
Stochastic Sparse Sampling: A Framework for Local
Explainability in Variable-Length Medical Time Series

Xavier Mootoo1,2,3, Alan A. Díaz-Montiel3, Milad Lankarany3,4, Hina Tabassum1,4

xmootoo@my.yorku.ca, adiazmon@tcd.ie, milad.lankarany@uhn.ca,
hinat@yorku.ca

1York University
2Vector Institute

3University Health Network
4University of Toronto

Abstract

While the majority of time series classification research has focused on modeling
fixed-length sequences, variable-length time series classification (VTSC) remains
underexplored, despite its relevance in healthcare and various other real-world
applications. Existing finite-context methods, such as Transformer-based architec-
tures, require noisy input processing when applied to VTSC, while infinite-context
methods, including recurrent neural networks, struggle with information overload
over longer sequences. Furthermore, current state-of-the-art (SOTA) methods
lack explainability and generally fail to provide insights for local signal regions,
reducing their reliability in high-risk scenarios. To address these issues, we intro-
duce Stochastic Sparse Sampling (SSS), a novel framework for explainable VTSC.
SSS manages variable-length sequences by sparsely sampling fixed windows to
compute localized predictions, which are then aggregated to form a final prediction.
We apply SSS on the task of seizure onset zone (SOZ) localization, a critical VTSC
problem requiring identification of seizure-inducing brain regions from variable-
length electrophysiological time series. We evaluate SSS on the Epilepsy iEEG
Multicenter Dataset, a heteregeneous collection of intracranial electroencephalog-
raphy (iEEG) recordings, and achieve performance comparable to current SOTA
methods, while enabling localized visual analysis of model predictions.

1 Introduction

Variable-length time series are prevalent throughout many areas of healthcare, including heart rate
monitoring, blood glucose measurements, and electrophysiological recordings. Yet, the majority
of time series classification (TSC) literature focuses solely on methods that process fixed-length
sequences [1, 2]. Finite-context methods—such as Transformers, temporal convolutional networks
(TCNs), multi-layer perceptrons (MLPs), and linear models—operate on fixed-length input segments
but cannot inherently process variable-length sequences, which necessitates padding or truncation
that distorts the input [3–17]. Infinite-context methods, including recurrent neural networks (RNNs),
gated recurrent units (GRUs), long short-term memory networks (LSTMs), and state space models
(SSMs), handle variable-length sequences, but can experience degradation and overcompression of
information over long sequences [18–22]. Alternative approaches such as ROCKET and Dynamic
Time Warping (DTW) with k-Nearest Neighbors (k-NN) address variable-length sequences but come
at the cost of model expressivity, computational cost, and sensitivity to noise [23, 24].

At the same time, modern time series methods greatly lack model explainability with respect to
local regions signal regions, lowering both their feasibility for critical applications and potential for
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clinicial adoption [25]. Post-hoc explainability of specific signal segments—as opposed to full-signal
analysis—is useful for uncovering important characteristics such as motifs, anomalies, or frequency
variations. This is especially important in contexts where the relationship between pathology and
signal characteristics is poorly understood, and as a result, providing insights into this relationship
would greatly aid both clinicians and scientists.

This need for local explainability is crucial in seizure onset zone (SOZ) localization—the task
of identifying the brain region where seizures originate—as effective treatment requires analysis
of variable-length signals and understanding local signal characteristics [26]. The World Health
Organization (WHO) reports epilepsy affects over 50 million people globally, establishing it as
one of the most common yet poorly understood neurological disorders [27, 28]. Additionally, one-
third of patients do not respond to antiepileptic drugs, making surgery the last resort and accurate
SOZ localization essential for effectively planning the operation. The process of SOZ identification
involves a two-step procedure: initial implantation of electrodes in areas suspected to contain the SOZ,
followed by recording and visual analysis of intracranial electroencephalography (iEEG) signals by
medical experts. The task of SOZ localization reduces to classifying individual electrode recordings,
representing different regions within the brain. Effective localization of the SOZ is challenging
due to the absence of clinically validated biological markers and the variable-length nature of iEEG
signals—consequently, surgical success rates range from 30% to 70% [29, 30].

Figure 1: An overview of Stochastic Sparse Sampling (SSS). (A) For a given time series, we
sample windows of fixed-length at random throughout the signal. (B) Each window is processed
independently by a local model with parameters θ, outputting the individual predictions ŷ1, . . . , ŷk.
(C) Individual predictions are then fed through an aggregation function to form the final prediction ŷ.

Contributions. We focus on the development of variable-length time series classification (VTSC)
with local explainability, and propose a novel framework we call Stochastic Sparse Sampling (SSS).
The main contributions of our paper are listed as follows:

• Robustness to long and variable-length sequences. SSS samples fixed-length windows,
and processes them independently through a single model. This prevents context
overload in long sequences seen in infinite-context methods, and does not utilize padding,
truncation, or interpolation required by finite-context methods. By relying on a single
local model, SSS utilizes far fewer parameters compared to finite-context methods that tra-
ditionally ingest the entire signal and are more susceptible to overfitting over long sequences.

• Explainability through Local Predictions: Our method enhances model interpretability by
directly tying each output—a probability score for each window—to the overall prediction.
This capability is crucial in critical clinical settings, such as SOZ localization, which
traditionally relies on visual analysis. Given the significant risks associated with brain
region removal, any proposal should be designed to integrate within clinical workflows.
Moreover, in the absence of universally recognized biological markers for epilepsy, SSS
offers the potential to further our understanding the SOZ and identifying novel markers.
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• Compatibility with modern backbones. SSS seamlessly integrates with any time series
backbone. This ensures that our approach leverages well-established frameworks, allowing
for adaptability across a diverse array of contexts.

2 Method

2.1 Variable-length time series classification

Consider a collection of time series
{
(x

(1)
t )T1

t=1, . . . , (x
(n)
t )Tn

t=1

}
, where each series i has sequence

length Ti ∈ N, and for each time point t, the vector x(i)
t ∈ RMi has Mi ∈ N channels. The goal of

VTSC is to learn an classifier fθ which maps series (x(i)
t )Ti

t=1 to its corresponding class in {1, . . . ,K}
for K ∈ N classes. We require that the classifier fθ can handle sequences of any length—that is, it
has infinite context—since we assume that each Ti can be arbitrarily large at test time. Otherwise,
we must adjust a finite-context classifier using padding, truncation, or interpolation. For a formal
treatment of finite- and infinite-context methods, please see Appendix A.1.

2.2 Stochastic sparse sampling

Figure 1 provides an overview of SSS for a single time series. For each forward pass and each
series (x(i)

t )Ti
t=1, SSS begins with a sampling procedure without replacement. Within the batch, a

window from series i is selected with probability pi ≈ Ti/
(∑n

j=1 Tj

)
. This proportional sampling

ensures fair representation of each series based on its length, allowing longer sequences—which
contain more information—to contribute more samples. More formally, if Ni is the random variable
representing the number of windows from series i in a batch of size B, then Ni ∼ Binomial(B, pi),
and consequently E[Ni] = Bpi. By sampling only a subset of windows, SSS introduces sparsity into
the training process, reducing computational cost in memory and the likelihood of context overload.

After sampling a batch of windows {w1, . . . ,wB}, each wb is processed independently by a model
fθ to obtain local prediction ŷb = fθ(wb) ∈ [0, 1]K for K ∈ N classes. The choice of fθ can be any
time series backbone, in our experiments we select PatchTST [9]. Denote Ib ∈ {1, . . . , n} as the
identifier of the time series from which wb was sampled. To obtain the final prediction for time series
1 ≤ i ≤ n, we aggregate the local predictions from all windows in the batch originating from series i:

ŷ(i) =
1

Ni

B∑
b=1

ŷb · 1{Ib = i}, (1)

where Ni =
∑B

b=1 1{Ib = i} is the number of windows in the batch for series i. By integrating local
predictions directly into the final output, SSS allows for meaningful post-hoc explanations.

3 Experiments

3.1 Baselines

For our finite-context baselines, we include a variety of backbones including PatchTST [9], a patch-
based Transformer model; TimesNet [14], which applies Fourier-based techniques along with incep-
tion TCN blocks [13]; ModernTCN [15], another TCN employing DWConv and FFNConv blocks;
and DLinear [17], a linear neural network that utilizes seasonal-trend decomposition techniques.
For our infinite-context baselines, we consider ROCKET [23], which applies random convolutional
kernels with a linear head; DTW combined with k-NN [24]; and two RNN architectures: GRUs [19]
and the SSM model Mamba [22]. For detailed configurations of each baseline see Appendix A.2.

3.2 Dataset

We utilize the Epilepsy iEEG Multicenter Dataset1, consisting of iEEG signals with SOZ clinical
annotations from four medical centers including the National Institute of Health (NIH), University of

1https://openneuro.org/datasets/ds003029/versions/1.0.7
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Maryland Medical Center (UMMC), University of Miami Jackson Memorial Hospital (UMH), and
Johns Hopkins Hospital (JHH). For each patient, and each electrode recording, the goal is to classify
this univariate time series as SOZ or non-SOZ. This channel-independent formulation is primarily
motivated due to interpatient variability, in our effort to build a general model that is unaffected by
the varying number of channels per patient, and is thus more clinically applicable.

Table 1: SOZ localization. F1 score and AUROC are reported for each medical center, averaged over
5 seeds. For each center, we train and evaluate a separate model; the first column represents training
and evaluation on all centers. Red and blue values indicate first and second best results respectively.

All∗ NIH UMF UMMC JHH

Model F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

SSS (Ours) 0.7522 0.8009 0.3984 0.6798 0.7227 0.9469 0.7616 0.8181 0.7504 0.8331
PatchTST [9] 0.7097 0.7852 0.6509 0.7221 0.9386 0.9968 0.8085 0.8297 0.7419 0.8045
TimesNet [14] 0.6897 0.7174 0.5950 0.6806 0.9227 0.9841 0.7821 0.8099 0.6891 0.8029

ModernTCN [15] 0.6938 0.7305 0.5055 0.7220 0.7221 1.0000 0.6371 0.8203 0.6710 0.7508

DLinear [17] 0.6916 0.7044 0.6055 0.6405 0.9409 0.9555 0.7658 0.7729 0.6873 0.7395

ROCKET [23] 0.6847 0.7481 0.6520 0.6546 0.8281 0.9327 0.7686 0.7900 0.6753 0.7752

DTW [24] 0.7173 0.7473 0.6210 0.7003 0.8080 0.8816 0.7370 0.7955 0.7430 0.7771

Mamba [22] 0.6452 0.7134 0.5974 0.6050 0.9289 0.9633 0.7900 0.8424 0.6456 0.6764

GRUs [19] 0.6948 0.7340 0.6171 0.6283 0.9044 0.9225 0.7920 0.8211 0.6140 0.6959

Figure 2: Visualization of SSS predictions using the PatchTST backbone with window size 1024,
across patient iEEG channels within the SOZ (left) and non-SOZ (right). Normalized amplitude is
displayed alongside a heatmap representing exponentially averaged window probabilities over time,
where color intensity is proportional to the likelihood of the signal originating from the SOZ.

4 Discussion

Table 1 summarizes our experimental results for SOZ localization. Although SSS demonstrates subpar
performance for certain clusters, it surpasses all SOTA baselines in the comprehensive all-cluster
evaluation. This suggests SSS benefits from large and heterogeneous datasets, and effectively captures
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local signal characteristics among electrophysiological recordings from different epilepsy patients.
Figure 2 supports this claim, providing a visualization of SSS’s predictions, where we observe clear
qualitative differences in model predictions with respect to local signal characteristics, among all
four medical centers. The ability to provide local explanation and visualization not only reinforces
our method’s potential for clinical application, but highlights its potential as a tool for fundamental
science, to better understand the relationships between pathology and signal characteristics. For
future work, we plan to improve cluster-specific performance and integrate uncertainty quantification
into window predictions to enhance local explainability.
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A Appendix

A.1 Finite-context & infinite-context methods

Definition 1. Let X be a vector space over R and fθ : X → Y be a model with parameters θ and
output space Y . We say that fθ has finite-context if X is finite-dimensional, that is, there exists some
n ∈ N such that X ∼= Rn as vector spaces. Whereas fθ is said to have infinite-context if X = R(∞)

is the space of real number sequences with finite support2.

Note that this definition refers to the native capabilities of fθ, without the usage of data manipulation
techniques such as padding, truncation, and interpolation. We utilize this formalization to separate
our baselines, so that we may better understand the advantages and limitations of both.

A.2 Experimental configurations and hyperparameter tuning

For each baseline in Table 1, we perform grid search and optimize with respect to best accuracy
score on the all cluster evaluation. Most parameters are self-descriptive, and L refers to window or
context size. The grid search parameters for each baseline are shown below; for information on the
implementation of SSS, see Appendix A.4.

PatchTST: dmodel ∈ {16, 32, 64}, dff ∈ {32, 64, 128}, num_heads ∈ {2, 4, 8}, num_enc_layers ∈
{1, 2, 3}, and lr ∈ {10−4, 10−5}, L ∈ {1000, 3000, 5000, 100000}. Best configuration: dmodel =
32, dff = 32, num_heads = 4, and lr = 10−5, and L = 10000. We adapt the official implementation
github.com/yuqinie98/PatchTST, but swap out the attention module with the native PyTorch
torch.nn.MultiheadAttention module.

TimesNet: dmodel ∈ {16, 32, 64}, dff ∈ {32, 64, 128}, num_kernels ∈ {4, 6}, top_k ∈ {3, 5},
num_enc_layers ∈ {1, 2}, and lr ∈ {10−4, 10−5}, L ∈ {1000, 3000, 5000, 100000}. Best
configuration: dmodel = 64, dff = 32, num_enc_layers = 2, num_kernels = 4, top_k = 3, and
L = 5000. We use the official implementation github.com/thuml/Time-Series-Library.

ModernTCN: lr ∈ {10−4, 10−5}, dmodel ∈ {16, 32, 64}, num_enc_layers ∈ {1, 2},
large_size_kernel ∈ {9, 13, 21, 51}, small_size_kernel = 5, dw_dims ∈ {128, 256},
ffn_ratio ∈ {1, 4}, and L ∈ {1000, 3000, 5000, 100000}. Best configuration: lr = 10−4,
dmodel = 32, large_size_kernel = 9, dw_dims = 128, ffn_ratio = 4, and L = 10000. We
use the official repository github.com/luodhhh/ModernTCN.

DLinear: moving_avg = 25, lr ∈ {10−4, 10−5, 10−6}, and L ∈ {1000, 3000, 5000, 100000}.
Best configuration: lr = 101e−6 and L = 10000. We use the implementation from
github.com/thuml/Time-Series-Library.

ROCKET: num_kernels = 10000 and lr ∈ {10−4, 10−5, 10−6}. Best configuration: lr = 10−4.
We use the official implementation github.com/angus924/rocket.

DTW: num_neighbors = 5, weighting = “uniform”. We used the KNNTimeSeriesClassifier
model from the tslearn library [31].

Mamba: lr ∈ {10−4, 10−5, 10−6}, dmodel ∈ {16, 32, 64}, num_enc_layers ∈ {1, 2, 3}. Best
configuration: lr = 10−6, num_enc_layers = 2, We also employ patching from [9], which we
observed led to greater to performance, with patch_size = 64 and patch_stride = 16. We use
the package mambapy which builds upon the official Mamba repository.

GRUs: Same search space used for Mamba, with added parameter of bidirectional ∈
{True,False}. Best configuration: lr = 10−4, dmodel = 32, num_enc_layers = 3, and
bidirectional = True. We utilized the native PyTorch module torch.nn.GRU.

In all experiments, we train using the Adam optimizer [32], for 50 epochs, with cosine learning rate
annealing (one cycle with 50 epochs in length) which adjusts the learning rate down by two orders of
magnitude (e.g., 10−4 to 10−6) by the last epoch. We also implement early stopping with a patience
of 15, and apply learnable instance normalization [33] for each input. For each experiment, we set
the training, validation, test split is 70%/10%/20%. For most of the baselines we use a dropout rate
of 0.2− 0.3, and weight decay to 10−4 − 10−5, but do not explicitly tune these parameters in our

2Every sequence in R(∞) must have finitely many non-zero terms.
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grid search. For finite-context methods we set the batch size to the entire dataset (596 individual
univariate time series for all clusters), whereas infinite-context methods required batch size of 1 due
to their variable-length.

A.3 Data preprocessing

Due to the extremely long sequence length of many iEEG channels, we required downsampling to fit
the dataset into memory (250GB RAM). For each channel, we applied a 1D average pooling layer
with kernel_size=24 and kernel_stride=12 before feeding it to the baseline model or before
performing the window sampling procedure for SSS. Due to the high computational complexity of
DTW, we were required to further downsample to kernel_size = 60 and kernel_stride = 30.

A.4 SSS implementation and configurations

For SSS, our grid search space consisted of lr ∈ {10−4, 10−5}, batch_size ∈ {2048, 4096, 8192},
L ∈ {512, 1024, 2048}, in addition to tuning the PatchTST backbone parameters as outlined in
A.2. Best configuration: lr = 10−4, batch_size = 8192, L = 1024, dmodel = 32, dff = 128,
num_heads = 4, and num_enc_layers = 2.

To achieve the sampling procedure described in 2.2, this is readily achieved by performing the slicing
window method over all channels, and collecting all windows within a single dataset. Note that the
number of windows obtained through the slicing window method will be proportional to the sequence
length of the time series. During training, the native PyTorch dataloader samples windows uniformly,
with sample size equal to our batch size, thus we achieve our chosen sampling procedure due to the
method in which we constructed our dataset, resulting in Ni ∼ Binomial(B, pi). This procedure uses
sampling without replacement; one may consider replacement, however, we did not experiment with
this and leave modifications with more complex sampling procedures as a future work.

A.5 SOZ localization specific methods

Several recent proposals have been tailored specifically to SOZ localization. Functional connectivity
graphs compute patient-specific channel metrics to capture brain connectivity patterns [34, 35],
offering insights into functional relationships associated with seizures. However, their reliance on
intra-patient dynamics makes them unsuitable for a single model that can generalize across multi-
patient, heterogeneous datasets. Alternatively, electrical stimulation methods that use intracranial
electrodes [36, 37] can enhance localization accuracy through induced responses analyzed by TCNs
and logistic regression models. Yet, these approaches require both fixed-length windows and the use
of active stimulation. For our purpose of building a general model for SOZ localization, which can
be applied to multiple patients (with a potentially varying number of channels) without electrical
stimulation, we do not consider such approaches in our study.
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