning capability causes the subsequent
tokens to be spoken increasingly faster, leading to
a surge in WER. When the modulation factor is
set to 0.8, the average total duration of the synthe-
sized speech is 0.68 times that when the modulation
factor is 1. Therefore, more reasonable duration
control requires two inference processes: the dura-
tion obtained from the first inference is multiplied
by a modulation factor during the second inference
to control the speech rate.
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D Other Strategies for Sequence
Construction

We also experimented with other sequence con-
struction strategies. (1) One approach is to separate
duration prediction and speech tokens prediction
into two steps. This method reduces efficiency by
half but achieves better speech robustness, with
a WER of around 2.75 on the LibriSpeech test-
clean dataset. (2) We also tried removing the du-
ration placeholder and using the last speech token
of the previous text token to predict the number
of speech tokens corresponding to the current text
token. However, we found that this sequence con-
struction made the corresponding pre-training less
effective than it is now. (3) We also attempted
a method similar to ELLA-V (Song et al., 2024),
where the corresponding text token is placed before
each placeholder. However, we found that this se-
quence generated speech that was unnatural, with
a noticeable disconnection between words.



	Introduction
	Related Work
	Text-to-Speech
	Speech Large Language Models

	Method
	Training
	Pretraining
	Other Modules
	Inference

	Experiments
	Experimental Settings
	Main Results

	Analysis
	Conclusion
	Limitations
	Details of Baselines
	Details of Latency and Efficiency Evaluation Metrics
	Duration Control
	Other Strategies for Sequence Construction

