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Abstract

To generate evidence regarding the safety and efficacy of artificial intelligence (Al)
enabled medical devices, Al models need to be evaluated on a diverse population of
patient cases, some of which may not be readily available. We propose an evaluation
approach for testing medical imaging Al models that relies on in silico imaging
pipelines in which stochastic digital models of human anatomy (in object space)
with and without pathology are imaged using a digital replica imaging acquisition
system to generate realistic synthetic image datasets. Here, we release M-SYNTH?,
a dataset of cohorts with four breast fibroglandular density distributions imaged at
different exposure levels using Monte Carlo x-ray simulations with the publicly
available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE)
toolkit. We utilize the synthetic dataset to analyze Al model performance and find
that model performance decreases with increasing breast density and increases
with higher mass density, as expected. As exposure levels decrease, Al model
performance drops with the highest performance achieved at exposure levels lower
than the nominal recommended dose for the breast type.
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Figure 1: Overview of the computational pipeline components for generating the M-SYNTH in silico dataset
for medical imaging Al evaluation.
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1 Introduction

The goal of this work is to demonstrate that AI models for medical imaging can be evaluated using
simulations, specifically, using an in silico (also known as synthetic) imaging pipeline equipped with
a stochastic model for human anatomy and disease [1]. We show that in silico methods can constitute
rich sources of data with realistic physical variability for performing comparative analysis of Al
device performance.

*Code and data links available at: https://github.com/DIDSR/msynth-release/
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To date, computational models have been applied to some extent for the analysis of nearly all
medical imaging modalities and for a wide variety of clinical tasks [2]. Since it is critical to ensure
patient safety and system effectiveness in healthcare applications, rigorous and thorough testing
procedures must be performed in order to study performance in the intended population including
subpopulations of interest. To prevent estimates that might be biased by overfitting, model testing is
typically performed on a previously unseen dataset. However, datasets consisting of patient images
may present a limited distribution of the variability in human anatomy and may not always capture
rare, but life-critical cases, and may be biased towards specific populations or parameters of image
acquisition devices dominant at specific clinical sites. In addition, patient data and associated health
records may not be available due to patient privacy, cost, or additional risk associated with additional
imaging procedures. Precise mass location and extent (e.g., mass boundaries) are typically not
available in the patient’s records, and it is burdensome, error-prone, and sometimes impossible to
collect this information retrospectively. In many medical imaging applications, these limitations pose
a significant barrier to development and evaluation of novel computational techniques in medical
imaging products.

We propose evaluating AI models using physics-based simulations. We create realistic test cases
by imaging digital objects using digital image acquisition systems. Our in silico testing pipeline
offers the ability to control both object and acquisition parameters, and generate highly realistic
test cases (see Figure 1). We show that digital objects and computer simulated replicas of image
acquisition devices offer a rich source of realistic data capturing a variety of patient and imaging
conditions for evaluation purposes. In particular, our approach (and associated dataset) allows for
performing comparative analysis of Al performance across physical breast properties (e.g., mass size)
and imaging characteristics (e.g., radiation dose). Such testing typically cannot be performed with
patient data, as the data may be too costly to collect or unsafe to acquire (e.g., one cannot ethically
re-image the same patient multiple times using ionizing radiation). Our contributions in this work
can be summarized as follows:

* We demonstrate that, using this approach, we can detect differences in AI model performance based
on selected image acquisition device or physical object model parameters. Specifically, we evaluate
the effect of image acquisition (radiation dose) and object model (breast and mass densities, mass
size) parameters on the performance of the Al model.

* We release a dataset, M-SYNTH, to facilitate testing with pre-computed data using the proposed
pipeline. The dataset consists of 1,200 stochastic knowledge-based models and their associated
digital mammography (DM) images with varying physical (breast density, mass size and density)
and imaging (dose) characteristics.

2 Background

First, we introduce the concepts of knowledge-based models and physics-based imaging simulation
that form the in silico imaging pipeline, the foundation of our work.

Object Models. Knowledge-based (KB) models incorporate information about the physical world
into the data generation process to create realistic virtual representations of human parts or organs [3].
As discussed in [1], large cohorts of digital stochastic human models can be represented by:
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where s denotes a particular state or random realization of a digital human in a cohort of size
S, r denotes a spatial variable, ¢,, denote expansion (basis) functions, and #,, denote expansion
coefficients. Knowledge-based models specifically are constructed by sampling a set of 6,, in Eq. 1
from distributions representing the relevant model characteristics, given a specific ¢,, based on the
application. The characteristics of the distributions are often derived from physical or biological
measurements. In the case of breast, knowledge-based models allow us to vary physical patient
characteristics including breast size, breast shape, mass size and mass density (see Figures 2, 3 and
4).

Specifically, the object (breast) is a model D, parameterized by a vector  characterizing a fixed, user-
defined set of physiological properties (e.g., breast density, mass presence, mass size, glandularity).
Given a sample x5, we can generate a realistic, high-resolution object f; = D(xs). We rely on
Graff’s breast model [3] as the KB model for this project and describe its properties in Section 3.



Digital Mammography (DM) image generation. Once created, KB models are imaged using
simulations of x-ray transport through the materials present in each KB model. The image acquisition
device I is a parametric model that receives the object d; as well as user-defined choices for control
parameters y (e.g., detector type, radiation dose) and outputs an image r; ; = I(d;,y;) given a
sample choice of parameters y; and an input object d;. Parameters of such a system (e.g., geometry,
source characteristics, detector technology, anti-scatter grid, etc.) can emulate system geometries and
x-ray acquisition parameters found in commercially available imaging device (e.g., mammography)
specifications. In our work, we used MC-GPU [4], a Monte Carlo x-ray simulation software
implemented on GPUs that generates mammography images. Additional details for this component
of the pipeline can be found in Section 3.

Related work in generative image models. The in silico imaging pipeline described above
is highly related to medical imaging generation using generative models. One popular type of
generative model is a generative adversarial network (GAN) [5], which learns a mapping from a
low-dimensional representation to images at resolution. Generative models have been applied to a
variety of medical image generation tasks [6]. For example, Guan [7] showed that GAN-generated
synthetic images can be used to augment a smaller patient breast image dataset for breast image
classification. [8] introduced image-based GAN to generate high resolution images conditioned on
pixel-level mask constraints. GANs may not correctly capture the link between input parameters and
outputs, and thus, are prone to generating unrealistic examples [9]. A number of alternative types
of generative models [10, 11, 12, 13, 14] have been developed that address its limitations, such as
training instabilities and unrealistic output images. A key advantage of generative models is that their
run time can be faster than fully-detailed, object-space simulations, and it remains important to explore
and compare both techniques. Their key limitation is that they require large training datasets and
typically learn noise and artifacts from the imaging system [15]. In particular, all image acquisition
systems have a null space, i.e., the set of object-space details that are not observed in the acquired
images due to imaging system limitations (e.g., finite spatial and temporal resolution). Null space
constraints limit the ability of generative models to describe certain components of patient anatomy
and pathology. Simulation-based testing has been proposed in other fields, such as autonomous
vehicle navigation [16], and is related to the concept of generating adversarial perturbations in the
image [17, 18, 19] and the physical property space [20, 21, 22]. For example, [23] introduced 3DB, a
photo-realistic simulation framework to debug and improve computer vision models. Inspired by
these works, we propose to evaluate medical imaging Al using images generated using KB models
and physics simulations and release a dataset to facilitate such exploration.

3 Dataset Generation

The use of in silico imaging allows for the generation of large object and image datasets without the
need of human clinical trials. Here, we take advantage of the benefits of the in silico approach to
perform comparative analysis of Al model performance across different physical properties of the
case population of breast models. We rely on the VICTRE pipeline © for generating breast models and
their corresponding DM images. Previous work [24] has shown that the VICTRE pipeline replicated
the results of a clinical study comparing DM and digital breast tomosynthesis (DBT) involving
hundreds of enrolled women. An overview of the data generation process can be seen in Figure 1.

Breast Model Synthesis.  In silico breast models [3] (also known as breast imaging phantoms) were
generated using a procedural analytic model which allows for adjusting various patient characteristics
including breast shape, size and glandular density. The models are compressed in the craniocaudal
direction using FeBio [25], an open source finite-element software. We simplified the breast materials
in non-glandular (as fat) or glandular tissue with Young’s modulus and Poisson ratio of £ = 5Pa,
v = 0.49 and E = 15Pa, v = 0.49, respectively. Lesions were inserted in a subset to create the
signal-present cohort. These models were then imaged using a state-of-the-art Monte Carlo x-ray
transport code (MC-GPU) [4].

We studied breast densities of extremely dense (referred to as “dense”), heterogeneously dense
(referred to as “hetero”), scattered, and fatty, matching the distributions from [24]. For each breast
density, a different breast size is used to correspond with population statistics. Therefore, the dense
breast is the smallest, followed by heterogeneously dense, then scattered, and then fatty. Each breast

See VICTRE Github Page and FDA Regulatory Science Tools (RST) Catalog.
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model was compressed to 3.5 cm, 4.5 cm, 5.5 cm, and 6.0 cm for each respective density, mimicking
the organ compression during the imaging. Random spiculated breast masses were generated using
the de Sisternes model [26] with three different sizes (5 mm, 7 mm and 9 mm radii) and mass density
was set to be a factor of glandular tissue density (1.0, 1.06 and 1.1 times). Note that for dense and
hetero breasts, we only used mass sizes of 5 and 7 mm, since 9 mm masses do not fit within the
breast region. No micro-calcification clusters were inserted. To create the signal-present cohort, a
single spiculated mass was inserted in half of the cases at randomly chosen locations chosen from
a list of candidate sites determined by the position of the terminal duct lobular units. The resulting
in silico dataset comprises of 1,200 digital breast models, corresponding to 300 patients per breast
size/density. Compared to the original VICTRE trial [24], we introduce variations in mass size and
density. Samples of model realizations are shown in Figures 2, 3 and 4. Note that the bounding
boxes are only to make the masses more conspicuous for visualization purposes only.

Digital Mammography (DM) Generation.  To simulate the x-ray imaging process, we used
MC-GPU [4], a Monte Carlo x-ray simulation software implemented on GPUs that generates DM
images. The detector model relies on system geometries and x-ray acquisition parameters inspired
by the currently available Siemens Mammomat Inspiration DM system. The dosimetric and x-ray
acquisition parameters were selected based on publicly available device specifications and clinical
recommendations for each compressed breast thickness and glandularity. We applied 20-100% of
the clinically recommended dose for each breast density. See Badal et al. [4] for the exact parameter
values and doses delivered to each breast and Sengupta et al. [28] for additional details. X-ray photons
arriving at the detector are tracked until first photoelectric interaction incorporating fluorescence
effects by generating and tracking a secondary x-ray based on the fluorescence yield in a uniformly
random direction. Electronic noise is added to the pixel variance. The focal spot blurring in the
source was modeled as a 3D Gaussian probability distribution with a full-width-at-half-maximum
of 300 um. A tungsten anode filtered with 50 pum rhodium was used with a peak voltage of 28
kV for fatty and scattered breasts and 30 kV for dense and heterogeneously dense breasts. The
same analytical anti-scatter grid was also included for generating the DM images. (5:1 ratio, 31
line pairs/mm), see [4]. The resulting detector model (known as DIR in [28]) is representative of
a solid-state amorphous selenium transducer in a direct detector configuration. Visualizations of
generated images and masses can be seen in Figure 5. A summary of complete parameters used to
generate data points in the presented dataset is described in Table 1. In Figure 7, we report statistics
of dose levels corresponding to the dataset.

Parameter Considered Values
Breast phantom density | Dense, Hetero, Scattered, Fatty
Mass radius (mm) 5,7,9
Mass density 1.0, 1.06, 1.1
Relative Dose 20%, 40%, 60%, 80%, 100%
Detector type DIR

Table 1: Parameters and their values corresponding to the M-SYNTH dataset.

4 Related Datasets

To date, a number of datasets for mammographic image analysis have been collected (see Table 2).
The majority of datasets are created from patient data collected from DM [29, 30, 31, 32] or digital
breast tomosynthesis (DBT) [33, 34] scans from various clinical sites. The DREAM Challenge [35]
offered datasets for development of Al-based mammography analysis techniques. Patient datasets
vary widely in the types of labels available, and the data may be biased toward the demographic
characteristics of patients at the source site. While there exist datasets, such as the EMory BrEast
imaging Dataset (EMBED) [34], that specifically focus on equal representation (in this case, equal
representation of African American and White patients), collecting a truly balanced dataset across all
possible characteristics may not be possible with patient cases.

We found only two in silico datasets for mammography analysis. The first dataset, published by
Sarno [36], consists of 150 patient-derived digital breast models with uncompressed computational
breast phantoms derived from 3D breast images acquired with an in-house dedicated breast computed
tomography (CT) scanner. The models were processed by a voxel classification algorithm into four
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Figure 2: Effect of varying mass size (5 mm to 9 mm radius) in a fatty breast. Two breast models are
shown, first: (a)-(c), and second: (d)-(f). Dose (# of hist.) 2.22 x 10'° and mass density 1.1 remain
constant. Bounding boxes are placed here to indicate the location of the masses.
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Figure 3: Effect of varying mass density (1.0 to 1.1 times glandular tissue density) in a fatty breast.
Two models are shown, first: (a)-(c), and second: (d)-(f). Dose (# of hist.) 2.22 x 10'° and mass size
7 mm remain constant. Bounding boxes are placed here to indicate the location of the masses.

(a) Fatty (b) Scattered (c) Hetero (d) Dense (e) Renderings

Hetero

Scattered

Figure 4: Cohort variability. Varying breast density: (L to R) Fatty, Scattered, Heterogeneously
dense, and Dense with mass size 7 mm and mass density 1.1. Note that dose changes with breast
density. (e) shows artistic renderings of models for each composition (details in Kim et al. [27].

materials (air, adipose tissue, fibroglandular tissue, and skin). The second dataset is the VICTRE [24]
collection that consists of about 3,000 digital patients with breast sizes and densities representative of
a screening population. Digital microcalcification clusters and spiculated masses were inserted in the
voxelized phantoms to create the positive cohort. The phantoms were imaged in silico to produce
digital mammogram projections and digital breast tomosynthesis volumes. In comparison to both
of these datasets, our work contains more significant variability in breast and mass characteristics,
as well as a range of applied dose levels for image acquisition, in order to facilitate comparative
evaluations of Al across characteristic changes.
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Figure 5: Imaging. Effect of increasing imaging dose (# of hist.) from left to right. Mass size of 5
mm and mass density of 1.1 remain constant.
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dose considered by breast density. Figure 7: Glandular dose distributions for the dataset.

Real patient d:
Dataset DM present | DBT present | # cases # images Image categories Pop
Duke [33] No Yes 5060 22032 Cancer, benign, actionable, normal USA
ADMANI [29] Yes No 629863 4411263 Normal, recall Several countries
EMBED [34] Yes Yes 116000 3383659° Invasive cancer, non-invasive cancer, high risk, | USA®
borderline, benign, negative, non-breast cancer
CMMD [30] Yes No 1775 3712 Benign, malignant China
INBreast [32] Yes No 115 410 Benign, malignant, normal Portugal
OPTIMAM [31] Yes No 172,282 172,282 Normal, interval cancers, benign, malignant UK
In silico d:
Dataset DM present | DBT present | # images Image categories Phantom variability Imaging
Sarno [36] Yes Yes 1507 Normal No No
VICTRE [24] Yes Yes 2986 Negative, positive cohort Yes® Yes
M-SYNTH (Ours) Yes No# 44914 Negative, positive cohort Yes' Yes

20% available via AWS; contains annotated lesions. ¢ equal representation of African american and White

“ subset available for the RSNA Cancer Detection Al challenge.
¢ "3 lesion densities, 3 lesion sizes, 4 breast densities, 5 different doses

4150 uncompressed, 60 compressed images ¢ four breast densities, same lesions across all positive cohort
£ A corresponding DBT image dataset will be provided in a future release of the dataset.

Table 2: Summary of existing mammographic image datasets.

S Results and Analysis

In this section, we present an approach to using our M-SYNTH dataset to evaluate an Al device.
Formally, an image processing Al model F' takes as input an image r and predicts a specific property
of interest F'(r) about the image. For example, such a model can predict the presence or absence
of a mass. Typically for Al models, F' is a neural network and is trained on a dataset of images and
their labels Tyqin = {(r1,11), (r2,12), ... (rn, 1)}, and then evaluated on a held-out dataset Ty
When using patient images, evaluation is limited to the variability contained in the samples and in the
annotations present across examples in the fixed test set T}.4:. Instead, we propose to generate 1,44,
and T}.s; dynamically using D and I described above in order to test F' across variations in model x
and acquisition parameters y.



5.1 Implementation Details

Evaluation Metrics We evaluate performance using the area under curve (AUC) metric for a mass
detection task. Specifically, we treat evaluation as a multiple reader multiple case study, where an
Al model is a single reader. Multiple readers are obtained by re-training the model with different
random seeds. We rely on the iIMRMC software [37, 38] to identify associated confidence intervals.

Network Training We represent the Al-enabled device as a neural network with an efficientnet_b0
architecture, receiving an image with one channel and dimensions of 224 by 224, and outputting a
binary mass presence label. The network is trained with batch size 64 using binary cross entropy loss
(BCE) and optimized using RMSProp optimizer (with learning rate 0.0001). We rely on the timm
library [39] and fine-tune the model pre-trained with ImageNet [40]. We also compared performance
with alternative architectures (vit_small_patch16_224 and vgg_16), but results were very similar (see
supplementary material).

For each specific breast density, radiation dose level, and mass size and density, the 300 images in
the M-SYNTH dataset were divided into 200 for training, 50 for validation, and 50 for test. For
comparison, we also train the Al device on 410 patient DM images from the INBreast dataset [32],
where images were obtained using MammoNovation Siemens full-field digital mammography system
with a solid-state amorphous selenium detector. We use the same pre-processing and training regimes
on this dataset and learn a network to predict mass presence. The trained models on the real patient
dataset were then tested on 50 examples of M-SYNTH dataset for each specific breast density, dose
level, and mass size and density. The full experimental setup is implemented in Python and C over a
cluster with 50 Tesla V100-SXM?2 GPUs.

5.2 Experimental Results

We identify two tasks that can be performed using our method. In the subgroup analysis task, we
train and test an Al model using the released synthetic (M-SYNTH) dataset to identify performance
changes on specified subgroups. In the patient data evaluation task, we study how an Al model
trained on patient data (InBreast) performs on the proposed M-SYNTH dataset. This task can help
identify where the trained model may show variable performance for different subgroups belonging

to the target population.
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Figure 8: Subgroup analysis. Performance change across (a) mass size, (b) mass density, (c) breast
density, and (d) radiation dose, for models trained and tested on our M-SYNTH dataset. These
parameters remained constant for the set of experiments performed during both training and test: (a)
Fatty breast phantom, mass density of 1.06, and relative dose of 100%. (b) Fatty breast phantom,
mass size of 7 mm, and relative dose of 100%. (c) Mass density of 1.06, mass size of 7 mm, and
relative dose of 100%. (d) Fatty breast phantom, mass density of 1.06, and mass size of 7 mm.

Subgroup Analysis. In Figures 8 and 9, we report the results of the Al model performance at
detecting masses, when the model is trained and tested on the our dataset (see Section 5.1 for details
of splits). We find that masses with larger sizes or higher densities (Figures 8a-b) are more easily
detected. Although models trained on all sizes or mass densities have the highest performance, when
the models are trained on smaller masses or lower densities, they generalize better to other masses
(more difficult cases).The performance of the models are highest when they are tested and trained on
the same breast density and decrease as the density of the test breast phantom differs from the train
phantom (Figures 8c). The dose levels applied in this study have minimal impact on the performance



of the models and resulted in similar AUC values (Figures 8d). Evaluation of the performance change
across all the breast densities (Figures 9a-b) reveals that the AUC improves with larger mass density
and mass size, yet is impacted by the breast density, where mass detection performance is lowest in
high-density breasts (dense) and highest in low-density breasts (fatty) in most of the cases, consistent
with findings from clinical practice.
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Figure 9: Subgroup analysis. Performance changes for models trained and tested on our M-SYNTH
dataset. For each data point, the model is trained on 250 images with masses of radii of 7 mm
and mass densities of 1.06, and tested on 50 images with mass characteristics shown in plots for
each specific breast density. The radiation dose level remains constant at 100% of the clinically
recommended dose for each breast density during training and test.

Patient Data Evaluation. In Figure 10, we report experiments where the Al model is trained
on INBreast data and evaluated on the M-SYNTH data. Although the performance results for
all experiments are lower in general, we find a similar set of trends as when the model is trained
on M-SYNTH data. Note that we have made no attempt to match the radiation dose levels or
the image acquisition parameters for these comparisons using patient images. Even though the
simulated pipeline is designed to replicate a specific DM system with a particular detector technology
and technique factors, the comparison suggests similarity between the datasets. The images are
qualitatively different but overall have similar glandular patterns which is an important consideration
for the realism of the task of detecting masses in a noisy background. We also assessed similarity
between INBreast and M-SYNTH datasets in terms of low-level pixel distributions using first five
statistical moments: mean, variance, skewness, kurtosis, and hyperskewness. We found that there is a
reasonably good alignment in terms of moments, especially when the synthetic images were included
at all four breast densities (see supplementary material). Future work should develop a more detailed
comparison including radiomics features for the training and testing datasets used in the study to
complement the validation of our approach.

Limitations. There are a number of limitations to our work. First, simulations may require long
runtimes and demand large computational resources, thus somewhat limiting the amounts of data that
can be generated. This limitation needs to be considered with respect to the difficulty of obtaining
large patient image datasets with known mass locations. In addition, data can be pre-generated offline
(as we do with the M-SYNTH dataset), therefore, removing the large runtime limit and computational
burden off the user. Second, testing with simulations is constrained to the variability captured by the
parameter space of the object models for anatomy and pathology and the acquisition system. Thus,
the complexity of the object model and acquisition system may need to be adjusted depending on
the complexity of the questions to be investigated with simulated testing. In particular, a potential
risk of testing using simulated data is missing the variability observed in patient populations. Finally,
there is a risk of misjudging model performance due to a domain gap between real and synthetic



Test breast density: fatty Test breast density: scattered Test breast density: hetero Test breast density: dense

1.0 Test mass density: 1.0 1.04 Test mass density: 1.0 1.0 Test mass density: 1.0 1.0 Test mass density: 1.0
Test mass density: 1.06 Test mass density: 1.06 Test mass density: 1.06 Test mass density: 1.06
0.9 — Test mass density: 1.1 0.91 —— Test mass density: 1.1 0.99 — Test mass density: 1.1 0.9 — Test mass density: 1.1

AUuC

0.8 T 0.8 0.8 0.8
0.7 4 ﬁ 0.74 i 0.7 0.74
0.6 4 0.64 0.6 / 0.6 I/I

0.5 0.5 0.54 0.5

0.4 T T T T T 0.4 T T T T T 0.4 T T T T T 0.4 T T T T T
5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9
Test mass size [mm] Test mass size [mm] Test mass size [mm] Test mass size [mm]

(a) AUC as a function of mass size across all breast densities.

Test breast density: fatty Test breast density: scattered Test breast density: hetero Test breast density: dense
1.04 Test mass size: 5.0 mm 1.0 Test mass size: 5.0 mm 1.04 Test mass size: 5.0 mm 1.04 Test mass size: 5.0 mm
Test mass size: 7.0 mm Test mass size: 7.0 mm Test mass size: 7.0 mm Test mass size: 7.0 mm
0.9 — Test mass size: 9.0 mm 0.9 — Test mass size: 9.0 mm 0.91 0.9
0.8 F 0.8 0.8 0.8
Q
207 E2 0.7—I///{—E 0.7 074
0.6 1 0.6 1 0.6 0.6 1
0.51 0.59 0.5+ 0.51

0.4~ T T T T — 0.4l T T T T — 04 T T T T — 041 T T T T T
1.00 1.02 104 1.06 1.08 1.10 1.00 1.02 1.04 1.06 1.08 1.10 1.00 1.02 1.04 106 1.08 1.10 1.00 1.02 104 1.06 1.08 1.10
Test mass density Test mass density Test mass density Test mass density

(b) AUC as a function of mass density across all breast densities.

Figure 10: Model Evaluation. Performance changes for a model trained on 410 real patient images
(INBreast dataset) and tested on our M-SYNTH dataset. The test sets consist of 50 images using
parameters shown in the plots. The test radiation dose is set to 100% of the clinically recommended
dose for each breast density.

examples. However, the realism and sophistication of object-based modeling of the imaging pipeline
is improving rapidly and may soon compete with other approaches, making approaches based on
synthetic data useful and practical for regulatory evaluation of Al-enabled medical devices.

6 Conclusion and Future Work

We introduce and discuss an approach for validating AI models using physics-based simulations
of digital humans from the object space to the image data, specifically for the task of breast cancer
mass detection. The simulated images are highly realistic and offer a challenging test case for Al
model evaluation. Our findings are consistent with expected performance and show that the Al
model performance increases with mass size and mass density as expected. Finally, we show that our
approach can be used to validate a model trained on independent patient data. This finding suggests
that the proposed simulation setup can be used as a framework for more general evaluation of medical
Al devices. The goal of this study is to demonstrate as proof-of-concept the feasibility of using
simulated data to evaluate the comparative performance of Al models. In future work, it would be
important to assess the evaluation approach for additional parameters in terms of the distribution of
the population of digital humans in the object space, and for a range of image acquisition systems
(e.g., by considering alternative simulators). By imaging a more diverse population of breast models,
we hope to identify additional insights regarding Al evaluation. Finally, it is important to note that the
testing is limited to the variability captured in the digital representations and may not fully indicate
absolute real-world performance or trends. This study illustrates that physics-based simulation of
mammography images can represent a less burdensome and cost-efficient approach for the evaluation
of Al model performance across a wide range of scenarios, including a variety of image acquisition
parameters and diverse populations that may not be available or are hard to obtain from human studies.
Moreover, this approach offers a complementary evaluation paradigm that does not depend on the
availability of patient data.
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