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1. Introduction

Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME)

are the most common sight-threatening medical conditions

caused due to retinal microvascular changes triggered by di-

abetes (Reichel and Salz, 2015), predominantly affecting the

working-age population in the world (Atlas, 2017). DR leads to

gradual changes in vasculature structure (including vascular tor-

tuosity, branching angles and calibers) and resulting abnormali-

ties (microaneurysms, hemorrhages and exudates), whereas, DME

is characterized by retention of fluid or swelling of macula that

may occur at any stage of DR (Bandello et al., 2010; Ciulla et al.,

2003). According to International Diabetes Federation (Atlas, 2017)

estimates, presently, the global number of individuals affected with

diabetes is 425 million, and it may rise to 693 million by 2045.

Amongst them, one out of three individuals is estimated to have

some form of DR, and one in ten is prone to vision-threatening

DR (ICO, 2017; Bourne et al., 2013). DR is diagnosed by visually

inspecting retinal fundus images for the presence of one or more

retinal lesions like microaneurysms (MAs), hemorrhages (HEs), soft
Fig. 1. Illustration of retinal image (in center) by highlighting normal structures (blood ve

regions (in left) MAs, and HEs and (in right) SEs, and EXs.
most common cause of avoidable vision loss, predominantly affecting the

the globe. Screening for DR, coupled with timely consultation and treat-

y to avoid vision loss. However, implementation of DR screening programs

ty of medical professionals able to screen a growing global diabetic popu-

aided disease diagnosis in retinal image analysis could provide a sustain-

ale screening effort. The recent scientific advances in computing capacity

es provide an avenue for biomedical scientists to reach this goal. Aiming

in automatic DR diagnosis, a grand challenge on “Diabetic Retinopathy

as organized in conjunction with the IEEE International Symposium on

). In this paper, we report the set-up and results of this challenge that is

etic Retinopathy Image Dataset (IDRiD). There were three principal sub-

, disease severity grading, and localization of retinal landmarks and seg-

in this challenge allow to test the generalizability of algorithms, and this

existing ones. It received a positive response from the scientific commu-

495 registrations effectively entered in this challenge. This paper out-

tion, the dataset used, evaluation methods and results of top-performing

-performing approaches utilized a blend of clinical information, data aug-

models. These findings have the potential to enable new developments in

e-based DR screening in particular.

© 2019 Elsevier B.V. All rights reserved.

xudates (SEs) and hard exudates (EXs) (Wong et al., 2016) as

hown in Fig. 1.

Early diagnosis and treatment of DR can prevent vision loss.

ence, diabetic patients are typically referred for retinal screen-

ng once or twice a year (Ferris, 1993; Kollias and Ulbig, 2010;

ing et al., 2016). The diabetic eye care is mainly reliant on the

umber of ophthalmologists and necessary health care infrastruc-

ure (Jones and Edwards, 2010; Lin et al., 2016). In India, oph-

halmologist to population ratio is 1:107,000, however, in urban

egions this ratio is 1:9000 whereas in rural parts there is only

ne ophthalmologist for 608,000 inhabitants (Raman et al., 2016).

y 2045, India alone is projected to have approximately 151 mil-

ion people with diabetes and one-third of them are expected

o have DR (Atlas, 2017). Programs to screen such a large pop-

lation for DR confront issues related to implementation, man-

gement, availability of human graders, and long-term finan-

ial sustainability. Hence, computer-aided diagnosis tools are re-

uired for screening such a large population that requires con-

inuous follow-up for DR and to effectively facilitate in reducing

he burden on ophthalmologists (Jelinek and Cree, 2009; Walter

t al., 2002). Such a tool would help clinicians in identification,
ssels, optic disc and fovea center) and abnormalities associated with DR: Enlarged
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nterpretation, and measurements of retinal abnormalities, and

ltimately in screening and monitoring of the disease. Recent

cientific advances in computing capacity and machine learning

pproaches provide an avenue to biomedical scientists to meet

esideratum of clinical practice (Shortliffe and Blois, 2006; Patton

t al., 2006). To meet this need, raw images along with the pre-

ise pixel or image-level expert annotations (a.k.a. ground truths)

lay an important role to facilitate the research community for the

evelopment, validation, and comparison of DR lesion segmenta-

ion techniques (Trucco et al., 2013). Precise pixel-level annotations

f lesions associated with DR such as MAs, HEs, SEs and EXs are

nvaluable resources for evaluating the accuracy of individual le-

ion segmentation techniques. These precisely segmented lesions

elp in determining disease severity and further act as a road-

ap that can assist to tap progression of disease during follow-

p procedures. Similarly, on the other hand, image-level expert la-

els for disease severity of DR and DME are helpful in the devel-

pment and evaluation of image analysis and retrieval algorithms.

his necessity has led several research groups to develop and

hare retinal image datasets, namely Messidor (Decencière et al.,

014), Kaggle (Cuadros and Bresnick, 2009), ROC (Niemeijer et al.,

010), E-Ophtha (Decencière et al., 2013), DiaretDB (Kauppi et al.,

012), DRIVE (van Ginneken et al., 2004), STARE (Hoover, 1975),

RIA (Farnell et al., 2008) and HEI-MED (Giancardo et al., 2012).

Further, two challenges were organized in the context of DR,

amely Retinopathy Online Challenge (ROC)2 and Kaggle DR de-

ection challenge3. ROC was organized with the goal of detecting

As. Whereas, Kaggle challenge aimed to get solution for deter-

ining the severity level of DR. These challenges enabled advances

n the field by promoting the participation of scientific research

ommunity from all over the globe on a competitive at the same

ime constructive setting for scientific advancement. Previous ef-

orts have made good progress using image classification, pattern

ecognition, and machine learning. The progress through the last

wo decades has been systematically reviewed by several research

roups (Patton et al., 2006; Winder et al., 2009; Abràmoff et al.,

010; Mookiah et al., 2013a; Jordan et al., 2017; Nørgaard and

rauslund, 2018).

Although lots of efforts have been made in the field towards

utomating DR screening process, lesion detection is still a chal-

enging task due to the following aspects: (a) Complex structures

f lesions (shape, size, intensity), (b) detection of lesions in tessel-

ated images and in presence of noise (bright border reflections,

mpulsive noise, optical reflections), (c) high inter-class similarity

i.e. between MA-HE and EX-SE), and (d) appearance of not so un-

ommon non-lesion structures (nerve fiber reflections, vessel re-

ections, drusen) makes it difficult to build a flexible and robust

odel for lesion segmentation. To the best of our knowledge, prior

o this challenge, there were no reports on the development of a

ingle framework to segment all lesions (MA, HE, SE, and EX) si-

ultaneously. Also, there was a lack of common platform to test

he robustness of approaches that determine normal and abnormal

etinal structures on the same set of images. Furthermore, there

as limited availability of pixel-level annotations and simultane-

us gradings for DR and DME (see Tables in Appendix A).

In order to address these issues, we introduced a new

ataset called Indian Diabetic Retinopathy Image Dataset

IDRiD) (Porwal et al., 2018a). Further, it was used as a base

ataset for the organization of grand challenge on “Diabetic

etinopathy – Segmentation and Grading” in conjunction with

SBI - 2018. The IDRiD dataset provides expert markups of typical

R lesions and normal retinal structures. It also provides disease
2 http://webeye.ophth.uiowa.edu/ROC/
3 https://www.kaggle.com/c/diabetic-retinopathy-detection

u

L

m

l

everity level of DR and DME for each image in the database.

his challenge brought together computer vision and biomedical

esearchers with an ultimate aim to further stimulate and pro-

ote research, as well as to provide a unique platform for the

evelopment of a practical software tool that will support efficient

nd accurate measurement and analysis of retinal images that

ould be useful in DR management. Initially, a training dataset

long with the ground truth was provided to participants for the

evelopment of their algorithms. Later, the results were judged on

he performance of these algorithms on the test dataset. Success

as measured by how closely the algorithmic outcome matched

he ground truth. There were three principal sub-challenges:

esion segmentation, disease severity grading, and localization and

egmentation of retinal landmarks. These multiple tasks in IDRiD

hallenge allow to test the generalizability of the algorithms, and

his is what makes it different from the existing ones. Further, this

hallenge seeks an automated solution to predict the severity of

R and DME simultaneously. It was projected as an individual task

o increase the difficulty level of this challenge as compared to the

aggle DR challenge i.e. for a given image, the predicted severity

or both DR and DME should be correct to count for scoring the

ask.

The rest of the paper is structured as follows: Section 2 gives

short review of previous work done in the development of auto-

ated DR screening, Section 3 provides details of reference dataset,

ection 4 describes the organization of competition through vari-

us phases and Section 5 details the top-performing competing so-

utions. Section 6 presents performance evaluation measures used

n this challenge. Then, Section 7 presents the results, analysis and

orresponding ranking of participating teams for all sub-challenges.

ection 8 provides a brief discussion on results, limitations, and

essons learnt from this challenge and at last conclusion. Along

ith this paper, Appendix A is included that provides a compar-

son of different state-of-the-art publicly available databases with

he IDRiD dataset.

. Review of retinal image analysis for the detection of DR

Automatic image processing has proven to be a promising

hoice for analysis of retinal fundus images and its application to

uture eye care. The introduction of automated techniques in DR

creening programs and interesting outcomes achieved by rapidly

rowing deep learning technology are examples of success sto-

ies and potential future achievements. Particularly, after the re-

earcher’s (Krizhevsky et al., 2012) deep learning based model

howed significant improvements over the state-of-the-art in the

mageNet challenge, there was a surge of deep learning based

odels in medical image analysis. Hence, we decided to present

he most recent relevant works with a classification based on

hether or not they used deep learning in the context of DR.

.1. Non-deep learning methods

A general framework for retinal image analysis through tra-

itional handcrafted features based approaches involve several

tages, typically: a preprocessing stage for contrast enhancement

r non-uniformity equalization, image segmentation, feature ex-

raction, and classification. Feature extraction strategy varies ac-

ording to the objective involved, i.e. retinal lesion detection, dis-

ase screening or landmark localization. In 2006, one research

roup (Patton et al., 2006) outlined principles upon which reti-

al image analysis is based and discussed initial techniques

sed to detect retinal landmarks and lesions associated with DR.

ater, Winder et al. (2009) reported an analysis of work in auto-

ated analysis of DR during 1998 - 2008. They categorized the

iterature into a series of operations or steps as preprocessing,

http://webeye.ophth.uiowa.edu/ROC/
https://www.kaggle.com/c/diabetic-retinopathy-detection
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2

vasculature segmentation, localization, and segmentation of the

optic disk (OD), localization of the macula and fovea, detection

and segmentation of lesions. Some of the review articles (Abràmoff

et al., 2010; Jordan et al., 2017) provide a brief introduction to

quantitative methods for the analysis of fundus images with a fo-

cus on identification of retinal lesions and automated techniques

for large scale screening for retinal diseases.

Majority of attempts in the literature are directed towards ex-

clusive detection and/or segmentation of one type of lesions (ei-

ther MAs, HEs, EXs or SEs) from an image. Some of the com-

mon approaches involved for lesion segmentation are mathemat-

ical morphology (Joshi and Karule, 2019; Hatanaka et al., 2008;

Zhang et al., 2014), region growing (Fleming et al., 2006; Li and

Chutatape, 2004), and supervised methods (Wu et al., 2017; Zhou

et al., 2017; Garcia et al., 2009; Tang et al., 2013). Apart from these

approaches, in case of MAs, most initial studies have shown ef-

fectiveness of template matching (Quellec et al., 2008), entropy

thresholding (Das et al., 2015), radon space (Giancardo et al., 2011),

sparse representation (Zhang et al., 2012; Javidi et al., 2017), Hes-

sian based region descriptors (Adal et al., 2014) and dictionary

learning (Rocha et al., 2012). On the other hand, for exclusive seg-

mentation of HEs, super-pixel based features (Tang et al., 2013;

Romero-Oraá et al., 2019) were found to be effective. These red le-

sions (both MAs and HEs) are also frequently detected together us-

ing dynamic shape features (Seoud et al., 2016), filter response and

multiple kernel learning (Srivastava et al., 2017) and hybrid feature

extraction approach (Niemeijer et al., 2005). Similarly, for EXs, re-

searchers relied on approaches like clustering (Osareh et al., 2009),

model-based (Sánchez et al., 2009; Harangi and Hajdu, 2014), ant

colony optimization (ACO) (Pereira et al., 2015) and contextual in-

formation (Sánchez et al., 2012). Whereas for SEs researchers uti-

lized Scale Invariant Feature Transform (SIFT) (Naqvi et al., 2018),

adaptive thresholding and ACO (Sreng et al., 2019). Further, sev-

eral approaches were devised for multiple lesion detection such

as multiscale amplitude-modulation-frequency-modulation (Agurto

et al., 2010), machine learning (Roychowdhury et al., 2014), a com-

bination of Hessian multiscale analysis, variational segmentation

and texture features (Figueiredo et al., 2015). These techniques are

shown to usually involve interdependence on detection of anatom-

ical structures (i.e. OD and fovea) with lesion detection, and that

in turn determines automated DR screening outcome.

Localization and segmentation of OD and fovea facilitate the

detection of retinal lesions as well as the assessment (based on

the geometric location of these lesions) of the severity and mon-

itoring progression of DR and DME. Hence, several approaches

have been proposed for localization of OD, and most of them

utilized the OD properties like intensity, shape, color, texture,

etc. and many others showed effectiveness of mathematical mor-

phology (Morales et al., 2013; Marin et al., 2015), template

matching (Giachetti et al., 2014), deformable models (Yu et al.,

2012; Wu et al., 2016) and intensity profile analysis (Kamble

et al., 2017; Uribe-Valencia and Martínez-Carballido, 2019). Fur-

ther, approaches utilized for OD segmentation are based on level

set (Yu et al., 2012), thresholding (Marin et al., 2015), active

contour (Mary et al., 2015) and shape modeling (Cheng et al.,

2015), clustering (Thakur and Juneja, 2017), and hybrid (Bai et al.,

2014) approaches. Similarly, the fovea is detected mostly using

a geometric relationship with OD and vessels through morpho-

logical (Welfer et al., 2011), thresholding (Gegundez-Arias et al.,

2013), template matching (Kao et al., 2014) and intensity pro-

file analysis (Kamble et al., 2017) techniques. Poor performance

on the detection of normal anatomical structures could adversely

affect lesion detection and screening accuracy. For instance, con-

sider mathematical morphology based techniques presented in

2002 (Walter et al., 2002), 2008 (Sopharak et al., 2008) and

2014 (Zhang et al., 2014). These works demonstrate how morpho-
ogical processing-based approaches evolved by including multiple

teps for the final objective of exudate detection. In initial efforts,

alter et al. (2002) devised a technique for OD and EXs segmen-

ation, afterward removed OD to obtain EX candidates. Similarly,

opharak et al. (2008) achieved the same objective with the detec-

ion and removal of OD and vessels. Recently, an approach pre-

ented by Zhang et al. (2014) achieved much better results, but

t involved (a) spatial calibration, (b) detection of dark and bright

natomical structures such as vessels and OD respectively, also (c)

right border regions detection before actual extraction of candi-

ates. Also, there are other techniques based on textural (Morales

t al., 2017; Porwal et al., 2018c) and mid-level (Pires et al., 2017)

eatures of retinal images that forgo lesion segmentation step for

R screening. However, most of these techniques depend on the

ntermediate steps mentioned above. In an approach based on ma-

hine learning (Roychowdhury et al., 2014), authors detected bright

nd dark lesions as a first step and later performed hierarchical

esion classification to generate a severity grade for DR. Similarly,

ntal and Hajdu (2014) proposed a strategy involving image-level

uality assessment, pre-screening followed by lesion and anatom-

cal features extraction to finally decide about the presence of DR

sing ensemble of classifiers. Further, for identification of different

tages of DR, morphological region properties (Yun et al., 2008),

exture parameters (Acharya et al., 2012; Mookiah et al., 2013b),

on-linear features of higher-order spectra (Acharya et al., 2008),

ybrid (Dhara et al., 2015) and information fusion (Niemeijer et al.,

009) approaches were found useful. As DME is graded based on

he location of EXs from the macula, many researchers (Giancardo

t al., 2012; Medhi and Dandapat, 2014; Perdomo et al., 2016;

arin et al., 2018) proposed EXs based features to determine the

everity of DME. While several others (Deepak and Sivaswamy,

012; Mookiah et al., 2015; Acharya et al., 2017) have proposed

arious feature extraction techniques to grade DME stages without

egmenting EXs. Mainly for approaches in this section, features are

ased on color, brightness, size, shape, edge strength, texture, and

ontextual information of pixel clusters in spatial and/or transform

omain. Whereas classification is achieved through classifiers such

s K Nearest Neighbors (KNN), Naive Bayes, Support Vector Ma-

hine (SVM), Artificial Neural Network (ANN), Decision Trees, etc.

These lesion detection or screening techniques are shown to

sually involve interdependence with detection of other land-

arks. However, there was a lack of a single platform to test

heir performance for each objective. For such handcrafted features

ased approaches, this challenge provided a unique platform to

ompare and contrast the algorithm’s performance for detection of

natomical structures, lesions as well as the screening of DR and

ME.

.2. Deep learning methods

Deep learning is a general term to define multi-layered neu-

al networks able to concurrently learn a low-level representation

nd higher-level parameters directly from data. This representation

earning capability drastically reduces the need for engineering ad-

oc features, however, full end-to-end training of deep learning-

ased approaches typically require a significant number of sam-

les. Its rapid development in recent times is mostly due to a

assive influx of data, advances in computing power and devel-

pments in learning algorithms that enabled the construction of

ulti-layer (more than two) networks (Hinton, 2018; Voulodimos

t al., 2018). This progress has induced interests in the creation of

nalytical, data-driven models based on machine learning in health

nformatics (Ching et al., 2018; Ravıet al., 2017). Hence, it is emerg-

ng as an effective tool for machine learning, promising to reshape

he future of automated medical image analysis (Greenspan et al.,

016; Litjens et al., 2017; Suzuki, 2017; Shen et al., 2017; Kim et al.,
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Table 1

DR Severity Grading. NPDR: Non-proliferative DR and PDR: Proliferative DR

DR Grade Findings

0: No apparent retinopathy No visible sign of abnormalities

1: Mild NPDR Presence of MAs only

2: Moderate NPDR More than just MAs but less than severe NPDR

3: Severe NPDR Any of the following:
• >20 intraretinal HEs
• Venous beading
• Intraretinal microvascular abnormalities
• no signs of PDR

4: PDR Either or both of the following:

Neovascularization

Vitreous/pre-retinal HE

Table 2

Risk of DME.

DME Grade Findings

0 No Apparent EX(s)

1 Presence of EX(s) outside the radius of one disc diameter from

the macula center

2 Presence of EX(s) within the radius of one disc diameter from

the macula center
018; Ker et al., 2018). Among various methodological variants of

eep learning, Convolutional Neural Networks (CNNs or ConvNets)

re most popular in the field of medical image analysis (Hoo-Chang

t al., 2016; Carin and Pencina, 2018). Several configurations and

ariants of CNN’s are available in the literature, some of the most

opular are AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and

isserman, 2014), GoogLeNet (Szegedy et al., 2015) and ResNet

He et al., 2016).

Deep learning has also been widely utilized in retinal im-

ge analysis because of its unique characteristic of preserving lo-

al image relations. Majority of approaches in literature employ

eep learning to retinal images by utilizing “off-the-shelf CNN”

eatures as complementary information channels to other hand-

rafted features or local saliency maps for detection of abnor-

alities associated with DR (Chudzik et al., 2018; Orlando et al.,

018; Dai et al., 2018), segmentation of OD (Zilly et al., 2017; Fu

t al., 2018), and detection of DR (Rangrej and Sivaswamy, 2017).

he authors (Fu et al., 2016) employ fully connected conditional

andom fields along with CNN to integrate discriminative ves-

el probability map and long-range interactions between pixels

o obtain final binary vasculature. Whereas some approaches ini-

ialized the parameters with those of pre-trained models (on

on-medical images), then “fine-tuned” (Tajbakhsh et al., 2016)

he network parameters for DR screening (Gulshan et al., 2016;

arson Lam et al., 2018). In another approach researchers used

wo-dimensional (2D) image patches as an input instead of full-

ized images for lesion detection (Tan et al., 2017b; van Grinsven

t al., 2016; Lam et al., 2018; Chudzik et al., 2018; Khojasteh

t al., 2018), and OD and fovea detection (Tan et al., 2017a).

arcía et al. (2017) trained the “CNN from scratch” and com-

ared it with fine-tuning results based on two other existing ar-

hitectures. Recently, Shah et al. (2018) demonstrated that ensem-

le training of auto-encoders stimulates diversity in learning dic-

ionary of visual kernels for detection of abnormalities. Whereas

iancardo et al. (2017) proposed a novel way to compute vascu-

ature embedding that leverages internal representation of a new

ncoder-enhanced CNN, demonstrating improvement in DR classi-

cation and retrieval task. There is a significant development in the

utomated identification of DR using CNN models in recent time.

customized CNN (Gargeya and Leng, 2017) was proposed for DR

creening and trained using 75,137 images obtained from EyePACS

ystem (Cuadros and Bresnick, 2009), where an additional classi-

er was further employed on the CNN-derived features to deter-

ine if an image is with or without retinopathy. Similarly, Google

nc. (Gulshan et al., 2016) developed a network optimized (fine-

uning) for image classification, in which a CNN is trained by uti-

izing a retrospective development database consisting of 128,175

mages with labels. There are some hybrid algorithms, in which

ultiple, semi-dependent CNN’s are trained based on the appear-

nce of retinal lesions (Abràmoff et al., 2016; Quellec et al., 2016).

step further, researchers (Quellec et al., 2017) demonstrated an

bility of lesion segmentation based on CNN trained for image-

evel classification. However, Lynch et al. (2017) demonstrated that

ybrid algorithms based on multiple semi-dependent CNNs might

ffer a more robust option for DR referral screening, stressing

he importance of lesion segmentation. For further details, readers

re recommended to follow recent reviews for detection of exu-

ates (Fraz et al., 2018), red lesions (Biyani and Patre, 2018) and a

ystematic review with a focus on the computer-aided diagnosis of

R (Mookiah et al., 2013a; Nørgaard and Grauslund, 2018).

This current progress in artificial intelligence provides an oppor-

unity to researchers for enhancing the performance of DR referral

ystem to a more robust diagnosis system that can provide quan-

itative information for multiple diseases matching international

tandards of clinical relevance. Thus, the presented challenge de-

ign offers an avenue to gauge precise DR severity status and op-
ortunity to deliver accurate measures for lesions, that could even

elp in follow-up studies to observe changes in the retinal atlas.

. Indian diabetic retinopathy image dataset

The IDRiD dataset (Porwal et al., 2018a) was created from real

linical exams acquired at an eye clinic located in Nanded, (M.S.),

ndia. Retinal photographs of people affected by diabetes were cap-

ured with focus on macula using Kowa V X − 10α fundus camera.

rior to image acquisition, pupils of all subjects were dilated with

ne drop of tropicamide at 0.5% concentration. The captured im-

ges have 50◦ field of view, resolution of 4288 × 2848 pixels and

re stored in jpg format. The final dataset is composed of 516 im-

ges divided into five DR (0 − 4) and three DME (0 − 2) classes

ith well-defined characteristics according to international stan-

ards of clinical relevance. It provides expert markups of typical

R lesions and normal retinal structures. It also provides disease

everity level of DR and DME for each image in the database. Three

ypes of ground-truths are available in the dataset:

1. Pixel Level Annotation: This type of annotation is useful in

echniques to locate individual lesions within an image and to seg-

ent out regions of interest from the background. Eighty-one color

undus photographs with signs of DR were annotated at the pixel-

evel for developing ground truth of MAs, SEs, EXs and HEs. The

inary masks (as shown in Fig. 2) for each type of lesion are pro-

ided in tif file format. Additionally, OD was also annotated at the

ixel-level and binary masks for all 81 images are provided in the

ame format. All of these annotations play a vital role in research

or computational analysis of segmenting lesions within the image.

2. Image Level Grading: It consists of information meant to de-

cribe the overall risk factor associated with an entire image. Two

edical experts provided adjudicated consensus grades to the full

et of 516 images with a variety of pathological conditions of DR

nd DME. Grading for all images is available in the CSV file. The di-

betic retinal images were classified into separate groups according

o the International Clinical Diabetic Retinopathy Scale (Wu et al.,

013), confined to image under observation, as shown in Table 1.

The DME severity was decided based on occurrences of EXs

ear to macula center region (Decencière et al., 2014) as shown

n Table 2.

3. OD and Fovea center co-ordinates The OD and fovea center lo-

ations are marked for all 516 images and the markup is available

s a separate CSV file.
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Fig. 2. Retinal photograph and different pixel-level annotations: (a) sample fundus image from the IDRiD dataset; sample ground truths for (b-f) MAs, HEs, SEs, EXs and OD

respectively.

Table 3

Stratification of retinal images annotated at pixel

level for different types of retinal lesions.

Lesion Type Set - A Images Set - B Images

MA 54 27

HE 53 27

SE 26 14

EX 54 27

Table 4

Stratification of retinal images graded for DR and DME.

DR Grade Set-A Set-B DM Grade Set-A Set-B

0 134 34 0 177 45

1 20 5 1 41 10

2 136 32 2 195 48

3 74 19

4 49 13
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The IDRiD dataset is available from IEEE Dataport Repository4

under a Creative Commons Attribution 4.0 license. More detailed

information about the data is available in the data descriptor

(Porwal et al., 2018b). Tables A.1 and A.2 highlight a comparative

strength of this dataset with respect to existing datasets. IDRiD is

the only dataset that provides all three types of annotations men-

tioned above. This streamlined collection of annotations would al-

low it to be utilized in research and lead to the development of

better generalizable models for image analysis, enabling further

progress in automated DR diagnosis.

4. Challenge organization

The “Diabetic Retinopathy – Segmentation and Grading Chal-

lenge” was composed into various stages, giving a well-organized

work process to potentiate success of the contest. Fig. 3 depicts the

work-flow of the overall challenge organization. The challenge was

officially announced at the ISBI - 2018 website5 on 15th October

2017.

The challenge was subdivided into three sub-challenges as fol-

lows:

1. Lesion Segmentation: Segmentation of retinal lesions associ-

ated with DR such as MAs, HEs, EXs and SEs.

2. Disease Grading: Classification of fundus images according

to the severity level of DR and DME.

3. OD Detection and Segmentation, and Fovea Detection: Auto-

matic localization of OD and fovea center coordinates, and

segmentation of OD.

The challenge involved 4 stages, as detailed below:

Stage-1. Data Preparation and Distribution: The IDRiD dataset was

adopted for this challenge, where experts verified that all images

are of adequate quality, clinically relevant, that no image is dupli-

cated and that a reasonable mixture of disease stratification repre-

sentative of DR and DME is present. The dataset along with ground

truths was separated into a training set and test set. For images

with pixel-level annotations, data was separated as 2/3 for training

(Set-A) and 1/3 for testing (Set-B) (See Table 3).
4 https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-

dataset-idrid
5 https://biomedicalimaging.org/2018/challenges/

a

d

s

T

Similarly, data for OD segmentation (part of sub-challenge – 3)

as divided in the same ratio into Set-A (54 images) and Set-

(27 images). Since the output of algorithms would be repre-

entative of learned perceptive patterns. The data for lesion and

D segmentation tasks were carefully split in such a way that it

rovides enough representative data to be learned and a holdout

roportion that could be later used to gauge the algorithm per-

ormance. The percentage of images that should be in each sub-

et for lesion and OD segmentation tasks (sub-challenge – 1 and

art of sub-challenge – 3) was supported by the research out-

ome (Dobbin and Simon, 2011) which demonstrated that split-

ing data into 2/3 (training): 1/3 (testing) is an optimal choice for

he sample sizes from 50 to 200. For other sub-challenges (disease

rading, and OD and fovea center locations), data was separated

n 80 (Training set: Set-A): 20 (Testing set: Set-B) ratio. The per-

entage of data split, in this case, is done to provide an adequate

mount of data divided into different severity levels. Note that the

ataset was stratified according to the DR and DME grades before

plitting. A breakdown of the details of the dataset is shown in

able 4.

https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://biomedicalimaging.org/2018/challenges/


P. Porwal, S. Pachade and M. Kokare et al. / Medical Image Analysis 59 (2019) 101561 7

Fig. 3. Workflow of the ISBI - 2018: Diabetic Retinopathy – Segmentation and Grading Challenge.
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The challenge was hosted on Grand Challenges in Biomedical

maging Platform6, one of the popular platforms for biomedical

maging-related competitions. A challenge website was set up and

aunched on 25th October 2017 to disseminate challenge related in-

ormation. It was also used for registration, data distribution, sub-

ission of results and paper, and communication between orga-

izers and participants.

Stage-2. Registration and release of the training data: Registra-

ion of challenge for consideration to ISBI on-site contest was open

rom the launch of the grand-challenge website (i.e. 25th October

017) till the deadline for submission of results (i.e. 11th March

018). Interested research teams could register through challenge

ebsite for one or all sub-challenges. The first part of data, i.e., Set-

(images and ground truths) was made available to participants of

hallenge on 20th January 2018. Participants could download the

ataset and start development or modification of their methods.

urther, they were also allowed to use other datasets for the devel-

pment of their methods, with a condition that external datasets

hould be publicly available.

Stage-3. Release of test data: Set-B (only images) for sub-

hallenge – 1 was released on 20th February, 2018. For other two

ub-challenges, Set-B was released on 4th April which was part of

on-site’ challenge. Organizers refrained from an on-site evaluation

f sub-challenge – 1 considering timing constraints in the evalua-

ion of results for image segmentation tasks.

Submissions were sought for either of the following 8 different

asks corresponding to three sub-challenges (1 – Lesion Segmenta-

ion, 2 – Disease Grading, 3 – OD and Fovea Detection) as follows:

1. Sub-challenge – 1: Lesion Segmentation

Task - 1: MA Segmentation

Task - 2: HE Segmentation

Task - 3: SE Segmentation

Task - 4: EX Segmentation

2. Sub-challenge – 2: Disease Grading
6 https://grand-challenge.org/

r

t

r

Task - 5: DR and DME Grading

3. Sub-challenge – 3: OD and Fovea Detection

Task - 6: OD Center Localization

Task - 7: Fovea Center Localization

Task - 8: OD Segmentation

Challenge site was made open for submission from 12th Febru-

ry and participants could submit their results and paper describ-

ng their approach to the organizers till 11th March. Participants

ould submit up to three methods to be evaluated per team for

ach task, provided that there was a significant difference between

he techniques, beyond a simple change or alteration of parame-

ers. For tasks 1 to 4 (i.e. sub-challenge – 1) and task-8, teams were

sked to submit output probability maps as grayscale images and

or all other tasks, it was accepted in CSV format. The submitted

esults were evaluated by challenge organizers and their perfor-

ance was displayed on the leaderboard of the challenge website.

or sub-challenge – 1, teams were assessed based on the perfor-

ance of results submitted on a test set, whereas for other two

ub-challenges assessment was done using results on a training set

btained through leave one out cross-validation approach. In this

hase, it received a very good response from the research com-

unity with 148 submissions by 37 different teams, out of which

6 teams were shortlisted for participation to on-site challenge.

mongst invited, 13 teams confirmed their participation in the on-

ite challenge, whereas, two teams declined to participate due to

ther commitments and one team was not able to arrange finan-

ial support in the limited time.

Stage-4. ISBI Challenge Event: The main challenge event was held

n conjunction with ISBI - 2018 on April, 4th 2018. The Set-B (only

mages) for sub-challenge – 2 and 3 was made available to the par-

icipants via challenge website (on-line mode) as well as portable

evices at the challenge site (off-line mode). Participants were

sked to produce results for the respective challenge task within

ne hour. The participating teams could bring their own system or

un the test through the remote system. Also, there was no restric-

ion on the number of machines that could be used to produce the

esults. However, considering the timing constraints for processing,

https://grand-challenge.org/
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Table 5

List of all participating teams shortlisted and which participated in the ‘on-site’ challenge. All teams are color-

coded for easier reference in all further listings. The DL denotes whether the submitted algorithm is based on

deep learning. Where, sub-challenge – 1 (SC1) corresponds to lesion segmentation such as microaneurysms (MA),

hemorrhages (HE), soft exudates (SE) and hard exudates (EX). Whereas, sub-challenge – 2 (SC2) denotes dis-

ease severity grading corresponding to DR and DME. Similarly, sub-challenge – 3 (SC-3) deals with the optic

disc detection (ODD), fovea detection (FD) and optic disc segmentation (ODS). Harangi et al. participated with

two methods HarangiM1 and HarangiM2, for simplicity it is jointly represented as HarangiM1-M2 with a single

color code. Similarly, Li et al. participated with two methods LzyUNCC (renamed in the text as LzyUNCC-I) and

LzyUNCC_Fusion (renamed in the text as LzyUNCC-II) that are jointly represented as LzyUNCC with same color

code. However, these different methods are mentioned separately in the text wherever it was necessary. ∗Team

could not participate in ‘on-site’ challenge but later communicated the results to the organizers.

Team Name Authors DL SC1 SC2 SC3

MA HE SE EX ODD FD ODS

VRT Jaemin Son et al. � � � � � � � � �
iFLYTEK-MIG Fengyan Wang et al. � � � � � × × × ×
PATech Liu Lihong et al. � � � × � × × × ×
SOONER Yunzhi Wang et al. � � � � � × × × ×
SAIHST Yoon Ho Choi et al. � × × × � × × × ×
LzyUNCC Zhongyu Li et al. � × × � � � × × ×
SDNU Xiaodan Sui et al. � � � � � × � � �
Mammoth Junyan Wu et al. � × × × × � × × ×
HarangiM1-M2 Balazs Harangi et al, � × × × × � × × ×
AVSASVA Varghese Alex et al. � × × × × � × × ×
DeepDR Ling Dai et al. � × × × × × � � ×
ZJU-Bll-SGEX Xingzheng Lyu et al. � × × × × × � � �
IITkgpKLIV Oindrila Saha et al. � × × × × × × × �
∗CBER Ana Mendonça et al. × × × × × × � � �
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some teams which had previously entered with more than one so-

lution decided to use only their best performing solution.

Further, the top three teams from sub-challenge – 1 were given

the opportunity to present their work. During that time, some

of the organizing team members compiled the results for sub-

challenge – 2 and 3. The teams were given 7 minutes for presenta-

tion of their approach and 3 minutes were reserved for question-

answers. The first presentation session lasted for about 30 minutes

and at the end of presentations of sub-challenge – 1 the results

for sub-challenge – 2 and 3 were declared. Similarly, the top three

performing teams from these sub-challenges gave short presenta-

tions on their work. After the end of the on-site challenge event,

on 6th April, the summary of challenge and analysis of results was

presented, which included a final ranking of the competing solu-

tions. This information is additionally accessible on the challenge

website. It is important to note that many teams had participated

in multiple sub-challenges as listed in Table 5 and the remainder

of this paper deals only with the methods that were selected for

the challenge.

5. Competing solutions

Majority of participating teams proposed a CNN based approach

for solving tasks in this challenge. This section details the ba-

sic terminologies and abbreviations related to CNN and its vari-

ants utilized by participating teams. Further, it summaries the so-

lutions and related technical specifications. For the detailed de-

scription of a particular approach, please refer to proceedings of

ISBI Grand Challenge Workshop at https://idrid.grand-challenge.

org/Challenge_Proceedings/.

For the input image, CNN transforms raw image pixels on one

end to generate a single differentiable score function at the other

end. It exploits three mechanisms — sparse connections (a.k.a. local

receptive field), weight sharing and invariant (or equivariant) rep-
esentation — that makes it computationally efficient (Shen et al.,

017). The CNN architecture typically consists of an input layer fol-

owed by sequence of convolutional (CONV), subsampling (POOL),

ully-connected (FC) layers and finally a Softmax or regression

ayer, to generate the desired output. Functions of all layers are de-

ailed as follows:

CONV layer comprises of a set of independent filters (or ker-

els) that are utilized to perform 2D convolution with the input

ayer (I) to produce the feature (or activation) maps (A) that give

he responses of kernels at every spatial position. Mathematically,

or the input patch (I�x,y) centered at location (x, y) of �th layer, the

eature value in ith feature map, A�
x,y,i

, is obtained as:

�
x,y,i = f ((w�

i )
T I�x,y + b�

i ) = f (C�
x,y,i) (1)

Where the parameters w�
i

and b�
i

are weight vector and bias

erm of ith filter of �th layer, and f( · ) is a nonlinear activation func-

ion such as sigmoid, rectified linear unit (ReLU) or hyperbolic tan-

ent (tanh). It is important to note that the kernel w�
i

that gen-

rates the feature map C�
:,:,i

is shared, reducing model complexity

nd making network easier to train.

POOL layer aims to achieve translation-invariance by reducing

he resolution of feature maps. Each unit in a feature map of POOL

ayer is derived using a subset of units within sparse connections

rom a corresponding convolutional feature map. The most com-

on pooling operations are average pooling and max pooling. It

erforms downsampling operation and is usually placed between

wo CONV layers to achieve a hierarchical set of image features.

he kernels in initial CONV layers detect low-level features such as

dges and curves, while the kernels in higher layers are learned to

ncode more abstract features. The sequence of several CONV and

OOL layers gradually extract higher-level feature representation.

https://idrid.grand-challenge.org/Challenge_Proceedings/
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FC layer aims to perform higher-level reasoning by computing

he class scores. Each neuron in this layer is connected to all neu-

ons in the previous layer to generate global semantic information.

The last layer of CNN’s is an output layer (O), here the Softmax

perator is commonly used for classification tasks. The optimum

arameters (θ , a common notation for both w and b) for a partic-

lar task can be determined by minimizing the loss function (L)

efined for the task. Mathematically, for N input-output relations

(In, On); n ∈ [1, ���, N]} and corresponding labels Gn the loss can

e derived as:

= 1

N

N∑
n=1

ln(θ ; Gn, On) (2)

Where N denotes the number of training images, In, On and
n correspond to nth training image. Here, a critical challenge in

raining CNN’s arises from the limited number of training sam-

les as compared to the number of learnable parameters that need

o be optimized for the task at hand. Recent studies have devel-

ped some key techniques to better train and optimize the deep

odels such as data augmentation, weight initialization, Stochastic

radient Descent (SGD), batch normalization, shortcut connections,

nd regularization. For more understanding related to advances in

NN’s, the reader is recommended to refer a paper by Gu et al.

2018).

The growing use of CNN’s as the backbone of many visual

asks, ready for different purposes (such as segmentation, classi-

cation or localization) and the available data, has made architec-

ure search a primary channel in solving the problem.

In this challenge, mainly for disease severity grading problem,

articipants either directly utilized existing variants of CNN’s or

nsembled them to demarcate the input image to one of the

lasses mentioned in Table 4. Several configurations and variants

f CNN’s are available in the literature; some of the most popular

re AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisser-

an, 2014), GoogLeNet (Szegedy et al., 2015) and ResNet (He et al.,

016) due to their superior performance on different benchmarks

or object recognition tasks. A typical trend with the evolution

f these architectures is that the networks have gotten deeper,

.g., ResNet is about 19, 8 and 7 times deeper than AlexNet, VG-

Net and GoogLeNet respectively. While the increasing depth im-

roves feature representation and prediction performance, it also

ncreases complexity, making it difficult to optimize and even be-

omes prone to overfitting. Further, the increasing number of lay-

rs (i.e., network depth) lead to vanishing gradient problems as

result of a large number of multiplication operations. Hence,

any teams chose the DenseNet (Iandola et al., 2014) which con-

ects each layer to every other layer in a feed-forward fashion, re-

ucing the number of training parameters and alleviates the van-

shing gradient problem. DenseNet exhibits �(� + 1)/2 connections

n � layer network, instead of only �, as in the networks men-

ioned above. This enables feature reuse throughout the network

hat leads to more compact internal representations and in turn,

nhances its prediction accuracy. Another opted approach, Deep

ayer Aggregation (DLA) structures (Yu et al., 2017), extends the

shallow” skip connections in DenseNet to incorporate more depth

nd sharing of the features. DLA uses two structures – iterative

eep aggregation (IDA) and hierarchical deep aggregation (HDA)

hat iteratively and hierarchically fuse the feature hierarchies (i.e.

emantic and spatial) to make networks work with better accu-

acy and fewer parameters. Recent Fully Convolutional Network

FCN) (Long et al., 2015) adapt and extend deep classification ar-

hitectures (VGG and GoogLeNet) into fully convolutional networks

nd transfer their learned representations by fine-tuning to the

egmentation task. It defines a skip architecture that combines se-

antic information from a deep, coarse layer with appearance in-
ormation from a shallow, fine layer to produce accurate and de-

ailed segmentations.

For lesion segmentation task, most of the participating teams

xploit U-Net architecture (Ronneberger et al., 2015). The main

dea in U-Net architecture is to supplement the usual contract-

ng network through a symmetric expansive path by addition of

uccessive layers, where upsampling (via deconvolution) is per-

ormed instead of the pooling operation. The upsampling part con-

ists of a large number of feature channels, that allow the net-

ork to propagate context information to higher-resolution layers.

he high-resolution features from the contracting path are merged

ith the upsampled output and fed to soft-max classifier for pixel-

ise classification. This network works with very few training im-

ges and enables the seamless segmentation of high-resolution im-

ges by means of an overlap-tile strategy. Other similar architec-

ure SegNet (Badrinarayanan et al., 2015) was opted by a team; it

onsists of an encoder and decoder network, where the encoder

etwork is topologically identical to CONV layers in VGG16 and in

hich FC layer is replaced by a Softmax layer. Whereas, the de-

oder network comprises a hierarchy of decoders, one correspond-

ng to each encoder. The decoder uses max-pooling indices for up-

ampling its encoder input to produce sparse feature maps. Later,

t convolves the sparse feature maps with a trainable filter bank to

ensify them. At last, decoder output is fed to a soft-max classifier

or the generation of segmentation map. One team choose Mask R-

NN (He et al., 2017), a technique primarily based on a Region Pro-

osal Network (RPN) that shares convolutional features of an entire

mage with the detection network, thus enabling region proposals

o localize and further segment normal and abnormal structures in

he retina. RPN is a fully convolutional network that contributes to

oncurrently predicting object bounds and “objectness” scores at

ach position.

Following subsections present the solutions designed by partic-

pating teams with respect to three sub-challenges. Table 6 sum-

arizes data augmentation, normalization and preprocessing tasks

erformed by each team.

.1. Sub-challenge – 1: Lesion segmentation

For a given image, this task seeks to get the probability of a

ixel being a lesion (either MA, HE, EX or SE). Although different

etinal lesions have distinct local features, for instance, MA, HE,

X, SE have a different shape, color and distribution characteris-

ics, these lesions share similar global features. Hence, the major-

ty of participating teams built a general framework that would be

uitable for the segmentation of different lesions, summarized as

ollows:

.1.1. VRT (Jaemin Son et al.)

Son et al. modified U-Net (Ronneberger et al., 2015) in such a

ay that upsampling layers have the same number of feature maps

ith layers concatenated. It was based on the motivation that fea-

ures in initial layers and upsampled layers are equally important

o segmentation. Additionally, they adjusted the number of max-

ooling so that the radius of the largest lesion spans a pixel in the

oarsest layer. In case of EX and HE, max-pooling is done six times,

hereas for SE and MA it is done four times and twice. Further,

or dealing with MA’s, they used inverse pixel shuffling to convert

1280 × 1280 × 3 pixels image to 640 × 640 × 12 for network in-

ut and pixel shuffling (Shi et al., 2016) to convert 640 × 640 × 4

egmentation map into 1280 × 1280 × 1 pixels. Later, the pairs of

normalized fundus image and reference ground truths were fed

o the network to generate segmentation result in the range [0, 1].

hey used weighted binary cross entropy (Murphy, 2012) as loss
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Table 6

Summary of data augmentation, normalization and pre-processing in the competing solutions. Where, RF, RR, RS, RT, RC represent random flip, rotation, scaling, translation

and crop respectively.

Task Team name Data augmentation Data normalization Data preprocessing

RF RR RS RT RC Other

VRT � � � � � shear � FOV cropping, division

by 255 then mean

subtraction

Sub-challenge - 1 iFLYTEK � � � � � × � lesion patch extraction

PATech � � × � × colora � RGB to LUV, contrast

adjustment

SDNU � � × × × × – –

SOONER � � × × � × � mean subtraction,

lesion patch extraction

LzyUNCC � × × × � stochastic and

photo-metricb

– FOV cropping, image

enhancement

SAIHST � � × × × × � CLAHE, Gaussian

smoothing

LzyUNCC � × × × � colora,

stochastic and

photo-metricb

– FOV cropping, image

enhancement

Sub-challenge - 2 VRT × × × × × × � mean subtraction

Mammoth � � � � × color × morphological opening

and closing

AVASAVA � × × × � × � intensity scaling

HarangiM1 × × × × × × � FOV cropping

HarangiM2 × × × × × × � –

Sub-challenge - 3 DeepDR × × × × � OD, fovea

region

� FOV cropping, mean

subtraction

VRT � � � � � shear and

cropped OD

� FOV cropping, contrast

adjustment

ZJU-BII-SGEX × × × × × × � FOV cropping

SDNU � × � × × × – –

IITkgpKLIV � � × × × × � –

CBER × × × × × × – –

a Reference: Krizhevsky et al. (2012)
b Reference: Howard (2013)

Table 7

γ values in Eq. (4).

EXs SEs HEs MAs

64 512 8 32
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function given by

L = 1

N

N∑
n=1

[
− αGn log On − (1 − Gn) log(1 − On)

]
(3)

where N denotes the number of the pairs in a batch, Gn and On

represent true segmentation and predicted segmentation for nth

image. The value of α was determined as follows:

α = Bi
0

γ F i
1

(4)

where Bn
0

and F n
1

denote the number of background and foreground

pixels in nth image. Since background overwhelms foreground in

lesion segmentation task, this loss function was designed to penal-

ize false negatives in order to boost sensitivity, an important fac-

tor in detecting lesions. Also, γ was left as a hyper-parameter and

chosen out of {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 256, 512} to yield

the highest AUPR on validation set. The final selected γ values for

different lesions are summarized in Table 7.

They trained the network over 300 epochs using Adam op-

timizer (Kingma and Ba, 2014) with hyper-parameters of β1 =
0.5, β2 = 0.999 and learning rate of 2e−4 until 250 epochs and

2e−5 until the end. All implementation was done by Keras 2.0.8
ith tensorflow backend 1.4.0 using a server with 8 TITAN X (pas-

al). The source code is available at https://bitbucket.org/woalsdnd/

sbi_2018_fundus_challenge.

.1.2. IFLYTEK-MIG (Fengyan Wang et al.)

Wang et al. proposed a novel cascaded CNN based approach for

etinal lesion segmentation with U-Net (Ronneberger et al., 2015)

s a base model. It consists of three stages, the first stage is a

oarse segmentation model to get initial segmentation masks, then

he second stage is a cascade classifier which was designed for

alse-positive reduction, at last, a fine segmentation model was

sed to refine results from previous stages. First stage model was

rained using the patches of size 256 × 256 pixels centered on a

articular lesion amongst MA, HE or EX and 320 × 320 pixels for

E, resulting in the coarse segmentation outcome. Results of the

revious stage are coarse due to the fact that non-focus regions

https://bitbucket.org/woalsdnd/isbi_2018_fundus_challenge
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Fig. 4. Proposed architecture for lesion segmentation.
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non-target lesions) were not utilized in the learning process lead-

ng to high false-positive count. In the second stage, unlike the first

egmentation model which used a lesion centered sample from in-

ut dataset pool, candidate regions were extracted using probabil-

ty maps from the previous stage. Here, the input size fed to model

or SE was 320 × 320 × 3 pixels, for HE and EX it was 256 × 256 × 3

ixels, and for MA it was modified to 80 × 80 × 3 pixels consider-

ng its small appearance. In this step, a candidate region was re-

arded as a positive sample if its intersection-over-union with the

round truth was greater than the given threshold (i.e. 0.5). In this

ay, most trivial non-focus regions were effectively rejected. How-

ver, it was identified in the test that a small proportion of false

ositives still exist, so an additional model was introduced to re-

ne the segmentation results. In the last stage, candidate regions

urvived from the second stage were utilized as the input patches

esulting in more accurate segmentation results. For the first and

hird stage, they used binary cross-entropy or dice loss function

multi-model training), whereas, for the second stage, they used

nly binary cross-entropy as a loss function. The first, second and

hird stage models were trained for 100, 300 and 100 epochs re-

pectively with the momentum of 0.9. In which, the initial learning

ate for the first and third stage was set 0.1 and is reduced by 10

imes every 30 epochs, and for the second stage it was set to 0.001

educed by 10 times every 80 epochs. MXNET platform was used

or training the models.

.1.3. PATech (Liu lihong et al.)

Lihong et al. developed a novel patch-based CNN model

as shown in Fig. 4) in which they innovatively combined the

enseNets (Iandola et al., 2014) and dilation block with U-

et (Ronneberger et al., 2015) to capture more context information

nd multi-scale features.

The model is composed of a down-sampling path with 4 Tran-

itions Down (TD), 4 Dilation Block (DL) and an up-sampling path
ith 4 Transitions Up (TU). To capture multi-scale features, DL (see

ig. 5) is used with dilation rate of 1, 3 and 5 are concatenated for

he convolution. The dense block (DB) is constructed by four lay-

rs. The idea behind novel combination of dilation convolution is

o better deal with the lesions appearing at different scales, where

mall dilation rate pay closer attention to the characteristics of tiny

esions, larger dilation rate focus on large lesions. On the other

and, use of DB’s enabled a deeper and more efficient network.

Initially, they extracted regions within FOV from the images and

hen normalized them to eliminate local contrast differences and

neven illumination. Later, they used small patches 256 × 256 pix-

ls at a stride of 64 (128 for MA) to generate the training samples

only patches that overlap with the lesion ground truth) followed

y data augmentation before feeding to the model. To deal with

ighly imbalanced spread of data, they designed a loss function

hat is a combination of dice function (Sudre et al., 2017) and 2D

ross Entropy as follows:

= −mean(w10 ∗ G ∗ log(O)
w11 ∗ (1 − G) ∗ log(1 − O)
w2 ∗ dice(G))

(5)

here w10 and w11 are the factors utilized to keep a balance be-

ween the positive and negative pixels, and w2 is the factor uti-

ized to control significance between dice and cross entropy loss.

he values of w10, w11 and w2 were empirically set to 0.7, 0.3 and

.4 respectively. The models were trained using Adam optimizer

ith default parameters, β1 = 0.9 and β2 = 0.999. The initial learn-

ng rate was set to 2 × 10−4, and then divided by 20 in every 20

pochs. This model was implemented with PyTorch1.12 and Tesla

60 platform was utilized for training on the CentOS 7.2 operat-

ng system.

.1.4. SOONER (Yunzhi Wang et al.)

Wang et al. adopted U-Net (Ronneberger et al., 2015) architec-

ure for solving retinal lesion segmentation problem. The network

akes a 380 × 380 pixels fundus image patch as input and pre-

icts the binary mask of the retinal lesion within 196 × 196 pixels

entral region of an input patch. They pre-processed fundus im-

ges by subtracting the local mean of each color channel and per-

ormed random flipping for data augmentation. Batch normaliza-

ion was utilized to improve training efficiency and all convolution

perations adopted ‘valid’ paddings. For training, they followed a

hree-stage process for each type of lesions (i.e. MA, HE, EX and

E). For the first stage, they extracted positive image patches from

he training set according to given ground truth mask, and ran-

omly extracted negative image patches from fundus images with
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and without apparent retinopathy. The objective function was a

summation of cross-entropy loss functions for MA, HE, EX and SE.

Adam algorithm was employed to optimize the parameters. In the

second stage, they fine-tuned U-Net using the extracted patches

for each lesion type. Subsequently, they applied optimized U-Net

on fundus images in the training set and extracted false-positive

patches generated by U-Net. They further fine-tuned U-Net using

positive image patches together with false-positive patches (hard

negative patches) as a third stage. In the testing phase, they ex-

tracted overlapped image patches using a sliding window and fed

these patches into the network to get corresponding probability

maps. The initial learning rate was set to e−4 and the fixed number

of steps was used as a stopping criterion. They implemented U-Net

architecture based on TensorFlow library with Nvidia GeForce GTX

1080Ti GPU.

5.1.5. LzyUNCC (Zhongyu Li et al.)

Li et al. developed a method based on FCN by embedding DLA

structure (Yu et al., 2017) for segmentation of EX’s and SE’s. As the

lesions are located dispersively and irregularly, the embedding of

DLA structure with FCN enables better aggregation of semantic and

spatial information from local and global level provides a boost in

recognizing their presence. They used retinal images with pixel-

level ground truth annotations from both IDRiD and E-Ophtha

database. They first adopted a series of methods for data prepro-

cessing and augmentation. Subsequently, considering the correla-

tion between EX’s and SE’s, they first trained an initial model for

segmentation of EX. They chose a smaller model, i.e., DLA-34 to

train the segmentation network with binary cross-entropy as a loss

function. At last, the trained deep model was fine-tuned for seg-

mentation of SE. While the model training of EX segmentation, a

trade-off parameter (penalty) was assigned in loss function to con-

trol the weights of foreground pixels, and tried different penalty

value from 1 to 16. At last, these segmentation results were fused

to adaptively compute the best performance. They adopted original

DLA cityscapes segmentation experimental settings and trained the

model for 100 epochs with batch size 4, where the poly learning

rate was (1 − epoch−1
totalepoch

)0.9 with the momentum of 0.9. The initial

learning rate was set to 0.01.

5.1.6. SAIHST (Yoon Ho Choi et al.)

Choi et al. proposed a model for segmentation of EX based on

U-Net (Ronneberger et al., 2015), in which CONV layers of encoder

path are replaced with DB’s. Whereas, the decoder path of their

model was kept identical to that of general U-Net. They built DB

with a growth factor of 12 and 3 × 3 CONV layers, batch normal-

ization, and ReLU activation. The last layer generates a pixel level

prediction map for EXs through the sigmoid activation function.

For training, they utilized only the green channel of fundus im-

age and enhanced it using Contrast Limited Adaptive Histogram

Equalization (CLAHE). Later, each image was padded to a size of

4352 × 3072 pixels and cropped into 204 patches of 512 × 512 pix-

els. These patches are further augmented and used for training.

The losses were calculated by binary cross-entropy. The model was

trained for 20 epochs with a mini-batch size of 10 and they used

Adam optimizer with an initial learning rate of 2e−4, β1 of 0.9 and

β2 of 0.999. The model was programmed in Keras 2.1.4 served with

TensorFlow 1.3.0 backend.

5.1.7. SDNU (Xiaodan sui et al.)

Sui et al. proposed a method based on Mask R-CNN structure

to segment lesions from the fundus image. They adopted the im-

plementation of Mask R-CNN from Abdulla (2017) for solving the

problem. This method could detect different objects while simulta-

neously generating instance segmentation mask. Network training

precedes the data augmentation process and binary cross-entropy
as used as a loss function. The initial learning rate was set to

.02 with a momentum of 0.9. They chose ResNet-101 as a back-

one. They implemented an algorithm in Keras with Tensorflow as

ackend and processed on 8 NVIDIA TITAN Xp GPUs. The experi-

ental environment was built under Ubuntu 16.06.

.2. Sub-challenge – 2: Disease grading

For a given image, this task seeks to get a solution to produce

everity grade of the diseases i.e. DR (5 class problem) and DME

3 class problem). The summary of participating solutions is as fol-

ows:

.2.1. LzyUNCC (Zhongyu Li et al.)

Li et al. developed a method based on ResNet by embedding

LA structure for automated grading of DR and DME. For this

ork, they used IDRiD and Kaggle dataset. Initially, for the given

raining images, they perform data preprocessing and data aug-

entation. Subsequently, based on the designed ResNet with DLA

tructure, initial models are trained using 35,000 retinal images

rom Kaggle dataset. Later, they fine-tuned the model using IDRiD

ataset through 5 fold cross-validation technique. Finally, the five

utputs are ensembled together as final grades for input images.

t is important to note that networks for grading of DR and DME

ere trained separately. The training was performed by SGD with

mini-batch size of 64, while the learning rate starts from 0.001

nd it is then divided by 10 every 20 epochs, for 30 epochs in total.

he other hyper-parameters are fixed to settings of original DLA

mageNet classification (Yu et al., 2017).

.2.2. VRT (Jaemin Son et al.)

Son et al. used network (Son et al., 2018) for DR grading. Kag-

le dataset was initially used to pre-train the network and then the

odel was fine-tuned using IDRiD dataset. The penultimate layer

as Global Average Pooled (GAP) and connected with FC layer. The

ntire output is a single value from which L2 loss was calculated

gainst the true label. SGD was used with Nesterov momentum of

.9 as an optimizer. Learning rate was set to 10−3. The model was

rained for 100 epochs. Fundus image was normalized in the range

0, 1] and the mean was subtracted channel-wise. For grading of

ME, segmented EXs (using the segmentation network proposed

n sub-challenge – 1), localized fovea and segmented OD (using

he segmentation network proposed in sub-challenge – 3) were

tilized for making the final decision. With this information, the

emi-major axis of segmented OD (r) was estimated. Further, the

undus image was divided into three regions as macular region:

x − c‖ < r, near macular region: r < ‖x − c‖ < 2r and remaining

egion: 2r < ‖x − c‖. where x denotes a point in the image. Fur-

hermore, several features such as sum of intensity for segmented

X, the number of pixels above threshold (178 in the [0, 255]

cale), the number of pixels for smallest and largest blob, mean

f the number of pixels for blobs are extracted for each area, and

inary flag that indicates whether the OD is segmented. Now, fea-

ures with high importance were selected among numerous fea-

ures in the initial training due to gradient boosting (for instance,

GBoost) was likely to overfit when provided with overly redun-

ant features. Messidor dataset was added to the given data and

ut of which 10% of images were left as the validation set. Set

f hyper-parameters were searched by grid-search approach. The

ombination of hyper-parameters that yielded the highest accu-

acy in the validation set was min child weight: 2, subsample: 0.2,

olsample by tree: 0.2, λ: 9.0, α: 1.0, and depth: 6. Other hyper-

arameters are set to default values. All implementations were

one by PyTorch v0.4.1 using a server with 8 TITAN X (pascal).

he source code is available at https://bitbucket.org/woalsdnd/

sbi_2018_fundus_challenge.

https://bitbucket.org/woalsdnd/isbi_2018_fundus_challenge
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.2.3. Mammoth (Junyan Wu et al.)

Wu et al. proposed a unified framework that combines deep

eature extractor and statistical feature blending to automatically

redict the DR and DME severity scores. For DME, they used

enseNet (Iandola et al., 2014) to directly predict the severity

core. Whereas for DR, Kaggle training dataset was used to pre-

rain the DenseNet model through a dynamic sampling mechanism

o balance the training instances and later fine-tuned using IDRiD

ataset. Initially, the background of all images was cropped and re-

ized to 512 × 512 pixels. Later, morphological opening and closing

re utilized to preserve bright and dark regions. For instance, the

orphological opening can erase the EXs and highlight the MAs.

hereas, the closing operation can remove MAs and preserve EXs.

hese operations can be used to denoise specific levels of classi-

cations, for example, the risk of DME only depends on the loca-

ion of the EXs. Further, several standard data augmentation meth-

ds (as shown in Table 6) are also employed. Mean Squared Error

MSE) and cross-entropy with five classes were the loss functions

mployed to train the network and SGD for optimization. The ini-

ial learning rate was set to 0.0005 with a decrement of 0.1 after

very 30 epochs. The initial training was done by 200 epochs and

ne-tuning by 50 epochs. Afterward, the last layer was removed

efore the final prediction, and its statistical features were aggre-

ated together into a boosting tree. Specifically, 50 pseudo-random

ugmentations were performed to get 50 outputs from last sec-

nd FC layer (size of 4096), then the mean and standard deviation

f 50 feature vectors for each image was computed, and both vec-

ors were then concatenated together for training in LightGBM. The

utput from the second last layer of fine-tuning experiments was

sed to train a blending model, strategy adopted from team o_O’s

olution of Kaggle DR challenge. Finally, for the disease grading

rediction, gradient boosting tree model was built on a combined

econd last layer from the pre-trained network and fine-tuned net-

ork.

.2.4. Harangim1 (Balazs Harangi et al.)

Harangi et al. proposed an approach for the classification of

etinal images via the fusion of two AlexNet (Krizhevsky et al.,

012) and GoogLeNet (Szegedy et al., 2015). For this aim, they re-

oved FC and classification layers and interconnect them by in-

erting a joint FC layer followed by the classic softmax/ classifi-

ation layers for the final prediction. In this way, single network

rchitecture was created which allows to train the member CNN’s

imultaneously. For each I(n), let us denote the outputs of the fi-

al FC layers of the member CNN’s by Ô1
(n)

, Ô2
(n)

. The FC layer of

heir ensemble aggregates them via

´ (n) = A1Ô1

(n) + A2Ô2

(n)
(6)

here weight matrices A1, A2 were of size 5 × 5 and initialized as

1 = A2 =

⎡
⎢⎢⎣

1/5 0 0 0 0
0 1/5 0 0 0
0 0 1/5 0 0
0 0 0 1/5 0
0 0 0 0 1/5

⎤
⎥⎥⎦ (7)

The last two layers of the ensemble were a Softmax and a clas-

ification one. Let O(n)
SM

be an output of a former layer, the MSE was

sed for optimization as a loss function:

SE = 1

2N
�N

n=1(Ó(n)
SM

− O(n))2 (8)

During the training phase, back-propagation is applied to min-

mize the loss via adjusting all parameters of member CNNs and

eight matrices A , A .
1 2
For the grading of DME, the final layers of member CNNs con-

ist of 3 neurons, and weight matrices A1, A2 were 3 × 3, initialized

s

1 = A2 =
[

1/3 0 0
0 1/3 0
0 0 1/3

]
(9)

For training, they merged IDRiD and Kaggle training set. The

arameters of architectures were found by SGD algorithm in 189

nd 50 epochs respectively for DR and DME classification tasks.

earning rate was set to 0.0001. Training times required on the

atasets for DR and DME were 96.6 (189 epochs) and 23.4 (50

pochs) hours respectively. Implementation of this work was done

n MATLAB 2017b. The training was performed using an NVIDIA

ITAN X GPU card with 7 TFlops of single-precision performance,

36.5 GB/s of memory bandwidth, 3072 CUDA cores, and 12 GB

emory.

.2.5. AVSASVA (Varghese Alex et al.)

Alex et al. used ensembles of pre-trained CNNs (on Im-

geNet dataset), namely, ResNets (He et al., 2016) and

enseNets (Iandola et al., 2014) for the task of disease grad-

ng. For DR grading, two ensembles of CNN’s namely “primary”

nd “expert” classifiers were used. The primary classifier was

rained to classify a fundus image as one of the 4 classes viz; Nor-

al, Mild NPDR, Moderate NPDR or S-(N)-PDR, a class formed by

lubbing Severe NPDR and PDR. The expert classifier was trained

xclusively on Severe NPDR or PDR images and was utilized to

emarcate the input image as one of the aforementioned classes.

uring inference, each fundus image was resized to a dimension of

56 × 256 pixels. For the task of grading of DR in fundus images,

hey used test time augmentation through the “Ten Crop” function

efined in PyTorch. The images were first passed through the

rimary classifier and then through the expert classifier, only if

he image was classified as S-(N)-PDR by the primary classifier.

he final prediction was achieved by using a majority voting

cheme.

For DME grading, two ensembles were trained in a one versus

est approach. Ensemble 1 was trained to classify the input as ei-

her “image with no apparent EXs” (Grade 0) or “presence of EXs

n image” (Grade 1 & Grade 2), while the Ensemble 2 was trained

o classify an image as “Grade 2” DME or not (Grade 0 & Grade 1).

uring inference, the resized images were fed to both ensembles,

nd the final prediction was obtained by combining the two pre-

ictions by utilizing a set of user-defined rules. Briefly, the user-

efined rules were: an image was classified as Grade 0 DME if

nsemble 1 and ensemble 2 predict the absence of EXs and the

bsence of grade 2 DME respectively. A scenario wherein ensem-

le 2 predicts the presence of grade 2 DME, images were classified

nder category “Grade 2 DME” irrespective of the prediction from

nsemble 1. Lastly, images were classified as Grade 1 DME if none

f the above conditions were satisfied.

Both models for DR and DME were initialized with the pre-

rained weights and the parameters of networks were optimized

y reducing cross-entropy loss with ADAM as an optimizer. The

earning rate was initialized to 10−3 for DR and 10−4 for DME. For

R, the learning rate was reduced by a factor of 10% every instance

hen the validation loss failed to drop. Each network was trained

or 30 epochs and the model parameters that yielded the lowest

alidation loss were used for inference. For DME, the learning rate

as annealed step-wise with a step size of 10 and the multiplica-

ive factor of learning rate decay value of 0.9.

.2.6. HarangiM2 (Balazs Harangi et al.)

Harangi et al. combined self-extracted, CNN-based features with

raditional, handcrafted ones for disease classification. They mod-

fied AlexNet (Krizhevsky et al., 2012) to allow the embedding of
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handcrafted features via the FC layer. In this way, they created

a network architecture that could be trained in the usual way

and additionally uses domain knowledge. They extended the FC

layer, to get FCfuse, originally containing 4096 neurons of AlexNet

by adding 68-dimensional vector containing handcrafted features.

Then, the 4164 × 5 (or 4164 × 3 for DME) layer FCclass was consid-

ered for DR (or DME) classification task. In this way, both final

weighings FCclass of handcrafted features were obtained and the

4096 AlexNet features were trained by backpropagation.

To obtain 68 handcrafted features used by CNN, they employed

one image level and two lesion-specific methods. The amplitude-

frequency modulation (AM-FM) method extracts information from

an image by decomposing its green channel at different scales into

AM-FM components (Havlicek, 1996). As a result, a 30-element

feature vector was obtained, which reflects the intensity, geom-

etry, and texture of structures contained in the image (Agurto

et al., 2010). Whereas to extract features related to the lesions MA

and EX, they employed two detector ensembles (Antal and Hajdu,

2012; Nagy et al., 2011), which consist of a set of < preprocessing

method (PP), candidate extractor (CE) > pairs organized into a vot-

ing system. Such a < PP, CE > pair was formed by applying PP to

the retinal image and CE to its output. This way, a < PP, CE > pair

extracts a set of lesion candidates from the input image, acting as

a single detector algorithm. They used the output of these ensem-

bles to obtain 38 features related to the number and size of MA’s

and EX’s. Parameters of the architectures were optimized by SGD

algorithm in 85 and 50 epochs for DR and DME respectively. Train-

ing times were 83.1 (85 epochs) and 46.2 (50 epochs) hours on the

datasets for DR and DME. Implementation of this work was done

in MATLAB 2017b. Training has been performed using an NVIDIA

TITAN X GPU card with 7 TFlops of single-precision, 336.5 GB/s of

memory bandwidth, 3072 CUDA cores, and 12 GB memory.

5.3. Sub-challenge – 3: Optic disc and fovea detection

For a given image, this task seeks to get a solution to localize

the OD and Fovea. Further, it seeks to get the probability of a pixel

being OD (OD segmentation). Summary of approaches is detailed

as follows:

5.3.1. Deepdr (Ling Dai et al.)

Dai et al. proposed a novel deep localization method, which

allows coarse-to-fine feature encoding strategy for capturing the

global and local structures in fundus images, to simultaneously

model two-task learning problem of the OD and fovea localization.

They took advantage of prior knowledge such as the number of

landmarks and their geometric relationship to reliably detect the

OD and fovea. Specifically, they first designed a global CNN en-

coder (with a backbone network of ResNet-50 (He et al., 2016))

to localize the OD and fovea centers as a whole by solving a re-

gression task. All max-pooling layers were replaced with average

pooling layers as compared to original ResNet architecture, due to

the fact that max-pooling could lose some useful pixel-level in-

formation for regression to predict the coordinates. This step was

used to simultaneously perform the two detection tasks, because

of the geometric relationship between OD and fovea, the perfor-

mance of multi-task learning is better than a single task. The pre-

dicted output coordinates of this global CNN encoder component

were used for detecting the bounding boxes of the target OD and

fovea. Then the current center coordinates are refined through a

local encoder (with a backbone network of VGG-16 (Simonyan and

Zisserman, 2014)) which only localizes the OD center or fovea cen-

ter of their related bounding boxes. During the training stage, they

designed an effective data augmentation scheme to solve the prob-

lem of insufficient training data. In particular, to build the train-

ing set of a local encoder, bounding boxes were randomly selected
ased on the ground truth, for each object several bounding boxes

f different positions and scales were cropped. The local encoder

an be reused multiple times to approximate the target coordi-

ates. The local encoder was iterated twice for refining centers

omprehensively. All three models were initialized from the pre-

rained ImageNet network and replaced the network’s last FC layer

nd Softmax layer by the center coordinates regressor. The regres-

ion loss for the central location was the Euclidean loss. The mod-

fied loss function for global and local encoders was 0.045(LOD +
f ovea) and 0.045(LOD/Lfovea) respectively. Where LOD and Lfovea are

osses for OD and fovea, and scaling factor was introduced since

he original Euclidean distance is too large in practice to converge.

he proposed learning model was implemented in Caffe framework

nd trained using SGD with momentum. The FC layers for center

egression were initialized from zero-mean Gaussian distributions

ith standard deviations 0.01 and 0.001. Biases were initialized to

. The global encoder was trained for 200 epochs, local encoders

OD and fovea both) for 30 epochs respectively. The batch size for

lobal encoder was 16, and 64 for the other two local encoders.

he learning rate was set as 0.01 and was divided by 10 when the

rror plateaus.

.3.2. VRT (Jaemin Son et al.)

Son et al. proposed an OD segmentation model consisting of

-Net (Ronneberger et al., 2015) and CNN that takes a vessel im-

ge and outputs 20 × 20 activation map whose penultimate layer

s concatenated to the bottleneck layer of U-Net. Initially, original

mages were cropped (3500 × 2848 pixels), padded (3500 × 3500

ixels) and then resized (640 × 640 pixels). Each image was stan-

ardized with its mean and standard deviation (SD). When cal-

ulating the mean and SD, values less than 10 (usual artifacts in

he black background) are ignored. Vessel images were prepared

ith an external network (Son et al., 2017). Pixel values in a ves-

el image range from 0 to 1. It uses external datasets DRIONS-

B (Carmona et al., 2008) and DRIVE (van Ginneken et al., 2004)

vailable with OD and vessel ground truths respectively. For aug-

entation, the fundus images were affine-transformed and addi-

ionally OD was cropped and randomly placed on the image for

random number of times (0 to 5). This augmentation was done

o prevent the network from segmenting OD solely by brightness.

airs of a fundus image and vessel segmentation were provided

s input and OD segmentations in the resolution of 640 × 640

nd 20 × 20 pixels are given as the ground truth. Binary cross-

entropy is used as a loss function for both U-Net and vessel net-

work with the loss of Ltotal = LU−Net + 0.1 ∗ Lvessel . Total 800 epochs

ere trained via Adam optimizer and decreasing learning rate with

yper-parameters of β1 = 0.5, β2 = 0.999. The learning rate was

e−4 until 400 epochs and 2e−5 until the end. Weights and biases

ere initialized with Glorot initialization method (Glorot and Ben-

io, 2010).

They also proposed a four branch model in which two branches

ere dedicated to the prediction of locations for OD and fovea

rom vessels (vessel branches) and the other two branches aim

o predict the locations from both fundus and vessels (main

ranches). Similar to OD segmentation, penultimate layers of ves-

el branches were depth-concatenated to the main branches. Af-

er deriving an activation map that represents the probability of

ontaining an anatomical landmark, a hard-coded matrix was mul-

iplied to yield co-ordinates. Original images were cropped as in

he segmentation task and standardized with an identical method

nd later augmented by flip and rotation to ease implementation

fforts. Mean absolute error was used as loss function for both

utputs with the loss of Ltotal = Lmain + 0.3 ∗ Lvessel . SGD was used

ith Nesterov momentum of 0.9 as an optimizer. Learning rate

as set to 10−3 from 1st to 500th epochs and 10−4 from 501th

o 1000th epochs. All implementation was done in Keras 2.0.8
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ith TensorFlow backend 1.4.0 using a server with 8 TITAN X

pascal). Source code is available at https://bitbucket.org/woalsdnd/

sbi_2018_fundus_challenge.

.3.3. ZJU-BII-SGEX (Xingzheng Lyu et al.)

Lyu et al. utilized Mask R-CNN (He et al., 2017) to localize and

egment OD and fovea simultaneously. It scans the image and gen-

rates region proposals by 2D bounding boxes. Then the proposals

ere classified into different classes and compute a binary mask

or each object. They firstly preprocessed the original retinal im-

ge into fixed dimensions as network input. A feature extractor

ResNet-50) with feature pyramid networks (FPN) generates fea-

ure maps at different scales, which could be used for regions of

nterest (ROI) extraction. Then a region proposal network (RPN)

cans over the feature maps and locates regions that contain ob-

ects. Finally, a ROI head network (RHN) is employed to obtain the

abel, mask, and refined bounding box for each ROI. They also in-

orporated prior knowledge of retinal image as a post-processing

tep to improve the model performance. They used IDRiD dataset

nd two subsets in RIGA dataset (Almazroa et al., 2018) (Messidor

nd BinRushed, 605 images) with OD mask provided. They applied

he transfer learning technique to train the model. They firstly

rained the RHN network by freezing all the layers of FPN and RPN

etworks and then fine-tuned all layers. The model was imple-

ented in TensorFlow 1.3 and Python 3.4 (source code was modi-

ed from Abdulla (2017)). The learning rate started from 0.001 and

momentum of 0.9 was used. The network was trained on one

PU (Tesla K80) with 20 epochs.

.3.4. IITkgpKliv (Oindrila Saha et al.)

Saha et al. used SegNet (Badrinarayanan et al., 2015) for seg-

entation of lesions and OD. OD was added as an additional class

n the same problem as lesion segmentation so that the model

ould better differentiate EXs and OD which have similar bright-

ess levels. However, in contrast to original SegNet, the final de-

oder output is fed to a sigmoid layer to produce class probabilities

or each pixel independently in 7 channels. Each channel has the

ame size as input image: 536 × 356 pixels and consists of activa-

ions in the range [0, 1] where 0 corresponds to background and

to the presence of a corresponding class. Apart from 5 classes

.e. MA, HE, SE, EX and OD, two additional classes: (i) retinal disk

xcluding the lesions and OD, and (ii) black background form the

channels. Images were downsampled to 536 × 356 pixels, pre-

erving the aspect ratio. Additionally, Drishti-GS (Sivaswamy et al.,

014) dataset was used for data augmentation to account for the

ase of absence of lesions. Further, horizontal, vertical and 180◦

ipped versions of the original images were taken. The network

as trained using binary cross-entropy loss function and Adam op-

imizer with learning rate 10−3 and β = 0.9. Early stopping of the

raining based on the validation loss is adopted to prevent overfit-

ing. It was observed that the validation loss started to increase af-

er 200 epochs. One more softmax layer is introduced after the Sig-

oid layer for normalizing the value of a pixel for each class across

hannels. The segmented output is finally upsampled for each class

o 4288 × 2848 pixels. All implementations were done in PyTorch

sing 2x Intel Xeon E5 2620 v3 processor with GTX TITAN X GPU

2 GB RAM and 64 GB System RAM.

.3.5. SDNU (Xiaodan Sui et al.)

Sui et al. used Mask R-CNN (He et al., 2017) for solving all

asks in this sub-challenge. Mask R-CNN could realize accurate tar-

et detection based on proposed candidate object bounding boxes

f RPN to achieve the objective of OD and Fovea localization. At

he same time, it could also get the OD segment at the mask

redicting branch. The head architecture of Mask R-CNN (ResNet-

01 as a backbone) consists of three parallel branches for clas-
ification, bounding-box regression, and predicting mask. By this

ethod, the localization of OD and fovea, and segmentation of

D could be achieved directly. They retrained the network to get

he new weight parameter of the framework. During the training

hase, the dataset of this challenge was augmented by flipping, re-

izing and trained by 10-fold cross-validation. After training 2000

pochs, the last trained model is obtained. They implemented

his algorithm in TensorFlow and it is processed on 8 NVIDIA TI-

AN Xp GPUs. The experiment environment is built under Ubuntu

6.06.

.3.6. CBER (Ana Mendonça et al.)

Mendonça et al. proposed hand-crafted features based approach

or the localization and segmentation tasks in this sub-challenge.

istinct methodologies have been developed for detecting and seg-

enting these structures, mainly based on color and vascular infor-

ation. The methodology proposed in the context of this challenge

ncludes three inter-dependent modules. Each module performs a

ingle task: OD localization, OD segmentation or fovea localization.

hile the modules responsible for the OD localization and seg-

entation were an improved version of two methods previously

ublished (Mendonça et al., 2013; Dashtbozorg et al., 2015), the

ethod proposed for fovea localization was completely new. Ini-

ially, the module associated with the OD localization receives a

undus image and segments the retinal vasculature. Afterward, the

ntropy of the vessel directions is computed and combined with

he image intensities in order to find the OD center coordinates.

or OD segmentation, the module responsible for this task uses the

osition of the OD center for defining the region where the sliding

and filter (Pereira et al., 2007; Esteves et al., 2012) is applied. The

ositions of the support points which give rise to the maximum

lter response were found and used for delineating the OD bound-

ry. Since a relation between the fovea-OD distance and the OD

iameter was known (Jonas et al., 2015), the module responsible

or the fovea localization begins by defining a search region from

he OD position and diameter. The fovea center is then assigned to

he darkest point inside that region.

. Evaluation measures

The performance of each sub-challenge was evaluated based on

ifferent evaluation metrics. Following evaluation measures were

sed for different sub-challenges:

.1. Sub-challenge – 1

In this sub-challenge, the performance of algorithms for lesion

egmentation tasks was evaluated using submitted grayscale im-

ges and available binary masks. As in the lesion segmentation

ask(s) background overwhelms foreground, a highly imbalanced

cenario, the performance of this task was measured using area

nder precision (a.k.a. Positive Predictive Value (PPV)) recall (a.k.a.

ensitivity (SN)) curve (AUPR) (Saito and Rehmsmeier, 2015).

N = True Positives

True Positives + False Negatives
(10)

PV = True Positives

True Positives + False Positives
(11)

The curve was obtained by thresholding the results at 33

qually spaced instances i.e. [0, 8, 16, ���, 256] in gray levels or [0,

.03125, 0.0625���, 1] in probabilities. The AUPR provides a single-

gure measure (a.k.a. mean average precision (mAP)), computed

ver the Set-B, was used to rank the participating methods. This

erformance metric was used for object detection in The PASCAL

isual Object Classes (VOC) Challenge (Everingham et al., 2010).

https://bitbucket.org/woalsdnd/isbi_2018_fundus_challenge
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The AUPR measure is more realistic (Boyd et al., 2013; Saito and

Rehmsmeier, 2015) for the lesion segmentation performance over

the area under Receiver Operating Characteristic (ROC) curve.

6.2. Sub-challenge – 2

Let the expert labels for DR and DME be represented by DRG(n)

and DMEG(n). Whereas DRO(n) and DMEO(n) are the predicted re-

sults, then correct instance is the case when the expert label for

DR and DME matches with the predicted outcomes for both DR

and DME. This was done since, even with the presence of some

exudation that may be categorized as mild DR, its location on the

retina is also an important governing factor (to check DME) to de-

cide the overall grade of disease. For instance, EXs presence in the

macular region can affect the vision of patient to a greater ex-

tent and hence, it should be dealt with priority for referral (that

may otherwise be missed or cause a delay in treatment with the

present convention of only DR grading) in the automated screen-

ing systems. Hence, disease grading performance accuracy for this

sub-challenge, from the results submitted in CSV format for test

images (i.e. N = 103), is obtained by algorithm 1 as follows:

Algorithm 1: Computation of disease grading accuracy.

Data: Method Results and Labels with DR and DME Grading

Result: Average disease grading accuracy for DR and DME

1 for n = 1, 2, · · · , N do

2 Correct = 0;

3 if (DRO(n) == DRG(n)) and (DMEO(n) == DMEG(n)) then

4 Correct = Correct + 1;

5 end

6 end

7 Average Accuracy = Correct
N

6.3. Sub-challenge – 3

For the given retinal image, the objective of sub-challenge –

3 (task - 6 and 7) was to predict the OD and fovea center co-

ordinates. The performance of results submitted in CSV format was

evaluated by computing the Euclidean distance (in pixels) between

manual (ground truth) and automatically predicted center location.

Lower Euclidean distance indicates better localization. After deter-

mining these distances for each image in the Set-B, i.e. for 103

images, the average distance representing the whole dataset was

computed and used to rank the participating methods.

The optic disc segmentation (task - 8) performance is evaluated

using Jaccard index (J) (Jaccard, 1908). It represents the proportion

of overlapping area between the segmented OD (O) and the ground

truth (G).

J = |O ∩ G|
|O ∪ G| (12)

Higher J indicates better segmentation. For the segmented results,

images in range [0, 255], it was computed at 10 different equally

spaced thresholds [0, 0.1, ���, 0.9] and averaged to obtain final

score.

7. Results

This section reports and discusses the results of all sub-

challenges. Performance of all competing solutions on the Set-B for

all eight subtasks are divided into three sub-challenge categories

and discussed including their leaderboard rank.
.1. Sub-challenge – 1

In this section, we present the performance of all competing

olutions for the lesion segmentation task. All results received

rom the participating teams were analyzed using the validation

easure given in Section 6.1. This measure generated a set of

recision-recall curves for each of the different techniques. Out of

he total 37 teams that participated in the challenge, 22 teams par-

icipated (a complete list is available on the challenge website) in

he sub-challenge–1 whose results were evaluated and ranked us-

ng the AUPR values. Amongst them, 7 teams (see Table 5) hav-

ng performance within top 4 positions in either of lesion segmen-

ation task were invited for the challenge workshop and 3 teams

aving overall better performance, i.e. solutions developed by the

eams that ranked amongst the top three for at least three differ-

nt lesion segmentation tasks, presented their work at ISBI.

Table 8 summarizes the individual performance (Off-site evalu-

tion) of each solution listed in order of their final placement for

ach subtask. It also contains various approaches followed and ex-

ernal dataset (if any) used for training the models. A higher rank

ndicates more favorable performance for the individual task(s).

he top-3 entries according to the individual lesion segmentation

ask are VRT, iFLYTEK-MIG and PATech. Some sample lesion seg-

entation results illustrated in Fig. 6 and their corresponding over-

ll evaluation score from Table 8 gives a better idea of how the

valuation scores correlate with the quality of segmentation. Fig. 7

ummarizes the performance of top-4 teams per lesion segmen-

ation task. The different curves represent the performance of the

articipating methods for various lesions (MAs, HEs, SEs and EXs).

eam VRT achieved highest AUPR score for HE and SE segmenta-

ion task. Whereas, team PATech and iFLYTEK-MIG obtained best

core for EX and MA segmentation task respectively.

.2. Sub-challenge – 2

This section presents the results achieved (On-site evaluation)

y participating teams for the DR and DME grading task. It is

mportant to note that this task was evaluated for simultaneous

rading of DR and DME using the validation algorithm outlined in

ection 6.2 on the Set-B. This algorithm produced an average grad-

ng accuracy of joint DR and DME on all images. Table 9 summa-

izes the result of teams for the on-site challenge along with the

pproach followed and external dataset used for training the model

y respective team.

The top-performing solution at the “on-site” challenge was pro-

osed by team LzyUNCC followed by team VRT and team Mam-

oth. Fig. 8 shows the average accuracy of competing solutions

or the individual as well as simultaneous grading of DR and DME.

eams are observed to perform poorly in the DR grading task that

educed the overall accuracy for simultaneous grading of DR and

ME. Major reason seems to be the difficult test set, difficulty in

ccurately discriminating the DR severity grades.

.3. Sub-challenge – 3

This section presents an evaluation of “On-site” results for par-

icipating teams in the sub-challenge – 3, for all three subtasks.

he results for subtasks of OD and Fovea center localization were

valuated by computing Euclidean distance, whereas OD segmen-

ation results were evaluated and ranked using Jaccard similarity

core as outlined in Section 6.3. Results from the on-site evalua-

ions are reported in Table 10 and Table 11 that summarises the

erformance of all participating algorithms for all three subtasks.

The winning methods for localization tasks were developed by

eam DeepDR and team VRT, with DeepDR performing best in both
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Table 8

Sub-challenge – 1 “Off-site” leaderboard highlighting top 4 teams from each lesion (MAs, HEs, SEs and EXs) segmentation task on the testing

dataset. It details the approach followed by respective team and external dataset used for training their model (if any).

Lesion Team name AUPR Approach Ensemble Input Size (Pixels) External dataset

Microaneurys iFLYTEK 0.5017 Cascaded CNN � 320 × 320 ×
VRT 0.4951 U-Net × 1280 × 1280 ×
PATech 0.4740 DenseNet+U-Net � 256 × 256 ×
SDNU 0.4111 Mask R-CNN × 3584 × 2380 ×

Hemorrhages VRT 0.6804 U-Net × 640 × 640 ×
PATech 0.6490 DenseNet+U-Net � 256 × 256 ×
iFLYTEK 0.5588 Cascaded CNN � 320 × 320 ×
SOONER 0.5395 U-Net × 380 × 380 ×

Soft Exudates VRT 0.6995 U-Net × 640 × 640 ×
LzyUNCC-I 0.6607 FCN+DLA × 1024 × 1024 E-ophtha

iFLYTEK 0.6588 Cascaded CNN � 320 × 320 ×
LzyUNCC-II 0.6259 FCN+DLA × 1024 × 1024 E-ophtha

Hard Exudates PATech 0.8850 DenseNet+U-Net � 256 × 256 ×
iFLYTEK 0.8741 Cascaded CNN � 320 × 320 ×
SAIHST 0.8582 U-Net × 512 × 512 ×
LzyUNCC-I 0.8202 FCN+DLA × 1024 × 1024 E-ophtha

Table 9

Sub-challenge – 2 “On-site” leaderboard highlighting performance of top 6 teams for DR and DME grading on the test dataset. It

details the approach followed by respective team and external dataset used for training their model.

Team Name Accuracy Approach Ensemble Input Size (Pixels) External Dataset

LzyUNCC 0.6311 Resnet + DLA 5 896 × 896 Kaggle

VRT 0.5534 CNN 10 640 × 640 Kaggle, Messidor

Mammoth 0.5146 DenseNet � 512 × 512 Kaggle

HarangiM1 0.4757 AlexNet + GoogLeNet 2 224 × 224 Kaggle

AVSASVA 0.4757 ResNet + DenseNet DR-8, DME-5 224 × 224 DiaretDB1

HarangiM2 0.4078 AlexNet + Handcrafted features 2 224 × 224 Kaggle

Table 10

“On-site” leaderboard highlighting performance of top 5 teams in OD and fovea localization task on the test dataset. It highlights the

approach followed by respective team and external dataset used for training their model (if any). ED: Euclidean distance.

Localize Team Name ED (Pixels) Rank Approach Input Size (Pixels) External Dataset

Optic Disc DeepDR 21.072 1 ResNet + VGG 224 × 224, 950 × 950 –

VRT 33.538 2 U-Net 640 × 640 DRIVE

ZJU-BII-SGEX 33.875 3 Mask R-CNN 1024 × 1024 RIGA

SDNU 36.220 4 Mask R-CNN 1984 × 1318 –

CBER 29.183 – Handcrafted Features 536 × 356 –

Fovea DeepDR 64.492 1 ResNet + VGG 224 × 224, 950 × 950 –

VRT 68.466 2 U-Net 640 × 640 DRIVE

SDNU 85.400 3 Mask R-CNN 1984 × 1318

ZJU-BII-SGEX 570.133 4 Mask R-CNN 1024 × 1024 RIGA

CBER 59.751 – Handcrafted Features 536 × 356 –

O

m

K

i

t

o

D and Fovea detection tasks. But the winning entries for OD seg-

entation task were from teams ZJU-BII-SGEX, VRT and IITKgp-

LIV. Some sample OD segmentation results from these teams are

llustrated in Fig. 9.
Fig. 10 shows box-plots illustrating the range of Euclidean dis-

ances from the center of (a) OD and (b) fovea as well as (c) spread

f Jaccard index for OD segmentation.
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Fig. 6. Illustration of lesion segmentation results: (a) sample image and (b) segmentation outcome of top-4 teams (from left to right) (i) MAs, (ii) HEs, (iii) SEs, and (iv) EXs

in retinal fundus images. Top row corresponds to ground truths, second row to entry from top performing team, similarly, third, fourth and fifth rows correspond to entries

from other three teams respectively. The lesion segmentation entries are colored for better illustration and separation from each type of lesion.

Table 11

“On-site” leaderboard highlighting performance of top 5 teams in OD segmentation task on the test dataset. It

details the approach followed by respective team and external dataset used for training their model (if any). J:

Jaccard index.

Team name J Rank Approach Input size (Pixels) External dataset

ZJU-BII-SGEX 0.9338 1 Mask R-CNN 1024 × 1024 RIGA

VRT 0.9305 2 U-Net 640 × 640 DRIVE, DRIONS-DB

IITKgpKLIV 0.8572 3 SegNet 536 × 356 Drishti-GS

SDNU 0.7892 4 Mask R-CNN 1984 × 1318 –

CBER 0.8912 – Handcrafted Features 536 × 356 –
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Fig. 7. The AUPR curves for the four top performing individual methods on the test dataset. These curves plot the sensitivity versus the positive predictive values for the

different lesions, namely, (a) MAs, (b) HEs, (c) SEs, and (d) EXs.

Fig. 8. Barplots showing separate and simultaneous classification accuracy of solutions developed by top - 6 teams for grading of DR and DME.
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Fig. 9. Illustration of OD segmentation results: (a) sample image, (b) OD ground truth and (c) segmentation outcome of top-4 teams (from left to right).

Fig. 10. Boxplots (a,b) showing dispersion of Euclidean distance for individual methods for OD and fovea and (c) showing the dispersion of Jaccard index for OD segmentation

task. Boxplots show quartile ranges of the scores on the test dataset; plus sign indicate outliers (full range of data is not shown).
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8. Discussion and conclusion

In this paper, we have presented the details of IDRiD challenge

including information about the data, evaluation metrics, an orga-

nization of the challenge, competing solutions and final results for

all sub-tasks, i.e., lesion segmentation, disease grading and local-

ization and segmentation of other normal retinal structures. Given

the significant number of participating teams (37) and results ob-

tained, we believe this challenge was a success. To the organiza-

tional end, efforts have been made in creating a relevant, stimu-

lating and fair competition, capable of advancing collective knowl-

edge in the research community. This section presents a discussion,

limitations, and lessons learned from this challenge.

The first sub-challenge was conducted in an off-site mode in

which 22 teams participated with their lesion segmentation meth-

ods. The results of these methods on the Set-B were evaluated by

the organizers and amongst them, top-4 performing methods per

lesion segmentation task are included in this paper. The computed

AUPR values ranged between 0.4111 (for MAs) and 0.885 (for EXs).

When the performance of top solutions was analyzed by comput-

ing the area under ROC curve (AUC) at the pixel level, in threshold

range [0:0.01:1], it resulted in AUC of 0.8263, 0.9716, 0.9540 and

0.9883 for MA, HE, SE and EX respectively. The best approach for

lesion segmentation used U-Net, with data augmentation and ad-
ition of dense block to extract features efficiently, boosting results

ignificantly. Fig. 11 highlights the performance of top solution for

X that performs significantly well in the presence of normal reti-

al structures and different challenging circumstances.

From the top-performing approaches, it is evident that solving

he data imbalance problem improves the model performance sig-

ificantly. Since background overwhelms foreground i.e. there are

ore background pixels than lesion pixels (see Fig. 6), the loss dur-

ng training is more effectively back-propagated than that of the

oreground that penalizes false negatives, boosting the sensitivity

f lesion segmentation. In general, the architectural modifications

o U-Net-based networks provided widely varying results for the

ifferent types of lesion.

For instance, the cascaded CNN approach yielded the best score

or MAs segmentation, as it adds modules to reduce false positives.

his approach dramatically impacts MA segmentation performance

ue to the class imbalance of the task. Further, Fig. 12 shows that

ome false positives detected by participating solutions are due to

oise, predominantly for MA and HE. This indicates that there is

till room for improvement for lesion segmentation tasks with cur-

ent fundus cameras.

In the on-site disease-grading task, six methods were compared

nd contrasted. When assessed using the test data set hidden from

he participants, the grading accuracy ranged between 0.4078 and
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Fig. 11. Illustration of (a-d) different challenging circumstances for segmentation of EXs, (e-h) segmentation results (probability map) of the top-performing team for EXs,

(i) enlarged part of Fig. (d), and (j) depicts its performance to be better than (k) the human annotator (The annotator tool had a limitation of the markup capability when

there is an overlap of multiple types of lesion. In this case, EXs and HE).

Fig. 12. Illustration of results by top performing solutions for (a-c) different images with noise causing most common false positives in the segmentation of (d-f) MAs, and

(g-i) HEs respectively.
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.6311 as shown in Table 9. Notably, all teams except AVASAVA

sed the external Kaggle DR dataset for pre-training their models.

his dataset contains a large number of retina images annotated

ith the disease level, in contrast, team AVASAVA pre-trained their

odel on ImageNet, a dataset containing natural images and ob-

ect annotations, effectively showing the network a much smaller

umber of retina images at the training stage, approximately 1%

ompared to the other teams. This indicates that in the presence

f a limited number of labeled data, transfer learning approaches

long with the good model pruning could yield comparable and

ompetitive results. However, while the models do determine the

ariability of performance, the number, type, and quality of train-

ng data is a crucial factor for a fair comparison of competing so-

utions. There is still work needed on simultaneous grading of DR
nd DME as the reported results do not yet reach the performance

eeded for a clinically viable automatic screening. Considering the

isclassified instances in confusion matrices shown in Table 12,

long with the lesion information, it is essential to give attention

owards characterization of intra-retinal microvascular abnormali-

ies (IRMA’s) and venous beading for improvement in the overall

rading results.

In the sub-challenge – 3, another on-site challenge, four teams

ere evaluated for the task of OD/fovea localization and OD seg-

entation. For the task of OD localization, the Euclidean distance

aried between 21.072 and 36.22 (lower values indicate better per-

ormance). However, for Fovea localization task the same perfor-

ance metric ranged between 64.492 and 570.133. This massive

ariation is due to outliers, e.g. team ZJU-BII-SGEX had 23 outliers
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Table 12

Confusion matrix of retinal images predicted by top performing solution for DR (5

class) and DME (3 class).
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D

whose Euclidean distance exceeded 700. In the OD segmentation

task, the average Jaccard similarity index score amongst the par-

ticipants ranged between 0.7892 and 0.9338. The top-performing

solutions developed by DeepDR and VRT leveraged prior clinical

knowledge, such as the number of landmarks and their geometric

relationship to detect another retinal landmark. It is also observed

that data augmentation and ensemble of models yield substantial

improvements in terms of accuracy. Considering the clinical sig-

nificance of OD diameter while DME severity grading, we further

compute the average OD diameter (in pixels) for each image of the

test set. The average diameter of OD ground truth is 516.61 pixels,

whereas, corresponding values for the results of solutions devel-

oped by the teams ZJU-BII-SGEX, VRT, IITKgpKLIV, CBER and SDNU

are 514.25, 519.21, 513.48, 508.04 and 460.19 pixels respectively.

Team CBER submitted their results after the competition and they

were not included in the leaderboard.

As expected, we found that image resolution is a vital factor

for the model performance, especially for the task of segmentation

of small objects such as MAs or EXs. In fact, the top-performing

approaches processed the images patch-wise, which allow mod-

els to have a local high-resolution image view or directly with

the high-resolution image as a whole. This is essential as MAs or

small EXs lesions span very few pixels in some cases, and reduc-

ing the original image size would prevent an accurate segmenta-

tion. Similarly, image resolution plays a very important role for

disease classification task (see Table 9), the most likely reason is

that presence of the disease is determined by the presence of le-

sions in the image, including the small ones that might be invis-

ible at low resolution. This is corroborated by the confusion ma-

trices in Table 12 which show misclassified instances in DR (par-

ticularly, grade 1 and 2) as well as DME (5 images each belong-

ing to grade 1 and 2 are predicted as grade 0). For the localiza-

tion tasks, all participants were asked to identify retinal structures

with coordinates at full image resolution. Most of them performed

these tasks by scaling image to the smaller size and then con-

verted their predictions in the original image space. Comparative

analysis indicates that the input image resolution has limited ef-

fect on the results of the localization problem. For instance, in

the case of OD localization, the top-performing team utilized two

image resolutions, one (224 × 224 pixels) for approximate location

prediction and other (cropped ROIs 950 × 950 pixels) for refining

that estimate. Similarly, teams CBER and VRT resized the image to

536 × 356 pixels and 640 × 640 pixels respectively to get an ap-

proximate center location whereas the team SDNU utilized the in-

put size of 1984 × 1318 pixels. Considering the OD average diame-

ter of approximately 516 pixels, limited performance variation (10

to 15 pixels) is observed as compared to the top-performing solu-

tion for huge variation (multiple times) in input resolutions (see

Table 10). This is because the retinal structures to be identified,

OD and fovea, are very unlikely to disappear due to a reduction of

image resolution and they have clear geometrical constraints.

As confirmed by recent studies (Krause et al., 2018; Son et al.,

2019), we hypothesized that algorithms developed using images

with fine visibility and images having high resolution with ad-
udicated consensus grades yield better performance when com-

ared to datasets consisting of poor-quality (non-gradable) images

nd images captured in varied acquisition settings. Therefore, this

hallenge provides data collected in the routine clinical practice

sing an acquisition protocol consistent for all images. The data

as acquired after pupil dilation with the same camera at the

ame resolution, ensuring consistent quality. This dataset did not

nclude non-gradable images and images with substantial disagree-

ent amongst the expert annotators. Even after these efforts to

rovide the best possible data, the annotation process is still in-

erently subjective, and the annotator judgment is a limiting factor

or the method performance which is mostly trained and evaluated

n a supervised manner. We also note that images captured with

ifferent retinal cameras or with different diseases would have al-

owed for a better estimation of the generalization ability of the

roposed methods since they might be more representative from

linical settings. Further, while we believe that data challenges like

urs foster “methodology diversity”, the majority of competing so-

utions used deep convolutional networks. These approaches are

omparably easier to implement than approaches based on fea-

ure engineering and do generalize well to multiple medical imag-

ng domains, which in turn, dramatically reduces the need for spe-

ialized task knowledge. Notably, amongst the competing solutions

n this challenge that utilized the deep learning approach along

ith the task-relevant subject knowledge have demonstrated su-

erior performance. However, it seems there might be some im-

act of challenge duration, apart from the number of submissions,

n the quality of developed solutions. Considering the time span

rom data availability to deadline of results submission, about one

nd a half month, was considerably tight for managing all tasks at

he same time. For the team VRT who had been working on an-

lyzing fundus images for more than a year when participated in

he competition that attempting all tasks were possible, still, it was

hallenging for them to commit all the tasks. However, it would be

ighly challenging for a newcomer to succeed in multiple tasks. In

hat sense, the competition period was not sufficient for perfecting

ll tasks. However, it would be enough for a competent participant,

.g. new entrants in the field as team SAIHST, to finish one task

f the participant can focus on the competition completely. Also,

n this challenge, the results were evaluated all at once after the

esult submission deadline. However, a continuous on-line assess-

ent of participating solutions would have facilitated the submis-

ion procedure by providing real-time feedback to the teams per-

ormance. This would have enabled a maximum number of sub-

issions during the challenge period, probably boosting the final

ount of submissions. However, this would have introduced a risk

f overfitting the test data by continuous submissions based on the

ystem’s performance on the test set.

This challenge led to the development of a variety of new ro-

ust solutions for lesion segmentation, detection, and segmenta-

ion of retinal landmarks and disease severity grading. Despite the

omplexity of the tasks, less than one-and-a-half month time for

evelopment, it received a very positive response, and the top-

erforming solutions were able to achieve results close to the hu-

an annotators. Still, there is room for improvement, especially

n the lesion segmentation and disease-grading tasks. Though the

ompetition is now completed, the dataset has been made publicly

vailable for research purposes to attract newcomers to the prob-

em and to encourage the development of novel solutions to meet

urrent and future clinical standards.
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Table A.1

Summary of technical specifications and hardware used in different databases.

Name of Database Number of Images Technical Details

Image Size(s) FOV Camera NMY Format

ARIA 212 768 × 576 50 Zeiss FF450+ � TIFF

DIARETDB 130+89 1500 × 1152 50 Zeiss FF450+ � PNG

DRIVE 40 768 × 584 45 Canon CR5 � JPEG

E-Ophtha 47EX+35H 148MA+233H 1440 × 960 - 2048 × 1360 (4) 45 Canon CR − DGI & Topcon TRC − NW6 � JPEG

HEIMED 169 2196 × 1958 45 Zeiss Visucam PRO � JPEG

Kaggle 88,702 433 × 289 - 3888 × 2592 Varying Any camera (EyePACS Platform) – TIFF

MESSIDOR 800 MY+ 400 NMY+ 1756 1440 × 960, 2240 × 1488, 2304 × 1536 45 3CCD/ Topcon TRC NW6 Both TIFF

ROC 100 768 × 576, 1058 × 1061, 1389 × 1383 45 Topcon NW100 & NW200 Canon CR5 − 45NM � JPEG

STARE 397 605 × 700 35 Topcon TRV − 50 × PPM

IDRiD 516 (81 with LA) 4288 × 2848 50 Kowa V X − 10α � JPG

EX - Hard Exudate, MA - Microaneurysms, H - Healthy, MY - Mydriatic, NMY - Non-Mydriatic, FOV - Field of View, LA - Lesion Annotation.

Table A.2

Comparison of different databases with the IDRiD database.

Name of database Normal fundus structures Abnormalities Multiple experts DR grading DME grading

OD VS FA MA HE EX SE Yes/No #

ARIA � � � × × × × � 2 × ×
DIARETDB1 × × × � � � � � 4 × ×
DRIVE × � × × × × × � 3 × ×
E-Optha × × × � × � × � 2 × ×
HEIMED × × × × × � � × 1 × �
Kaggle × × × × × × × � 2 � ×
MESSIDOR × × × × × × × × 1 � �
ROC × × × � × × × � 4 × ×
STARE � � × × × × × � 2 × ×
IDRiD � × � � � � � � 2 � �

OD - Optic Disc, VS - Vessels, FA - Fovea, MA - Microaneurysms, HE - Hemorrhage, EX - Hard Exudate, SE - Soft Exudate,

# - Number of Experts
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