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ABSTRACT

Two-stage object detectors generate object proposals and classify them to detect
objects in images. These proposals often do not perfectly contain the objects but
overlap with them in many possible ways, exhibiting great variability induced
by different object scales, object positions (w.r.t. the boxes), object parts, and
backgrounds. Training a robust classifier against this variability requires abundant
training data, which is not available in few-shot settings. To mitigate this issue, we
propose a novel variational autoencoder (VAE) based data generation model, which
is capable of generating data with increased crop-related variability. The main
idea is to transform the latent space such that latent codes with different norms
represent different crop-related variations. This allows us to generate features with
increased crop-related diversity via simply varying the latent norm. In particular,
each latent code is rescaled such that its norm linearly correlates with the IoU score
of the input crop w.r.t. the ground-truth box. Here the IoU score is a proxy that
represents the crop-related variation. We train this VAE model on base classes
conditioned on the semantic code of each class and then use the trained model
to generate features for novel classes. Our experimental results show that our
generated features consistently improve state-of-the-art few-shot object detection
methods on PASCAL VOC and COCO datasets.

1 INTRODUCTION

Object detection plays a vital role in many computer vision systems. However, training a robust
object detector often requires a large amount of training data with accurate bounding box annotations.
Thus, there has been an increasing attention on few-shot object detection (FSOD), which learns
to detect novel object categories from just a few annotated training samples. It is particularly
useful for problems where annotated data can be hard and costly to obtain such as rare medical
conditions (Ouyang et al.}[2020; Wang et al.| 2021)), rare animal species (Le et al., 2022; Welinder
et al.,|2010), satellite images (Borowicz et al.,[2019; [Le et al.,[2019)), or failure cases in autonomous
driving systems (Rezaei & Shahidil 2020; Majee et al., [2021ajb).

State-of-the-art FSOD methods are built on top of a two-stage framework (Ren et al., 2015)), which
includes a region proposal network that generates multiple image crops from the input image and a
classifier that labels these proposals. While the region proposal network generalizes well to novel
classes, the classifier is more error-prone due to the lack of training data diversity (Sun et al.||2021).
To mitigate this issue, a natural approach is to generate additional features for novel classes (Zhang
& Wang, 2021} |Zhu et al., |2020; Hayat et al., [2020). For example, |[Zhang & Wang| (2021) assume
that intra-class variation can be shared across categories. Hence, they propose a feature hallucination
network to use the variation from base classes to diversify training data for novel classes. For
zero-shot detection (ZSD), Zhu et al.|(2020) propose to synthesize visual features for unseen objects
and incorporate them into unseen object detection. [Hayat et al.| (2020) propose to generate unseen
features for novel classes based on semantic embedding using an adversarial framework.

Although much progress has been made, how to address the lack of data diversity is still an open
question in FSOD. In this paper, we discuss a specific type of data variability that greatly affects the
accuracy of FSOD algorithms. We observe that in FSOD, the classifier is not robust in classifying
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Figure 1: Robustness to crop-related variability. The region proposal network often outputs
many object crops overlapping with the object instance in various way (a). The classifier head of
the state-of-the-art FSOD method classifies correctly a simple crop of the bird
(b) but mis-classifies a harder crop (c). Our method focuses on generating features with increased
crop-related variability to use them as additional training data to improve the classifier (d).

different image crops (Figure[Th) of the same object instance. As can be seen from Figure ] the
state-of-the-art FSOD method, DeFRCN 2021), classifies correctly a simple crop of class
“bird” (Ib) but mis-classifies a harder case as “cow” (Ik) when some parts of the bird are missing. In
fact, our analysis shows that the performance of the method on those hard cases is significantly worse
than on easy cases (Section[5.3). A potential reason is that the features of different crops of the same
object instance can be vastly different due to changes in object scales, object parts included in the
crops, object positions within the crops, and backgrounds. However, training a classifier that is robust
to this crop-related variability is challenging due to limited training data in few-shot settings
2021)). To the best of our knowledge, no previous FSOD method focuses on addressing this
issue.

In this paper, we mitigate this issue by generating additional data with increased crop-related diversity
for novel classes. Note that previous few-shot learning methods mainly focus on increasing intra-class
variance in general while our goal is to enforce the diversity w.rt. a specific property in generated
samples. It is challenging to capture and model a specific source of variability since there are
inherently multiple factors of variation in the data (Mathieu et al.|[2016). To accomplish this goal, we
propose a novel generative model in which crop-related variation can easily be manipulated from
the learned latent representations. The key idea is to rescale each latent code such that its norm
(magnitude) directly represents the crop-related variation in the input. As different norms represent
different variations, we can generate features with increased crop-related diversity by simply changing
the latent norm.

In particular, our data generation model is based on a conditional variational autoencoder (VAE)
architecture. The VAE consists of an encoder that maps the input to a latent representation and a
decoder that reconstructs the input from this latent code. In our case, inputs to the VAE are object
proposal features, extracted from a pre-trained object detector. The goal is to associate the norm of
the latent code with how the object proposal overlaps with the ground-truth bounding box. To do
so, we rescale the latent code such that its norm linearly correlates with the Intersection-Over-Union
(IoU) score of the input object proposal w.r.¢. the ground-truth object box. This IoU score partially
characterizes the overlap: A high IoU score indicates that the object proposal significantly overlaps
with the object instance while a low IoU score indicates a harder case where a part of the object can be
missing. In essence, we use these IoU scores as proxies to represent different cropping variations. By
directly encoding the crop-related variation into the norm of the latent code, we can easily manipulate
the crop-related variation of the generated samples.

To apply our model to FSOD, we first train our VAE model using abundant data from the base classes.
The VAE is conditioned on the semantic code of the input instance category. After the VAE model is
trained, we use the semantic embedding of the few-shot class as the conditional code to synthesize
new features for the class. In our experiments, we use our generated samples to fine-tune the baseline
few-shot object detector - DeFRCN [2021). Somewhat surprisingly, a vanilla conditional
VAE model trained with only ground-truth box features brings a 3.7% nAP50 improvement over
the DeFRCN baseline in the 1-shot setting of the PASCAL VOC dataset (Everingham et al.| [2009).
Norm-VAE, our proposed VAE, further improves this new state-of-the-art by another 2.1%, i.e.,
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from 60% to 62.1%. In general, the generated features from Norm-VAE consistently improve the
state-of-the-art few-shot object detector (Qiao et al., [2021)) for both PASCAL VOC and COCO (Lin
et al.,[2014) datasets.

Our main contributions can be summarized as follows:

* We show that lack of crop-related variability in training data of novel classes is a crucial
problem for FSOD.

* We propose Norm-VAE, a novel VAE architecture that can effectively increase crop-related
diversity into the generated samples to support the training of FSOD classifiers.

* Our experiments show that the object detectors trained with our additional features achieve
state-of-the-art FSOD in both PASCAL VOC and COCO datasets.

2 RELATED WORK

Few-shot Object Detection Few-shot object detection aims to detect novel classes from limited
annotated examples of previously unseen classes. A number of prior methods (Kaul et al.l 2022}
Han et al.| 2021} [Perez-Rua et al.| [2020; [Fan et al., |2020b} [Zhu et al., [2021; [Sun et al.| 2021} L1
et al., [2021b; |[Fan et al., [ 2021; |Wu et al., 2021bga; [2022; [Kaul et al., |2022; |Han et al., 2022) have
been proposed to address this challenging task. One line of work focuses on the meta-learning
paradigm, which has been widely explored in few-shot classification (Kang et al.,[2019; Yan et al.|
2019; | Xiao & Marlet, [2020; |[Schwartz et al., 2019; | Yang et al., [2020a3bj [Fan et al., |2020a; [Wang
et al.,[2019). Meta-learning based approaches introduce a meta-learner to acquire meta-knowledge
that can be then transferred to novel classes. [Kang et al.| (2019) propose a meta feature learner and a
reweighting module to fully exploit generalizable features from base classes and quickly adapt the
prediction network to predict novel classes. Wang et al.|(2019) propose specialized meta-strategies
to disentangle the learning of category-agnostic and category-specific components in a CNN based
detection model. Another line of work adopts a two-stage fine-tuning strategy and has shown great
potential recently (Wang et al.,[2020; |Wu et al., 2020; |Sun et al.| 2021} |Cao et al.; 2021} |Qiao et al.,
2021). Wang et al.| (2020) propose to fine-tune only box classifier and box regressor with novel
data while freezing the other paramters of the model. This simple stragetegy outperforms previous
meta-learners. FSCE (Sun et al.| 2021) leverages a contrastive proposal encoding loss to promote
instance level intra-class compactness and inter-class variance. Orthogonal to existing work, we
propose to generate new samples for FSOD. Another data generation based method for FSOD is
Halluc (Zhang & Wang| [2021)). However, their method learns to transfer the shared within-class
variation from base classes while we focus on the crop-related variance.

Feature Generation Feature generation has been widely used in low-shot learning tasks. The
common goal is to generate reliable and diverse additional data. For example, in image classification,
(Xu & Le, [2022) propose to generate representative samples using a VAE model conditioned on the
semantic embedding of each class. The generated samples are then used together with the original
samples to construct class prototypes for few-shot learning. In spirit, their conditional-VAE system
is similar to ours. (Xian et al.l 2019) propose to combine a VAE and a Generative Adversarial
Network (GAN) by sharing the decoder of VAE and generator of GAN to synthesize features for
zero-shot learning. In the context of object detection, (Zhang & Wang|, 2021)) propose to transfer
the shared modes of within-class variation from base classes to novel classes to hallucinate new
samples. (Zhu et al.,[2021) propose to synthesize visual features for unseen objects from semantic
information and augment existing training algorithms to incorporate unseen object detection. Recently,
(Huang et al.,2022)) propose to synthesize samples which are both intra-class diverse and inter-class
separable to support the training of zero-shot object detector. However, these methods do not take
into consideration the variation induced by different crops of the same object, which is the main focus
of our proposed method.

Variational Autoencoder Different VAE variants have been proposed to generate diverse data
(Higgins et al.,[2017; [Klys et al., 2018}, Via et al.,2021; Shao et al., 2020). 3-VAE (Higgins et al.}
2017) imposes a heavy penalty on the KL divergence term to enhance the disentanglement of the latent
dimensions. By traversing the values of latent variables, 5-VAE can generate data with disentangled
variations. ControlVAE (Shao et al., 2020) improves upon 3-VAE by introducing a controller
to automatically tune the hyperparameter added in the VAE objective. However, disentangled
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representation learning can not capture the desired properties without supervision. Some VAE
methods allow explicitly controllable feature generation including CSVAE (Klys et al., 2018)) and
PCVAE (Via et al.;|2021). CSVAE (Klys et al.,[2018) learns latent dimensions associated with binary
properties. The learned latent subspace can easily be inspected and independently manipulated.
PCVAE (Via et al.,[2021)) uses Bayesian model to inductively bias the latent representation. Thus,
moving along the learned latent dimensions can control specific properties of the generated data.
Both CSVAE and PCVAE use additional latent variables and enforce additional constrains to control
properties. In contrast, our Norm-VAE directly encodes one variational factor into the norm of the
latent code. Experiments show that our strategy outperforms other VAE architectures, albeit being
simpler and without any additional training components.

3 METHOD

In this section, we first review the problem setting of few-shot object detection and the conventional
two-stage fine-tuning framework. Then we introduce our method that tackles few-shot object detection
via generating features with increased crop-related diversity.

3.1 PRELIMINARIES

In few-shot object detection, the training set is divided into a base set D with abundant annotated
instances of classes CB, and a novel set DV with few-shot data of classes C~, where CB and CN
are non-overlapping. For a sample (z,y) € DZ U DV, x is the input image and y = {(c;, b;),i =
1,..., N} denotes the categories ¢ € C® U CV and bounding box coordinates b of the N object
instances in the image x. The number of objects for each class in CV is K for K -shot detection. We
aim to obtain a few-shot detection model with the ability to detect objects in the test set with classes
inCBuUCN.

Recently, two-stage fine-tuning methods have shown great potential in improving few-shot detection.
In these two-stage detection frameworks, an region proposal network (RPN) takes the output feature
maps from a backbone feature extractor as inputs and generates region proposals. An Region-of-
Interest (Rol) head feature extractor first pools the region proposals to a fixed size and then encodes
them as vector embeddings, known as the Rol features. A classifier is trained on top of the Rol
features to classify the categories of the region proposals.

The fine-tuning often follows a simple two-stage training pipeline, i.e., the data-abundant base training
stage and the novel fine-tuning stage. In the base training stage, the model collects transferable
knowledge across a large base set with sufficient annotated data. Then in the fine-tuning stage, it
performs quick adaptation on the novel classes with limited data. Our method aims to generate
features with diverse crop-related variations to enrich the training data for the classifier head during
the fine-tuning stage. In our experiments, we show that our generated features significantly improve
the performance of DeFRCN (Qiao et al.,|2021)). In general, our method can be built on top of any
two-stage object detection methods.

3.2 OVERALL PIPELINE

Figure|2| summarizes the main idea of our proposed VAE model. For each input object crop, we first
use a pre-trained object detector to obtain its Rol feature. The encoder takes as input the Rol feature
and the semantic embedding of the input class to output a latent code z. We then transform z such
that its norm linearly correlates with the IoU score of the input object crop w.r.z. the ground-truth
box. The new norm is the output of a simple linear function g(-) taking the IoU score as the single
input. The decoder takes as input the new latent code and the class semantic embedding to output
the reconstructed feature. Once the VAE is trained, we use the semantic embedding of the few-shot
class as the conditional code to synthesize new features for the class. To ensure the diversity w.r.z.
object crop in generated samples, we vary the norm of the latent code when generating features. The
generated features are then used together with the few-shot samples to fine-tune the object detector.
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Figure 2: Norm-VAE for modelling crop-related variations. The original latent code z is rescaled
to Z such that the norm of Z linearly correlates with the IoU score of the input crop (w.r.t. the ground
truth box). The original latent codes are colored in blue while the rescaled ones are colored in

The norm of the new latent code is the output of a simple linear function g(-) taking the IoU score as
the single input. As can be seen, the two points whose IoU = 0.7 are both rescaled to norm ¢(0.7)
while another point whose ToU = 0.9 is mapped to norm ¢(0.9). As a result, different latent norms
represent different crop-related variations, enabling diverse feature generation.

3.2.1 NORM-VAE FOR FEATURE GENERATION

We develop our feature generator based on a conditional VAE architecture (Sohn et al.l 2015). Given
an input object crop, we first obtain its Region-of-Interest (Rol) feature f via a pre-trained object
detector. The Rol feature f is the input for the VAE. The VAE is composed of an Encoder E(f, a),
which maps a visual feature f to a latent code z, and a decoder G(z, a) which reconstructs the feature
f from z. Both E and G are conditioned on the class semantic embedding a. We obtain this class
semantic embedding a by inputting the class name into a semantic model (Miller,1992; |Radford et al.|
2021)). It contains class-specific information and serves as a controller to determine the categories
of the generated samples. Conditioning on these semantic embeddings allows reliably generating
features for the novel classes based on the learned information from the base classes (Xu & Le, [2022)).
Here we assume that the class names of both base and novel classes are available and we can obtain
the semantic embedding of all classes.

We first start from a vanilla conditional VAE model. The loss function for training this VAE for a
feature f; of class j can be defined as:

LV(fZ) =KL (Q(zl|fu aj)||p(z|aj)) - Eq(zl'\fi,aj)[log p(fi|zi7aj)]v (1)

where a7 is the semantic embedding of class j. The first term is the Kullback-Leibler divergence
between the VAE posterior ¢(z|f, a) and a prior distribution p(z|a). The second term is the decoder’s
reconstruction error. ¢(z|f,a) is modeled as E(f, a) and p(f|z,a) is equal to G(z,a). The prior
distribution is assumed to be (0, I) for all classes.

The goal is to control the crop-related variation in a generated sample. Thus, we establish a direct
correspondence between the latent norm and the crop-related variation. To accomplish this, we
transform the latent code such that its norm correlates with the IoU score of the input crop. Given an
input Rol feature f; of a region with an IoU score s;, we first input this Rol feature to the encoder to
obtain its latent code z;. We then transform z; to Z; such that the norm of Z; correlates to s;. The new
latent code Z; is the output of the transformation function 7 (-, -):

Zi =T (2,8) = * g(sq), )

[zl

where || z;|| is the Lo norm of z;, s; is the ToU score of the input proposal w.r1. its ground-truth object
box, and ¢(-) is a simple pre-defined linear function that maps an IoU score to a norm value. With
this new transformation step, the loss function of the VAE from equation [I| for an input feature f;
from class j with an IoU score s; thus can be rewritten as:

LV(.f'i) Si) =KL (q(z’i|fi7 aj)Hp(Z‘aj)) - Eq(zz‘|fz‘,aj) [lOg p(fi‘T(Zi’ Si)v aj)} . 3)
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3.2.2 GENERATING DIVERSE DATA FOR IMPROVING FEW-SHOT OBJECT DETECTION

After the VAE is trained on the base set, we generate a set of features with the trained decoder. Given
a class y with a semantic vector a¥ and a noise vector z, we generate a set of augmented features GY:
P z

Gy={f|f:G(H*5»ay)}7 )
where we vary (3 to obtain generated features with more crop-related variations. The value range of 3
is chosen based on the mapping function g(-). The augmented features are used together with the
few-shot samples to fine-tune the object detector. We fine-tune the whole system using an additional
classification loss computed on the generated features together with the original losses computed on
real images. This is much simpler than the previous method of |[Zhang & Wang| (2021) where they
fine-tune their system via an EM-like (expectation-maximization) manner.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOLS

We conduct experiments on both PASCAL VOC (07 + 12) (Everingham et al., |2009) and MS
COCO datasets (Lin et al., 2014). For fair comparison, we follow the data split construction and
evaluation protocol used in previous works (Kang et al.,[2019). The PASCAL VOC dataset contains
20 categories. We use the same 3 base/novel splits with TFA (Wang et al.| |2020) and refer them as
Novel Split 1,2, 3. Each split contains 15 base classes and 5 novel classes. Each novel class has
K annotated instances, where K = 1,2, 3,5, 10. We report AP50 of the novel categories (nAP50)
on VOCO7 test set. For MS COCO, the 60 categories disjoint with PASCAL VOC are used as base
classes while the remaining 20 classes are used as novel classes. We evaluate our method on shot
1,2,3,5,10,30 and COCO-style AP of the novel classes is adopted as the evaluation metrics.

4.2 IMPLEMENTATION DETAILS

Our method can be built on top of many existing few-shot object detection methods. In our exper-
iments, we use the pre-trained Faster-RCNN (Ren et al., [2015) with ResNet-101 (He et al., [2016)
and Feature Pyramid Network (Lin et al., 2017) following previous work DeFRCN (Qiao et al.,
2021). The dimension of the extracted Rol feature is 2048. For our feature generation model, the
encoder consists of three fully-connected (FC) layers and the decoder consists of two FC layers,
both with 4096 hidden units. LeakyReLLU and ReLU are the non-linear activation functions in the
hidden and output layers, respectively. The dimensions of the latent space and the semantic vector are
both set to be 512. Our semantic embeddings are extracted from a pre-trained CLIP (Radford et al.,
2021) model in all main experiments. An additional experiment using Word2Vec (Mikolov et al.|
2013) embeddings is reported in Section[5.2] After the VAE is trained on the base set with various
augmented object boxes (Appendix [C), we use the trained decoder to generate N = 30 features
(Appendix [D) per class and incorporate them into the fine-tuning stage of the DeFRCN model. We
set the function g(+) in Equation[2]to a simple linear function g(z) = w * 2 + b which maps an input
IoU score to the norm of the new latent code. We empirically choose g(-) such that g(1) = v/512

and ¢g(0.5) =5 Note that g(-) enforces an inverse correlation: the features with low IoU
scores, which are considerably hard samples, are mapped to a higher norm and placed further away
from the origin (Meng et al., 2021). We provide further analyses on the choice of g(+) in Appendix @
For each feature generation iteration, we gradually increase the value of the controlling parameter [
in Equation [ with an interval of 0.75.

4.3 FEW-SHOT DETECTION RESULTS

We use the generated features from our VAE model together with the few-shot samples to fine-tune
DeFRCN. We report the performance of two models: “Vanilla-VAE” denotes the performance of
the model trained with generated features from a vanilla VAE trained on the base set of ground-
truth bounding boxes and “Norm-VAE” denotes the performance of the model trained with features
generated from our proposed Norm-VAE model.

1512 is the dimension of the latent code
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Novel Split 1 Novel Split 2 Novel Split 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
TFA w/ fc (Wang et al.|[2020) 36.8 29.1 43.6 557 570|182 290 334 355 390|277 336 425 487 502
TFA w/ cos (Wang et al.|[2020) 39.8 36.1 447 557 560|235 269 341 351 39.1|308 348 428 495 498
MPSR (Wu et al.|[2020) 41.7 - 514 552 618|244 - 39.2 351 399|478 - 423 48.0 497
FsDetView (X1ao & Marlet|2020) 242 353 422 49.1 574|216 246 319 37.0 457|212 300 372 438 496
FSCE (Sun et al.|[2021) 442 438 514 619 634|273 295 435 442 502|372 419 475 546 585
CME (L1 et al.|[2021a) 415 475 504 582 609 | 272 302 414 425 468 | 343 39.6 451 483 515
SRR-FSD (Zhu et al.[2021) 478 505 513 552 568|325 353 39.1 408 438 |40.1 415 443 469 464
Halluc. (Zhang & Wang||2021) 45.1 440 447 550 559|232 275 351 349 39.0|305 351 414 49.0 493
FADI (Cao et al.|[2021) 503 548 542 593 632|306 350 403 428 480|457 497 49.1 483 515
Pseudo-Labelling (Kaul et al.|2022) | 54.5 532 588 63.2 657 | 328 292 50.7 49.8 50.6 | 484 527 550 59.6 59.6
FCT (Han et al.|2022) 499 57.1 579 632 67.|27.6 345 437 492 512|395 547 523 570 587
DeFRCN (Qiao et al.{[2021) 563 603 620 67.0 66.1 | 357 452 515 541 533|545 556 56.6 608 62.7
Vanila-VAE (Ours) 60.0 633 663 683 67.1 393 462 527 535 534|560 588 57.1 626 63.6
Norm-VAE (Ours) 62.1 649 678 692 675|399 468 544 542 53.6|582 603 61.0 64.0 655

Table 1: Few-shot object detection performance (nAP50) on PASCAL VOC dataset. We evaluate
the performance on three different splits. Our method consistently improves upon the baseline for all
three splits across all shots. Best performance in bold.

nAP nAP75
Method 1 2 3 5 10 30 1 2 3 5 10 30
TFA w/ fc (Wang et al.|2020) 29 43 67 84 100 134 |28 4l 66 84 92 132
TFA w/ cos (Wang et al.[|2020) 34 46 66 83 100 137 |38 48 65 80 93 132
MPSR (Wu et al.[[2020) 23 35 52 67 98 14123 34 51 64 97 142
FADI (Cao et al.[[2021) 57 70 86 101 122 161 |60 70 83 97 119 158
FCT (Han et al.[|2022) - 79 - - 17.1 214 | - 79 - - 17.0 22.1
Pseudo-Labeling (Kaul et al.|2022) - - - - 17.8 245 - - - - 17.8 25.0
DeFRCN (Qiao et al.|2021) 6.6 11.7 133 156 187 224 |70 122 13.6 151 176 222
Vanilla-VAE (ours) 88 13.0 141 159 187 225 |79 125 134 151 176 222
Norm-VAE (ours) 95 137 143 159 187 225 |88 13.7 142 153 178 224

Table 2: Few-shot detection performance for the novel classes on COCO dataset. Our approach
outperforms baseline methods in most cases, especially in low-shot settings (K<10). { applies mosaic
data augmentation introduced in (Bochkovskiy et al.,[2020) during fine-tuning. Best performance in
bold.

PASCAL VOC Table [I| shows our results for all three random novel splits from PASCAL VOC.
Simply using a VAE model trained with the original data outperforms the state-of-the-art method
DeFRCN in all shot and split on PASCAL VOC benchmark. In particular, vanilla-VAE improves
DeFRCN by 3.7% for 1-shot and 4.3% for 3-shot on Novel Split 1. Using additional data from
our proposed Norm-VAE model consistently improves the results across all settings. We provide
qualitative examples in Appendix [F

MS COCO Table [2| shows the FSOD results on MS COCO dataset. Our generated features bring
significant improvements in most cases, especially in low-shot settings (K<10). For example, Norm-
VAE brings a 2.9% and a 2.0% nAP improvement over DeFRCN in 1-shot and 2-shot settings,
respectively. Pseudo-Labeling is better than our method in higher shot settings. However, they apply
mosaic data augmentation (Bochkovskiy et al.||2020) during fine-tuning.

5 ANALYSES

5.1 EFFECTIVENESS OF NORM-VAE

We compare the performance of Norm-VAE with a baseline vanilla VAE model that is trained with
the same set of augmented data. As shown in Table[3] using the vanilla VAE with more training data
does not bring performance improvement compared to the VAE model trained with the base set. This
suggests that training with more diverse data does not guarantee diversity in generated samples w.z?.
a specific property. Our method, by contrast, improves the baseline model by 1.3% ~ 1.9%, which
demonstrates the effectiveness of our proposed Norm-VAE.

5.2 PERFORMANCE USING DIFFERENT SEMANTIC EMBEDDINGS

We use CLIP (Radford et al., 2021) features in our main experiments. In Table@ we compare this
model with another model trained with Word2 Vec (Mikolov et al.,[2013) on PASCAL VOC dataset.



Under review as a conference paper at ICLR 2023

| Data | l-shot | 2-shot | 3-shot
DeFRCN (Qiao et al.|[2021) - 56.3 60.3 62.0
VAE Orginal 60.0 63.3 66.3
VAE Augmented | 60.1 62.7 66.4
Norm-VAE | Augmented | 62.1 | 649 | 67.8

Table 3: Performance comparisons between vanilla VAE and Norm-VAE on PASCAL VOC
dataset. Training a the vanilla VAE with the augmented data does not bring performance improvement.
One possible reason is that the generated samples are not guaranteed to be diverse even with sufficient
data.

Note that CLIP model is trained with 400M pairs (image and its text title) collected from the web
while Word2Vec is trained with only text data. Our Norm-VAE trained with Word2Vec embedding
achieves similar performance to the model trained with CLIP embedding. In both cases, the model
outperform the state-of-the-art FSOD method in all settings.

Method Semantic Novel Split 1 Novel Split 2 Novel Split 3
Embedding | 1-shot 2-shot 3-shot | 1-shot 2-shot 3-shot | 1-shot 2-shot 3-shot
DeFRCN (Qiao et al.|[2021) | - | 563 60.3 620 | 357 45.2 515 | 545 55.6 56.6
Vanilla VAE Word2Vec 60.4 62.9 66.7 38.7 452 52.9 55.6 58.7 57.9
Norm-VAE 61.6 63.4 66.3 40.7 46.4 53.3 56.8 59.0 60.2
Vanilla VAE CLIP 60.0 63.3 66.3 393 46.2 52.7 56.0 58.8 57.1
Norm-VAE 62.1 64.9 67.8 39.9 46.8 54.4 58.2 60.3 61.0

Table 4: FSOD Performance of VAE models trained with different class semantic embeddings.
CLIP (Radford et al., |2021)) is trained with 400M pairs (image and its text title) collected from the
web while Word2Vec (Mikolov et al.;2013) is trained with only text data.

5.3 PERFORMANCE ON HARD CASES

In Table[5] we show AP 50~75 of our method on PASCAL VOC dataset (Novel Split 1) in comparison
with the state-of-the-art method DeFRCN. Here AP 50~75 refers to the average precision computed
on the proposals with the IoU thresholds between 50% and 75% and discard the proposals with ToU
scores (w.r.t. the ground-truth box) larger than 0.75. Thus, AP 50~75 implies the performance of the
model in “hard” cases where the proposals do not significantly overlap the ground-truth object boxes.
In this extreme test, the performance of both models are worse than their AP50 counterparts (Table []),
showing that FSOD methods are generally not robust to those hard cases. Our method mitigates this
issue, outperforming DeFRCN by substantial margins (see Appendix [A] and [B]for further analyses
and results). However, the performance is still far from perfect. Addressing these challenging cases
is a fruitful venue for future FSOD work.

Method | I-shot | 2-shot | 3-shot
DeFRCN(Qiao et al.|[2021) ‘ 16.6 133 15.2

Ours (1 Improvement) 18.8 (12.2) | 164 (1 3.1) | 19.2 (14.0)

Table 5: AP50~75 of our method and DeFRCN on PASCAL VOC dataset. AP 50~75 refers to
the average precision computed on the proposals with the IoU thresholds between 50% and 75% and
discard the proposals with IoU scores larger than 0.75, i.e., only “hard” cases.

5.4 PERFORMANCE WITH DIFFERENT SUBSETS OF GENERATED FEATURES

In this section, we conduct experiments to show that different groups of generated features affect the
performance of the object detector differently. Similar to Section[d.2] we generate 30 new features
per few-shot class with various latent norms. However, instead of using all norms, we only use large
norms (top 30% highest values) to generate the first group of features and only small norms (top 30%
lowest values) to generate the second group of features. During training, larger norms correlate to
input crops with smaller IoU scores w.rt. the ground-truth boxes and vice versa. Thus, we denote
these two groups as “Low-IoU” and “High-IoU” correspondingly. We train two models using these
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two sets of features and compare their performance in Table[6] As can be seen, the model trained
with “Low-IoU” features has higher AP50 while the “High-IoU” model has higher AP75 score.
This suggests that different groups of features affect the performance of the classifier differently.
The “Low-IoU” features tend to increase the model’s robustness to hard-cases while the “High-IoU”
features can improve the performance for easier cases. Note that the performance of both of these
models is not as good as the model trained with diverse variations and interestingly, very similar to
the performance of the vanilla VAE model (Table [I).

1-shot 2-shot 3-shot 5-shot
nAP50 nAP75 | nAPS0 nAP75 | nAP5S0 nAP75 | nAPS0 nAP75

Low-IoU 60.9 30.5 63.7 40.6 66.6 40.7 68.9 412
High-ToU | 60.2 31.6 63.2 41.0 66.3 41.5 68.3 42.1

Features

Table 6: Comparison between models trained with different groups of generated features. The
model trained with “Low-IoU” features has better nAP50 scores while the “High-IoU” model has
better nAP75 scores.

5.5 COMPARISONS WITH OTHER VAE ARCHITECTURES

Our proposed Norm-VAE can increase diversity w.r.z. image crops in generated samples. Here,
we compare the performance of our proposed Norm-VAE with other VAE architectures, including
B-VAE (Higgins et al., | 2017) and CSVAE (Klys et al., | 2018)). We train all models on image features
of augmented object crops on PASCAL VOC dataset using the same backbone feature extractor.
For 3-VAE, we generate additional features by traversing a randomly selected dimension of the
latent code. For CSVAE, we manipulate the learned latent subspace to enforce variations in the
generated samples. We use generated features from each method to fine-tune DeFRCN. The results
are summarized in Table[/| In all cases, the generated features greatly benefit the baseline DeFRCN.
This shows that lacking crop-related variation is a critical issue for FSOD, and augmenting features
with increased crop-related diversity can effectively alleviate the problem. Our proposed Norm-VAE
outperforms both 8-VAE and CSVAE in all settings. Note that CSVAE requires additional encoders
to learn a pre-defined subspace correlated with the property, while our Norm-VAE directly encode
this into the latent norm without any additional constraints.

| 1-shot | 2-shot | 3-shot
DeFRCN|Qiao etal|2021) | 563 | 603 | 620

[B-VAE(Higgins et al.|[2017) | 61.3 64.0 67.3
CSVAE(Klys et al.[[2018) 61.6 64.1 67.4
Norm-VAE 62.1 64.9 67.8

Table 7: Comparison between Norm-VAE and other VAE variants. Norm-VAE outperforms
B-VAE and CSVAE on PASCAL VOC dataset under all settings. Best performance in bold.

6 CONCLUSION AND FUTURE WORKS

We tackle the lack of crop-related variability in the training data of FSOD, which makes the model
not robust to different object proposals of the same object instance. To this end, we propose a novel
VAE model that can generate features with increased crop-related diversity. Experiments show that
such increased diversity in the generated samples significantly improves the current state-of-the-art
FSOD performance for both PASCAL VOC and COCO datasets. Our proposed VAE model is simple,
easy to implement, and allows modifying a specific property of the generated samples. In general,
generative models whose outputs can be manipulated according to different properties, are crucial to
various frameworks and applications. In future work, we plan to address the following limitations of
our work: 1) We bias the decoder to increase the diversity in generated samples instead of explicitly
enforcing it. 2) Our proposed method is designed to generate visual features of object boxes for
FSOD. Generating images might be required in other applications. 3) IoU score might not be a
sufficient proxy to represent crop-related variation. A single IoU value might represent multiple
variational factors, which is not ideal. Disentangling those factors and representing them in the
embedding space to effectively diversify generated data can be a natural extension of our work.
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A ROBUSTNESS AGAINST INACCURATE LOCALIZATION

In this section, we conduct experiments to show that our object detector trained with features
with diverse crop-related variation is more robust against inaccurate bounding box localization.
Specifically, we randomly select 1000 testing instances from PASCAL VOC test set and create
30 augmented boxes for each ground-truth box. Each augmented box is created by enlarging the
ground-truth boxes by % for each dimension where x ranges from 0 to 30. The result is summarized
in Figure [3| where “Baseline” denotes the performance of DeFRCNQiao et al.| (2021)), “VAE” is the
performance of the model trained with features generated from a vanilla VAE, and “Norm-VAE” is
the model trained with generated features from our proposed model.

Figure[3](a) shows the classification accuracy of the object detector on the augmented box as the IoU
score between the augmented bounding box and the ground-truth box decreases. For both the baseline
method DeFRCN and the model trained with features from a vanilla VAE, the accuracy drops by
~ 10% as the ToU score decreases from 1.0 to 0.5. These results suggest that these models perform
much better for boxes that have higher IoU score w.zf. the ground-truth boxes. Our proposed method
has higher robustness to these inaccurate boxes: the accuracy of the model trained with features from
Norm-VAE only drops by ~ 5% when IoU score decreases from 1 to 0.5.

Figure[3] (b) plots the average probability score of the classifier on the ground-truth category as the
IoU score decreases. Similarly, the probability score of both baseline DeFRCN and the model trained
with features from a vanilla VAE drops around 0.08 as the IoU score decreases from 1.0 to 0.5. The
model trained with features from Norm-VAE, in comparison, has more stable probability score as the
IoU threshold decreases.

PASCAL VOC 1-shot 055 PASCAL VOC 1-shot
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(a) Classification accuracy (b) Class probability score

Figure 3: Classification accuracy and probability score of the object detector on the augmented
box. We compare between the baseline DeFRCN |Qiao et al.| (2021), the model trained with features
from vanilla VAE and our proposed Norm-VAE. By generating features with diverse crop-related
variations, we increase the object detector’s robustness against inaccurate object box localization.

B DETECTION RESULTS FOR INACCURATE BOUNDING BOXES

In this section, we provide qualitative visualizations of the detected objects of the 1-shot model
on PASCAL VOC Novel Split 1. As shown in Figure {4} for each input image, the blue box is the
original prediction result from the object detector. We then randomly create an augmented bounding
box based on the ground-truth bounding box and input the augmented box to the classifier of the
object detector. The prediction result on the augmented box is denoted as the yellow box. For the
examples shown in the figure, the baseline DeFRCN model (Qiao et al.,[2021) and the model trained
with features from a vanilla VAE predict the class labels correctly on the original input boxes while
both fail on the augmented boxes. By contrast, the model trained with features from Norm-VAE can
classify both the original box and the augmented box correctly. As can be seen, crop-related variation
is crucial for object detection and our method can enhance the object detector’s robustness against
the variation successfully.
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Figure 4: Qualitative visualizations of the detected objects on PASCAL Novel Split 1. “Vanilla-
VAE” denotes the model trained with features generated from a vanilla VAE and “Norm-VAE”
denotes the model trained with features generated from Norm-VAE. The blue box is the detector’s
prediction on the original image and the yellow box is the prediction on the augmented box. Our
proposed Norm-VAE can generate features that enhance the model’s robustness against crop-related
variation.

C DETAILS ON GENERATING AUGMENTED TRAINING DATA

We extract the image features from image crops from the base classes and use them to train a
feature generator to generate features for the novel classes. Specifically, we apply the Rol head
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feature extractor on the ground-truth bounding box b; from the base classes to get the Rol feature f;.
To enrich the diversity of the Rol feature, we randomly create /N additional augmented bounding
boxes by randomly moving the starting point and the ending point of the original box, annotated as
{b},b?,...bN}. These augmented bounding boxes overlap the ground-truth bounding box differently

and have different ToU scores. With a set of augmented bounding boxes {b}, b?, ...bN }, we extract

1Y
the corresponding Rol features { f}, f2, ...} and use them to train our VAE model.

D NUMBER OF GENERATED SAMPLES

In our main experiment, we generate 30 samples per class and use them together with the original
few-shot samples to fine-tune the object detector. In this section, we investigate the impact of the
number of the generated samples. Table [§]shows the AP50 on PASCAL VOC Novel Split 1 with
different numbers of generated features under 1-shot, 2-shot and 3-shot settings. As the number
of generated samples increases, the performance gradually improves and then plateaus and drops
slightly (less than 0.5% decrease in performance).

# Generated Features | O | 5 | 10 | 15 | 20 | 25 | 30 | 35

1-shot 56.3 | 60.5 | 61.6 | 61.8 | 62.0 | 61.9 | 62.1 | 62.0
2-shot 60.3 | 62.0 | 63.7 | 63.6 | 63.6 | 64.1 | 64.9 | 64.5
3-shot 62.0 | 65.6 | 67.0 | 67.2 | 67.2 | 67.8 | 67.8 | 67.3

Table 8: Impact of the number of the generated samples under PASCAL VOC Novel Split 1. As
the number of generated samples increases, the performance gradually improves and then saturates
and drops slightly.

E MAPPING FUNCTION ANALYSES

We use a simple pre-defined linear function g(x) = w X x + b to map from an IoU score x to the new
norm of a latent code. Here we only consider proposals with IoU scores ranging from 0.5 to 1. The
coefficients of the linear function can be inferred by defining the value range of the rescaled latent
norm. We conduct experiments with different ranges and the results are shown in Table[9] Note that
here /512 is a scaling constant that corresponds to the number of dimension (N = 512) of the latent
space. As can be seen from the table, we observe better performance when the IoU score inversely
correlates the latent norm. In this case, a proposal with low IoU score has a higher latent norm and is
placed further away from the origin. A possible reason is that features of hard instances often exhibit
higher variance. Thus, it is more optimal to use latent codes with larger norms to represent them
(Meng et al., [2021)).

| gD g(0.5)  AP50

1xv/512  2x+/512  61.6
I1xv/512  5x4/512 621
1xv512  10x+v/512  61.8

2x4/512 1x+v/512 60.6
5x+/512 1x4/512 61.3
10xv/512  1x+/512 60.6

Inverse Correlation

Correlation

Table 9: Performance with different configurations of the mapping function. We conduct
experiments using different coefficients for function g(-), which defines the value range of the new
norm of the latent code.

F VISUALIZATION OF THE DETECTION RESULTS ON PASCAL VOC DATASET

We visualize the detection results of DeFRCN |Qiao et al.|(2021) and our proposed method in Figure 5]
“Vanilla-VAE” denotes the model trained with features generated from a vanilla VAE and “Norm-VAE”
denotes the model trained with features generated from Norm-VAE.
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In all cases, the model trained with additional features performs better than DeFRCN. In the third
row, DeFRCN fails to recognize both the two instances of the “bird” class while both Vanilla-VAE
and Norm-VAE recognize them. It can be seen that with additional data from Norm-VAE, the FSOD
model can recognize objects that are undetected with the model trained with just the original training
data. The Norm-VAE model is generally more robust in recognizing objects. It works well even when
they are cropped (2nd row) or small (two bottom rows).

DeFRCN (2021) Vanilla-VAE Norm-VAE

Figure 5: Visualization of the detection results on PASCAL VOC dataset. “Vanilla-VAE” denotes
the model trained with features generated from a vanilla VAE and “Norm-VAE” denotes the model
trained with features generated from Norm-VAE. In all cases, the model trained with additional
features performs better than DeFRCN. The Norm-VAE model works well even when the objects are
partially cropped (2nd row) or small (two bottom rows). Detection score threshold is 0.5. Please view
in magnification for cases with small objects.
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