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Abstract

We study offline Reinforcement Learning in large infinite-horizon discounted1

Markov Decision Processes (MDPs) when the reward and transition models are2

linearly realizable under a known feature map. Starting from the classic linear-3

program formulation of the optimal control problem in MDPs, we develop a new4

algorithm that performs a form of gradient ascent in the space of feature occupan-5

cies, defined as the expected feature vectors that can potentially be generated by6

executing policies in the environment. We show that the resulting simple algorithm7

satisfies strong computational and sample complexity guarantees, achieved under8

the least restrictive data coverage assumptions known in the literature. In particu-9

lar, we show that the sample complexity of our method scales optimally with the10

desired accuracy level and depends on a weak notion of coverage that only requires11

the empirical feature covariance matrix to cover a single direction in the feature12

space (as opposed to covering a full subspace). Additionally, our method is easy13

to implement and requires no prior knowledge of the coverage ratio (or even an14

upper bound on it), which altogether make it the strongest known algorithm for15

this setting to date.16

1 Introduction17

We study Offline Reinforcement Learning (ORL) in sequential decision making problems whereby18

a learner aims to find a near-optimal policy with sole access to a static dataset of interactions with19

the underlying environment [Levine et al., 2020]. This line of work is naturally relevant to real-20

world tasks for which learning an accurate simulator of the environment is potentially intractable21

or impossible, trial-and-error learning could have grave consequences, yet logged interaction data22

is readily available. For example, in a high-stake application such as autonomous driving, building23

a sufficiently accurate simulator for the vehicle and its environment would require modelling very24

complex systems, which can be intractable both statistically and computationally. At the same time,25

running experiments in the real world could endanger the lives of other road users or result in damages26

to the vehicle. Yet, with the advent of tools for efficient sensory-data collection and processing, large27

volumes of logged data from human drivers are readily available.28

An efficient ORL method is one which finds a near-optimal policy after a tractable number of29

elementary computations and samples from the dataset. It is well-known in this setting that the quality30

of the solution has to heavily depend on the quality of the data, and in particular one cannot hope31

to find a near-optimal policy if the data covers the space of states and actions poorly. To formalize32

this intuition, many notions of data coverage have been proposed in the offline RL literature, ranging33

from a very restrictive uniform coverage assumption that requires the data-generating policy to cover34

the entire state-action space [Munos and Szepesvári, 2008] to a variety of partial coverage conditions35

whereby this exploratory condition is only required for state-action pairs that are of interest to the36

optimal policy [Liu et al., 2020, Rashidinejad et al., 2021, Uehara and Sun, 2021, Zhan et al., 2022,37

Rashidinejad et al., 2022, Li et al., 2024]. In the present work, we study the setting of linear Markov38
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Decision Processes (MDPs) [Jin et al., 2020, Yang and Wang, 2019] where the reward and transition39

matrix admit a low rank structure in terms of a known feature map, and data-coverage assumptions40

can be defined in the space of features. As shown by [Zanette et al., 2021], in this setting it is possible41

to obtain strong guarantees if the offline data is well-aligned with the expectation of the feature vector42

generated by the optimal policy (as opposed to requiring alignment with the entire distribution of43

features as required by other common offline RL methods [Jin et al., 2021, Xie et al., 2021, Uehara44

and Sun, 2021, Zhang et al., 2022]). In the present paper, we propose a simple and efficient algorithm45

that yields the best known sample complexity guarantees for this problem setting, all while only46

requiring the weakest known data-coverage assumptions of Zanette et al. [2021].47

Our approach is based on the LP formulation of optimal control in infinite-horizon discounted MDPs48

due to Manne [1960], and more specifically on its low-dimensional saddle-point reparametrization49

for linear MDPs proposed by Gabbianelli et al. [2024] (which itself builds on earlier work by Neu50

and Okolo, 2023 and Bas-Serrano et al., 2021). Primal variables of this saddle-point objective51

correspond to expectations of feature vectors under the state-action distribution of each policy (called52

feature occupancies), and dual variables correspond to parameters of linear approximations of action-53

value functions. We design an algorithm based on the idea of optimizing the unconstrained primal54

function that is derived from the saddle-point objective by eliminating the dual variables via a classic55

dualization trick. More precisely, we design a sample-based estimator of the primal function and56

optimize it via a variant of gradient ascent in the space of feature occupancies.57

This approach is to be contrasted with the method of Gabbianelli et al. [2024], which instead optimized58

the original saddle-point objective via stochastic primal-dual methods. Their algorithm interleaved a59

sequence of “policy improvement” steps with an inner loop performing “policy evaluation”, which60

resulted in a suboptimal use of sample transitions due to the costly inner loop. This issue was61

addressed in the very recent work of Hong and Tewari [2024] who, instead of relying on stochastic62

optimization, built an estimator of the saddle-point objective and optimized it via a deterministic63

primal-dual method. Our approach is directly inspired by their idea of estimating the saddle-point64

objective, but our algorithm design is significantly simpler: instead of directly optimizing the65

primal function in terms of feature occupancies, Hong and Tewari [2024] relied on a sophisticated66

reparametrization of the primal variables, and used a computationally involved procedure to update67

the dual variables. Both of these steps required prior knowledge of a tight bound on the feature-68

coverage ratio of the optimal policy, which is typically not available in problems of practical interest.69

Such knowledge is not required by our algorithm, thanks to the incorporation of a recently proposed70

stabilization trick that we make use of in our algorithm [Jacobsen and Cutkosky, 2023, Neu and71

Okolo, 2024]. We provide a more detailed discussion of these closely related works in Section 5.72

Notation. We use boldface lowercase lettersm to denote vectors and and bold uppercaseM for73

matrices. We define the Euclidean ball in Rd of radius D by Bd(D) = {x ∈ Rd| ∥x∥2 ≤ D} and74

the A-simplex over a finite set A of cardinality A as ∆A = {p ∈ RA
+| ∥p∥1 = 1}.75

2 Preliminaries76

We consider infinite-horizon Discounted Markov Decision Processes (DMDPs) [Puterman, 1994]77

of the form (X ,A, r,P , γ) where X denotes a finite (yet large) set of X states and A is a finite78

action space of cardinality A = |A|. We refer to r ∈ [0, 1]XA as the reward vector, P ∈ RXA×X
+79

the transition matrix and γ ∈ (0, 1) the discount factor. For a state-action pair (x, a) ∈ X × A80

we also use the notation r (x, a) = r[(x, a)] to denote the reward of taking action a in state x and81

p (x′|x, a) = P [(x, a) , x′] as the probability of ending up in state x′ afterwards.82

The MDP models a sequential decision making process where an agent interacts with its environment83

as follows. For each step k = 0, 1, 2, · · · ,, the agent observes the current state Xk of the environment84

and then goes on to select its action Ak. Based on this action in the current state, it receives a reward85

r (Xk, Ak), transits to a new state Xk+1 ∼ p (·|Xk, Ak) and the process continues. The objective of86

the agent is to find a decision-making rule that maximizes its total discounted reward when the initial87

state X0 is sampled according to a fixed initial-state distribution distribution ν0 ∈ ∆X . Without loss88

of generality, we assume that the initial state is fixed almost surely as X0 = x0, and use ν0 to refer to89

the corresponding delta distribution. It is known that this objective can be achieved by executing a90

stationary stochastic policy π : X → ∆A, with π(a|x) denoting the probability of the agent selecting91

action Ak = a in state Xk = x for all k. We will use Π to denote the set of all such behavior rules92

2



and will often simply call them policies. We define the normalized discounted return of each policy π93

as94

ρ (π) = (1− γ)Eν0,π

[ ∞∑
k=0

γkr (xk, ak)

]
,

where the role of the discount factor γ ∈ (0, 1) is to emphasize the importance of earlier rewards, and95

the notation Eν0,π [·] highlights that the initial state is sampled from ν0 and all actions are sampled96

according to the policy π. We will use π∗ to denote any policy that maximizes the return.97

We will consider the offline RL setting where we are given access to a data set of n sample transitions98

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1, where X ′

i ∼ p(·|Xi, Ai) is sampled independently for each i and Ri =99

r(Xi, Ai). Otherwise, no assumption is made about the state-action pairs (Xi, Ai), and in particular100

we do not require these to be generated by a fixed behavior policy or to be independent of each other.101

For describing the approach we take towards solving this problem, we need to introduce some102

further standard notations. The value function and action-value function associated with policy π are103

respectively defined as104

vπ (x) = Ea∼π(·|x) [q
π (x, a)] , qπ (x, a) = Eπ

[ ∞∑
k=0

γkr (xk, ak)

∣∣∣∣∣x0 = x, a0 = a

]
,

and the state-occupancy and state-action-occupancy measures under π as105

νπ (x) =
∑
a

µπ (x, a) , µπ (x, a) = (1− γ)Eν0,π

[ ∞∑
k=0

γkI{xk,ak}

]
.

The value functions and occupancy measures adhere to the following recursive equations, respectively106

termed the Bellman equation and Bellman flow condition [Bellman, 1966]:107

qπ = r + γPvπ, µπ = π ◦ [(1− γ)ν0 + γP Tµπ].

Here, the composition operation ◦ is defined so that for any policy π and state distribution ν ∈ RX ,108

we have (π ◦ ν) (x, a) = π (a|x) ν (x). Notice that we can express the return of π in terms of value109

functions and occupancy measures as ρ (π) = (1− γ) ⟨ν0,vπ⟩ = ⟨µπ, r⟩. On this note, for a given110

target accuracy ε > 0, we say policy π is ε-optimal if it satisfies
〈
µπ∗ − µπ, r

〉
≤ ε.111

In the present work, we well make use of the linear MDP assumption due to Jin et al. [2020], Yang112

and Wang [2019], which is defined formally as follows:113

Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions114

can be expressed as a linear function of a given feature map φ : X ×A → Rd. That is, there exist115

ψ : X → Rd and ω ∈ Rd such that, for every x, x′ ∈ X and a ∈ A:116

r(x, a) = ⟨φ(x, a),ω⟩, p (x′|x, a) = ⟨φ(x, a),ψ(x′)⟩.

We denote by Φ ∈ R|X×A|×d the feature matrix with rows given by φ(x, a)T and Ψ ∈ Rd×|X| as the117

weight matrix with columns ψ(x). Further, we will assume that ∥ω∥2 ≤
√
d, that ∥Ψv∥2 ≤ B

√
d118

holds for all v ∈ [−B,B], and that all feature vectors satisfy ∥φ(x, a)∥2 ≤ R for some R ≥ 1.119

An immediate consequence of this assumption is that the action-value function of any policy π can120

be written as a linear function of the features as qπ = Φθπ, with θπ = ω + γΨvπ ∈ Rd. For the121

rest of the paper we explicitly assume that the feature matrix Φ is full rank – which is enough to122

ensure uniqueness of θπ. It is common to assume that the feature dimension d ≪ X such that the123

transition operator is low-rank. As common in this setting, we will suppose throughout the paper that124

the feature map Φ is known.125

Our algorithm design will be based on the linear programming formulation of MDPs, first proposed126

in a number of papers in the 1960’s [Manne, 1960, de Ghellinck, 1960, d’Epenoux, 1963, Denardo,127

1970]. This formulation frames the problem of finding an optimal control policy as the following pair128

of primal and dual linear programs:129

maximize ⟨µ, r⟩
subject to ETµ = (1− γ)ν0 + γP Tµ

µ ≥ 0,

(1)
minimize (1− γ)⟨ν0,v⟩
subject to Ev ≥ r + γPv. (2)130
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Here, the operator E ∈ RXA×X is defined such that for each x, a and vectors µ ∈ RXA,v ∈ RX ,131

(ETµ) (x) =
∑
a∈A

µ (x, a) , (Ev) (x, a) = v (x) .

It is known that the occupancy measure of an optimal policy µπ∗
is an optimal solution of the primal132

LP (1). In fact, the feasible set of the primal is precisely the space of valid state-action occupancy133

measures that can be induced by stationary policies. Therefore, given any feasible solution µ, we can134

extract the inducing policy as πµ (a|x) = µ (x, a) /
∑

a′ µ (x, a′) when
∑

a µ (x, a) ̸= 0. Likewise,135

the state value function of the optimal policy π∗ is an optimal solution to the dual LP. That said, since136

the LP features XA variables and constraints, it cannot be solved directly in large MDPs.137

In view of the above limitations, we consider the following reduced version of the above intractable138

LPs due to Gabbianelli et al. [2024] (see also Neu and Okolo, 2023, Bas-Serrano et al., 2021):139

maximize ⟨λ,ω⟩
subject to ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ

µ ≥ 0,

(3)

minimize (1− γ)⟨ν0,v⟩
subject to Ev ≥ Φθ

θ = ω + γΨv.
(4)140

In view of the second constraint of the primal LP (3), λ should be thought of as expectations of feature141

vectors under occupancy measures, and we thus refer to them as feature occupancy vectors. Similarly,142

the second constraint of the dual LP (4) suggests that θ should be thought of as parameters of the143

approximate action-value function qθ = Φθ = Φ (ω + γΨv) = r+γPv. We use λπ∗
= ΦTµπ∗

to144

denote the feature occupancy associated with the optimal policy π∗ and θπ
∗

to denote the parameter-145

vector of the optimal action-value function qπ
∗
. The Lagrangian corresponding to the LPs is given as146

L(λ,µ;v,θ) = (1− γ)⟨ν0,v⟩+ ⟨λ,ω + γΨv − θ⟩+ ⟨µ,Φθ −Ev⟩
= ⟨λ,ω⟩+ ⟨v, (1− γ)ν0 + γΨTλ−ETµ⟩+ ⟨θ,ΦTµ− λ⟩. (5)

It is easy to verify that by the linear MDP property, the feasible sets of the above LPs coincide147

with those of the original LPs in an appropriate sense, and their optimal solutions correspond to148

the optimal state-action occupancy measure and state-value function respectively (see Appendix A).149

In order to further reduce the complexity of the LPs above, we introduce a policy π and parametrize150

the remaining high-dimensional variables v and µ as151

vθ,π(s) =
∑
a

π(a|s) ⟨θ,φ(x, a)⟩ , µλ,π(x, a) = π(a|x)
[
(1− γ)ν0(x) + γ⟨ψ(x),λ⟩

]
. (6)

Plugging this choice back into the Lagrangian, we obtain the objective152

f(λ, π;θ) = L(λ,µλ,π;vθ,π,θ)

= (1− γ)⟨ν0,vθ,π⟩+ ⟨λ,ω + γΨvθ,π − θ⟩ (7)
= ⟨λ,ω⟩+ ⟨θ,ΦTµλ,π − λ⟩.

It is easy to see that for any π and λπ = ΦTµπ, we have f(λπ, π;θ) = ⟨µπ, r⟩ for all θ ∈153

Rd. Furthermore, whenever λ ̸= λπ then the θ-player has a winning strategy that can force154

minθ f(λ, π;θ) = −∞. This (informally) suggests that an optimal policy can be found by solving the155

unconstrained saddle-point optimization problem maxλ∈Rd,π∈Π minθ∈Rd f(λ, π;θ). Furthermore,156

since the optimal policy can be written as π∗(a|x) = I{a=argmaxb⟨θπ∗ ,φ(x,b)⟩}, it is sufficient to157

consider softmax policies of the form158

Π(Dπ) =

{
πθ (a|x) =

e⟨φ(x,a),θ⟩∑
a′ e⟨φ(x,a′),θ⟩

∣∣∣∣∣θ ∈ Bd(Dπ)

}
,

which can approximate π∗ to good precision when the diameter Dπ is set to be large enough. This159

parametrization effectively reduces the high-dimensional LP into a low-dimensional saddle-point160

optimization problem.161
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3 Feature-occupancy gradient ascent for offline RL in linear MDPs162

A natural idea for developing RL methods is to build an empirical approximation of the function f163

defined in the previous section, and use primal-dual methods to find a saddle-point of the resulting164

approximation. For offline RL, this approach has been explored by Gabbianelli et al. [2024] and165

Hong and Tewari [2024]. In this work, we develop an alternative approach that seeks to directly166

optimize the return by approximately maximizing the unconstrained primal function f∗ : Rd ×Π,167

defined for each feature-occupancy vector λ and policy π as168

f∗(λ, π) = min
θ∈Bd(Dθ)

f(λ, π;θ),

for an appropriately chosen feasible set Bd(Dθ). Given the discussion in the previous section, maxi-169

mizing this function with respect to λ and π is rightly expected to result in an optimal policy (which170

intuition will be made formal in our analysis). Notably, the so-called objective f in Equation (7)171

depends on the transition weight matrix Ψ which is unknown in general. As we soon show, this172

matrix dominates the loss of the θ-player and λ-player. Based on these observations, our approach173

consists of building a well-chosen estimator f̂ of f , and then maximizing the associated primal174

function f̂∗ defined as175

f̂∗(λ, π) = min
θ∈Bd(Dθ)

f̂(λ;θ, π).

The objective f̂ is built via a least-squares estimator inspired by the classic LSTD model estimate176

of Bradtke and Barto [1996], Parr et al. [2008], which has been successfully used for analyzing177

finite-horizon linear MDPs in a variety of recent works (e.g., Jin et al., 2020, Neu and Pike-Burke,178

2020). In particular, we fit an estimator Ψ̂ of the true matrix Ψ using samples from the dataset179

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1 as follows. Let φi = φ(Xi, Ai) denote the feature vector of (Xi, Ai)180

and Λn = βIn + 1
n

∑n
i=1φiφ

T
i the empirical feature covariance matrix. We define the regularized181

least squares estimate of Ψ at x ∈ X as182

ψ̂ (x) = arg min
ψ(x)∈Rd

1

n

n∑
i=1

(
⟨φi,ψ (x)⟩ − I{x=X′

i}
)2

+ β ∥ψ (x)∥22 ,

so that the estimate can be written as183

Ψ̂ =
∑
x∈X

ψ̂(x)eT

x =
1

n
Λ−1

n

n∑
i=1

φie
T

X′
i
. (8)

With this matrix at hand, we define f̂ as184

f̂(λ, π;θ) = (1− γ)⟨ν0,vθ,π⟩+ ⟨λ,ω + γΨ̂vθ,π − θ⟩ = ⟨λ,ω⟩+ ⟨θ,ΦTµ̂λ,π − λ⟩,

where µ̂λ,π(x, a) = π(a|x)
[
(1− γ)ν0(x) + γ⟨ψ̂(x),λ⟩

]
is a sample-based approximation of µλ,π .185

For the purpose of optimization, we will employ appropriately chosen versions of mirror as-186

cent [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003] to iteratively optimize the pri-187

mal variables. Denoting the iterates for each t = 1, 2, . . . , T by λt and πt, and defining θt =188

arg minθ∈Bd(Dθ)
f̂(λt, πt;θ), the updates are defined as follows. Using gλ(t) = ∇λt

f̂∗(λt, πt) to189

denote the gradient of f̂∗ with respect to the feature occupancies, the first set of variables is updated as190

λt+1 = arg max
λ∈Rd

{
⟨λ, gλ(t)⟩ −

1

2η
∥λ− λt∥2Λ−1

n
− ϱ

2
∥λ∥2Λ−1

n

}
, (9)

where the first regularization term acts as proximal regularization (necessary for mirror-ascent-style191

methods), and the second one has a stabilization effect whose role will be made clear later in the192

analysis. The resulting update can be written in closed form, and is equivalent to a preconditioned193

gradient-ascent step on f̂∗. The policies are updated in each state-action pair x, a as194

πt+1(a|x) =
πt(a|x)eα⟨φ(x,a),θt⟩∑
a′ πt(a′|x)eα⟨φ(x,a′),θt⟩

=
π1(a|x)eα⟨φ(x,a),

∑t
k=1 θk⟩∑

a′ π1(a′|x)eα⟨φ(x,a′),
∑t

k=1 θk⟩
,
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Algorithm 1 Feature-Occupancy Gradient Ascent (FOGAS)
Input: Learning rates α, ϱ, η, initial points λ1 ∈ Rd, π1 ∈ Π(Dπ) , θ̄0 = 0, and dataset Dn.
for t = 1 to T do

// Value-parameter update
Compute
ΦTµ̂λt,πt = (1− γ)

∑
a πt(a|x0)φ(x0, a) + γ 1

n

∑n
i=1

∑
a πt(a|X ′

i)φ(X
′
i, a)

〈
φi,Λ

−1
n λt

〉
θt = arg minθ∈Bd(Dθ)

⟨θ,ΦTµ̂λt,πt
− λt⟩

// Policy update
Update θ̄t = θ̄t−1 + θt
πt+1 = σ

(
αΦθ̄t

)
// Feature-occupancy update
Compute Ψ̂vθt,πt

= 1
nΛ

−1
n

∑n
i=1φivθt,πt

(X ′
i)

Compute gλ(t) = ω + γΨ̂vθt,πt
− θt

λt+1 = 1
1+ϱη (λt + ηΛngλ(t))

end for
return πJ with J ∼ U(1, · · · , T ).

corresponding to performing an entropy-regularized mirror ascent step in each state x (cf. Neu et al.,195

2017). We use the shorthand notation πt+1 = σ
(
αΦ
∑t

k=1 θk
)

to denote the resulting softmax196

policy, and note that it is fully specified by a d-dimensional vector that can be stored compactly.197

After the final iterate is computed, the algorithm picks the index J uniformly at random and outputs198

the policy πJ . We refer to the resulting algorithm as Feature-Occupancy Gradient AScent (FOGAS),199

and present its detailed pseudocode featuring the explicit expressions of λt and θt as Algorithm 1.200

The following theorem states our main result regarding the performance of FOGAS.201

Theorem 3.1. Let π1 be the uniform policy and λ1 = 0. Also set Dθ =
√
d/ (1− γ), Dπ = αTDθ202

and δ > 0. Suppose that we run FOGAS for T ≥ 2R2n logA
log(1/δ) rounds with parameters β = R2/dT as203

well as204

α =

√
2 (1− γ)

2
logA

R2dT
, ϱ = γ

√
320d2 log (2T/δ)

(1− γ)
2
n

, η =

√
(1− γ)

2

27R2d2T
.

Then, with probability at least 1− δ, the following bound is satisfied for any comparator policy π∗205

and the associated feature-occupancy vector λπ∗
= ΦTµπ∗

:206

EJ

[〈
µπ∗

− µπJ , r
〉]

= O

∥∥λπ∗∥∥2
Λ−1

n
+ 1

1− γ
·
√

d2 log (2T/δ)

n

 ,

with the expectation taken with respect to the random index J .207

The most important factor in the bound of Theorem 3.1 is ∥λ∗∥2Λ−1
n

, which measures the extent208

to which the data Dn covers the comparator policy π∗ in feature space. We accordingly refer to209

this quantity as the feature coverage ratio between the policy π∗ and the data set Dn, and we210

discuss its relationship with other notions of data coverage in Section 5. Notably, the bound holds211

simultaneously for all comparator policies π∗, and thus it can be restated in an oracle-inequality form.212

On the same note, FOGAS does not need any prior upper bounds on the comparator norm ∥λ∗∥2Λ−1
n

,213

and in particular it does not project the iterates λt to a bounded set. These nontrivial properties are214

enabled by a recently proposed stabilization trick due to Jacobsen and Cutkosky [2023] and Neu and215

Okolo [2024], which amounts to augmenting the standard mirror-ascent update of Equation (9) with216

the regularization term ϱ
2 ∥λ∥

2
Λ−1

n
. Without this additional regularization, the bounds would feature217

an additional factor of the order 1
T

∑T
t=1 ∥λt∥2Λ−1

n
, which cannot be controlled without projecting the218

iterates and in any case make it impossible to prove a comparator-adaptive bound. We defer further219

discussion of the result to Section 5.220

6



4 Analysis221

This section is dedicated to proving our main result, Theorem 3.1. While we have defined FOGAS as a222

“primal-only” algorithm above, its analysis will be most convenient if we regard it as a primal-dual223

algorithm with implicitly defined dual updates. In particular, we will view the updates of FOGAS224

as a sequence of steps in a zero sum game between two teams of players: the max players that225

control λt and πt, and the min player that picks θt. The min player uses the simple best-response226

strategy of picking θt = arg minθ∈Bd(Dθ)
f̂(λ, πt), and the other two players perform their updates227

via appropriate versions mirror ascent on their respective objectives. Importantly, the updates of the228

λ-player are based on the gradients of f̂∗, which satisfy229

gλ(t) = ∇λt f̂
∗(λt, πt) = ∇λt

(
min

θ∈Bd(Dθ)
f̂(λt, πt;θ)

)
= ∇λt f̂(λt, πt;θt),

where the last equality follows from an application of Danskin’s theorem. This property enables230

a major conceptual simplification that allows the interpretation of the updates as optimizing the231

unconstrained primal f̂∗ directly. We refer the interested reader to Chapter 6 of Bertsekas [1997] for232

more context on such use of primal-dual analysis.233

More concretely, we make use of an analysis technique first developed by Neu and Okolo [2023],234

and further refined by Gabbianelli et al. [2024] and Hong and Tewari [2024]. The core idea is to235

introduce the dynamic duality gap defined on a sequence of iterates {(λt, πt,θt)}Tt=1 produced by236

some iterative method, and a set of well-chosen comparators
(
λ∗, π∗; {θ∗t }Tt=1

)
as237

GT

(
λ∗, π∗; {θ∗t }Tt=1

)
=

1

T

T∑
t=1

(f(λ∗, π∗;θt)− f(λt, πt;θ
∗
t )) .

Similar to Lemma 4.1 of Gabbianelli et al. [2024], we show in Lemma 4.1 below that with an238

appropriate choice of the comparator points, we can relate the gap to the expected suboptimality of239

policy πJ where J ∼ U(1, · · · , T ). We leave the proof in Appendix B.1.1.240

Lemma 4.1. Suppose that Dθ =
√
d/(1 − γ). Choose (λ∗, π∗,θ∗t ) =

(
ΦTµπ∗

, π∗,θπt
)

∈241

Rd ×Π(Dπ)× Bd(Dθ) for t = 1, · · · , T where µπ∗
is a valid occupancy measure induced by π∗.242

Then,243

EJ

[〈
µπ∗

− µπJ , r
〉]

= GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
.

We will show below that the dynamic duality gap can be written in terms of the regrets of each player244

and an additional term related to the estimation error of f̂ , and then proceed to provide bounds on all245

of these quantities. Specifically, the regrets of each player with respect to each of their respective246

comparators are defined as247

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

RT (λ∗) =

T∑
t=1

f̂(λ∗, πt;θt)− f̂(λt, πt;θt) =

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩,

RT (θ∗1:T ) =

T∑
t=1

f̂(λt, πt;θt)− f̂(λt, πt;θ
∗
t ) =

T∑
t=1

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩.

where ν∗ = (1− γ)ν0(x) + γ⟨ψ(x),λ∗⟩. Furthermore, we define the gap-estimation error as248

errΨ̂ =

T∑
t=1

〈
λ∗,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vθ∗

t ,πt

〉
. (10)

The following lemma rewrites the duality gap using the above terms.249

Lemma 4.2. The dynamic duality gap satisfies250

GT (λ
∗, π∗,θ∗1:T ) =

1

T
RT (π∗) +

1

T
RT (λ∗) +

1

T
RT (θ∗1:T ) +

γ

T
errΨ̂.

7



The proof directly follows from a straightforward calculation similar to the proof of Lemma 4.2251

of Gabbianelli et al. [2024] and Section E.1 of Hong and Tewari [2024] which is reproduced in252

Appendix B.1.2 for completeness. It remains to bound the regret of the players, as well as the253

gap-estimation error. An obstacle we need to face in the analysis is that our bound of the latter error254

term scale with 1
T

∑T
t=1 ∥λt∥2Λ−1

n
, which is undesirable given our aspiration to achieve bounds that255

scale only with the comparator norm ∥λ∗∥2Λ−1
n

without requiring prior upper bounds on this quantity256

(that would enable us to project the iterates to a bounded domain). This challenge is addressed by257

making use of the stabilization technique of Jacobsen and Cutkosky [2023] and Neu and Okolo258

[2024] in the updates for the λ-player, which effectively eliminates these problematic terms. We259

briefly outline the remaining parts of the analysis below.260

4.1 Regret analysis261

The regrets of each player are respectively controlled by the following three lemmas.262

Lemma 4.3. Suppose that ν∗ ∈ ∆X . Let π1 be the uniform policy which selects all actions with263

equal probability in each state. Under the conditions on the feature map in Definition 2.1, the regret264

of the π-player against π∗ satisfies 1
T RT (π∗) ≤ logA

αT +
αR2D2

θ

2 .265

The proof is a standard application of the analysis of exponential-weight updates, stated as Lemma E.1.266

Lemma 4.4. Let λ1 = 0 and C = 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ. Then, the regret267

of the λ-player against any comparator λ∗ ∈ Rd satisfies268

1

T
RT (λ∗) ≤

(
1

2ηT
+

ϱ

2

)
∥λ∗∥2Λ−1

n
+

ηC

2
− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

.

The proof (provided in Appendix B.2.2) follows from applying the standard analysis of composite-269

objective mirror descent due to Duchi et al. [2010] (stated as Lemma C.1 in the Appendix) and the270

bound ∥Λngλ(t)∥2Λ−1
n

≤ C on the weighted norm of the gradients for all t provided in Lemma C.2.271

Lemma 4.5. Let Dθ =
√
d/ (1− γ). The regret of the θ-player satisfies 1

T RT (θ∗1:T ) ≤ 0.272

As we show in Appendix B.2.3, the above statement holds trivially thanks to the “best-response”273

definition of θt. This concludes our regret analysis.274

4.2 Bounding the gap-estimation error275

The following statement (proved in Appendix B.3) provides a bound on errΨ̂:276

Lemma 4.6. Suppose that ∥φ(x, a)∥2 ≤ R for all (x, a) ∈ X × A, Dθ =
√
d/(1 − γ) and277

α =

√
2 (1− γ)

2
logA/R2dT to optimize RT (π∗). Then, for any T ≥ 2R2n logA

log(1/δ) and and ξ ≥ 0,278

the following holds with probability at least 1− δ:279

errΨ̂ ≤ 1

2ξ

(
∥λ∗∥2Λ−1

n
+

1

T

T∑
t=1

∥λt∥2Λ−1
n

)
+ T 2ξ

(
320d2 log (2T/δ)

n (1− γ)
2

)
.

4.3 The proof of Theorem 3.1280

The proof follows from applying Lemmas 4.1 and Lemma 4.2 when (λ∗, π∗,θ∗t ) =281 (
ΦTµπ∗

, π∗,θπt
)
∈ Rd × Π(Dπ) × Bd(Dθ) for t = 1, · · · , T . Then, adding up the bounds282

stated in Lemmas 4.3–4.6 under the respective conditions, yields283

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

ϱ

2
+

γ

2ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2

+

(
γ

ξT
− ϱ

)
1

2T

T∑
t=1

∥λt∥2Λ−1
n

+ γTξ

(
320d2 log (2T/δ)

n (1− γ)
2

)
.

Then, setting ρ = γ
ξT simplifies the second term and eliminates the third term. The claim then follows284

after optimizing the hyperparameters, with the full details provided in Appendix B.4.285
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5 Discussion286

We discuss various aspects of our results below.287

Relation with previous work. As discussed in the introduction, our work draws heavily on previous288

contributions of Gabbianelli et al. [2024] and Hong and Tewari [2024]. In particular, our idea of289

building a least-squares estimator of the transition function is directly borrowed from the latter of290

these works, and our implicit update rule for θt is also inspired by their work to a good extent. Their291

approach, however, failed to reach the same degree of efficiency due to a number of suboptimal design292

choices. First, they used an alternative parametrization of the feature occupancies which only allowed293

them to work under a more restrictive coverage condition, so that their bounds depend on ∥λ∗∥Λ−2
n

294

which can be much larger than the feature coverage ratio appearing in our bounds. Second, their295

algorithm required a prior upper bound on this coverage parameter, with the guarantees scaling with296

the bound rather than the actual coverage. Such bounds are typically difficult to obtain in practice.297

Third, the implementation of their algorithm required intricate computational steps necessitated by298

their feature-occupancy parametrization. Our work has successfully removed these limitations and299

reduced the complexity of their method, thanks to a new primal-only analysis style that we hope will300

find further uses in reinforcement learning.301

Computational and statistical efficiency. As can be inferred from our main result, the sample com-302

plexity of finding an ε-optimal policy using our algorithm is of the order d2 ∥λ∗∥2Λ−1
n

/ε2 (1− γ)
2,303

which is optimal in terms of scaling with ε. The rate can be improved to scale linearly with the feature304

coverage ratio ∥λ∗∥Λ−1
n

, if a tight upper bound is known on it which can be used for hyperparameter305

tuning. We find this scenario to be unlikely, and are curious to see if future work can attain this306

improved scaling without such prior knowledge. As for computational complexity, we point out307

that the cost of each iteration of our method scales linearly with the sample size n, due to having to308

compute the matrix-vector products Ψ̂vθt,πt . Indeed, the matrix Ψ̂ is sparse with n non-zero rows,309

and as such computing this product takes linear time in n. Since the iteration complexity of FOGAS310

scales linearly with the sample size n, this makes for an overall runtime complexity of order n2. This311

limitation is of course shared with all methods using the same least-squares transition estimator for312

the transition model, including all work that builds on Jin et al. [2020], but we nevertheless wonder if313

a substantial improvement is possible on this front.314

Data coverage assumptions. The only works we are aware of that scale with the feature-coverage315

ratio ∥λ∗∥Λ−1
n

are due to Zanette et al. [2021] and Gabbianelli et al. [2024]. The latter work only316

achieves this bound under the assumption that the data is drawn i.i.d. from a fixed behavior policy317

with known feature covariance matrix, which is a much more restricted setting that we consider318

here. Such assumptions are not needed by Zanette et al. [2021], however their results are restricted319

to the simpler finite-horizon MDP setting, and their algorithm is arguably more complex than ours.320

Using our notation, their approach can be interpreted as solving a “pessimistic” version of the321

the relaxed dual LP (4) that features some additional quadratic constraints. This approach is not322

computationally viable for the infinite-horizon discounted case we consider, as it requires solving a323

fixed-point equation with respect to the estimated transition operator (cf. Wei et al., 2021).324

Possible extensions. Our approach can be extended and generalized in a variety of ways. First,325

following Gabbianelli et al. [2024], we believe that it is straightforward to extend our analysis to326

undiscounted infinite-horizon MDPs. Second, we similarly believe that an extension to constrained327

MDPs is possible without major challenges, following Hong and Tewari [2024]. We did not pursue328

these extensions because we believe that they add little additional insight. There are other potential329

directions that we did not explore because we found them to be too ambitious for the moment.330

These include extending our results beyond linear MDPs to other MDP models with linear function331

approximation, including MDPs with low inherent Bellman rank (which may be within reach of332

the current theory, c.f. Zanette et al., 2020), linearly Qπ-realizable MDPs (which are known to be333

challenging, c.f. Weisz et al., 2022, 2024). Even more ambitiously, one can ask if it is possible to334

extend our methods to work under more general notions of function approximation. This looks very335

challenging given the central role of feature occupancies in our formalism, which are strictly tied to336

linear function approximation. We are nevertheless optimistic that the ideas presented in this work337

will find use in other contexts, possibly including nonlinear function approximation in the future.338
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Appendix437

A Missing proofs of Section 2438

A.1 Properties of the relaxed LP439

In this section we prove a basic result about the feasible sets of the relaxed linear programs defined in440

Equations (3) and (4). We remark that similar results have been previously shown in Proposition 4 of441

Bas-Serrano et al. [2021] and Appendix A.1 of Neu and Okolo [2023].442

Lemma A.1. Suppose that the MDP satisfies the linear MDP assumption in the sense of Definition 2.1,443

consider the relaxed linear programs 3 and 4 and their respective feasible sets:444

MP
Φ =

{
(λ,µ) ∈ Rd × RXA

+

∣∣ ETµ = (1− γ)ν0 + γΨTλ, λ = ΦTµ
}
,

MD
Φ =

{
(v,θ) ∈ RX × Rd

∣∣ Ev ≥ Φθ, θ = ω + γΨv
}
.

Then, the following statements hold:445

• The set M =
{
µ : (λ,µ) ∈ MP

Φ

}
coincides with the feasible set of the primal LP (1). Fur-446

thermore, for all (λ∗,µ∗) ∈ arg max(λ,µ)∈MP
Φ
⟨λ,ω⟩, we have that µ∗ is the occupancy447

measure of an optimal policy.448

• The set V =
{
v : (v,θ) ∈ MD

Φ

}
coincides with the feasible set of the dual LP (2). Further-449

more, the optimal value function vπ
∗

and the parameter vector θπ
∗

satisfying qπ
∗
= Φθπ

∗
450

satisfy (vπ
∗
,θπ

∗
) ∈ arg min(v,θ)∈MD

Φ
(1− γ) ⟨ν0,v⟩.451

Proof. We first show that for any feasible point µ of the LP (1), the tuple (λ,µ) is feasible for the452

relaxed LP with λ = ΦTµ. This choice of λ satisfies the second primal constraint by definition, so it453

remains to verify that the first constraint is also satisfied. Indeed, this follows from454

ETµ− (1− γ)ν0 − γΨTλ = ETµ− (1− γ)ν0 − γΨTΦTµ

= ETµ− (1− γ)ν0 − γP Tµ = 0,

where we have used the linear MDP property to write ΨTΦT = P T in the first step and that µ is a455

valid occupancy measure in the last one. Conversely, supposing that (λ,µ) ∈ MP
Φ are feasible for456

the relaxed LP, we have that457

ETµ− (1− γ)ν0 − γP Tµ = ETµ− (1− γ)ν0 − γΨTΦTµ

= ETµ− (1− γ)ν0 − γΨTλ = 0,

thus verifying that µ is indeed a valid occupancy measure. Optimality of (λ∗,µ∗) follows from the458

fact that for any (λ,µ) ∈ MP
Φ, we can write the LP objective as ⟨λ,ω⟩ = ⟨µ, r⟩ by the linear MDP459

assumption, and the standard fact that any solution µ∗ to the primal LP 1 is the occupancy measure460

of an optimal policy (cf. Theorem 6.9.4 in Puterman, 1994). This concludes the first part of the proof.461

For the second part of the proof, let us first consider a feasible solution v for the original dual LP (2).462

Then, the choice θ = ω + γΨv satisfies the second dual constraint by definition. The first constraint463

can be verified by writing464

Ev − Φθ = Ev − r − γPv ≥ 0,

where we used the choice of θ in the first step and the feasibility of v for the original LP in the second465

step. Conversely, supposing that (θ,v) ∈ MD
Φ, we note that466

Ev − r − γPv = Ev − Φθ ≥ 0,

which implies the feasibility of v in the LP 2. Optimality of v∗ for both LPs follows from the fact467

that their objectives are identical, and the standard fact that v∗ is an optimal solution of the dual468

LP (2) (cf. Theorem 6.2.2 in Puterman, 1994).469
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B Missing proofs of Section 4470

In this section, we provide performance guarantees for Algorithm 1 in terms of the expected subopti-471

mality of the output policy πJ , and in particular prove the lemmas provided in Section 4 in the main472

text. Auxiliary lemmas and technical results for proving some of these are included in Appendix E.473

B.1 Properties of the Dynamic Duality Gap474

We first prove our claims regarding the dynamic duality gap introduced in Section 4 of the main text.475

First, we relate the gap to the expected suboptimality (in terms of return) of πJ against a comparator476

policy π∗ in Appendix B.1.1. Next, we relate the dynamic duality gap to the average regret of each477

player in Appendix B.1.2.478

B.1.1 Proof of Lemma 4.1479

By definition of the the dynamic duality gap, we have that480

GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
=

1

T

T∑
t=1

f(ΦTµπ∗
, π∗;θt)− f(λt, πt;θ

πt).

Considering the first term, we see that481

f(ΦTµπ∗
, π∗;θt) =

〈
ΦTµπ∗

,ω
〉
+
〈
θt,Φ

Tµλ∗,π∗ −ΦTµπ∗
〉

(a)
=
〈
µπ∗

, r
〉
+
〈
θt,Φ

Tµλ∗,π∗ −ΦTµπ∗
〉

(b)
=
〈
µπ∗

, r
〉
,

where we have used (a) the linear MDP property (definition 2.1) and (b) the following relation:482

µλ∗,π∗(x, a) = π∗(a|x)
[
(1− γ)ν0(x) + γ

〈
ψ(x),ΦTµπ∗

〉]
= π∗(a|x)

[
(1− γ)ν0(x) + γ

∑
x′,a′

p (x|x′, a′)µπ∗
(x′, a′)

]
= µπ∗

(x, a).

Now for the second term, we have483

f(λt, πt;θ
πt) = (1− γ) ⟨ν0,vθπt ,πt⟩+ ⟨λt,ω + γΨvθπt ,πt − θπt⟩

= ⟨µπt , r⟩+ ⟨λt,ω + γΨvπt − θπt⟩
= ⟨µπt , r⟩ ,

where we have used the Bellman equations qπt = Φθπt = r + γPvπt = Φ (ω + γΨvπt), which484

together with the fact that Φ is full rank implies that θπt = ω + γΨvπt . Substituting the above485

expressions for f(ΦTµπ∗
, π∗;θt) and f(λt, πt;θ

πt) in the dynamic duality gap and noting that πJ486

is such that 1
T

∑T
t=1 ⟨µπt , r⟩ = EJ [⟨µπJ , r⟩] we get487

GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
= EJ

[〈
µπ∗

− µπJ , r
〉]

.

This completes the proof.488

B.1.2 Proof of Lemma 4.2489

Recall that for any comparator points
(
λ∗, π∗; {θ∗t }Tt=1

)
, the dynamic duality gap is defined as490

GT

(
λ∗, π∗; {θ∗t }Tt=1

)
=

1

T

T∑
t=1

(f(λ∗, π∗;θt)− f(λt, πt;θ
∗
t )) .
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Then, by adding and subtracting some terms we express the dynamic duality gap in terms of the491

average loss of each player with respect to the objective f(λ, π;θ). This gives492

GT (λ
∗, π∗,θ∗1:T ) =

1

T

T∑
t=1

f(λ∗, π∗;θt)− f(λ∗, πt;θt)

+
1

T

T∑
t=1

f(λ∗, πt;θt)− f(λt, πt;θt)

+
1

T

T∑
t=1

f(λt, πt;θt)− f(λt, πt;θ
∗
t ). (11)

Consider the first set of terms from the above expression. By definition of f in Equation (7), we493

immediately obtain the instantaneous regret of the π-player as494

f(λ∗, π∗;θt)− f(λ∗, πt;θt) = ⟨θt,ΦTµλ∗,π∗ −ΦTµλ∗,πt⟩

=
∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

=
∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

where ν∗(x) = (1− γ)ν0(x) + γ ⟨ψ(x),λ∗⟩. For the regret of the λ and θ-players, notice that we495

can express the estimator f̂ in terms of the objective f as follows:496

f̂(λ, π;θ) = (1− γ) ⟨ν0,vθ,π⟩+
〈
λ,ω + γΨ̂vθ,π − θ

〉
= f(λ, π;θ) + γ

〈
λ, Ψ̂vθ,π −Ψvθ,π

〉
.

Taking advantage of this relation, we now consider the last two set of terms in Equation (11). Indeed,497

for the second set of terms in the equation, we write498

f(λ∗, πt;θt)− f(λt, πt;θt)

= f̂(λ∗, πt;θt)− f̂(λt, πt;θt)− γ
〈
λ∗, Ψ̂vθt,πt

−Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt

−Ψvθt,πt

〉
=
〈
λ∗ − λt,ω + γΨ̂vθt,πt

− θt
〉
− γ

〈
λ∗, Ψ̂vθt,πt

−Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt

−Ψvθt,πt

〉
,

Notice that the last equality follows directly from definition of f̂ . Along these lines, we can also499

express the last set of terms in Equation (11) as follows:500

f(λt, πt;θt)− f(λt, πt;θ
∗
t )

= f̂(λt, πt;θt)− f̂(λt, πt;θ
∗
t )− γ

〈
λt, Ψ̂vθt,πt −Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt −Ψvθ∗

t ,πt

〉
= ⟨θt − θ∗t ,ΦTµ̂λt,πt − λt⟩ − γ

〈
λt, Ψ̂vθt,πt −Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt −Ψvθ∗

t ,πt

〉
,

Plugging the above derivations in the dynamic duality gap, we have that501

GT (λ
∗, π∗,θ∗1:T ) =

1

T

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

+
1

T

T∑
t=1

〈
λ∗ − λt,ω + γΨ̂vθt,πt

− θt
〉

+
1

T

T∑
t=1

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩

+
γ

T

T∑
t=1

〈
λ∗,Ψvθt,πt − Ψ̂vθt,πt

〉
+

γ

T

T∑
t=1

〈
λt, Ψ̂vθ∗

t ,πt −Ψvθ∗
t ,πt

〉
.

This matches the claim of the lemma, thus completing the proof.502
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B.2 Bounding the Regret Terms503

In this section we provide the proofs of the our claims made in the main text about the regret of each504

player—precisely, Lemmas 4.3–4.5.505

B.2.1 Proof of Lemma 4.3506

Consider the regret of the π-player introduced in the main text as,507

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

(a)

≤
∑

x ν
∗(x)DKL (π

∗ (·|x)∥π1 (·|x))
α

+
αTR2D2

θ

2
(b)

≤ logA

α
+

αTR2D2
θ

2
.

We have used (a) the standard Mirror descent analysis of softmax policy iterates recalled in508

Lemma E.1 for completeness, and (b) the fact that π1 is a uniform policy and ν∗ ∈ ∆X . Dividing509

the above expression by T completes the proof.510

B.2.2 Proof of Lemma 4.4511

Recall the total regret of the λ-player against any fixed comparator λ∗ ∈ Rd is given as512

RT (λ∗) =

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩.

Since the feature-occupancy updates of Algorithm 1 simply implements a version of the composite-513

objective mirror descent scheme due to Duchi et al. [2010] we apply the standard analysis of this514

method (recalled as Lemma C.1 in Appendix C) to bound the instantaneous regret as515

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λt − λ∗∥2Λ−1

n
− ∥λt+1 − λ∗∥2Λ−1

n

2η
+

η

2
∥Λngλ(t)∥2Λ−1

n
+

ϱ

2
∥λ∗∥2Λ−1

n
− ϱ

2
∥λt+1∥2Λ−1

n
.

Then, taking the sum for t = 1, · · · , T , evaluating the telescoping sums and upper-bounding some516

negative terms by zero yields the expression517

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λ1 − λ∗∥2Λ−1

n

2η
+

η

2

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

+
ϱT

2
∥λ∗∥2Λ−1

n
− ϱ

2

T∑
t=1

∥λt∥2Λ−1
n

+
ϱ

2
∥λ1∥2Λ−1

n

=

(
1

2η
+

ϱT

2

)
∥λ∗∥2Λ−1

n
+

η

2

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

− ϱ

2

T∑
t=1

∥λt∥2Λ−1
n

.

In the equality, we have used that λ1 = 0. Dividing the resulting term by T gives the following518

bound on the average regret:519

1

T
RT (λ∗) ≤

(
1

2Tη
+

ϱ

2

)
∥λ∗∥2Λ−1

n
+

η

2T

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

.

The proof is completed by applying Lemma C.2 to bound the norm of the gradients and plugging the520

result into the bound above.521
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B.2.3 Proof of Lemma 4.5522

For the regret of the θ-player, first note that for any policy π with corresponding state-action value523

function weights θπ = ω + γΨvπ , we have524

∥θπ∥2 = ∥ω + γΨvπ∥2 ≤ ∥ω∥2 + γ ∥Ψvπ∥2 ≤
√
d+

γ
√
d

(1− γ)
=

√
d

(1− γ)
,

where we have used the triangle inequality in the second line. The last inequality uses Definition 2.1525

and the fact that ∥vπ∥∞ ≤ 1
(1−γ) since the rewards are bounded in [0, 1]. Thanks to this bound, we526

can ensure that θ∗t = θπt ∈ Bd(Dθ) holds with the choice Dθ =
√
d/ (1− γ) as required by the527

lemma.Therefore, by construction of value-parameter updates in Algorithm 1, we have528

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩ ≤ 0 for t = 1, · · · , T.

This concludes the proof.529

B.3 Bounding the gap-estimation error530

In this section, we provide the proof of Lemma 4.6 which bounds the gap-estimation error defined for531

an arbitrary comparator sequence (λ∗, πt,θ
∗
t ) ∈ Rd ×Π(Dπ)× Bd(Dθ) for t = 1, . . . , T as,532

errΨ̂ =

T∑
t=1

〈
λ∗,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vθ∗

t ,πt

〉
.

We control the above term with the now-classic techniques developed by Jin et al. [2020] for bounding533

model-estimation errors for linear MDPs. These results also make heavy use of self-normalized tail534

inequalities as popularized by Abbasi-Yadkori et al. [2011] (see also Lattimore and Szepesvári, 2020).535

To make this clear, we first note that, for any λ ∈ Rd, v ∈ RX , and ξ > 0,536 〈
λ,
(
Ψ̂−Ψ

)
v
〉 (a)

≤ ∥λ∥Λ−1
n

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

(b)

≤
∥λ∥2Λ−1

n

2Tξ
+

Tξ

2

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥2
Λ−1

n

.

Here, we have first used (a) the Cauchy–Schwarz inequality, and (b) the inequality of arithmetic and537

geometric means. Using this expression, we can upper-bound the gap estimation error as538

errΨ̂ ≤
∥λ∗∥2Λ−1

n

2ξ
+

T∑
t=1

∥λt∥2Λ−1
n

2Tξ

+
Tξ

2

T∑
t=1

∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥2
Λ−1

n

+
Tξ

2

T∑
t=1

∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥2
Λ−1

n

. (12)

To control the last two terms in the bound, we employ two main lemmas stated below.539

Lemma B.1. Let v ∈ [−B,B]X . With probability at least 1− δ, we have that:540

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
+B

√
dβ.

Lemma B.2. Consider the function class,541

V =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Π(Dπ) ,θ ∈ Bd(Dθ)
}
,

Let Dπ = αTDθ so that vθt,πt ∈ V . For any ϵ ∈ (0, 1), with probability at least 1− δ,542 ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4αTR2D2
θ

ϵ

)
+ 2 log

1

δ

+RDθ
√
dβ +

(√
β + 1

)
ϵ
√
d.
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The rather tedious but otherwise standard proofs of the above lemmas are given in Appendix D. Now,543

taking into account the fact that for Dθ large enough vπt ∈ V yields Corollary B.3 below.544

Corollary B.3. In the linear MDP setting described in Definition 2.1, notice that vπt = vθπt ,πt
with545

θπt = ω + γΨvθπt ,πt
. Furthermore, with RDθ = R

√
d/(1− γ) ≥ ∥vπt∥∞ and Dπ = αTDθ we546

have that vπt ∈ V . Therefore, for all ϵ > 0 with probability at least 1− δ, the following holds:547 ∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥
Λ−1

n

≤ 2
√
d√

n (1− γ)

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4αTR2d

ϵ (1− γ)
2

)
+ 2 log

1

δ

+
d
√
β

(1− γ)
+
(√

β + 1
)
ϵ
√
d.

In the following, we apply these results to bound the last two terms in the right-hand side of Equa-548

tion (12). Precisely, using Dθ =
√
d/(1−γ), α =

√
2 logA/R2D2

θT =

√
2 (1− γ)

2
logA/R2dT549

(which follows from optimizing the regret of the π-player in Lemma 4.3), as well as ϵ =550

4αR2d/ (1− γ)
2
=

√
32R2d logA

(1−γ)
√
T

and β = R2/dT we have that in any round t, with probabil-551

ity at least 1− δ,552 ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤

√
20d2 log (2T/δ)

n (1− γ)
2 +

√
R2d

T (1− γ)
2+

√
R4d logA

T 2
+

√
32R2d2 logA

T (1− γ)
2 .

Likewise,553 ∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥
Λ−1

n

≤

√
20d2 log (2T/δ)

n (1− γ)
2 +

√
R2d

T (1− γ)
2+

√
R4d logA

T 2
+

√
32R2d2 logA

T (1− γ)
2 .

Then plugging in the above bounds in Equation (12) with T ≥ 2R2n logA
log(1/δ) , it follows that for554

DΨ̂ =
√

320d2 log(2T/δ)

n(1−γ)2
,555

errΨ̂ ≤
∥λ∗∥2Λ−1

n

2ξ
+

T∑
t=1

∥λt∥2Λ−1
n

2Tξ
+ T 2ξD2

Ψ̂
,

with probability at least 1− δ, thus proving the claim.556

B.4 Full proof of Theorem 3.1557

To control the expected suboptimality of the output policy πJ of Algorithm 1, we study the repective558

regret and gap-estimation error at the selected comparator points. Precisely, combining Lemma 4.1559

and 4.2 when (λ∗, π∗,θ∗1:T ) =
(
ΦTµπ∗

, π∗,θπt
)
∈ Rd ×Π(Dπ)× Bd(Dθ), we have that,560

EJ

[〈
µπ∗

− µπJ , r
〉]

=
1

T
RT (π∗) +

1

T
RT

(
λπ∗

)
+

1

T
RT (θ∗1:T ) +

γ

T
errΨ̂. (13)

where,561

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

RT

(
λπ∗

)
=

T∑
t=1

⟨λπ∗
− λt,ω + γΨ̂vθt,πt

− θt⟩,

RT (θ∗1:T ) =

T∑
t=1

⟨θt − θπt
t ,ΦTµ̂λt,πt

− λt⟩

errΨ̂ =

T∑
t=1

〈
λπ∗

,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vπt
〉
.
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Notice that for this choice of λ∗, by Definition 2.1 ν∗(x) = (1− γ)ν0(x) + γ⟨ψ(x),µ∗⟩ = νπ
∗
(x)562

is a valid state occupancy measure. Next, introducing the bounds stated in Lemmas 4.3–4.6 under563

the required conditions Dθ =
√
d/ (1− γ), α =

√
2 (1− γ)

2
logA/R2dT , Dπ = αTDθ =564 √

2T logA/R2 and T ≥ 2R2n logA
log(1/δ) , as well as ξ ≥ 0 and DΨ̂ =

√
320d2 log(2T/δ)

n(1−γ)2
yields,565

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
2R2d logA

(1− γ)
2
T

+

(
1

2ηT
+

ϱ

2

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

+
γ

2Tξ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
1

T

T∑
t=1

∥λt∥2Λ−1
n

)
+ γTξD2

Ψ̂
,

with probability at least 1−δ, where C = 6β
(
d+D2

θ

)
+3d (1 +RDθ)

2
+3γ2dR2D2

θ . Rearranging566

the bound and selecting ϱ = γ/ξT to eliminate the (potentially large) norm of the iterates, we obtain567

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

ϱ

2
+

γ

2ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2

+

(
γ

ξT
− ϱ

)
1

2T

T∑
t=1

∥λt∥2Λ−1
n

+ γTξD2
Ψ̂

=

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

γ

ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
+ γTξD2

Ψ̂
.

Furthermore, choosing ξ = 1/TDΨ̂ i.e ϱ = γDΨ̂, we further simplify the above bound on the regret568

in terms of the optimization error arising from the policy and feature occupancy updates as,569

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

1

2ηT

∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
+ γ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)
DΨ̂.

Moving our attention to our earlier bound on the norm of gλ(t),570

C = 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ ≤ 27R2d2

(1− γ)
2 .

The inequality follows from our earlier choice of β = R2/dT and that T ≥ 1/d2. Plugging the values571

of C and DΨ̂ in the bound, then choosing η =

√
(1−γ)2

27R2d2T and using the condition T ≥ 2R2n logA
log(1/δ) ,572

we have that with probability at least 1− δ,573

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)√
27d2 log (1/δ)

8n logA (1− γ)
2

+ γ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)√
320d2 log (2T/δ)

n (1− γ)
2

= O

∥∥λπ∗∥∥2
Λ−1

n
+ 1

(1− γ)

√
d2 log (2T/δ)

n

 .

This completes the proof.574
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C Missing proofs of Section B.2575

Lemma C.1. (cf. Lemma 1 of Duchi et al. [2010]) Let gλ(t) = ω + γΨ̂vθt,πt
− θt Given λ1 = 0576

and ϱ, η > 0 and the sequence of iterates {λt}Tt=2 defined for t = 1, · · · , T as:577

λt+1 = arg min
λ∈Rd

{
−⟨λ, gλ(t)⟩+

1

2η
∥λ− λt∥2Λ−1

n
+

ϱ

2
∥λ∥2Λ−1

n

}
. (14)

Then, for any λ∗ ∈ Rd,578

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λt − λ∗∥2Λ−1

n
− ∥λt+1 − λ∗∥2Λ−1

n

2η
+

η

2
∥Λngλ(t)∥2Λ−1

n
+

ϱ

2
∥λ∗∥2Λ−1

n
− ϱ

2
∥λt+1∥2Λ−1

n
.

Proof. The proof of Lemma C.1 follows directly from the referenced Lemma from Duchi et al.579

[2010]. Consider,580

⟨λ∗ − λt, gλ(t)⟩+
ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

=

〈
λt+1 − λ∗,−gλ(t) +

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
+ ⟨λt+1 − λt, gλ(t)⟩

−
〈
λt+1 − λ∗,

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
+

ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

(a)

≤ ⟨λt+1 − λt, gλ(t)⟩ −
1

η

〈
λt+1 − λ∗,Λ−1

n (λt+1 − λt)
〉

+ ϱ
〈
λ∗,Λ−1

n λt+1

〉
− ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

(b)

≤ ⟨λt+1 − λt, gλ(t)⟩+
1

η

〈
λt+1 − λ∗,Λ−1

n (λt − λt+1)
〉

(c)
= ⟨λt+1 − λt, gλ(t)⟩ −

1

2η
∥λt+1 − λt∥2Λ−1

n
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
≤ 1

η
sup
y∈Rd

(〈
y, ηΛ1/2

n gλ(t)
〉
− 1

2
∥y∥22

)
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
(d)
=

η

2
∥Λngλ(t)∥2Λ−1

n
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
We have used581

(a) The first order optimality condition on Equation (14):582

For any λ ∈ Rd,583 〈
λt+1 − λ,−gλ(t) +

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
≤ 0.

(b) The relation:584

ϱ
〈
λ∗,Λ−1

n λt+1

〉
− ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n
= −ϱ

2
∥λt+1 − λ∗∥2Λ−1

n
≤ 0.

(c) By definition of the squared L2-norm for vectors a = Λ
−1/2
n (λt+1 − λ∗) and b =585

Λ
−1/2
n (λt − λt+1):586

⟨a, b⟩ = 1

2

(
−∥b∥22 + ∥a+ b∥22 − ∥a∥22

)
.

Note that a and b are well defined since Λn is both symmetric and positive definite.587
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(d) By definition of the Fenchel conjugate of 1
2 ∥y∥

2
2 for y ∈ Rd.588

Rearranging the terms and plugging in gλ(t) = ω + γΨ̂vθt,πt − θt completes the proof.589

Finally, we will use the following result that bounds the gradient norms appearing in the bound above.590

Lemma C.2. Under the conditions of the linear MDP setting we have that,591

∥Λngλ(t)∥2Λ−1
n

≤ 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ.

Proof. Recall that for t = 1, · · · , T gλ(t) = ω + γΨ̂vθt,πt
− θt. Then,592

∥Λngλ(t)∥2Λ−1
n

=
∥∥∥Λn

[
ω + γΨ̂vθt,πt

− θt
]∥∥∥2

Λ−1
n

=

∥∥∥∥∥β (ω − θt) +
1

n

n∑
i=1

φi (r (xi, ai)− ⟨φi,θt⟩) + γΛnΨ̂vθt,πt

∥∥∥∥∥
2

Λ−1
n

≤ 3 ∥β (ω − θt)∥2Λ−1
n

+ 3

∥∥∥∥∥ 1n
n∑

i=1

φi (r (xi, ai)− ⟨φi,θt⟩)

∥∥∥∥∥
2

Λ−1
n

+ 3γ2
∥∥∥ΛnΨ̂vθt,πt

∥∥∥2
Λ−1

n

.

Now to bound each of the three terms, we use that593

∥β (ω − θt)∥2Λ−1
n

≤ 2β2
∥∥Λ−1

n

∥∥
2

(
d+D2

θ

)
≤ 2β

(
d+D2

θ

)
,

where the first inequality uses the assumption that ∥ω∥2 ≤
√
d (cf. Definition 2.1) and θt ∈ Bd(Dθ).594

Next, we have that595 ∥∥∥∥∥ 1n
n∑

i=1

φi (r (xi, ai)− ⟨φi,θt⟩)

∥∥∥∥∥
2

Λ−1
n

≤ 1

n

n∑
i=1

∥φi∥2Λ−1
n

|r (xi, ai)− ⟨φi,θt⟩|2

≤ d (1 +RDθ)
2
.

The last step follows from the fact that the rewards are bounded in [0, 1], ∥φi∥ ≤ R, θt ∈ Bd(Dθ)596

and Equation (17). The last remaining term is bounded as597 ∥∥∥ΛnΨ̂vθt,πt

∥∥∥2
Λ−1

n

=

∥∥∥∥∥ 1n
n∑

i=1

φivθt,πt
(x′

i)

∥∥∥∥∥
2

Λ−1
n

≤ 1

n

n∑
i=1

∥φi∥2Λ−1
n

∥vθt,πt
∥2∞ ≤ dR2D2

θ

Therefore, we obtain598

∥Λngλ(t)∥2Λ−1
n

≤ 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ

and this completes the proof.599
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D Missing proofs of Section B.3600

In this section, we prove the lemmas stated in Section B.3.601

D.1 Proof of Lemma B.1602

By definition of Λn Section 3 and Ψ̂ in Equation (8), we can write:603

Λn

(
Ψ̂−Ψ

)
v = Λn

(
1

n
Λ−1

n

n∑
i=1

φie
T

x′
i

)
v −

(
βIn +

1

n

n∑
i=1

φiφ
T

i

)
Ψv

=
1

n

n∑
i=1

φi[v (x
′
i)− ⟨p (·|xi, ai) ,v⟩]− βΨv

In the last equality we used definition 2.1 to write φT
iΨ = p (·|xi, ai)

T. Let ξi = v (x′
i) −604

⟨p (·|xi, ai) ,v⟩. Then,605 ∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤

∥∥∥∥∥ 1n
n∑

i=1

φiξi

∥∥∥∥∥
Λ−1

n

+ ∥βΨv∥Λ−1
n

.

We easily control the second term with the relation:606

∥βΨv∥Λ−1
n

≤ β
∥∥∥Λ−1/2

n

∥∥∥
2
∥Ψv∥2 ≤ B

√
dβ (15)

The last inequality follows from the fact that
∥∥∥Λ−1/2

n

∥∥∥
2
≤ 1/

√
β and by definition 2.1 ∥Ψv∥2 ≤607

B
√
d for v ∈ [−B,B]X .608

Now, to handle the first term, let D0 = ∅. We construct a filtration Fi−1 = Di−1 ∪ (x0
i , xi, ai, ri)609

for i = 1, 2, · · · , n. Notice that by construction of the dataset ξi is a martingale difference sequence610

(i.e E [ξi |Fi−1 ] = 0) taking values in the range [−2B, 2B]. Then, we can directly apply Lemma E.3611

to obtain a bound on the first term as:612 ∥∥∥∥∥ 1n
n∑

i=1

φiξi

∥∥∥∥∥
Λ−1

n

=
1√
n

√√√√√∥∥∥∥∥
n∑

i=1

φiξi

∥∥∥∥∥
2

(nΛn)
−1

≤ 2B√
n

√√√√2 log

(
det (nΛn)

1/2
det (nβI)

−1/2

δ

)

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
.

with probability 1− δ. In the last inequality we have used the AM-GM inequality and bound on the613

feature vectors:614

det (nΛn) ≤
(

tr (nΛn)

d

)d

=

(
nβ +

tr (
∑n

i=1φiφ
T
i )

d

)d

≤
(
nβ +

nR2

d

)d

.

Putting everything together, we have that w.p 1− δ,615 ∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
+B

√
dβ.

This completes the proof.616

D.2 Proof of Lemma B.2617

Unlike Lemma B.1, we now aim to control the error term
∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

when v is random.618

Also, notice that with π1 (a|x) = e⟨φ(x,a),0⟩∑
a′∈A e⟨φ(x,a′),0⟩ as the uniform policy, for t = 1, · · · , T we have619

that,620

πt+1(a|x) =
π1(a|x)eα⟨φ(x,a),

∑t
k=1 θk⟩∑

a′ π1(a′|x)eα⟨φ(x,a′),
∑t

k=1 θk⟩
=

e⟨φ(x,a),α
∑t

k=0 θk⟩∑
a′ e⟨φ(x,a′),α

∑t
k=0 θk⟩

,
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where θ0 = 0. Furthermore, since {θt}Tt=1 ⊂ Bd(Dθ), for any t
∥∥∥α∑t

k=0 θk

∥∥∥
2
≤ αTDθ. Hence,621

with Dπ = αTDθ, πt ∈ Π(Dπ) and vθt,πt
∈ V .622

Therefore, as we have seen in previous works [Jin et al., 2020, Hong and Tewari, 2024], the quantity623 ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

can be controlled without any dependence on the size of the state space624

with a uniform covering argument over V . Let Cv be an ϵ-cover of V . That is, for vπt,θt ∈ V , there625

exists v′ ∈ Cv such that ∥vπ,θt − v′∥∞ ≤ ϵ. Then, we can write:626 ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤
∥∥∥Λn

(
Ψ̂−Ψ

)
v′
∥∥∥
Λ−1

n

+
∥∥∥ΛnΨ̂ (vθt,πt − v′)

∥∥∥
Λ−1

n

+ ∥ΛnΨ (v′ − vθt,πt)∥Λ−1
n

(16)

Consider the first term in the bound. Note that v′ is still random with respect to uncertainty in the627

learning process. However, due to the structure of V we know that Cv exists and has cardinality628

log |Cv| = O
(
d log

(
1 + 4RDπRDθ

ϵ

))
(see Lemma E.6). Inspired by Lemma B.1, consider the event:629

Ev =

{
existsv ∈ Cv :

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

>
2RDθ√

n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ′
+RDθ

√
dβ

}

Since Cv ⊆ V , we know from Lemma B.1 that P (Ev) ≤ δ′. Now, taking the union bound over the630

cover Cv we have that,631

P

( ⋃
v∈Cv

Ev

)
≤ |Cv|δ′.

Therefore for any v′ ∈ Cv with probability at least 1− δ,632 ∥∥∥Λn

(
Ψ̂−Ψ

)
v′
∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

|Cv|
δ

+RDθ
√
dβ

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4RDπRDθ
ϵ

)
+ 2 log

1

δ
+RDθ

√
dβ

Now, for the second term in Equation (16) we write,633

∥∥∥ΛnΨ̂ (vθt,πt − v′)
∥∥∥2
Λ−1

n

=

∥∥∥∥∥ 1n
n∑

i=1

φi (vθt,πt (x
′
i)− v′ (x′

i))

∥∥∥∥∥
2

Λ−1
n

(a)

≤ 1

n

n∑
i=1

|vθt,πt
(x′

i)− v′ (x′
i)|

2 ∥φi∥2Λ−1
n

≤ ϵ2
1

n

n∑
i=1

∥φi∥2Λ−1
n

(b)

≤ ϵ2d.

We have used (a) Jensen’s inequality and (b) since Λn ≻ 0, the relation,634

1

n

n∑
i=1

φT

iΛ
−1
n φi =

1

n

n∑
i=1

tr
(
Λ−1

n φiφ
T

i

)
= tr

(
Λ−1

n

1

n

n∑
i=1

φiφ
T

i

)
≤ tr (I) = d. (17)
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For the last term, notice that:635

∥ΛnΨ (v′ − vθt,πt
)∥Λ−1

n
=

∥∥∥∥∥βΨ (v′ − vθt,πt
) +

1

n

n∑
i=1

φi

[∑
x′

p (x′|xi, ai) (v
′ (x′)− vθt,πt

(x′))
]∥∥∥∥∥

Λ−1
n

(a)

≤ ϵ
√

dβ +

√√√√∥∥∥∥∥ 1n
n∑

i=1

φi

[∑
x′

p (x′|xi, ai) (v′ (x′)− vθt,πt
(x′))

]∥∥∥∥∥
2

Λ−1
n

(b)

≤ ϵ
√

dβ +

√√√√ 1

n

n∑
i=1

∥v′ − vθt,πt
∥2∞ ∥φi∥2Λ−1

n

(c)

≤ ϵ
√

dβ + ϵ
√
d = ϵ

√
d
(√

β + 1
)
.

This follows from (a) Equation (15) since v = v′ − vθt,πt
∈ [−ϵ, ϵ]X and (b) monotonicity of the636

square root function as well as Jensen’s inequality and (c) Equation (17).637

Finally, plugging the above results back into Equation (16), we have that with probability at least638

1− δ,639 ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4RDπRDθ
ϵ

)
+ 2 log

1

δ

+RDθ
√

dβ +
(√

β + 1
)
ϵ
√
d

The proof of Lemma B.2 is complete.640
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E Auxiliary Lemmas641

Lemma E.1. Let q1, · · · , qt be a sequence of iterates satisfying ∥qt∥∞ ≤ RDθ by virtue of642

definition 2.1 and θt ∈ Bd(Dθ). Given an initial policy π1 and learning rate α > 0, and sequence of643

policies {πt}Tt=2 defined as:644

πt+1(a|x) =
πt(a|x)eαqt(x,a)∑
a′ πt(a′|x)eαqt(x,a′)

,

Then, for any comparator policy π∗ and ν∗ some state distribution,645

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a) ≤
∑

x ν
∗(x)DKL (π

∗ (·|x)∥π1 (·|x))
α

+
αTR2D2

θ

2
.

The proof of the lemma follows from bounding the regret of the π-player in each state x as646

T∑
t=1

∑
a

(π∗(a|x)− πt(a|x)) qt(x, a) ≤
DKL (π

∗ (·|x)∥π1 (·|x))
α

+
α

2

T∑
t=1

∥qt(x, ·)∥2∞ ,

via the application of the standard analysis of the exponentially weighted forecaster of Vovk [1990],647

Littlestone and Warmuth [1994], Freund and Schapire [1997] (see, e.g., Theorem 2.2 in Cesa-Bianchi648

and Lugosi, 2006), and noting that ∥qt∥∞ ≤ RDθ for all t.649

Lemma E.2. Suppose that ∥φ(x, a)∥2 ≤ R for all (x, a) ∈ X ×A. Let πθ, πθ′ be softmax policies.650

Then, for all states x ∈ X we have that:651 ∑
a

|πθ (a|x)− πθ′ (a|x)| ≤ R ∥θ − θ′∥2

holds for any θ,θ′ ∈ Rd.652

Proof. Recall that,653

Π(Dπ) =

{
πθ (a|x) =

e⟨φ(x,a),θ⟩∑
a′ e⟨φ(x,a′),θ⟩

∣∣∣∣∣θ ∈ Bd(Dπ)

}
.

For πθ, πθ′ ∈ Π(Dπ) using Pinsker’s inequality we have that,654

∥πθ (·|x)− πθ′ (·|x)∥1 ≤
√

2DKL (πθ (·|x)∥πθ′ (·|x)) for x ∈ X . (18)

Furthermore, taking into account the specific structure of the policies, we can write:655

DKL (πθ (·|x)∥πθ′ (·|x)) =
∑
a

πθ (a|x) log
πθ (a|x)
πθ′ (a|x)

= −
∑
a

πθ (a|x) ⟨φ(x, a),θ′ − θ⟩+ log

∑
a e

⟨φ(x,a),θ′⟩∑
a e

⟨φ(x,a),θ⟩

(a)
= −

∑
a

πθ (a|x) ⟨φ(x, a),θ′ − θ⟩+ log
∑
a

πθ (a|x) e⟨φ(x,a),θ′−θ⟩

(b)
=

R2 ∥θ − θ′∥22
2

using that (a) the relation,656

log

∑
a e

⟨φ(x,a),θ′⟩∑
a e

⟨φ(x,a),θ⟩ = log
∑
a

e⟨φ(x,a),θ′⟩∑
a′ e⟨φ(x,a′),θ⟩ · e

⟨φ(x,a),θ⟩

e⟨φ(x,a),θ⟩ = log
∑
a

πθ (a|x) e⟨φ(x,a),θ′−θ⟩,

and (b) Hoeffding’s lemma (cf. Lemma A.1 of Cesa-Bianchi and Lugosi [2006]). The final statement657

follows from substituting this result in Equation (18).658
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Lemma E.3. (Self-Normalized Bound for Vector-Valued Martingales - Theorem 1 of Abbasi-Yadkori659

et al. [2011]) Let {Fi−1}∞i=1 be a filtration and {ξi}∞i=1 a real-valued stochastic process such that ξi660

for i = 1, · · · is zero-mean (i.e E [ξi |Fi−1 ] = 0) and conditionally s-subgaussian for s ≥ 0. That is,661

for all b ∈ R,662

E
[
ebξi |Fi−1

]
≤ e

b2s2

2 .

Also, let {φi}∞i=1 be Fi−1-measurable. Then,663 ∥∥∥∥∥
n∑

i=1

φiξi

∥∥∥∥∥
2

(nΛn)
−1

≤ 2s2 log

[
det (nΛn)

1/2
det (nβI)

−1/2

δ

]
.

Lemma E.4. (e.g. see Chapter 27 of Shalev-Shwartz and Ben-David [2014]) For all ϵ > 0,664

logN (Bd(r), ∥·∥∞ , ϵ) ≤ d log

(
1 +

2r

ϵ

)
.

Corollary E.5. Under the conditions of Lemma E.2, for all ϵ > 0,665

logN
(
Π(Dπ) , ∥·∥∞,1 , ϵ

)
≤ logN

(
Bd(Dπ), ∥·∥∞ ,

ϵ

R

)
≤ d log

(
1 +

2RDπ

ϵ

)
.

Lemma E.6. Consider the function class,666

V =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Π(Dπ) ,θ ∈ Bd(Dθ)
}
,

we have that:667

N (V, ∥·∥∞ , ϵ) ≤ N
(
Π(Dπ) , ∥·∥∞,1 , ϵ/2RDθ

)
×N (Bd(Dθ), ∥·∥2 , ϵ/2R) ,

and,668

logN (V, ∥·∥∞ , ϵ) ≤ 2d log

(
1 +

4RDπRDθ
ϵ

)
Proof. Let Cπ denote the ϵπ-cover of Π(Dπ) with respect to the norm ∥·∥∞,1 and Cθ the ϵθ-cover669

of Bd(Dθ) under the L2-norm. For (π,θ) ∈ Π(Dπ)× Bd(Dθ) and (π′,θ′) ∈ Cπ × Cθ, it follows670

that for any state x ∈ X ,671

|vπ,θ(s)− vπ′,θ′(s)| =

∣∣∣∣∣∑
a∈A

π(a|x) ⟨φ(x, a),θ⟩ − π′(a|x) ⟨φ(x, a),θ′⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
a∈A

(π(a|x)− π′(a|x)) ⟨φ(x, a),θ⟩+
∑
a∈A

π′(a|x) ⟨φ(x, a),θ − θ′⟩

∣∣∣∣∣
≤ RDθ

∑
a∈A

|π(a|x)− π′(a|x)|+R
∑
a∈A

π′(a|x) ∥θ − θ′∥2

Let Cv =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Cπ,θ ∈ Cθ

}
. Then, Cv is an ϵ-cover of V with respect672

to the L∞-norm when ϵπ = ϵ/2RDθ and ϵθ = ϵ/2R. Therefore, we can derive a bound on the673

covering number of Cv as:674

N (V, ∥·∥∞ , ϵ) ≤ N
(
Π(Dπ) , ∥·∥∞,1 , ϵ/2RDθ

)
×N (Bd(Dθ), ∥·∥2 , ϵ/2R)

≤
(
1 +

4RDπRDθ
ϵ

)d(
1 +

4RDθ
ϵ

)d

.

Hence,675

logN (V, ∥·∥∞ , ϵ) ≤ 2d log

(
1 +

4RDπRDθ
ϵ

)
This completes the proof.676
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Question: Does the paper discuss the limitations of the work performed by the authors?694

Answer: [Yes]695

Justification:696

Guidelines:697

• The answer NA means that the paper has no limitation while the answer No means that698

the paper has limitations, but those are not discussed in the paper.699

• The authors are encouraged to create a separate "Limitations" section in their paper.700

• The paper should point out any strong assumptions and how robust the results are to701

violations of these assumptions (e.g., independence assumptions, noiseless settings,702

model well-specification, asymptotic approximations only holding locally). The authors703

should reflect on how these assumptions might be violated in practice and what the704

implications would be.705

• The authors should reflect on the scope of the claims made, e.g., if the approach was706

only tested on a few datasets or with a few runs. In general, empirical results often707

depend on implicit assumptions, which should be articulated.708

• The authors should reflect on the factors that influence the performance of the approach.709

For example, a facial recognition algorithm may perform poorly when image resolution710

is low or images are taken in low lighting. Or a speech-to-text system might not be711

used reliably to provide closed captions for online lectures because it fails to handle712

technical jargon.713

• The authors should discuss the computational efficiency of the proposed algorithms714

and how they scale with dataset size.715

• If applicable, the authors should discuss possible limitations of their approach to716

address problems of privacy and fairness.717

• While the authors might fear that complete honesty about limitations might be used by718

reviewers as grounds for rejection, a worse outcome might be that reviewers discover719

limitations that aren’t acknowledged in the paper. The authors should use their best720

judgment and recognize that individual actions in favor of transparency play an impor-721

tant role in developing norms that preserve the integrity of the community. Reviewers722

will be specifically instructed to not penalize honesty concerning limitations.723

3. Theory Assumptions and Proofs724

Question: For each theoretical result, does the paper provide the full set of assumptions and725

a complete (and correct) proof?726

Answer: [Yes]727
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Justification:728

Guidelines:729

• The answer NA means that the paper does not include theoretical results.730

• All the theorems, formulas, and proofs in the paper should be numbered and cross-731

referenced.732

• All assumptions should be clearly stated or referenced in the statement of any theorems.733

• The proofs can either appear in the main paper or the supplemental material, but if734

they appear in the supplemental material, the authors are encouraged to provide a short735

proof sketch to provide intuition.736

• Inversely, any informal proof provided in the core of the paper should be complemented737

by formal proofs provided in appendix or supplemental material.738

• Theorems and Lemmas that the proof relies upon should be properly referenced.739

4. Experimental Result Reproducibility740

Question: Does the paper fully disclose all the information needed to reproduce the main ex-741

perimental results of the paper to the extent that it affects the main claims and/or conclusions742

of the paper (regardless of whether the code and data are provided or not)?743

Answer: [NA]744

Justification: This is a theory paper, there are no experiments.745

Guidelines:746

• The answer NA means that the paper does not include experiments.747

• If the paper includes experiments, a No answer to this question will not be perceived748

well by the reviewers: Making the paper reproducible is important, regardless of749

whether the code and data are provided or not.750

• If the contribution is a dataset and/or model, the authors should describe the steps taken751

to make their results reproducible or verifiable.752

• Depending on the contribution, reproducibility can be accomplished in various ways.753

For example, if the contribution is a novel architecture, describing the architecture fully754

might suffice, or if the contribution is a specific model and empirical evaluation, it may755

be necessary to either make it possible for others to replicate the model with the same756

dataset, or provide access to the model. In general. releasing code and data is often757

one good way to accomplish this, but reproducibility can also be provided via detailed758

instructions for how to replicate the results, access to a hosted model (e.g., in the case759

of a large language model), releasing of a model checkpoint, or other means that are760

appropriate to the research performed.761

• While NeurIPS does not require releasing code, the conference does require all submis-762

sions to provide some reasonable avenue for reproducibility, which may depend on the763

nature of the contribution. For example764

(a) If the contribution is primarily a new algorithm, the paper should make it clear how765

to reproduce that algorithm.766

(b) If the contribution is primarily a new model architecture, the paper should describe767

the architecture clearly and fully.768

(c) If the contribution is a new model (e.g., a large language model), then there should769

either be a way to access this model for reproducing the results or a way to reproduce770

the model (e.g., with an open-source dataset or instructions for how to construct771

the dataset).772

(d) We recognize that reproducibility may be tricky in some cases, in which case773

authors are welcome to describe the particular way they provide for reproducibility.774

In the case of closed-source models, it may be that access to the model is limited in775

some way (e.g., to registered users), but it should be possible for other researchers776

to have some path to reproducing or verifying the results.777

5. Open access to data and code778

Question: Does the paper provide open access to the data and code, with sufficient instruc-779

tions to faithfully reproduce the main experimental results, as described in supplemental780

material?781
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Answer: [NA]782

Justification: This is a theory paper, there is no data or code.783

Guidelines:784

• The answer NA means that paper does not include experiments requiring code.785

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/786

public/guides/CodeSubmissionPolicy) for more details.787

• While we encourage the release of code and data, we understand that this might not be788

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not789

including code, unless this is central to the contribution (e.g., for a new open-source790

benchmark).791

• The instructions should contain the exact command and environment needed to run to792

reproduce the results. See the NeurIPS code and data submission guidelines (https:793

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.794

• The authors should provide instructions on data access and preparation, including how795

to access the raw data, preprocessed data, intermediate data, and generated data, etc.796

• The authors should provide scripts to reproduce all experimental results for the new797

proposed method and baselines. If only a subset of experiments are reproducible, they798

should state which ones are omitted from the script and why.799

• At submission time, to preserve anonymity, the authors should release anonymized800

versions (if applicable).801

• Providing as much information as possible in supplemental material (appended to the802

paper) is recommended, but including URLs to data and code is permitted.803

6. Experimental Setting/Details804

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-805

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the806

results?807

Answer: [NA]808

Justification: This is a theory paper, there are no experiments.809

Guidelines:810

• The answer NA means that the paper does not include experiments.811

• The experimental setting should be presented in the core of the paper to a level of detail812

that is necessary to appreciate the results and make sense of them.813

• The full details can be provided either with the code, in appendix, or as supplemental814

material.815

7. Experiment Statistical Significance816

Question: Does the paper report error bars suitably and correctly defined or other appropriate817

information about the statistical significance of the experiments?818

Answer: [NA]819

Justification: This is a theory paper, there are no experiments.820

Guidelines:821

• The answer NA means that the paper does not include experiments.822

• The authors should answer "Yes" if the results are accompanied by error bars, confi-823

dence intervals, or statistical significance tests, at least for the experiments that support824

the main claims of the paper.825

• The factors of variability that the error bars are capturing should be clearly stated (for826

example, train/test split, initialization, random drawing of some parameter, or overall827

run with given experimental conditions).828

• The method for calculating the error bars should be explained (closed form formula,829

call to a library function, bootstrap, etc.)830

• The assumptions made should be given (e.g., Normally distributed errors).831

• It should be clear whether the error bar is the standard deviation or the standard error832

of the mean.833
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• It is OK to report 1-sigma error bars, but one should state it. The authors should834

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis835

of Normality of errors is not verified.836

• For asymmetric distributions, the authors should be careful not to show in tables or837

figures symmetric error bars that would yield results that are out of range (e.g. negative838

error rates).839

• If error bars are reported in tables or plots, The authors should explain in the text how840

they were calculated and reference the corresponding figures or tables in the text.841

8. Experiments Compute Resources842

Question: For each experiment, does the paper provide sufficient information on the com-843

puter resources (type of compute workers, memory, time of execution) needed to reproduce844

the experiments?845

Answer: [NA]846

Justification: This is a theory paper, there are no experiments.847

Guidelines:848

• The answer NA means that the paper does not include experiments.849

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,850

or cloud provider, including relevant memory and storage.851

• The paper should provide the amount of compute required for each of the individual852

experimental runs as well as estimate the total compute.853

• The paper should disclose whether the full research project required more compute854

than the experiments reported in the paper (e.g., preliminary or failed experiments that855

didn’t make it into the paper).856

9. Code Of Ethics857

Question: Does the research conducted in the paper conform, in every respect, with the858

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?859

Answer: [Yes]860

Justification:861

Guidelines:862

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.863

• If the authors answer No, they should explain the special circumstances that require a864

deviation from the Code of Ethics.865

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-866

eration due to laws or regulations in their jurisdiction).867

10. Broader Impacts868

Question: Does the paper discuss both potential positive societal impacts and negative869

societal impacts of the work performed?870

Answer: [NA]871

Justification: This is a theory paper, with no specific societal impacts foreseen in the near872

future.873

Guidelines:874

• The answer NA means that there is no societal impact of the work performed.875

• If the authors answer NA or No, they should explain why their work has no societal876

impact or why the paper does not address societal impact.877

• Examples of negative societal impacts include potential malicious or unintended uses878

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations879

(e.g., deployment of technologies that could make decisions that unfairly impact specific880

groups), privacy considerations, and security considerations.881
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• The conference expects that many papers will be foundational research and not tied882

to particular applications, let alone deployments. However, if there is a direct path to883

any negative applications, the authors should point it out. For example, it is legitimate884

to point out that an improvement in the quality of generative models could be used to885

generate deepfakes for disinformation. On the other hand, it is not needed to point out886

that a generic algorithm for optimizing neural networks could enable people to train887

models that generate Deepfakes faster.888

• The authors should consider possible harms that could arise when the technology is889

being used as intended and functioning correctly, harms that could arise when the890

technology is being used as intended but gives incorrect results, and harms following891

from (intentional or unintentional) misuse of the technology.892

• If there are negative societal impacts, the authors could also discuss possible mitigation893

strategies (e.g., gated release of models, providing defenses in addition to attacks,894

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from895

feedback over time, improving the efficiency and accessibility of ML).896

11. Safeguards897

Question: Does the paper describe safeguards that have been put in place for responsible898

release of data or models that have a high risk for misuse (e.g., pretrained language models,899

image generators, or scraped datasets)?900

Answer: [NA]901

Justification: This is a theory paper, this question is not relevant.902

Guidelines:903

• The answer NA means that the paper poses no such risks.904

• Released models that have a high risk for misuse or dual-use should be released with905

necessary safeguards to allow for controlled use of the model, for example by requiring906

that users adhere to usage guidelines or restrictions to access the model or implementing907

safety filters.908

• Datasets that have been scraped from the Internet could pose safety risks. The authors909

should describe how they avoided releasing unsafe images.910

• We recognize that providing effective safeguards is challenging, and many papers do911

not require this, but we encourage authors to take this into account and make a best912

faith effort.913

12. Licenses for existing assets914

Question: Are the creators or original owners of assets (e.g., code, data, models), used in915

the paper, properly credited and are the license and terms of use explicitly mentioned and916

properly respected?917

Answer: [NA]918

Justification: This is a theory paper, there are no assets used.919

Guidelines:920

• The answer NA means that the paper does not use existing assets.921

• The authors should cite the original paper that produced the code package or dataset.922

• The authors should state which version of the asset is used and, if possible, include a923

URL.924

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.925

• For scraped data from a particular source (e.g., website), the copyright and terms of926

service of that source should be provided.927

• If assets are released, the license, copyright information, and terms of use in the928

package should be provided. For popular datasets, paperswithcode.com/datasets929

has curated licenses for some datasets. Their licensing guide can help determine the930

license of a dataset.931

• For existing datasets that are re-packaged, both the original license and the license of932

the derived asset (if it has changed) should be provided.933
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• If this information is not available online, the authors are encouraged to reach out to934

the asset’s creators.935

13. New Assets936

Question: Are new assets introduced in the paper well documented and is the documentation937

provided alongside the assets?938

Answer: [NA]939

Justification: This is a theory paper, there are no new assets.940

Guidelines:941

• The answer NA means that the paper does not release new assets.942

• Researchers should communicate the details of the dataset/code/model as part of their943

submissions via structured templates. This includes details about training, license,944

limitations, etc.945

• The paper should discuss whether and how consent was obtained from people whose946

asset is used.947

• At submission time, remember to anonymize your assets (if applicable). You can either948

create an anonymized URL or include an anonymized zip file.949

14. Crowdsourcing and Research with Human Subjects950

Question: For crowdsourcing experiments and research with human subjects, does the paper951

include the full text of instructions given to participants and screenshots, if applicable, as952

well as details about compensation (if any)?953

Answer: [NA]954

Justification: This is a theory paper, we haven’t used crowdsourced data or worked with955

human subjects.956

Guidelines:957

• The answer NA means that the paper does not involve crowdsourcing nor research with958

human subjects.959

• Including this information in the supplemental material is fine, but if the main contribu-960

tion of the paper involves human subjects, then as much detail as possible should be961

included in the main paper.962

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,963

or other labor should be paid at least the minimum wage in the country of the data964

collector.965

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human966

Subjects967

Question: Does the paper describe potential risks incurred by study participants, whether968

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)969

approvals (or an equivalent approval/review based on the requirements of your country or970

institution) were obtained?971

Answer: [NA]972

Justification: This is a theory paper, we haven’t worked with human subjects.973

Guidelines:974

• The answer NA means that the paper does not involve crowdsourcing nor research with975

human subjects.976

• Depending on the country in which research is conducted, IRB approval (or equivalent)977

may be required for any human subjects research. If you obtained IRB approval, you978

should clearly state this in the paper.979

• We recognize that the procedures for this may vary significantly between institutions980

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the981

guidelines for their institution.982

• For initial submissions, do not include any information that would break anonymity (if983

applicable), such as the institution conducting the review.984
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