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Abstract

Stochastic heavy ball momentum (SHB) is commonly used to train machine learning models,
and often provides empirical improvements over stochastic gradient descent. By primarily
focusing on strongly-convex quadratics, we aim to better understand the theoretical advantage
of SHB and subsequently improve the method. For strongly-convex quadratics, Kidambi et al.
(2018) show that SHB (with a mini-batch of size 1) cannot attain accelerated convergence,
and hence has no theoretical benefit over SGD. They conjecture that the practical gain of
SHB is a by-product of using larger mini-batches. We first substantiate this claim by showing
that SHB can attain an accelerated rate when the mini-batch size is larger than a threshold
b* that depends on the condition number . Specifically, we prove that with the same
step-size and momentum parameters as in the deterministic setting, SHB with a sufficiently
large mini-batch size results in an O (exp(—T/vx) + o) convergence when measuring the
distance to the optimal solution in the /5 norm, where T is the number of iterations and
o2 is the variance in the stochastic gradients. We prove a lower-bound which demonstrates
that a x dependence in b* is necessary. To ensure convergence to the minimizer, we design a

noise-adaptive multi-stage algorithm that results in an O (exp (—T/vr) + %) rate when

measuring the distance to the optimal solution in the /5 norm. We also consider the general
smooth, strongly-convex setting and propose the first noise-adaptive SHB variant that
converges to the minimizer at an O(exp(—T/x) + %2) rate when measuring the distance to
the optimal solution in the squared ¢ norm. We empirically demonstrate the effectiveness
of the proposed algorithms.

1 Introduction

Heavy ball (HB) or Polyak momentum (Polyak, 1964) has been extensively studied for minimizing smooth,
strongly-convex quadratics in the deterministic setting. In this setting, HB converges to the minimizer at an
accelerated linear rate (Polyak, 1964; Wang et al., 2021) meaning that for a problem with condition number
k (see definition in Section 2), T iterations of HB results in the optimal O (exp(=T/y/=)) convergence. For
general smooth, strongly-convex functions, Ghadimi et al. (2015) prove that HB converges to the minimizer at
a linear but non-accelerated rate. In this setting, Wang et al. (2022) prove an accelerated linear rate for HB,
but under very restrictive assumptions (e.g. one-dimensional problems or problems with a diagonal hessian).
Recently, Goujaud et al. (2023) showed that HB (with any fixed step-size or momentum parameter) cannot
achieve accelerated convergence on general (non-quadratic) strongly-convex problems, and consequently has
no theoretical benefit over gradient descent (GD).

While there is a good theoretical understanding of HB in the deterministic setting, the current understanding
of stochastic heavy ball momentum (SHB) is rather unsatisfactory. SHB is commonly used to train machine
learning models and often provides empirical improvements over stochastic gradient descent (SGD). Further-
more, it forms the basis of modern adaptive gradient methods such as Adam (Kingma & Ba, 2014). As such, it
is important to better understand the theoretical advantage of SHB over SGD. Previous works (Defazio, 2020;
You et al., 2019) have conjectured that the use of momentum for non-convex minimization can help reduce
the variance resulting in faster convergence. Recently, Wang et al. (2023) analyze stochastic momentum in
the regime where the gradient noise dominates, and demonstrate that in this regime, momentum has limited
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benefits with respect to both optimization and generalization. However, it is unclear whether momentum can
provably help improve the convergence in other settings. In this paper, we primarily focus on the simple
setting of minimizing strongly-convex quadratics, with the aim of better understanding the theoretical benefit
of SHB and subsequently improving the method.

We first consider the general smooth, strongly-convex setting and aim to design an SHB variant that matches
the theoretical convergence of SGD. In this setting, Sebbouh et al. (2020); Liu et al. (2020) use SHB with
a constant step-size and momentum parameter, obtaining linear convergence to the neighborhood of the
minimizer. In order to attain convergence to the solution, Sebbouh et al. (2020) use a sequence of constant-
then-decreasing step-sizes to achieve an O (+°/1? + o°/1) rate, where o2 is the variance in the stochastic
gradients and the sub-optimality is measured in the squared /5 norm. In contrast, in the same setting, SGD
can attain an O (exp (=T/x) + ”2/T) convergence to the minimizer. To the best of our knowledge, in this
setting, there is no variant of SHB that can converge to the minimizer at a rate matching SGD.

Contribution 1: Noise-adaptive, non-accelerated convergence to the minimizer for smooth,
strongly-convex functions. In Section 3, we propose an SHB method that combines the averaging
interpretation of SHB (Sebbouh et al., 2020) and the exponentially decreasing step-sizes (Li et al., 2021;
Vaswani et al., 2022) to achieve an O (exp (~T/x) + ¢°/T) convergence rate that matches the SGD rate.
Importantly, the proposed algorithm is noise-adaptive meaning that it does not require the knowledge of
o2, but recovers the non-accelerated linear convergence rate (matching Ghadimi et al. (2015)) when o = 0.
Moreover, the algorithm provides an adaptive way to set the momentum parameter, alleviating the need to
tune this additional hyper-parameter.

Next, we focus on minimizing strongly-convex quadratics, and aim to analyze the conditions under which SHB
is provably better than SGD. A number of works (Kidambi et al., 2018; Paquette & Paquette, 2021; Loizou
& Richtarik, 2020; Bollapragada et al., 2023; Lee et al., 2022) have studied SHB for minimizing quadratics.
In this setting, Kidambi et al. (2018) show that SHB (with batch-size 1 and any choice of step-size and
momentum parameters) cannot attain an accelerated rate. They conjecture that the practical gain of SHB is
a by-product of using larger mini-batches. Similarly, Paquette & Paquette (2021) demonstrate that SHB
with small batch-sizes cannot obtain a faster rate than SGD. While Loizou & Richtarik (2020) prove an
accelerated rate for SHB (for any batch-size) in the “L1 sense”, this does not imply acceleration according to
the standard sub-optimality metrics. Recently, Bollapragada et al. (2023); Lee et al. (2022) use results from
random matrix theory to prove that SHB with a constant step-size and momentum can achieve an accelerated
rate when the mini-batch size is sufficiently large. Compared to these works, we use the non-asymptotic
analysis standard in the optimization literature, and prove stronger worst-case results.

Contribution 2: Accelerated convergence to the neighborhood for quadratics. Our result
in Section 4.1 substantiates the claim by Kidambi et al. (2018). Specifically, for strongly-convex quadratics,
we prove that SHB with a mini-batch size larger than a certain threshold b* (that depends on ) and constant
step-size and momentum parameters can achieve an O (exp(=7/vx) + o) non-asymptotic convergence up to
a neighborhood of the solution where the sub-optimality is measured in the /5 norm. For problems such
as non-parametric regression (Belkin et al., 2019; Liang & Rakhlin, 2020) or feasible linear systems, where
the interpolation property (Ma et al., 2018; Vaswani et al., 2019) is satisfied, ¢ = 0 and SHB with a large
batch-size results in accelerated convergence to the minimizer.

Contribution 3: Lower Bound for SHB. Our result in Section 4.2 shows that there exist quadratics for
which SHB (with a constant step-size and momentum) diverges when the mini-batch size is below a certain
threshold. Moreover, the lower-bound demonstrates that a x dependence in b* is necessary.

The result in Section 4.1 only demonstrates convergence to the neighbourhood of the solution. Next, we aim
to design an SHB algorithm that can achieve accelerated convergence to the minimizer.

Contribution 4: Noise-adaptive, accelerated convergence to the minimizer for quadratics.
In Section 4.3, we design a multi-stage SHB method (Algorithm 1) and prove that for strongly-convex
quadratics, Algorithm 1 (with a sufficiently large batch-size) converges to the minimizer at an accelerated

g

0] <eXp (=T/vr) + ﬁ) rate where the sub-optimality is measured in the ¢ norm. Algorithm 1 is noise-

adaptive and has a similar structure as the algorithm proposed for incorporating Nesterov acceleration in
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the stochastic setting (Aybat et al., 2019). In comparison, both Bollapragada et al. (2023); Lee et al. (2022)
only consider accelerated convergence to a neighbourhood of the minimizer. In concurrent work, Pan et al.
(2024) make a stronger bounded variance assumption in order to analyze SHB for minimizing strongly-convex
quadratics. They propose a similar multi-stage algorithm and under the bounded variance assumption, prove
that it can converge to the minimizer at an accelerated rate for any mini-batch size. In Section 4.3, we argue
that the bounded variance assumption is problematic even for simple quadratics and the algorithm in Pan
et al. (2024) can diverge for small mini-batches (see Fig. 2).

In settings where T > n, the batch-size required by the multi-stage approach in Algorithm 1 can be quite
large, affecting the practicality of the algorithm. In order to alleviate this issue, we design a two phase
algorithm that combines the algorithmic ideas in Sections 3 and 4.1.

Contribution 5: Partially accelerated convergence to the minimizer for quadratics. In Section 4.4,
we propose a two-phase algorithm (Algorithm 2) that uses a constant step-size and momentum in Phase 1,
followed by an exponentially decreasing step-size and corresponding momentum in Phase 2. By adjusting the
relative length of the two phases, we demonstrate that Algorithm 2 (with a sufficiently large batch-size) can
obtain a partially accelerated rate.

Contribution 6: Experimental Evaluation. In Section 5, we empirically validate the effectiveness
of the proposed algorithms on synthetic benchmarks. In particular, for strongly-convex quadratics, we
demonstrate that SHB and its variants can attain an accelerated rate when the mini-batch size is larger
than a threshold. While SHB with a constant step-size and momentum converges to a neighbourhood of the
solution, Algorithms 1 and 2 are able to counteract the noise resulting in smaller sub-optimality.

2 Problem Formulation

We consider the unconstrained minimization of a finite-sum objective f : R — R, f(w):= 1 3" | f;(w). For
supervised learning, n represents the number of training examples and f; is the loss of example i. Throughout,
we assume that f and each f; are differentiable and lower-bounded by f* and f, respectively. We also
assume that each function f; is L;-smooth, implying that f is L-smooth with L := max; L;. Furthermore, f is
considered to be p-strongly convex while each f; is convex!'. We define s := £ as the condition number of the
problem, and denote w* to be the unique minimizer of the above problem. We primarily focus on strongly-
convex quadratic objectives where f;(w) := sw” A;w — (d;,w) and f(w) = =37 fi(w) = wl Aw — (d,w),
where A; are symmetric positive semi-definite matrices. Here, L = Apax[A] and g = Amin[4] > 0, where
Amax and Apin refer to the maximum and minimum eigenvalues.

In each iteration k € [T] := {0,1,..,T}, SHB samples a mini-batch By (b := |Bj|) of examples and uses
it to compute the stochastic gradient of the loss function. The mini-batch is formed by sampling without
replacement. We denote V f;r(wy) to be the average stochastic gradient for the mini-batch By, meaning that
V fik(wg) :== % ZieBk V fi(wy) and E[V fi(wi)|wi] = V f(wyg). At iteration k, SHB takes a descent step in
the direction of V fix(wg) together with a momentum term computed using the previous iterate. Specifically,
the SHB update is given as:

Wet1 = Wi — gV fir,(wi) + Bi (wg — wr—1) (1)

where w1, wg, and wy,_; are the SHB iterates and w_1 = wo; {ax};_y and {Bx};_, is the sequence of
step-sizes and momentum parameters respectively. In the next section, we analyze the convergence of SHB
for general smooth, strongly-convex functions.

3 Non-accelerated linear convergence for strongly-convex functions

We first consider the non-accelerated convergence of SHB in the general smooth, strongly-convex setting.
Following Loizou et al. (2021); Vaswani et al. (2022), we define 02 := E;[f* — f] as the measure of stochasticity.
We develop an SHB method that (i) converges to the minimizer at the O (exp (—T/x) + o°/1) rate, (ii) is

We include definitions of these properties in App. A.
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noise-adaptive in that it does not require the knowledge of 02 and (iii) does not require manual tuning the
momentum parameter. In order to do so, we use an alternative form of the update (Sebbouh et al., 2020) that
interprets SHB as a moving average of the iterates 2z computed by stochastic gradient descent. Specifically,
for zp = wy,

Akt1 1

— W+ ———2k 2k = 2Zk—1 — MV fir (W), 2
/\k+1+1k /\k+1+1k k k=1 — MV fir (W) (2)

Wg41 =

where {ni, A\x} are parameters to be determined theoretically. For any {ng, \r} sequence, if ay = 1_‘_2\7’;“,

Br = 1+§7’Z+17 then the update in Eq. (2) is equivalent to the SHB update in Eq. (1) (Sebbouh et al.,
2020, Theorem 2.1). The proposed SHB method combines the above averaging interpretation of SHB and
exponentially decreasing step-sizes (Li et al., 2021; Vaswani et al., 2022) to achieve a noise-adaptive non-
accelerated convergence rate. Specifically, following Li et al. (2021); Vaswani et al. (2022), we set nx = v 7k,
where v is the problem-dependent scaling term that captures the smoothness of the function and - is the
problem-independent term that controls the decay of the step-size. By setting {nx, vx} appropriately, the
following theorem (proved in App. B) shows that the proposed method converges to the minimizer at an
O (exp (=T/x) + @*/1) rate. In contrast, Sebbouh et al. (2020) use constant-then-decaying step-sizes to obtain
a sub-optimal O (+*/1* + o*/T) rate.

Theorem 1. For L-smooth, p strongly-convex functions, SHB (Eq. (2)) with 7 > 1, v = ﬁ, A= (%)I/T,
e =Y e = vk, n =no and A, = % (1 —(1- nku)k) converges as:

" " T o2
E w1 — w*|> < Cs flwo — w2 exp ( ”) s

* 41n(T/7)
where ¢ = ﬁ and Cy, C5 are polynomial in £ and poly-logarithmic in 7.
This rate matches that of SGD with an exponentially decreasing = Lo

step-size (Li et al., 2021; Vaswani et al., 2022). In the deterministic =~ —2°{ ? ek
setting, when b = n, then by Lemma 7, { = 0, and SHB matches 231 - dvraokea [
the non-accelerated linear rate of GD and HB (Ghadimi et al., 2015). _ =

Non-parametric regression (Belkin et al., 2019; Liang & Rakhlin,
2020) or feasible linear systems (Loizou & Richtérik, 2020) satisfy
the interpolation (Ma et al., 2018; Vaswani et al., 2019) property. =

log(alpha _k)
beta_k

For these problems, the model is able to completely interpolate the 501 I e
data meaning that the noise at the optimum vanishes and hence ssy o T 00
o = 0. For this case, SHB matches the convergence rate of constant ° 2w

step-size SGD (Vaswani et al., 2019). For general strongly-convex

functions, Goujaud et al. (2023) prove that HB (with any step-size Figure 1: Variation in o and 8, for
or momentum parameter) cannot achieve an accelerated convergence T = 100, L=10, pu =1

rate on general (non-quadratic and with dimension greater than 1)

smooth, strongly-convex problems. Furthermore, we know that the variance term (depending on 0?) cannot
be decreased at a faster rate than Q(1/7) (Nguyen et al., 2019). Hence, the above rate is the best-achievable
for SHB in the general strongly-convex setting.

We reiterate that the method does not require knowledge of o and is hence noise-adaptive. Furthermore,
all algorithm parameters are completely determined by the u, L and 7 sequence. Hence, the resulting
algorithm does not require manual tuning of the momentum. In Fig. 1, we show the variation of the (o, Bk)
parameters, and observe that the method results in a more aggressive decrease in the step-size (compared to
the standard O(1/k) rate). This compensates for the increasing momentum parameter. The above theorem
requires knowledge of L and p which can be difficult to obtain in practice. Hence in App. C, we consider the
effect of misestimating L and p on the convergence rate of SHB. These are the first results that consider the
effect of parameter misspecification for SHB.

Next, we focus on strongly-convex quadratics where SHB can obtain an accelerated convergence rate.
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4 Accelerated linear convergence for strongly-convex quadratics

In this section, we focus on strongly-convex quadratics and in Section 4.1, we prove that SHB with a large
batch-size attains accelerated linear convergence to a neighbourhood determined by the noise. In Section 4.2,
we prove a corresponding lower-bound that demonstrates the necessity of a large batch-size to attain
acceleration. The exponentially decreasing step-sizes in Section 3 are too conservative to obtain an accelerated
rate to the minimizer. Consequently, in Section 4.3, we design a multi-stage SHB algorithm that achieves
accelerated convergence to the minimizer. Finally, in Section 4.4, we design a two-phase SHB algorithm that
has a simpler implementation, but can only attain partially accelerated rates.

4.1 Upper Bound for SHB

In the following theorem (proved in App. D), we show that for strongly-convex quadratics, SHB with a batch-
size b larger than a certain problem-dependent threshold b*, constant step-size and momentum parameter
converges to a neighbourhood of the solution at an accelerated linear rate. We note that the measure of
suboptimality in this section is expressed as the norm, whereas in the previous section, it was represented
as the squared norm. By Jensen’s inequality, an upper-bound on E ||wp — w* \2 implies an upper-bound on
E ||wr — w*||.

Theorem 2. For L-smooth, p strongly-convex quadratics, SHB (Eq. (1)) with ay = o = ¢ for a < 1,
- * . 1 1 .
Be=B=(1-3/a ) batch-size b s.t. b > b* := n max {1+g“ H(l)“} converges as:

]E||wT—w*|<6\/j%/EeXp( YO {2, 1= 2VRVE} ) o — 0+ 2 i {1, £

where x := \/E ||V fi(w*)|]?, ¢ = /3 Toivs 1)6 and C := 3°26.

The first term in the convergence rate represents the bias. Since 1 — 2y/kv/¢ > % when b > b*, the initial
sub-optimality ||wg — w*|| is forgotten at an accelerated linear rate proportional to exp(—T'/v/k). Moreover,
since the bias term depends on ¢, using a larger batch-size (above b*) leads to a smaller ¢ resulting in faster
convergence. In the deterministic case, when b = n and ¢ = 0, we recover the non-asymptotic accelerated
convergence for HB (Wang et al., 2021). Similar to the deterministic case, the accelerated convergence
requires a “warmup” number of iterations meaning that T needs to be sufficiently large to ensure that

exp (——— max { 1 -2k V¢ }) . The second term represents the variance, and determines the

size of the neighbourhood. The above theorem uses x2 = E ||V f;(w*)||* as the measure of stochasticity, where
X2 < 2Lo? because of the L-smoothness of the problem. Compared to constant step-size SGD that achieves
an O(exp(—T/k) + x), SHB with a sufficiently large batch-size results in an accelerated O(exp(—T/+/k) + X)
rate. We observe that if x is large, a larger batch-size is required to attain acceleration. Likewise, using a
smaller step-size requires a proportionally larger batch-fraction to guarantee an accelerated rate. On the
other hand, as n increases, the relative batch-fraction (equal to b/n) required for acceleration is smaller. The
proof of the above theorem relies on the non-asymptotic result for HB in the deterministic setting (Wang
et al., 2021), coupled with an inductive argument over the iterations.

The above result substantiates the claim that the practical gain of SHB is a by-product of using larger
mini-batches. In comparison to the above result, Loizou & Richtarik (2020) also prove an accelerated
rate for SHB, but measure the sub-optimality in terms of ||E[wr — w*]|| which does not effectively model
the problem’s stochasticity. In contrast to Bollapragada et al. (2023, Theorem 3.1) which results in an
O (T exp(~T/y=) + o log(d)) rate where d is the problem dimension, we obtain a faster convergence rate
without an additional T' dependence in the bias term, nor an additional log(d) dependence in the variance

term. In order to achieve an accelerated rate, our threshold b* scales as O W . When n >> O(x?),

our result implies that SHB with a nearly constant (independent of n) mini-batch size can attain accelerated
convergence to a neighbourhood of the minimizer. In contrast, (Bollapragada et al., 2023, Theorem 4) require
a batch-size of Q(d k3/?) to attain an accelerated rate in the worst-case. This condition is vacuous in the
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over-parameterized regime when d > n. Hence, compared to our result, Bollapragada et al. (2023) require
a more stringent condition on the batch-size when d > /k. On the other hand, Lee et al. (2022) provide
an average-case analysis of SHB as d,n — oo, and prove an accelerated rate when b > n % where K is the
average condition number. In the worst-case (for example, when all data points are the same and k = k = 1),
Lee et al. (2022) require b = n in order to attain an accelerated rate.

In the interpolation setting described in Section 3, the noise at the optimum vanishes and ¢ = 0 implying that
x = 0. In this setting, we prove the following Corollary 1 in App. D. Hence, under interpolation, SHB with a
sufficiently large batch-size results in accelerated convergence to the minimizer, matching the corresponding
result for SGD with Nesterov acceleration (Vaswani et al., 2022, Theorem 6) and ASGD (Jain et al., 2018).

Corollary 1. For L-smooth, u strongly-convex quadratics, under interpolation, SHB (Eq. (1)) with the

same parameters as in Theorem 2 and batch-size b s.t. b > b* :=n H% (where C' is defined in Theorem 2)
C k2

(-2 wax {21 - 2V} ) o - )

converges as:

2
E ||lwr — w*| < %\/ﬁ exp

When the noise y # 0 but is assumed to be known, Corollary 4 (proved in App. D) shows that the step-size
and momentum parameter of SHB can be adjusted to achieve an e sub-optimality (for some desired € > 0)
at an accelerated linear rate. In the above results, the batch-size threshold depends on k. In the following
section, we prove a lower-bound showing that a dependence on & is necessary.

4.2 Lower Bound for SHB

For SHB with the same step-size and momentum as Corollary 1, we show that there exists quadratics for
which SHB with a batch-size lower than a certain threshold diverges.

Theorem 3. For a L-smooth, ji strongly-convex quadratic problem f(w) := %Z?zl %wTAiw with n
samples and dimension d = n = 100 such that w* = 0 and each A is an n—by—n matrix of all zeros except
at the (7,7) position, we run SHB (1) with ay = a = %, Br=8=(1-1%a ) If b < —L—+—nand

1+ 3300

Ay = (wwk >, for a ¢ > 1, after 67 iterations, we have that:
k—1

2 2
E | Aer]*] > ¢ |40

The above lower-bound demonstrates that the dependence on & is necessary in the threshold b* for the
batch-size. We note that the designed problem with n = d corresponds to a feasible linear system and
therefore satisfies interpolation. Intuitively, Theorem 3 shows that in order to attain an accelerated rate for
SHB, it is necessary to have a large batch-size to effectively control the error between the empirical Hessian
%Eie B, Ai at iteration &k and the true Hessian. When the batch-size is not large enough, the aggressive
updates for accelerated SHB increase this error resulting in divergence. Importantly, the above lower-bound
also holds for the step-size and momentum parameters used in Bollapragada et al. (2023). We note that
our lower-bound result still leaves open the possibility that there are other (less aggressive) choices of the
step-size and momentum that can result in an (accelerated) convergence rate with a smaller batch-size. The
proof of the above theorem in App. E takes advantage of symbolic mathematics programming (Meurer et al.,
2017), and maybe of independent interest. In contrast to the above result, the lower bound in Kidambi et al.
(2018) shows that there exist strongly-convex quadratics where SHB with a batch-size of 1 and any choice of
step-size and momentum cannot result in an accelerated rate.

We have shown that for strongly-convex quadratics (not necessarily satisfying interpolation), SHB (with large
batch-size) can result in accelerated convergence to the neighbourhood of the solution. Next, we design a
multi-stage algorithm that ensures accelerated convergence to the minimizer.
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4.3 Multi-stage SHB

In this section, we propose to use a multi-stage SHB algorithm (Algorithm 1) and analyze its convergence
rate. The structure of our multi-stage algorithm is similar to Aybat et al. (2019) who studied Nesterov
acceleration in the stochastic setting. For a fixed iteration budget T', Algorithm 1 allocates T'/2 iterations
to stage zero and divides the remaining 7'/2 iterations into I stages. The length for each of these I stages
increases exponentially, while the step-size used in each stage decreases exponentially. This decrease in
the step-size helps counter the variance and ensures convergence to the minimizer. Theorem 4 (proved in
in App. F) shows that Algorithm 1 converges to the minimizer at an accelerated linear rate.

Theorem 4. For L-smooth, p strongly-convex quadratics with x > 1, for T > T := 3&?%6 max {4/{, 62},

Algorithm 1 with b > b* :=n max{ } converges as:

1 1
1+g;§ 9 1+(n7;) ar

E ||wr — w*|| < C7exp (— T

T X
- — w* Ce—2—
8\/E) lwo — w*|| + Cs

where C := 3%26 and C7, C are polynomial in x and poly-logarithmic in 7.

From Theorem 4, we see that Algorithm 1 achieves a convergence rate of O (exp (—%) + %) to the

minimizer. It is important to note that in comparison to Theorem 1, the sub-optimality above is in terms
of E |jwr — w*|| (instead of E ||wr — w*||*). Hence, the above rate is optimal for strongly-convex quadratics
since the bias term decreases at an accelerated linear rate while the variance term goes down as 1/v7. Unlike
in Corollary 4, Algorithm 1 does not require the knowledge of x and is hence noise-adaptive. When x = 0,
Algorithm 1 matches the rate of SHB in Corollary 1.

Algorithm 1: Multi-stage SHB Algorithm 2: Two-phase SHB
Input: T (iteration budget), b (batch-size) Input: T (iteration budget), b
Initialization: wg, w_1 = wp, k=0 (batch-size), ¢ € (0,1) (relative phase
1= \\ L w (T ln(\/§)>J (W(.) is the Lambert W function?) lengths)
T — 1}1(‘&) 384V Initialization: wgy, w_1 = wgp, k=0
0=73 e Set To =cT
viewn, T, = [4(22_%5(@/2 +5)1In(2) + ln(\/ﬁ))—‘ for k=0; k<Ty; k=k+1do
fori=0;i<I+1:i=i+1do ‘ S(éc c(xi,f alccording to Theorem 2 Use
S w 5 2 pdate
Set a; = 27", ay = ¢, if(lf%,/ai,u) end
To = Ww; fork=To+1; k<T;k=k+1do

Set ng, A\r according to Theorem 1
Use Update 2

for k=0;k<T;; k=k+1do
Sample batch By and calculate V fir(zx)

Thp1 = 2 — oV fir () + Bi (T — Tp—1) end
end return wr
Wit1 = 27T,

end
return wr4

In concurrent work, Pan et al. (2024) design a similar multi-stage SHB algorithm. However, the algorithm’s
analysis requires a bounded variance assumption which implies that for all k € [T], there exists a & < 0o
such that E ||V f(wg) — V fir(wy)||* < 62. For strongly-convex quadratics, this assumption implies that the
algorithm iterates lie in a compact set (Jain et al., 2018). Note that this assumption is much stronger than
that in Theorem 4 which only requires that the variance at the optimum be bounded. With this bounded
variance assumption, Pan et al. (2024) prove that their multi-stage SHB algorithm converges to the minimizer
at an accelerated rate without any condition on the mini-batch size. This is in contrast with our result

2The Lambert W function is defined as: for z,y € R, y = W(z) = yexp(y) = z.
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in Theorem 4 which requires the mini-batch size to be large enough. This discrepancy is because of the
different assumptions on the noise. In Fig. 2a, we use the same feasible linear system as in Theorem 3 and
demonstrate that with a batch-size 1, the algorithm in Pan et al. (2024) can diverge. This is because the
iterates do not lie on a compact set and & can grow in an unbounded fashion for O(T) iterations (see Fig. 2b),
demonstrating that the bounded variance assumption is problematic even for simple examples.

300
101 ¥
1047 250

10108

200

1089 4

log(62)

150

Grad norm

1070

105 4 100 1
1032 4
50 4
1081 — SGD
— Multi-SHB-Pan-et-al o
I0 20600 40600 60600 80(‘100 lOOIOOO 0 2000 4000 6000 8000 10000
Iterations iterations
(a) Multi-stage SHB (Pan et al., 2024) with b = 1 diverges (b) The variance &2 is increasing.

exponentially fast in the first few thousands iterations.

Figure 2: Divergence of Multi-stage SHB (Pan et al., 2024) with b = 1 on the synthetic example in Theorem 3
with k = 5000. We set wy = 100 and run the algorithm in (Pan et al., 2024) with C' = 2. We consider 5
independent runs, and plot the average gradient norm ||V f(wy,)|| against the number of iterations. In Fig. 2b,

we plot the (log) variance log (E IV f(wy) — Vfik(wk)HQ) against the number of iterations. We observe that

multi-stage SHB diverges and the variance &2

in Pan et al. (2024) is problematic.

increases, showing that the bounded variance assumption

With this assumption, Pan et al. (2024) prove that their multi-stage algorithm converges at a rate of
O (TKJ exp(—T/v&) + %) (for a similar definition of suboptimality as in Theorem 4). The above upper-

bound implies that their algorithm can only achieve a sublinear rate even when solving feasible linear
systems with a large batch-size (Jain et al., 2018). In comparison, Algorithm 1 with a large batch-size can
achieve an accelerated linear rate when solving feasible linear systems. From a theoretical perspective, the

0] ([Ql/4 exp(—T/v&) + %) bound in Theorem 4 is better in the bias term (by a factor of T') and hence

requires fewer “warmup” iterations. It is also better in the variance term in that it does not incur a dimension
dependence. While the bound established by Pan et al. (2024) holds for T' > Q(y/k), our analysis requires
T > Q(k+/k) to achieve the convergence guarantee. This additional dependence on & is an artifact of our
simplified proof that analyzes each stage independently. Specifically, we use the result from Wang et al.
(2021) that introduces an additional v/k “warm-up” iterations. These additional \/k iterations in each stage
introduce the additional x dependence. To conclude, compared to Pan et al. (2024), we achieve better
convergence guarantees with a simpler analysis under more realistic assumptions for larger iterations.

Finally, we note that if the variance is guaranteed to be bounded for some problems, the proposed algorithms
can exploit this additional assumption and achieve rates comparable to Pan et al. (2024) without a large
batch-size requirement. Please refer to App. G for a detailed analysis.

In Theorem 4, we observe that the batch-size threshold b* depends on a; = 2= = O(1/r). In order to
understand the implications of this requirement, consider the case when T' = ¢n (for some ¢ > 0). In this

case, b* = n max {H}“‘“ Hll} For practical problems, n is of the order of millions compared to 7" which
C k2 4

is in the thousands and hence 1) << 1. Furthermore, when n >> O(x?), b* is predominantly determined by
the condition number.
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An alternative way to reason about the above result is to consider a fixed batch-size b as input. In this
case, the following corollary presents the accelerated convergence of multi-stage SHB but only for a range of
feasible T'.

Corollary 2. For L-smooth, p strongly-convex quadratics with x > 1, Algorithm 1 with batch-size b such

that b > b* :=n ﬁ attains the same rate as in Theorem 4 for T € {3112;5/)% max {45, 62} ,C14/ g(l;jl))ﬂ,

O nZ
where C := 3°25 and C; is defined in the proof of Theorem 4 in App. F.

We have seen that a complicated algorithm can result in the optimal accelerated rate for a range of T. Next,
we design a simple-to-implement algorithm that attains partially accelerated rates for all T'.

4.4 Two-phase SHB

We design a two-phase SHB algorithm (Algorithm 2) that has a convergence guarantee for all T, but can
only obtain a partially accelerated rate with a dependence on k? for q € [%, 1]. Here q = % corresponds to the
accelerated rate of Section 4.1, while ¢ = 1 corresponds to the non-accelerated rate of Section 3. Algorithm 2
consists of two phases — in phase 1 consisting of Ty iterations, it uses Eq. (1) with a constant step-size
and momentum parameter (according to Theorem 2); in phase 2 consisting of T} := T — Tj iterations, it
uses Eq. (2) with an exponentially decreasing 1y sequence and corresponding A, (according to Theorem 1).
The relative length of the two phases is governed by ¢ := To/T. In App. H, we analyze the convergence
of Algorithm 2 with general ¢ and prove Theorem 11. For a specific setting when ¢ = %, we prove the following
corollary.

Corollary 3. For L-smooth, p strongly-convex quadratics with k > 4, Algorithm 2 with batch-size b such
that b > b* =n H% and ¢ = 1 results in a rate of O (exp (—=) + %) for all T.

2
C k2

We observe that Algorithm 2, with a sub-optimal convergence rate of O (exp (=7/x%7) + ¢/vT), is faster than
SGD and the non-accelerated SHB algorithm in Section 3. Compared to the accelerated SHB in Section 4.1,
the two-phase algorithm converges to the minimizer (instead of the neighbourhood). However, even in the
interpolation setting when o = 0, the two-phase algorithm (without any knowledge of ¢) can only attain a
partially accelerated rate.

5 Experimental Evaluation

For our experimental evaluation, we consider minimizing strongly-convex quadratics. In particular, we
generate random synthetic regression datasets with n = 10000 and d = 20. For this, we generate a random
w* vector and a random feature matrix X € R"*¢. We control the maximum and minimum eigenvalues
of the resulting X7 X matrix, thus controlling the L-smoothness and u-strong-convexity of the resulting
quadratic problem. The measurements y € R™ are generated according to the model: y = Xw™* + s where
s ~ N(0, 1) corresponds to Gaussian noise. We vary x € {1000, 500,200} and the magnitude of the
noise r € {1072,107%,107%}. These choices are motivated by Aybat et al. (2019). By controlling r, we can
control the variance in the stochastic gradients. Using these synthetic datasets, we consider minimizing
the unregularized linear regression loss: f(w) = 3 [[Xw — y|>. In this case, A = XTX, d = 2y X and

We compare the following methods: SHB with a constant step-size and momentum (set according to Theorem 2)
with @ = 1 (SHB), Multi-stage SHB (Algorithm 1) (Multi-SHB), Two-phase SHB (Algorithm 2) with ¢ = 0.5
(2P-8HB), and use the following baselines — SGD (SGD), SGD with Nesterov acceleration and exponentially
decreasing step-sizes (Vaswani et al., 2022) (Nesterov-EXP). Additionally, we consider a heuristic we refer
to as Multi-stage SHB with constant momentum parameter (Multi-SHB-CNST). The heuristic has the same
structure as Algorithm 1, but the momentum parameter in each stage is fixed i.e. 5; = (1 — 1/2\/E)2. We will
see that this heuristic can result in better convergence than Multi-SHB. However, analyzing it theoretically is
nontrivial. For each compared method, we use a mini-batch size b = 0.9n to ensure that it is sufficiently large
for SHB to achieve an accelerated rate for our choices of k. We note that using b = 0.9n on a noisy regression
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Figure 3: Comparing SHB, Multi-SHB, Multi-SHB-CNST, 2P-SHB, SGD, Nesterov-EXP, for the squared loss
on synthetic datasets with different £ and noise . Both SGD and SHB converge to the neighborhood, but SHB
attains an accelerated rate. Multi-SHB, Multi-SHB-CNST and 2P-SHB result in smaller gradient norms and
have similar convergence as Nesterov-EXP.

problem has enough stochasticity to meaningfully compare optimization methods. We fix the total number of
iterations T' = 7000 and initialization wy = 0. For each experiment, we consider 3 independent runs, and plot
the average result. We will use the full gradient norm as the sub-optimality measure and plot it against the
number of iterations.

From Fig. 3, we observe that: (i) both SGD and SHB converge to the neighborhood of the minimizer which
depends on the noise r. However, SHB attains an accelerated rate, thus converging to the neighborhood faster.
(ii) Multi-SHB, Multi-SHB-CNST and 2P-SHB can better counteract the noise, and result in smaller gradient
norm after reaching the neighborhood at an accelerated rate. (iii) The Multi-SHB-CNST heuristic results
in slightly better empirical performance than Multi-SHB when « is relatively small. (iv) 2P-SHB results in
consistently better performance compared to Multi-SHB. (v) Across problems, the SHB variants have similar
convergence as Nesterov-EXP.

Next, we consider solving synthetic feasible linear systems with different values of x, and examine the
convergence of SHB with different batch-sizes. The data generation procedure is similar as above, however,
there is no Gaussian noise (s = 0) and hence interpolation is satisfied. In particular, the measurements y € R™
are now generated according to the model: y = Xw*. We vary « € {8, 16,32, 64, 128,256,512, 1024, 2048}
and batch-size b = &n for € € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. We fix the total number of iterations
T = 2000. For each experiment, we consider 5 independent runs, and plot the average result. We will use the
full gradient norm as the performance measure and plot it against the number of iterations. We compare the
following methods: accelerated SHB with a constant step-size and momentum (set according to Theorem 2)
with ¢ = 1 and varying batch-size £ (SHB-¢), non-accelerated SHB with a constant step-size and momentum
(set according to Theorem 1) and a fixed batch-size b = 0.3n (NON-ACC-SHB), SGD with a constant step-size
and a fixed batch-size b = 0.3n (SGD). We also add the following baselines to understand the dependence

10
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of x: line proportional to exp (%T) (KAP) and line proportional to exp (’—\/2) (SQRT-KAP). The baselines are

calculated by multiplying the initial gradient norm with the corresponding exponential term calculated at
each iteration.
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Figure 4: Comparison of SHB-£, NON-ACC-SHB, SGD and baselines KAP, SQRT-KAP for the squared loss on
synthetic datasets with different . For large x, SHB can converge in an accelerated rate if the batch-size is
larger than the threshold b*. The performances of SGD and NON-ACC-SHB are similar and significantly slower
than SHB when & is large.

From Fig. 4, we observe that (i) when & is large, using SHB with smaller batch-sizes can result in divergence,
(ii) SHB can only attain acceleration when the batch-size is larger than some k-dependent threshold, and
the extent of acceleration depends on the batch-size, (iii) across problems, the performance of SGD and
NON-ACC-SHB is similar and slower than SHB when & is large, (iv) the larger batch-size, SHB converges at
a rate similar to the SQRT-KAP baseline, (v) across problems, SGD converges at a rate similar to the KAP
baseline. This verifies our theoretical results in Sections 4.1 and 4.2.

Finally, in App. 1.2, we consider the algorithm proposed in Pan et al. (2024). We observe that with a sufficiently
large batch-size, the method converges and has similar performance to the proposed SHB variants.

11
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6 Conclusion

For the general smooth, strongly-convex setting, we developed a novel variant of SHB that uses exponentially
decreasing step-sizes and achieves noise-adaptive non-accelerated linear convergence for any mini-batch size.
This rate matches that of SGD and is the best achievable rate for SHB in this setting (given the negative
results in Goujaud et al. (2023)). For strongly-convex quadratics, we demonstrated that SHB can achieve
accelerated linear convergence if its mini-batch size is above a certain problem-dependent threshold. Our
results imply that for strongly-convex quadratics where n >> O(x?), SHB (and its multi-stage and two-phase
variants) with a nearly constant (independent of n) mini-batch size can be provably better than SGD, thus
quantifying the theoretical benefit of SHB. In the future, we aim to close the gap between the upper and
lower-bounds on the mini-batch size required for SHB to attain an accelerated rate. Furthermore, we aim to
improve our lower-bound and characterize the behaviour of SHB with any step-size and momentum parameter.
On the more practical side, we hope to develop SHB variants that can attain an accelerated rate when the
batch-size is large, and automatically default to non-accelerated rates for smaller batch-sizes.

12
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Supplementary Material

Organization of the Appendix

A

T Q@ 04 =H U Q w

I

Definitions

Proofs for non-accelerated rates

Proofs for non-accelerated rates with misestimation
Proofs for upper bound SHB

Proofs for lower bound SHB

Proofs for multi-stage SHB

Proofs for SHB with bounded noise assumption
Proofs for two-phase SHB

Additional experiments

A Definitions

*

Our main assumptions are that each individual function f; is differentiable, has a finite minimum f, and is
L-smooth, meaning that for all v and w,

Fio) < fiw) + (V)0 = w) + 2 o~ wl?,

(Individual Smoothness)

which also implies that f is L-smooth. A consequence of smoothness is the following bound on the norm of
the stochastic gradients,

IV fiw)||* < 2L(fi(w) = f7).

We also assume that each f; is convex, meaning that for all v and w,

We will also assume that f is p strongly-convex, meaning that for all v and w,

fi(v) = fi(w) =V fi(w),w —v).

F©) = fw) + (V(w),v = w) + S llo =]
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B Proofs for non-accelerated rates

We will require (Sebbouh et al., 2020, Theorem H.1). We include its proof for completeness.

Theorem 5. For L-smooth, p strongly-convex functions, suppose (n)x is a decreasing sequence such
that 7o = n and 0 < m, < 5. Define X, := # (1— (1 —mp)), Ag = |lwr — w* + A (wi, — wi—1)|1%,
Er = Ap + 20p Ak (f (wi—1) — f(w")), oy, = 78—, B = M, 0% := Ei[fi(w") — f{] > 0. Then SHB

I+ Ap1?
Eq. (1) converges as

where ¢ =/ (sjlb)b.

Proof. We will first expand and bound the term A1,

E[Ex+1] < (1 — mp)E[Ex] + 2LK¢Pn30” (3)

A1 = |[wpg1 — w* + Nepr (w1 — wp)||

= |lw — w* — @V fir(wi) + Br(wr — wr—1) + M1 [~V fir(wi) + Br(wi — wi—1)]|>
(SHB step)

= |lwg, — w* — ap(L + Ny 1)V i (wr) + Br(L+ Ner) (wr — wi—1)||
= Jlwy — w* =V fir(wi) + Mo (1 — miepe) (wp, — wi_1) |1 (definition of ay, and Sy)
= Jlwk = w* + Mg (wr — wi—1) = mg [k (wr — wi—1) + V fir(wi)]|°
= A + 02 Ik (wr — wi—1) + V fir (wi) |
= 2wk — w" + Ap(wr — wi—1), pAk (W — wi—1) + V fir(wi))
= A + IV fir (wr) | + mp? AR Jlwi — wie— ||
+ 2ni g (W — wi—1, V fir(wr)) — 2mppg (Wi, — w*, Wy — wi—1)
— 2wy — w*, V i (wi)) — 20k Ak (W — wr—1, V fir (W) — 20X} Jwi — wp—1 |
< Ap — nip (Ai l[wr — wi—1[|* + 2 (wg — w*, wi — wk—l)) — 2y (wg — w*, V fir(wy,))
+ R IV i (wi) 12 +2nipde(we — we—1, V fir(wr)) — 2k (Wi — w1, V fir (wi)).-

(by L-smoothness of fix)

Add Bii1 = 201 6+1 (f (wg) — f*) on both sides,

Apy1 + By < Ag — mip (Ai lwi — wi—1 ]| + 2\ (wy, — w*, wy, — wk—1>) — 2np(wy, — w*, V fur,(wg))

+ 2Lne[fir(wi) — fi] + 20RpAk(wy — wi—1, V fir (wy))
—2np Ak (Wi, — w—1, V fir (Wk)) + 20541 A1 (fF(wg) — )

<A —npp (Ai Jwi — wi_1]]> + 2k (wi — w*, wy — wk—1>) — 2wy —w*, V fir(wy))
+ 2Ln3 [ fir(wi) — f] = 2me (1 — npepn) (wr — wi—1, V fir (wy,))
+ 20p1 A1 [f (w) — f7].

Taking expectation w.r.t ix, fix(we) — [ = [fir(wr) — fir(w*)] + [fir(w*) — f1.] then
E[Ags1 + Bria] SE[A] — E [ (Al — wioal]® + 20 (g = w*,wy = wie-1) )|

— 2 E[(wy, — w*, V f(wy))] + 2LkCPni0” + 2LnRE[f (wy) — f*]

= 20k Ak (L = mep) E[{wy — wi—1, V f(wi))] + 20kp1 A1 E[f (wi) — £7].
(Using Lemma 2)
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Since f is strongly-convex, —2n (wy — w*, V f(wg)) < —nep |Jwp — w*||* = 20 [f(wy) — £*], then

E[€k11] SE[Ax] — nepBl|lwy, — w*[|* + A lwe — w1 ]| + 2Xe (wy, — w*, wi — wy_1)]
A
+ 2LkC*nio” + 2L f (wr) — f*] = 2meAe (1 — i) E [(wr — wi—1, V f (wy))]
=2 E[f (wi) — 7] + 20k1 A1 E[f (w) — f7]
< (1 — ) E[Ay] + 2LC*nio® + 2LiRE[f (wy) — f*]
= 2n Ak (1 = nep)E [(wi — wi—1, V f (wr))]
=2 E[f (wi) — 7] + 20k1 A1 E[f (wi) — f7].

By convexity, —(V f(wg), wx — wr—1) < f(wp—1) — flwy) = [f(wr—1) — f*] = [f(wx) — f*], then

E[€r41] < (1 — me)B[AR] + 2LkCP030% + 2LnE[f (wr) — f*] 4206 Ak (1 = mep) B[ f (wi—1) — 7]
<4LnRE[f (wr)—f~]
= 2m Ak (1 = ne)E[f (wi) — 7] = 2meE[f (wi) — 7] + 201 A1 E[f (wi) — f7]
< (1= mp)E[Ag + 2m X[ f(wi—1) = [*]] + 2LeCPnio” + ALnRE[f (wk) — f7]
By,
=20 Ak (1 — ) E[f (wie) — f7] = 206 E[f (wi) — 7]+ 2041 A1 E[f (wi) — f7]
< (1= mep)E[E] + 2LrCnjo
+ 2E[f (wi) — [¥] (2L77,% — (1 — mep) — e + nk+1>\k+1) . (Theorem 5 first part)

We want to show that 2Ln? — mpAe(1 — mep) — Mk + Mk+1 k41 < 0 which is equivalent to g1 Api1 <
me (1 — 2Lny + Ap(1 — np)).

RHS =y, (1 — 2Lk, + Ap(1 — mipt))
= k(1 — 2Lng) + M (1 — i)

1—2nL
=nx(1 —2Lng) + Hn (1= (1 —me)®) (1= mpep) (definition of Aj)

— 2nL 1—-2nL
d N + 1

=nk(1 — 2Lny) — ! (1= (1= nmep)*th)

1—-2nL '

= . (1 -(1- Ukﬂ)kﬂ) + 2Lnk (1 — M) (since 1 > 1)
W ——
>0

1—-2nL
= 7/ (1= (1 = mwp)*)

1—-2nL )
= Mn (1= (1= myap)™*t) (since g, > Nga1)

= 77k+1)\k+1 = LHS.

Hence,
E€k+1] < (1 — mep)E[Ex] + 2Lk n}o®

17
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Theorem 1. For L-smooth, y strongly-convex functions, SHB (Eq. (2)) with 7 > 1, v = /-, v = (%)I/T

)

Ye =7, e = vk, n = 1o and A == 1n2"L (1= (1 — nep)*) converges as:
o2
E |lwr—1 — w*||> < Cy |Jwo — w*|)? exp( >+O4C’5—
( T/7) T
where ¢ = ﬁ and C4, C5 are polynomial in x and poly-logarithmic in 7.

Proof. From the result of Theorem 5 we have
E[Ex] < (1 = mep)E[Ex—1] + 2Lr(P o

Unrolling the recursion starting from wg and using the exponential step-sizes g

Biex] <El6 [ (1- 42 + 2acto 35 [ I+ (-2 )1

k=1 k=1 Li=k+1

T T T
< JJwo — w*||* exp —gz +2L/<;(202Z'y2kexp <—4/2 Z 7i>
k=1

k=1 i=k+1

=C =D
(M =0and 1 —2x < exp(—x))

Using Lemma 3 to lower-bound C then the first term can be bounded as

%112 —H |2 T 7
Jun = P exp (T5C) < o = ' cxexp (- - o)

where K = = and Co = exp (2"i e ) Using Lemma 4 to upper-bound D, we have D < 32"20622(;7‘;(7?/% then
the second term can be bounded as

64Lo?coC?k3 (In(T/7))?

2LKC%0?D < 5 27
€ 2

Hence

2. 2,3 T/.))2
E[5T1<|wo—w*||%2exp(_ il >+64Lo- 602 (In(7/7))

T
4k In(T/7) e2 ~2T

By Lemma 1, then

Co 9 T ~ 02 64LC% K3 (In(T/7))? ¢
E L w* 2 < ¥ - i =
foros =l < 2y = Pexp (3t ) + U CER o

Let Cy(k,T) := exp( 1“<T/7)) and C5(k,T) = %W, then

% [1 e'xp(—%)]

E||wr—1 — w” 2<qy lwo — w*

2 r o~ o
P ( k 4In(T/7) + T CaCs

18
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B.1 Helper Lemmas

Lemma 1. For & = ||wp — w* 4+ Ap(wp — wp_1)||> + 200X (f(wi—1) — f(w®)), Er > e |wp_y — w*|?
where c;, = % [1 — exp (—%)]

Proof.

El&r] = E[Ar] + E[Br] = E[Br] = 2Arnr E[f(wr-1) = f7]

Hence, we want to lower-bound Ap np and we do this next

1— [ T+1
Arnr = 77 1-— <1 — “’;L > 1 (Using the definition of n, and Ag)
1 _ r
>—"1|i- exp (—T’yT %)} (Since 1 — z < exp(—1))
pwooL
L= ny . T
S ()] ot
rl exp (—57 (Since v = (7))

Putting everything together, and using strong-convexity of f

Elér] = 4(1/;7) [1 - xXp (_%ﬂ E |lwr_; — w*|?

=cr,

We restate (Vaswani et al., 2022, Lemma 2, Lemma 5, and Lemma 6) that we used in our proof.
Lemma 2. If
o == E[fi(w") = f/],

and each function f; is p strongly-convex and L-smooth, then

—-b
o = Eplfs(w") - f5] < & (nn—il)b(72
———
i=¢?
Lemma 3.
_ . VT 2T
A= ZV 2 In(7/7)  In(T/r)

t=1

Lemma 4. Fory= (%)UT and any k > 0, with co = exp (%lnfﬁ),

1 . 4/?26 (111(7/7))2
2k i 2
kgl’y exp (—H E 7) <—62 5

i=k+1

19
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C Proofs for non-accelerated rates with misestimation

A practical advantage of using Eq. (2) with exponential step-sizes is its robustness to misspecification of L
and p. Specifically, in App. C.1, we analyze the convergence of SHB (Eq. (2)) when using an estimate L
(rather than the true smoothness constant). In App. C.2, we analyze the convergence of SHB when using an
estimate [ for the strong-convexity parameter.

C.1 L misestimation

Without loss of generality, we assume that the estimate L is off by a multiplicative factor v i.e. L = % for

some vz, > 0. We note that L is a deterministic estimate of L. Here v, quantifies the estimation error with
vy, = 1 corresponding to an exact estimation of L. In practice, it is typically possible to obtain lower-bounds
on the smoothness constant. Hence, the vy, > 1 regime is of practical interest.

Similar to the dependence of SGD on smoothness mis-estimation obtained by Vaswani et al. (2022), Theorem 6
shows that with any mis-estimation on L we can still recover the convergence rate of O (exp (;—T) + U—TQ)

o min{uL,l}T) +

to the minimizer w*. Specifically, Theorem 6 demonstrates a convergence rate of O ( exp ( -

2 2
max{y,,1}(g +ATf max{ln(ve)0}) \ * The first two terms in Theorem 6 are similar to those in Theorem 1. For

vy, < 1, the third term is zero and the rate matches that in Theorem 1 upto a constant that depends on
vy. For vy, > 1, SHB initially diverges for kg iterations, but the exponential step-size decay ensures that
the algorithm eventually converges to the minimizer. The initial divergence and the resulting slowdown in
the rate is proportional to vy,. Finally, we note that Vaswani et al. (2022) demonstrate similar robustness
for SGD with exponential step-sizes, while also proving the necessity of the slowdown in the convergence.

Theorem 6. Under the same settings as Theorem 1, SHB (Eq. (2)) with the estimated L = % results in
the following convergence,

E||wp-1 — 'w*||2
w2 Co mi1 {I/La 1}T Y
< = = —
lwo — w™|| o exp ( 5 (7))

IR ol TN { (max {1, Z} 1n(T/T)o—2>

i
cr e?y2T L
)]

where ¢y = exp (z—ilnfﬁ} ko = TII:((T”/LT)), and Ay = max;ey,) E[f(w;) — f*] and

ep =152 [1—exp (—47)]

vp —
12 Ma%

+ (max{OJn(z/L)} (02 +2A;

Proof. Suppose we estimate L to be L. Now redefine

1
Nk = —&x
Mk 2L'Vk
< 1—2L .
Ay = ——— (1= (1 = mep)
N ( )

A ~ 2
A = Hwk —w" + )\k(wk - ’wkfl)H

Bi = 2 A (f(wr—1) — f(w"))
& = Ay, + By,

20
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Follow the proof of Theorem 5 until Theorem 5 first part step with the new definition,

E[€11] < (1 — mep)E[Ex] + 2Lk¢Pnio? + 2E[f (wi) — f7] <2L7712g — (1 — mepe) — 15, + 77k+15\k+1) (4)

G

G can be bound as

G = 2L} — e (L = meft) — Mk + Mot 1 A
=me(2Lm — 1) — 77k5\k:(1 — Nep) + 77k+15\k+1

1—277f/

= (2L, — 1) + ne(1 — 2Ln) — (1= (1= ne)™ ) + nigr A

1—277ﬁ

< 2n(Ln — L) — (1= (1 = o1 )™ 1) + M1 A

= 204 (Lo, — L) — Mgt Mot =+ Mot At
= 2y, (Li, — Ln)

Hence Eq. (4) can be written as

E[Exr1] < (1 — ne)E[ER] + 2Lk nio” + AE[f (wy) — f*]ne(Lnk — Ln)

(definition of Ay)

(M1 < M)

First case if vy, < 1 then Ln; — ﬁr] < 0 and we will recover the proof of Theorem 1 with a slight difference

including vy,

5 < |2 _
E[&] < [Jwo — w*|| czexp< o ()7

Second case if vy, > 1

Let ko = Tyasss then for k < ko regime, Ly, — Ln > 0

E[€i1] < (1 — o) E[Ex] + 2Lk¢?nio? + 4E[f (wi) — f*]n(Lay, — Ln)

Let Ay = max;eqk,] E[f(w;) — f*] and observe that L, — In< Lnk”i—:l then

A A vy —1
E[ér1] < (1 — mm)EEL] + 2LrCnio” + 4L Ay =
v A vy —1
= (1 - EEMEBIE] + 2L(n¢%0” + 28,7 —)
Cs
Since v, > 1
E[Eei] <(1- %Vk)E[ng] + ey
Unrolling the recursion for the first kg iterations we get
k‘o—l M ko—l k‘o—l M
6 6 k 2
]E[gko] SE[SQ] H (1 - ﬁ’)/ ) +c5 Z Yk . H (1 — ﬁ’yz)
k=1 k=1 i=k+1
Bounding the first term using Lemma 3,
k?o*l k()
G k) < N e
kl;[l ( or” —eXp< oL 1—~ >

v T v 32Lk(%20%cak? (In(T/7))?
e? ~2T
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Bounding the second term using Lemma 4 similar to (Vaswani et al., 2022 Section C3)

ko—1 ko—1 ko 2 2
9 N o 16K° ko In(7/7)
> i 11 (1 L%) P <2[€(1 - 7)> 27 72

2
(&
k=1 i=k+1 v

Put everything together,

. — ko ko 162 ko In(T/7)?
EIE 1<l — w1 Zexn (277 g 0
1] < o — 0l exp (05 L0 ) v (5 ) S L

Now consider the regime k > kg where Ln; — ﬁn <0

2
E[fi1] < (1 — 2y E[EL] + 2Lr(20° 2L A7

2L 4L
2 2

H o k\gré VLo 2

<(1—-=—~"E

< (= gp v EE] + =57 %

Unrolling the recursion from k = kg to T
Blér] <Elén] T 01— 2 ”L"LCH a-£
[€r] < [ko]H(*EV Z%H - 77

k=ko k=ko i=k+1

Bounding the first term using Lemma 3,

T ko T41
poyto —y

1— )< ek =y

H( 2L7 —eXp( oL 1~ )

Bounding the second term using Lemma 4 similar to (Vaswani et al., 2022, Section C3)

T T T+1 2 2
5 o ¥ 16k° (T' — ko + 1) In(T/r)
— ) <
Z Tk H (1 2L%> = exp (25(1_7)> 2,2 T2

e
k=ko  i=k+1 v

Hence, put everything together

Rk vik(2o? exp T+1 1652 (T — ko 4+ 1) In(T/7)?
2L 11—+« 2L 26(1 —7) ) €2~ T2

E[ST] S E[éko] exp (—

Combining the bounds for two regimes

IN

. ko _ ATH+1 _ ~ko ko 16 Qk 1 TT2
E[(C:T] exp (_MH) (lwo_w*HQeXp (_2/-27 _PY’Y ) +C5€Xp (2 Y ) K 0 Il( / )

2L 1—+~ 1 k(1 —7)) e*~? T2
vikGo® exp AT+ N 1682 (T — ko + 1) In(T/7)?
2L 26(1—7) ) €242 T2
_ ||’LU _ ’LU*||2 exp N 7T+1 + ¢5 exp ’YT+1 16x2 ko IH(T/‘F)2
0 2L 1—+ ° 26(1—7) ) €242 T2
vir(Co® AT+ N 1682 (T — ko + 1) In(T/7)?
2L (1—7)/ e2y? T2

Using Lemma 3 to bound the first term and noting that 41— 71 < ln(QTT/ K let co = exp (25 lnfﬁ)

v ) 16c2k2 ko In(T/7)? n vik(20? 16cok% (T — ko + 1) In(7/+)?
5

E[ér] < —w*? e
[Er] < [lwo — w™|| eXp( 2 In(T/7) 242 T2 2L e2~2 T2

22
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Substitute the value of c5 and kg we have

vi k(202 8car? In(T/r)?

R T
Efér] < flwo —w*||2exp( il ) i

2k In(T/7) LT €272
— 1\ L cor?In(vy) In(T/7)
32 k(P02 + 20,2 ) 2
" (KC CETT) T e?y?

Combining the statements from vy, <1 and v > 1 gives us

A i 13T v
< a2 _ min{vg,
E[&r] < |lwo — w*||” 2 exp< P (/)

32Lcok? In(T/r) vi - 2 9 2 9 v —1
+(32'y—2T max 1’E In(T/7)k¢*0* + max{0,In(vp)} | K(Zo* + 24y o

The next step is to remove the L from the LHS, and obtain a better measure of sub-optimality. By Lemma 1,

E[éT] > 4(1,112,}/) [1 —exp (—%)} w1 — w*HZ

=cL

Note that ¢y, > 0 is constant w.r.t 7. Hence,

i 13T~
. < R 7m1n{uL,
[wr—1 = w*[|” < [Jwo — w™| o P 2% In(7/r)

L 32Lk2 In(T/r)
cr, e2y2T

(max {17 ﬁ} In(7/r)k¢?0” 4+ max{0,In(vz)} (%202 ton Ll 1)>

vy,

O

C.2 1 misestimation

Next, we analyze the effect of misspecifying p, the strong-convexity parameter. We assume we have access to
an estimate {1 = p v, where v, is the degree of misspecification. We note that £ is a deterministic estimate
of . We only consider the case where we underestimate p, and hence v, < 1. This is the typical case in
practice — for example, while optimizing regularized convex loss functions in supervised learning, f is set to
the regularization strength, and thus underestimates the true strong-convexity parameter.

Theorem 7 below demonstrates an O(exp (_ ”iT) + y21T> convergence to the minimizer. Hence, SHB with
I

an underestimate of the strong-convexity results in slower convergence to the minimizer, with the slowdown
again depending on the amount of misspecification.

Theorem 7. Under the same settings as Theorem 1, SHB (Eq. (2)) with the estimated i = v,pu for v, <1,
results in the following convergence,

B fwr-s 0| < floo — w| 2 exp (

v, T v ) 32L¢%coR3 (ln(T/r))ng
m

2k In(T/) v2elyic, T

where ¢ = exp (5 ) and g, = 4422 [1 - exp (~ 254

Proof. Suppose we estimate p to be fi. Now redefine

_ 1-2pL
e

>

N ~ 2
k (1— @1 —mp)*); Ay = Hwk —w* + Ag(wg _wk—l)H
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By = 277k5\k(f(wk71) — f(w"); & = Ay, + By,

Follow Theorem 5 first part steps with the new definition, the only difference was at the step where we use
strongly-convex on f for —2m(wx — w2 Vf(wk)> < —npt || wi — w*JQ = 2ng|f(wi) — f*].
Eléri1] < (1 - me)E[&] + 2LeCo” + mi(i — p) llwy — v

= (1 = v ) E[Er] + 2LaCP 10 + mi(f — p) [[wi — 0|
< (1 = ) E[Ek] + 2L n20? + mop(v, — 1)g[f(wk) — 7 (since f is strongly-convex)
i
= (1= mevu)E[E] + 2LRCio® + 2 (v, — V)] f (wr) — f7]
Since v, <1 then 2n,(v, — 1)[f(wi) — f*] <0 so
E[£x11] < (1 — mevu)E[Ex] + 2Lk ni0”

Hence, following the same proof as Theorem 1

R w2 v, v 32L¢%0%cok® (In(T/7))?
E[ér] < [lwo — w™||” ¢z exp (_ )) v2e? V2T

By Lemma 1,

Note that ¢, > 0 is constant w.r.t 7. Hence,

|2 «2 C2 v I vy 32L%cok® (In(T/))*
=P < flwp — w2 exp | 2=
lwz—1 = w[|” < Jlwo — w7 Cu eXp( 2K ln(T/r)> 1/1%62’)/26# T 7

D Proofs for upper bound SHB

Lemma 5. For L-smooth and p strongly-conver quadratics, SHB (Eq. (1)) with ax = a = ¢ and a < 1,
Br = (1 — 7,/ ) batch-size b satisfies the following recurrence relation,

C'OXC [Z T—1- k]

where Ay, = wi:_—ww* , Co <3/E, ¢(b) = \/% and p = 2\/\/@%

Proof. With the definition of SHB (1), if V f;x(w) is the mini-batch gradient at iteration k, then, for quadratics,

E[|Az|l] < Cop" [|A0]| +2aCo ¢ () [Z pTRE AR +

_wk+1 — w*] _ (1 + B)Id —aA 7[‘3[(1 wy — w* 4 Vf(wk) — Vfik(wk)
= «
| Wi — w* 1, 0 Wr—1 — w* 0
Api1 H Ay Ok

Ak+1 = HAk + aék

Recursing from k£ = 0 to 1" — 1, taking norm and expectation w.r.t to the randomness in all iterations.

ZHleé ]

B[ Ar]] < [HTAo|| + oF

24
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Using Theorem 8 and Corollary 6, for any vector v, H”Hkv” < Cp p¥ ||v|| where p = +/B. Hence,

Cpa [+ L .
E[|Ar[] < Cop™ | Aol + =2 | D p" T E |10k (a=2)
k=0

In order to simplify &5, we will use the result from Lemma 7 and Lohr (2021),

n—>o
Ex[[16x]1*] = Ex[||V £ (wi) — V fir (we) |*] = mEz IV £ (we) = V fi(wi)||*
(Sampling with replacement where b is the batch-size and n is the total number of examples)
n—>ab * * * *
R IV f(wn) = V(") = Vfilwy) + V fi(w) = Vfi(w)? (Vf(w) =0)
n—b NP NP NT
<30 {Ei IV (wi) = V()" +Ei [V fi(wr) = VIi(w)]|” + Ei [V fi(w")]]
((a4+b+c)? <3[a* +b? + %)
n—>b 2 2 2
<3 —— |L*E; —w* L*E; —w* E; |V fi(w*
<3 0o qyp B Billow = w4+ LBy ok — 0 4+ B [ 9 ()]
(Using the L smoothness of f and f;)
n—>b 2
<3— 217 —w* 2
_S(n—l)b{ o = w4 7
(wy, is independent of the randomness and by definition x2 = E; ||V fi(w*)||)
n—>b 2 2 2 2
<3 2L2 ¥ L —wF L w* >
<3y (2220 = 0|+ ey — 0|+ (ks — w? | > 0)
2 n—1b 2 2 2 .
= Bl A <355 [QL 1AL + x } (Definition of Ay)
n—=b
Exll|Ak]l] < —_— 212 ||A
= EIA] < 3 g [VRER 1A+
—_———
=¢(b)

(Taking square-roots, using Jensen’s inequality on the LHS and v/a + b < /a + v/b on the RHS)
= Ex[llon]l] < V2L (D) |AK] +¢(0) x

Putting everything together,

T = T k aCo x ((b) = T k
—1— —-1-
E[|Ar[] < Cop |Ao+¢§aco<<b>ELZOp ARl + =5 Lz;)p ]
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Theorem 2. For L-smooth, u strongly-convex quadratics, SHB (Eq. (1)) with a, = o = ¢ for a < 1,

: * . 1 1 .
Br = (1 — 7,/ ) batch-size b s.t. b > b* := n max {%’ 1+("31>“} converges as:
6v/2v/k fT 12v/ax . ¢
E|lwr — w*|| < exp ( —1-2vk [lwo — w*|| + ——= min{ 1, ==
va N Ve 7 va

where x 1= \/E ||V fi(w*)|?, ¢ = 1/3% and C := 3°26.

Proof. Using Lemma 5, we have that,

T—1 aCo ¢ x T—1
E[Ar| < Cop™ Aol +V2aCo ¢ | > p" T FE (| AL| OL pT‘l‘k]
k=0 k=0
We use induction to prove that for all T > 1,
2CyCax
E|Aql < 2Co [p+ ﬁf} I8%0ll + Z7 oy

where p +/(\/a < 1.

Base case: By Theorem 8, Cj > 1 hence ||Ag]| < 2Cy [|Ao|| + 2&‘}“}5

Inductive hypothesis: For all k € {0,1,...,T — 1}, [|Ag] <2Co [p+ \fg\/ﬂk |1 Ao + QLC((if%(

Inductive step: Using the above inequality,

T-1 T-1
aC 1
B vl Cop" 30l + V3o | 325" R |+ 5 ]
k=0
—1
aC .
<Co[p+V¢Va]" | Aol + V2aCo ¢ [ZPT R Arll] + ﬂ Zp’“ (Since ¢, a > 0)
k=0
T \/>G/COC T —k 200 a‘CX
<Colp+ v/ Val [|80]| + === zp 20y [p+ Viva" 180l + 25 =)
_ T
+ aCOLC X 1170 (Sum of geometric series and using the inductive hypothesis)
—p
2\/5(10 T +
—Colp+ V/C VA" o] + 22U 7 Z(” PR ] 80l
=0
L 220G o Ti(l)’“ aCo¢x1-
pL(1—p) = \p L l—p

12| < Co [p+ vZva)” [|Aoll-

2
First, we need to prove that % T [Zk_o (’H\[\F)

(258) -
() -

(Sum of geometric series)

9 T—1 Kk 2
2V2aCE¢ o [Z (=) ] ol = 2Y20HE 40l

P k=0
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<23 VA VE (p+ VEva) 14l

Hence, we require that,

1 1
2V2aC3 /(< Co = (< —
Hence it suffices to choose ( s.t.

a 1 : K
= (< o0 o (Since Cp < 3,/%)

< 1
== C — 3223
n—>b 1 b 1
< = > Using the definiti f
= 1)b = 320 2 n S TF L (Using the definition of ()
Since the batch-size b satisfies the condition that: £ > < L__ for C := 15552 = 3526, the above requirement
C k2
is satisfied, and ¢ < 3223

—pT < 2Coalx
pL(1—p)

22 -2 k
Next, we need to show D := 2‘/iapr {ZTl (%) ] 4 afotx1

L 1-p — L(1—p)
92 -2 T-1 k T
_ 220 CECN (1) aColxl-p
pL(1—p) = \p L 1-p
AT
22 a202 (2 (7) -1 1,57
_ V2a’C§¢ XpT P aCo ¢ X p (Sum of geometric series)
pL(1 - p) (%),1 L 1-p

2\/§a26’g§2>< r1—=pT p aCyCx
pL—p) ” T—p o7 " L(1-p)
2v2a*C3 x| aCo(x
L(1=p)*  L(1-p)

Since we want D < 2L“g° Cﬁ‘ , we require that

2v2aC3 Px _ aCoCx
L(1—-p)? ~ L(1-p)
— 2f00a<
I-p

Ensuring this imposes an additional constraint on (. We require ¢ such that

1 1 . Nz
—— <
C_Z\[Coa C_4\@\/ZL\/ECO ( Qﬁ)
Hence it suffices to choose ( such that,
¢< ! (Since Cp < 3,/%)
in &
=~ 12v2x 0=V

Since the condition on the batch-size ensures that ¢ < 3223 , this condition is satisfied. Hence,

2Cya(x
E[|Ar|| <2Cq {/H' \/@T\/a} Aol + T=p)
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This completes the induction.

In order to bound the noise term as % min {1, %}, we will require an additional constraint on the

batch-size that ensures ¢ < y/a. Using the definition of ¢, we require that,

n—=b

3 —
(n—1)b =va
b> 1
:E 41+(n 1) )

which is satisfied by the condition on the batch-size. From the result of the induction,

2Cya(x
EllAr] <20 [p+vEva] HAO\H—O_M
2C 2
— 20, { a] |\Ao||+70LaCX \\g (p=1-35%)

:200[ ff (1—2ff)]T|Ao|+200§“‘2j§

(1— 3f < (1 —2y/kV/() < 1 because of the constraint on batch-size)

ga\/ﬂ1_\fmax{ foH ||A0||+2“L<X3 "‘2&{5 (Co < 3,/E)

1_2\@&” ||AO||+12\[X { }} (¢ < Va)

= E|lwr —w*| < 6v2 K exp (—j%é&max{i,l —2\/E\/E}) lwo — w™|| + 12\:6)( min{ ff}
(for all z, 1 — z < exp(—1x))

INA

\@

|

% 3

=]

Q&

>
,_/_\

VAN
®

O

Corollary 1. For L-smooth, u strongly-convex quadratics, under interpolation, SHB (Eq. (1)) with the

same parameters as in Theorem 2 and batch-size b s.t. b > b* :=n H% (where C' is defined in Theorem 2)
C 2

converges as:

B~ < 2 R exp (~ 2 Ve {2,1 - 2vRVE ) ) o — ]

Proof. Under interpolation x = 0. This removes the additional constraint on b* that depends on the constant
a, finishing the proof. O

Corollary 4. Under the same conditions of Theorem 2, for a target error € > 0, setting a := min {1, (ﬁ)ze}

and T > v 2&\[) log (12\/§f:¢/\(|71:07w*\|) ensures that |[wr — w*|| < /e

Proof. Using Theorem 2, we have that,

L e OV2 (Va7 e
B wr wlléﬁ\/Eep< - ﬁ>|w0 0+ 2% in {1,
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Using the step-size similar to that for SGD in (Gower et al., 2019, Theorem 3.1), we see that to get /e
accuracy first we consider 12‘[X < ‘[ that implies a < (24X)2€-

2
We also need %\/E exp ( M f) |lwo — w*|| < % Taking log on both sides,

Val-2/mQ) T\ (Ve Va 1
< 5 \/E> Slg(2 6\/§¢Ellwow*ll>

2/k log <12ﬂ VE llwo — w*n)
Va (1-2yrC) Jae

= T >

D.1 Helper Lemmas

We restate (Wang et al., 2021, Theorem 5) that we used in our proof.

Theorem 8. Let H := [(1 u B)IId —ad ﬁé‘d} € R2¥*2dwhere A € R*4 is a positive definite matrix. Fix
d

a vector vy € R?. If 3 is chosen to satisfy

1> 3> max { (1 = a)\min(A)>2, (1 = a)\max(A)>2} then

k
|E#*v]| < (VB) Collwol

where the constant

2 1
CO = = \[(ﬁ * ) Z 1
Vmin {i (8, aAmin(A4)) , b (B, @Amax(4))}
and A (8,2) i= — (B — (1= vV2)2) (B — (1+ v2)?).
Lemma 6. For a positive definite matriz A, denote k := )\:L(AA)) == Seta= mi(A) =% fora<1and
2 2
— _1 . — Va — V2(B+1) < 3
g (1 2 O‘)‘mm(A)) ( 2\F) - Then, Co : V/min{ A (B,0xmin (A) h(B,0 Amax (A))} — 3% and

h(B,z)=—(B-(1—+2)?) (B—(1+2)?).

Proof. Using the definition of h (8, z) with the above setting for 8 and simplifying,

h(B, o) = 3ap (1 - %\/7— 136au)

23Z<12\1/E1;’K) (a<1)
(-5 )R
f%<2fa 8% B<1)

Now we need to bound Y26 Using the definition of h (5, z) and simplifying,

Vi(EaL)
h(6. L) = (2VaL — /api - al + Jou)(y/af +2Val +al — Jan)
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a3/ 1 3/2 1 1
—da— L 0% 20 2{ -
K

NG toan 2 | T6k2
1 _a'? 14/ 1 1

—al4--—2— 4"~ —al1-—+—

a{ PN A YETE a( 2ﬁ+16f€2>}

1 2 1 11
—ald—-—val=-—)—a(1-—+—
a{ K ﬁ(ﬁ 25;3/2) a( o 16/{2>}

] (setting @ = a/L and expanding above)

Since k > 1, \/E o 3/2 >0and 1— ﬂ+ 161'@ > 0, hence
1 2 1 1 1
W”“”[‘*‘J(g‘w)‘(1‘2%%652” (asvasl)

4 2 ! 1+ ! + !
=aq - —_= = ——— | — R
Ve 2K3/2 2k 16k2
Both % — %%/2 and 1+ i + ﬁ are decreasing functions of k for kK > 1.

2K3/2

RHS(x) > RHS(1) for all x > 1,

Hence, RHS(k) := {4 — (% — #) —(1+ 54+ ﬁ)} is an increasing function of k. Since, h(8,aL) >

1 1 1 15a
D>al4—24+-—1—-——| == <1
pBal)zalt-24 5 -1 5 - 5] = 1 (6<1)
Using the above lower-bound for % we have
f(l—i—ﬁ) \/5 < 3

Vh(B,aL) — 7

Putting everything together we get,

Kk 3 K
Cogmax{3\/;,\/a} = COSS\/;

Lemma 7. For batch sampling method where each batch is sampling without replacement from the datasé;

n—>ab

(n—1)b

E[IV fo(wn) = V. (w)]*] = E IV fiwe) = V£ (wi) ]
where V fy(wi) = § Yiep V fiwy)

Proof. First, B[V fy(wi)] = E [} Y05 Vii(wn)] = £ e EIVFi(wi)] = 3 e Vi (wi) = Vi (w). Then

we will calculate the variance of V fj, (wg),

Var (V fy(wy)) Var( ZVfl Wy )

i€B

—Var (Z V fi(wp )

i€B
1 n
= 35 Var (Z Vfi<wk>Xi>
i=1

where X; is an indicator if sample 7 is in the batch B

J,keN
= Var (Vf(wg)) ZVar V filwe) X5 + 2 Z Cov [V f(wr) X, V fr.(wi) X]
i=1 J#k
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Denote V f;(wg) = V; and V f,(wi) = V, for simplification, hence

Var [V, Xi] = V2Var [X;] = v22 =0

(a sample is in the batch with probability %)
n o n

Cov [Vij, Vka] = E[VijVka] — E[Vij}E[VJng]
= V; Vi (E[X; Xi] — E[X;]E[X4])

. . . n—2 n b
Since E[X; Xi] = Pr[both samples i, j are in the batch] = | , _ 5 |/ b and E[X;] = E[X] = ¢

n?

b(b—1 b2
= Cov [vajakak'] = V;Vk (H _ >

(n—=1) n?
b(b—n)
=V; Vk72( 1
Plug back to Var (V) then,
n j,keN
1 [ b(n—0b) ) b(b—n) |”
Var (vb) b2 n2 |Jz; VZ] + n2 (’I’L _ 1) Jz;ﬂ:g v] v’f

_ n—b n—1|< 9 2
C(n—1p | n? l;vl |2 ViV

i#k

n—b | R I R
~ T nZvil - Zv +2) Vi
i=1 j#k
- g (EIVE) - (EIV2)°)
= (:f)b\/ar (Vi)
= E[IV () - VFw0l’] = B (19 Am) = Vo]

E Proofs for lower bound SHB

Before looking at the general lower-bound for n samples, it is instructive to consider the lower-bound
arguments for a 2-sample example. The arguments for the general n-sample example are similar.

Theorem 9. For a L-smooth, i strong-convex quadratics problem f (w) := % Z?:l %wTAiw with 2 samples
and dimension d = n = 2 such that w* = 0 and each A;is a 2- by—2 matrix of all zeros except at the (i, 1)

position, we run SHB (1) with ap = a = %, Br = (1 — 7\/ ) With a batch-size 1, when x > 6, after

3T iterations, we have the following: if Ay := (ww ), forac=1.1>1,
k—1

E[[|Asr|*] > " [ Aol

Proof. By definition, the 2 samples are: A1 = < 0 O> Ay = (O ) and hence A = 3 0 L) Calculating
the smoothness and strong-convexity of the resulting problem, L = % p=5 K= % By the definition of
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SHB (1), we have that,
|:’wk+1 - w*:| |:(1 + f)’)[d — aAy —ﬁ[d} |: wg — w* ]

wy — w* - 1 0 Wp_1 — w*
Let w,(:), w,(f) be the first and second coordinate of w;, respectively, A,(:’j )
A. Since w* = 0, the above update can be written as:

is the element in (i, j)-position of

1 1
Wey1| 0 1+58— aAEfQ) 0 =8| | w
w 1 0 0 0| |wl

(2) 0 1 0 0 (2)
Wy, Wy~

Hence, we can separate the two coordinates and interpret the update as SHB in 1 dimension for each
coordinate.

Subsequently, we only focus on the second coordinate which corresponds to L (A,(f’Q)) in matrix A.

wr 1 = wg, — e A wy + Blwg — wi_1)
A22
— <wk+l> - (Hﬁ— 7 —ﬁ> ( i ) (a =YL =2/1)
Wi 1 0 Wg—1

Denoting Ay := (wwk ), the above update is
k—1

Appr = Hp Ay

where Hy, is either Hy := (1 T A 0”6> (corresponding to A3? = 0) or Hy := <11+ 2 Oﬁ) (corresponding

to A3? = L) with probability 0.5.

In order to prove divergence, we will analyze three iterations of the update in expectation. We enumerate
across 8 possible sequences (depending on which sample is chosen): (1,1,1),(1,1,2)...(2,2,2). For example,
if the sequence is (1,1,2), the corresponding update (across 3 iterations) is:

Ak+3 = H(1,1,2) Ak where H(1)172) = H2H1H1

We denote H; to be the matrix corresponding to the i-th permutation. For example, Hy := H(1,1,1). Next,
we analyze the suboptimality ||Ag||* in expectation.

8
1
E[||Arys|®] = 3 Z | HiA | (probability for each of the 8 sequences is 1/38)
i=1
. . . sin(@k)
Representing Ay, in polar coordinates, for a 0y € [0, 27|, Ay := rpdr where r, € Ry and ¢ = cos(0y) )
k
138
2 2
E[| Axtsll”] = gz [Hirkol
i=1
9 8

r
= 3 I’
i=1
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2
In order to analyze the divergence of SHB, we define the norm square increase factor ¥ := %ZM,

T E[[| As3)’]
- 2
| Al
R Mgkl
r2 [l
1 [Hadnl?
AT

1 8
= > Iraonl? (lowl” = 1)
i=1

(AR = llregrl® = 3 xll*)

U depends on ¢, and hence it is a function of 8. Using symbolic mathematics programming (Meurer et al.,
2017), we can calculate ¥ as an expression of (3,6,

8 2
1 sin(0)
v ()]
= — 3%sin(20) + B¢ + 33° sin(20) + 3° cos(26) — 33°
— 54%sin(26) — 2% cos(26) + 63*
+ 2% sin(26) + 34° cos(26) — 35°
— 2/3%sin(26) — 3% cos(26) + 5% — cos(26) + 1
We first verify that U(3, ) is monotonically increasing w.r.t 3 € [0, 1] by taking derivative of ¥(3,6) w.r.t 3.
We plot the derivative for 5 € [0,1] and 0 € [0, 27]. From Fig. 5a, we can see that the derivative of ¥(/3,0) is
positive for 8 € [0,1] and 6 € [0, 27].
Choosing 8 = 0.63 (corresponding to x = 6), we plot ¥ against 6 in Fig. 5b and minimize ¥ w.r.t 6, finding
the minimum to be 1.1. Since min(¥) = 1.1 > 1, the sub-optimality is increasing in expectation for any Ay

when 8 = 0.63. Hence, since ¥(f, 6) is monotonically increasing with respect to 5 (Fig. 5a), when x > 6
(correspond to 8 > 0.63), for an arbitrary Ay,

E[|Atl”] > cE[| Ak
where ¢ > 1.1 for all kK > 6. Unrolling the recursion starting from 0 to 37,
2 2
E[|Asr 7] > ¢ [|A]|

Since ¢ > 1.1 > 1, the second coordinate will diverge and SHB will diverge consequently (Fig. 5¢). O
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Grad norm

1 2 3 4 H 6 0 200 400 600 800 1000
6 Iterations.

(a) 3D plot of derivative of ¥(3,0) (b) Plot of ¥ against 6 for 8 =0.63 (c) Plot of SHB vs SGD for the 2-
with respect to 8 for 8 € [0,1] and sample case with b =1, k = 6. SHB
0 € [0,27]. The whole plane is above diverges while SGD converges

0 hence ¥(8,60) is monotonically in-

creasing for 8 € [0, 1] for any 6.

Figure 5: Figures for 2-sample SHB lower bound proofs

Theorem 3. For a L-smooth, ji strongly-convex quadratic problem fw) = %2?21 %wTAiw with n
samples and dimension d = n = 100 such that w* = 0 and each A is an n—by—n matrix of all zeros except

at the (7,7) position, we run SHB (1) with ap = a = %, Br=8=(1-3/a ) Ifb < —11—n and
Tm

K

Ay = (wwk ), for a ¢ > 1, after 67 iterations, we have that:
k—1

E [l a6r|?] > ™ Aol

Proof. Denote L = maxlen A( ™ and g = minge, A( . For the strongly-convex quadratic objective function
flw) =3 30, gwT A, w* =0,

Since each A; is diagonal, similar to Theorem 9, we can separate the coordinates and consider SHB in 1
dimension for each of the coordinates. Subsequently, we only focus on coordinate u that corresponds to the
largest AEM) i.e. u=argmax;cy, Az(-“). The update for this coordinate is given by:

Wit1 =wy — oV fip(wg) + Blwy —wi—1),

where V fir(wi) = § Y5, Vilwr) = ¢ (ZzeBk A(u ”)> wy. Hence,

1 u,u
Wht+1 =Wk — Oég <Z Az(‘k) )> Wy, + ﬂ(wk — wk_l)

b

Similar to Theorem 9, we calculate the smoothness of f(w) as L = Amax (VZf(w0)) = Amax (2 Y11 4;) =

Hence a = % = 7 and the full update can be written as:

Wht1 =W = 3 (ZAuu>wk+ﬁ(wk—wk 1)

1€ By,

Wy n ZieBk Aguvu) W
— )= [1+8- P L -3
Wk 1 0 Wg—1

In each iteration, we randomly sample (without replacement) b examples. Hence, the probability that A,
is in the batch is 2. When A, is in the batch, Y ieB, Ag“’“) = L. On the other hand, when 4, is not in
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Wi

the batch,
e batch, > Wt

rewritten as:

ieB, AE"’U) = 0. Similar to Theorem 9, we define Ay, := (

). Hence, the update can be

Apyy = Hp Ay

where Hy is either Hy := (1 —il— s _OB> w.p p1 = "T’b (corresponding to when A, is not in the batch) or

n
Hy = (1 B ? +h _06> wpp:i=1—p = % (corresponding to when A, is in the batch).
We will use the same technique as in Theorem 9 and analyze six iterations of the update in expectation
using symbolic mathematics programming (Meurer et al., 2017). For this, we denote H; to be the matrix
corresponding to the i-th permutation of 26 possible sequences and p; to be the probability of that sequence.
Therefore, p; is a product of p1, p2 corresponding to matrices Hy, Ho in the i-th sequence. For example, when
Hl = H(171)171)1,1) = HlHlHlHlHlHl, ﬁl = p? ertlng the suboptimality HAk||2 in expectation,

26
E || Anroll* = pi M
=1

sin(@k)).

Representing Ay in polar coordinates, for a ) € [0,27], Ay := rr¢r where r, € Ry and ¢ = (

cos(0)
. L E[‘|Ak+6‘|2] .. .
The norm square increase factor ¥ := Eaa] is given by:
k
2
_E Akl
= 2
1A
20 2
T i1 Pi | Hidkll
= 2
i 6wl

25

— 2

= E pi | Hidw ||
=1

Using symbolic mathematics programming, we write ¥ as a function of b, 3,6 (see Fig. 6 for the complete
expression) and analyze ¥(b,5,60). Similar to Theorem 9, we first show that ¥(b,3,0) is monotonically

increasing w.r.t 5. Using the expression of \Iljg(b, B,0) = %ﬁf’e), for each b € [n — 1], we plot \Iljg(b, B,0) for

B €10.25,1), 6 € [0,27] and observe that \Illﬂ is positive. In Fig. 7a, we show an example plot of \I//B (b, 8,0)
when b = 70. Furthermore, we discretize 8 and 6 to numerically verify that for any b € [n — 1], \I!/B (b,8,0)
is greater than 0. In Table 1, we show an example for values of \I/g (b, 8,0) when b = 70. Hence for every
ben—1], ¥(b,S3,0) is a monotonically increasing function in 3.

Next, for each batch-size b € [n — 1], we minimize ¥ (b, 5,0) and find 5*(b) as the smallest § such that
U(b,,0) > 1. In Fig. 7b, when b = 70, we plot minimum of ¥ (b, 5,6) w.r.t § and show the corresponding
B*(b). Since ¥ (b, 3,0) is monotonically increasing w.r.t 3, we conclude that for a fixed batch-size b € [n — 1],
V8 € [0,2x], VB € (8*(b),1), T(b, 3,0) > 1.

2
From the definition of /3, we can calculate the corresponding k for any S € [0.25,1) as k = (2(1_1\/5)) .

Hence, for a fixed batch-size b, the coordinate u (and hence SHB) will diverge if k > x*(b) (corresponding to
B (b)).

From Theorem 2, we see that the batch factor equal to ﬁ must be sufficiently small to ensure convergence

of SHB. In particular, SHB converges at an accelerated rate if (n"_i_lb)b < ﬁ Hence, in order to derive the
lower-bound, we plot log ((T?:lb)b) against log(k*(b)) in Fig. 7c. We observe that for larger £*(b), the batch

factor is smaller. In other words, when & is large, SHB requires a larger batch-size to avoid divergence.
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— 3" sin (26) + B2 + 98" sin (26) + B cos (26) — 98" — 253" sin (26) — 78" cos (26) + 253" + 1957 sin (268) + 125° cos (26) — 185" +
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120000005 sin (26) " 160000005 cos (26)  2400000043”

Figure 6: ¥ as a function of b, 5,6

In order to quantify the relationship between «*(b) and b, we calculate the best-fit line for our plot in Fig. 7c
using linear regression. The slope corresponding to the best fit line is —0.6 and the y-intercept is —3.8. Hence,
we can conclude that,

log (m"__lb)b) < —0.6log(k* (b)) — 3.3
n—=bt

(n—1)b = (= ()00

n—1)b
— o)t >

8_3'3

Previously, we have shown that ¥ (b, x,6) > 1 for all £ > £*(b). Hence, ¥ (b, x,6) > 1 when

HO'G > (K*(b))o.(ﬁ
0.6 (n—1)b
” (n—Db)et
n—=b o 1
(n—1)b ~ 33506

b 1
- - < —

— K

— b< ————
1+ =%535%
Therefore, when the batch-size b < ———%——n = Q(k%°), the norm square increase factor ¥ (b, x, ) will be

1+ es,g(n)o.e
greater than 1 which leads to divergence. For an arbitrary Ay,

E [ Apssl? > cE A2

— EAor|® > ¢ Ao
Since ¢ > 1, SHB will consequently diverge. In Fig. 7d, we plot the gradient norm of SHB for x = 10 and
observe that when b =10 < L n, SHB diverges empirically verifying our lower-bound. O

1+E -3 (r)0-

36



Under review as submission to TMLR

351

3.0

' 2.5

2.09

15+

1.0

0.5

0.0

(a) 3D plot of derivative of ¥ (b, 3,0) with respect to 8 (b) Plot of minimum ¥(b,3,6) with respect to 0 for a
for a sample b = 70, 8 € [0.25,1) and 6 € [0,27]. The sample b = 70, 8 € [0.25,1) and 6 € [0,27]. S*(b) is
whole plane is above 0 hence ¥(70, 3,6) is monotonically smallest 8 such that ¥ > 1.

increasing for 3 € [0, 1] for any 6.

0 — bestfit 10774
1016 4
24
— 1012 -
o
x
~ |
z E 1001
= c
a =1
3 o
= 0 10%4
> —6
K]
SGD
—g
wel —— SHB
T T T T T T T T T T T T T T T
0 2 9 6 8 10 0 250 500 750 1000 1250 1500 1750 2000
log{kappa*) Iterations

(d) Plot of SHB vs SGD for the n-sample case with £ = 10,

n =100, b = 10 < ————n. SHB diverges while SGD
R

(c) Plot of log batch factor log (ﬁ) against log(x™).
Using linear regression, the slope of the best fit line is
—0.6 and the y-intercept is —3.8 converges

Figure 7: Figures for n-sample SHB lower bound proofs
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0 g
0.250 0.333 0.416 0.500 0.583 0.666 0.749  0.833 0915  0.999

0 0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.083
0.2r 0203 0387 0.701 1.216 2.037 3.311 5.238 8102 12.283 18.281
0.47 0490 0.891 1.532 2,515 3.970 6.055 8.962 12911 18.151 24.968
0.6m 0584 1.114 2.012 3.466 5.734 9.160 14.193 21.423 31.632 45.902
0.8m 0.354 0.748 1477 2.754 4.892 8.333 13.703 21.875 34.094 52.153
1.0m  0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.082
1.2 0.203 0.387 0.701 1.216 2.037 3.311 5.238 8.102 12.283 18.281
147 0.490 0.891 1.532 2515 3.970 6.055 8.962 12.911 18.151 24.968
1.60 0.584 1.114 2.012 3.466 5.734 9.160 14.193 21.423 31.632 45.902
1.87 0.354 0.748 1477 2.754 4892 8333 13.703 21.875 34.094 52.153

2r 0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.083

Table 1: Values of \I/lﬁ(b, B,0) when b = 70 for different 5 € [0.25,1) and 6 € [0, 27|
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F Proofs for multi-stage SHB

Theorem 4. For L-smooth, u strongly-convex quadratics with £ > 1, for T > T := 3&?%@ max {4/@, 62},

Algorithm 1 with b > b* := n max L (nlfl) = converges as:
I+ 1432,

T
Elhwr ~ w”] < Crewp (~ gz ) un = 'l + o2

where C := 3226 and C7, Cs are polynomial in x and poly-logarithmic in 7.

2
Proof. Stage zero consists of Ty = % iterations with a = % and g = (1 - ﬁ) . Let T; be the last iteration

in stage i, Ty = T. Using the result of Theorem 2 with a = 1 for T} iterations in stage zero and defining

At = Wt —’U)*,
6v2 T 12
E||wT—w*<\[\/Eexp( va )| wo — w*|| + \:ﬁx min{l C}

va 4 /K ' a
B1am | < 6v3VE exp (— = ) oo — )+ 2w {1, -}
< 6V2vk exp( 8?}) lwo — w*|| + lix

[£21

We split the remaining % iterations into I stages. For stage i € [1,1], we set a; = ¢ and choose a; = 274,
Using Theorem 2 for stage 1,

Bllan] < 0v2)/2 e~ TL Elar )+ 20 min {1, 2=

Vi v
. 1 T 12
i/2 X
<6v22 \/Eexp( 1973 I)EHATIH‘F i
, T; 12 ¢
< exp <(1/2 +5)In(2) + In(v/k) — 2i/24 f) E || H + 11212

Now we want to find T} such that (i/2 4+ 5) In(2) + In(y/k) — 21./27“41'\/% < —2(i+1§7"24\/g.

4
(2-v2)

~ [

(/24 5)In(2) + In(vk)) > 2In(2)(7/2 + 5) + 2In(v/k) > (/2 + 5) + In(k)

2'2V/k((i/2 + 5) In(2) + In(Vk))

= 1; >

21‘/2\/%((1‘/2 +5)In(2) + 1n(\/ﬁ))-‘

=

T; S 1
2(i+1)/24\/g - \/i_ 1
T; <1 iy 45
= exp W exp( (i/2+5))
Define p; := * exp(—(i/2 + 5)). If we unroll the above for I stages we have:

I
12x p
E[|Az ) < [ pE1AT | + == Zz /2 H pi
=1

Jj=i+1
I

I
12
= exp (—Z(i/2+5)—[1nf<;)>E|ATU||+ XZ2 2exp | — Z (j/2+5) —ilnk
i=1

j=i+1
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I
12
<exp (— I’/A—Ik) E||Ag | +—= X 22 2 exp | — Z (j/2) —ilnk
j=it1

12 )L +1+1
<exp(—I*/4—Ink) E||Aq| + XZ2 i/2 Xp< 7 Z)(4+Z+ )—ilnﬂ>

192 ) (_(1271 41 L>>
<exp (—I?/4—Ilnk) E[|Aq | + TX 2271/2 2 T exp(—ilnk)  (since 2 <e)

I
12
=exp (—I°/4—Ink) E|Ar| + TX 22(*5 exp (—iln k) (since I? > 42)
i=1
12 xk 1

gexp( I° /4 — Ilnﬂ)EHATUH-i-ﬁ ()
2w 1
u(k —1) 2(%)

Putting together the convergence from stage 0 and stages [1, ],

—I? K ex —i wo — L2 1
Bllarl] < exp (~1774) (6VEVE oxp (— gz ) o — w4 222 )+ 22X

< exp (—1%/4) E[|Ag, || +

1 T 12x 12 xk 1
<L (6vavi ex ( ) wo — w” +>+
o PLsvw) o I S0 ) e 5
< 1 T 24 xKk 1

j (ovavi e (g ) o —wrl) + 25 o

Now we need to bound the number of iterations in Zle T;.

B~

2l

I

I
- T K( (2 n n(vk
;T’S;{@_ﬂf VA2 +5)In(2) +1 mm]
I
< 822”2\/%((1/2 + 5) 111(2) + ln(\/E)) 4T

< 8\/;2]: 22'/2{42' + ln(\/E)} +1

< 8\/E{4I + 1n(\/ﬁ)} i 22 4 1

J /e 9(I+1)/2
< 8Vk<4l +In(v/k) p——— +1
- { ( )} V2-1
< 16v/k [5I 4 In(y/w)] 2 H+D/2

Assume that I > In(y/k). In this case,

I
> T <192k 12072
i=1

(Simplifying > %)

(For i > 1)

(6)

We need to set I s.t. the upper-bound on the total number of iterations in the I stages is smaller than the

available budget on the iterations which is equal to T'/2. Hence,

% > lnl(?/Qé)\/E exp <ln(\/§) I) (I ln(\/ﬁ))
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— exp (m(\/ﬁ) 1) (1 ln(\/§)> < jm — Iln(vV2) < W (M)

(where W is the Lambert function)

Hence, it suffices to set I = Ln(iﬁ) W (Tgéz(\/\/g)”. We know that,

1 TIn(v2)\
£> 1n(f)W( 384\/E) 1
2~ 2
. <I> ( <W (Tln(ﬂ))))l/@hl(ﬁ))
exp | = exp e
2 384 /K
T ln(\/i) 1/(2111(\/5))
384 /r . .
R v arrey (inco exp(V(2)) = 5t5)
384k

For z > €2, W(z) < /1 + 2log?(z). Assuming T > ?8?\/\[)62 S0 ngl;i(\\g) > e,

1/1In(2)
I T In(v2)
exp <2> > \/m 384 /K
2 (T In(v/2)
\/1+210g ( n(v )
Since 2% = (exp(z))™®),
In(2)/In(2)
T In(v2)
2(%) = (GXP(I/Q))ln(z) > (\/ﬁ)ln@) 384 /k
2 (T In(v/2
\/1 +2log ( 384(\/E))
T In(v/2)
= (eXp(I/2))ln(2) > (M)IH(Z) 384 v/r
2 (T In(v/2)
\/1+210g ( i )

2 (T In(v/2)
. \/1+210g (G2 ) s84/m
— <2

20/2 — TIn(v2)
9 2 (T In(v/2)
e (5552))
B In(2) T
2y fu(1521 (S2))
Define C; := T2) , meaning tha 2,1/2 < % Using the overall convergence rate,
1 T 24 xk 1
Elllwr — w*||] < 6vV2v/k ex — ) lwg — w*|| | + ——
lor =1} < s (6VBVE exp (=g ) oo = w7l ) + 2225
VC ( ( T > > 24xrk  Ch
< 6vV2vk exp | ———= | [|wo — w*|| ) + —2——
< g \vavies (=g o =l )+ S0 U
T 24 xk Ch
= E|lwr —w*]| <6v2/C k—=exp | ———= | |lwog — w*|| + ———
fur — ] <6VEVEIVE = exp (g ) o — u + 22X Y
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We assumed that I > In(y/k) meaning that we want 7" s.t.

Ln&/i) W (2;1(\?” > In(v)

Since W(z) > log (¥ for 2 > 0 we need to have:

1 T In(v/?2)
lrm)W( e )‘mnﬁ

4TI02) 4y

= log ( 384\/; ) >In(vVk) +1

384\/E n(vE)+2 _ 9\2 _
:TZM((QW )2 _9) 1)

Hence, it suffices to choose

96,/
In(v2)

— T > 16 - 2n(%)

Since e > 2

96\/E 16 - 61n(/<a) _ 3- 29H\/E
n(v2) n(v2)

Therefore to satisfy all the assumptions we need that

R e
_ max{3 . 210H\/E7 3- 2862\/E}
In(2) In(2)

= 1T >

Let C5 = % then

T > \/kCs
With this constraint then ﬁ < T F Hence the final convergence rate can be presented as
B llwr —u) <6VEVOE i exp (— gz ) oo — 'l + X Y2
=6v2 * exp <_8\7/1E> ||w0—w*||+% \/\/?
e B o
Let C7(k,T) :=6 (1 + 2log? (2;’1\/\/3)))% and Cg(k,T) := 2/:1{;‘\/? then
E [[wr — w*|| < Crexp ( Sf) lwo — w*|| + Cs—= \/T
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Corollary 2. For L-smooth, p strongly-convex quadratics with x > 1, Algorithm 1 with batch-size b such

that b > b* :=n H_ng attains the same rate as in Theorem 4 for T € [312(5( max {4& 62} Cy 3?,1 11),;7 )

where C := 3°26 and C; is defined in the proof of Theorem 4 in App. F.

Proof. By the batch-size constraint in Theorem 4, we need % > W From Theorem 4, a; = 271 < &
G-Dag

hence
b 1
o= n—1
K TCn)
n—1 n
3(T/cy)” — b
/0 (1" <1
= 3(T/cy) (1 b>_1 n
T 2 (’I’L—l)b
— (e) <35y
(n—1)b
T<
— T=Cy/35 =

G Proofs for SHB with bounded noise assumption

Theorem 10. For L-smooth and j strongly-convex quadratics, SHB (Eq. (1)) with oy, = a = ¢ and a <1,

Br=B=(1-1,/a ) bounded gradient noise E; |V f(wg) — V fi(wy)||> < 62, and batch-size b has the
followmg convergence rate,

N K a T * 6Co
Ellur - w”l| <3vEZexp (~ 20 T ) fluo - wt] + 22,

Proof. With the definition of SHB (1), if V f;x(w) is the mini-batch gradient at iteration k, then, for quadratics,
wrpr —w*| (14 B)g—aA —plg| | wp —w* n Vf(w) =V fir(wi)
* — * (0%
Wi — W 1 0 Wr—_1 — W 0

Ak+1 H Ak 6k
Ak+1 = HAk + a5k

Recurring from k£ =0 to T — 1, taking norm and expectation w.r.t to the randomness in all iterations.

E[|Ar]] < M7 Aol + aE

e

k=0

In order to simplify dj, we will use the result from Lemma 7 and Lohr (2021),

Ex[[10x]1"] = Ex[IIV f (wr) = ¥ fur (wi) %]

n—=b
= WEi IV f(wr) — Vfi(wk)H?
(Sampling with replacement where b is the batch-size and n is the total number of examples)
n—>ob _o
nb 7

<
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= Eg[llox]l] <

Using Theorem 8 and Corollary 6 (Wang et al., 2021), for any vector v, H’H’“UH < Cp p* ||v]| where p = /B.
Hence,

C a T—1
0 -4 a
E[[|Ar|] <Cop™ A0l + == p" R E (|6 (a=1)
k=0
Cha T—1 L )
=Cop" Aol + —F- pt ! ’“Ccf]
k=0
Chals [
<Cyp" ||Ao||+OTC l pk]
k=0
Coala 1
=Cop" Dol + =5 1_”p
Cyale
<Cor” o]+ T
We have CO§3\/§7p:1—%then
T
K Vva k2K alo
E[|Ar]] <3¢/~ (1 - A
lanl] <3/ (1= 20) o)+, /22
T
K Va G
<3, /2 (1= A 59
_3\/;( M) 180] + 6
Va T
O

Since the proof of Theorem 4 analyzes each stage independently and successively uses Theorem 2, we can

repeat the proof of Theorem 4 using Theorem 10, yielding a similar O (exp (7%) + %) rate without any s

dependence on the batch-size.
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H Proofs for two-phase SHB

Theorem 11. For L-smooth, u strongly-convex quadratics with x > 4, Algorithm 2 with batch-size b such

that b > b* = n —L—+ results in the following convergence,
Itz

2¢cok T ¥
]E L= * < S _ 3
lwr—1 — w*|| <64/ o exp( /148ln((1—c)T)>”wO w*||

" 124/6Lcy o exp (_ (1-— c)T*y) 8v/Lcy In(T) (kK32 1%
Lt 8k In(T) ev/cr VA =0T
where g =1 — %7 = (;:b)b captures the dependence on the batch-size, co = exp (m),
cL = 74(1;7) [1—exp (—42)] and C := 3526.

Proof. After Ty iterations, by Theorem 2 with a = 1, and y = \/E ||V f;(w*)|]?,

T 12+/3
E ||wp, — w*|| < 6v2y/k exp (—O) lwo — w*|| + V3 (since in Theorem 2, ¢ = , /3(;:1%)
W

After Ty iterations, by Theorem 1 with v = (/7;)"/™ and 7 = 1,

T~ ) 64Lo?coC?k3 (In(Ty))?

E[&r] < — w*|? -
[er] < llwr, — w7 ez exp( 4k 1n(Ty) e2~2 T

Taking square-root on both sides and using that \/E[E7] > E[/Er]

T 8v/Lco oCk3/2 (In(T;
E[V/Er] < |lwr, — w*]| v/ exp (‘gmi@% ch (fﬁ))

Taking expectation over the randomness in iterations t = 0 to Ty — 1,

Ty~ 8V Ley ok (In(Th))
E[v&r] < — | E —w*
[VEr] < Vaexp (~ gt ) Bllur, -l + 222t B
Using the above inequality and using that x? < 2L o2,
Ty v To 12v/3V2L¢o
E[\/Er] < 17 3 _ 1o _ | 4 YVERAT
= E[V&r] <2 exp( 8f<;1n(T1)> 6vV2V/k exp( 4\/E> lwo — w*|| + .

N 8v/Leg oCk3/? (In(Th))
ey VTi

_ TO T17 *
=62V eXp( N SHln(Tl)) o =]

+12¢(~TL¢5<0 (_ Ty v ) 8v/Leg oCk3/? (In(Ty))
i P 8k 1In(Ty) ey VTi

For T} > e and since v <1

E1vEr] <02V e (gt (G + ) oo
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N 12V/6L \/c5 (o . ( T v > N 8v/Leg aCk3/? (In(Th))
u P 8k In(Ty) ey VTi

Consider term A := 6v/2,/c2\/k exp (—81%@1) (% + %)) |lwo — w*||. We have,

Ty T (0T

VE K \/E—'_ K
:Tc\/ﬁ—kl—c
K

Suppose % = TLIPC then
Kk -5
o/E+1—c

In(cy/k+1—¢)

:1 —
— 4 In(k)

Since ¢ € (0,1), ¢ € (0.5,1), then

T ol "
A SG\/ 262/{, exp <_MW) Hwo —w ||

. - . 12y/6Lc3 Co T 8v/Lea oCk3/? (In(Ty))
Consider the noise B := meEes 257 exp ( 851111(}10 + iﬂ{ \/T% .
B— 124/6Lco CU exp (_ T Y ) n 8v/Lco 0‘@'/53/2 (ll’l(Tl))
1 8k In(Ty) ey e
124/6Lcy (o ( (1—0)Tx ) 8v/Leg aCk3/2 (In((1 — ¢)T))
=——">exp|— +
I 8kIn((1 —¢)T) ey (1-0)T
12V/6L 1—¢o)T 8vL 32 In(T
< 12v/6Les o exp (—( 2 7) + C2 0CK n(T) (Since c € (0,1))
1 8k In(T) ey (1-oT

Putting everything together,

E[\/Er] <622k exp <—T7)T)) lwo — w™||

k48In((1 —¢
12y/6Lcs Co (1-0)T~ 8v/Lez oCk®/? In(T)
i p o (_ 8#1n(T) ) i e (1—0oT

Using Lemma 1 with ¢p = W [1—exp (—47)] then

. r gl "
VerEflwr—1 — w|| <6v2c2k exp </<<181n((1—c)T)> [|wo — w™||
12/6Lcy (o < (1-— c)Tq/) 8v/Leg oCk3? In(T)
+ ———exp | — +
i 8k In(T) ey (1-oT

2coKk T v
—— E 1 — * <6 _—_ — *
hor—y =il <6y =7 eXp( ;-gfI8ln((1c)T))wO vl

N 12/6Lcy Co o (_(1 - c)T’y) N 8v/Lcy In(T)(¢kK3/? o
TV P\ sem() ewer  I—oT

46



Under review as submission to TMLR

Corollary 3. For L-smooth, p strongly-convex quadratics with x > 4, Algorithm 2 with batch-size b such
that b > b* =n ﬁ and ¢ = L results in a rate of O <exp (f%) + %) for all T'.

n—1 2
C k2

Proof. From Theorem 11, ¢ =1 — m(c‘lf(i;l_c), plug in ¢ = %, then

In (e

Since ¢ is monotonically decreasing with respect to x and x > 4 then

In <7‘/12+1)
q<1-—

< W%O.?

Hence the bias term in the rate of Theorem 11 converges as O (exp (=% )) < O (exp (—=+)).

The noise term converges at the rate of O (L) hence the convergence rate of Algorithm 2 when ¢ = 0.5 is

VT
0] (eXp (—%) + %) O
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| Additional experiments

I.1 Quadratics experiments on LIBSVM datasets

To conduct experiments for smooth, strongly-convex functions, we adopt the settings from Vaswani et al.
(2022). Our experiment involves the SHB variant and other commonly used optimization methods. The
comparison will be based on two common supervised learning losses, squared loss for regression tasks and
logistic loss for classification. We will utilize a linear model with ¢5-regularization 3 |wl|* in which A = 0.01.
To assess the performance of the optimization methods, we use Zjcnn and rcvl data sets from LIBSVM (Chang
& Lin, 2011). For each dataset, the training iterations will be fixed at T'= 100n, where n is the number of
samples in the training dataset, and we will use a batch-size of 100. To ensure statistical significance, each
experiment will be run 5 times independently, and the average result and standard deviation will be plotted.
We will use the full gradient norm as the performance measure and plot it against the number of gradient
evaluations.

The methods for comparison are: SGD with constant step-sizes (K-CNST), SGD with exponentially decreasing
step-sizes (Vaswani et al., 2022) (K-EXP), SGD with exponentially decreasing step-sizes and SLS (Vaswani
et al., 2022; 2021) (SLS-EXP), SHB with constant step-sizes (set according to Theorem 5) (SHB-CNST), SHB
with exponentially decreasing step-sizes (set according to Theorem 1) (SHB-EXP), SHB with exponentially
decreasing step-sizes (set according to Theorem 1) and SLS (Vaswani et al., 2021) (SHB-SLS-EXP).

ijcnn

1041 rcvl
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2

Gradient Norm (log)
=
o
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-
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&
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0 5000 10000 15000 20000 25000 0 1000 2000 3000 4000 5000 6000 7000 8000
(Gradient evaluations) / 1000 (Gradient evaluations) / 1000
(a) ijenn (b) revl
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Fioure ]&: Sanared loss on iienn and revl datasets
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O 905 T R ©
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(a) ijenn (b) revl
—— KCNST —— SHB-CNST K-EXP —— SHB-EXP SLS-EXP SHB-SLS-EXP

Figure 9: Logistic loss on ijenn and rcvl datasets
From Fig. 8 and Fig. 9, we observe that exponentially decreasing step-sizes for both SHB and SGD have close
performance and they both outperform their constant step-sizes variants. We also note that using stochastic
line-search by Vaswani et al. (2021), SHB-SLS-EXP matches the performance of the variant with known
smoothness.

.2 Comparison to Pan et al. (2024) multi-stage SHB

In this section, we consider minimizing smooth, strongly-convex quadratics. The data generation procedure
is similar to Section 5. We vary & € {2000,1000, 500,200,100} and the magnitude of the noise r €
{1072,107%,107%,1078}. For each dataset, we use a batch-size b = 0.9n to ensure that it is sufficiently large
for SHB to achieve an accelerated rate with all of our chosen k. We fix the total number of iterations 7" = 7000
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and

Multi-SHB-PAN-T-KAP. With a sufficiently large batch-size, the method by Pan et al. (2024) is able
to avoid the divergence behaviour in Fig. 2. The performance of SHB variants is similar to the method in
Pan et al. (2024), and it consistently lies in-between the two extremes.

and initialization wy = 0. For each experiment, we consider 3 independent runs, and plot the average result.
We will use the full gradient norm as the performance measure and plot it against the number of iterations.

We compare the following methods: Multi-stage SHB (Algorithm 1) (Multi-SHB), our heuristic Multi-stage
SHB (Algorithm 1) with constant momentum parameter (Multi-SHB-CNST), Two-phase SHB (Algorithm 2)
with ¢ = 0.5 (2P-SHB), Multi-stage SHB (Pan et al., 2024) with C' = 2 (Multi-SHB-PAN-2) and C' = T'\/k

(Multi-SHB-PAN-T-KAP).

We observe that with a sufficiently large batch-size the method by Pan et al. (2024) is able to avoid the
divergence behaviour in Fig. 2. Furthermore, the performance of 2P-SHB, Multi-SHB, Multi-SHB-CNST is
similar to the method in Pan et al. (2024), and it consistently lies in-between the two extremes.
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