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ABSTRACT

Knowledge tracing aims to reason about changes in students’ knowledge and to pre-
dict students’ performance in educational learning settings. We propose knowledge
tracing set transformers (KTSTs), a straightforward model class for knowledge
tracing prediction tasks. This model class is conceptually simpler than previous
state-of-the-art approaches, which are overly complex due to domain-inspired
components, and which are in part based on suboptimal design choices and flawed
evaluation. In contrast, for KTSTs we propose principled set representations of
student interactions and a simplified variant of learnable modification of attention
matrices for positional information in a student’s learning history. While being
largely domain-agnostic, the proposed model class thus accounts for characteristic
traits of knowledge tracing tasks. In extensive empirical experiments on standard-
ized benchmark datasets, KTSTs establish new state-of-the-art performance.

1 INTRODUCTION

The ultimate goal of knowledge tracing is to support students’ learning processes (Corbett & Anderson,
1994). Knowledge tracing enables the adaptation of learning materials to students’ individual needs
and therefore constitutes an integral component of intelligent tutoring systems. In this paper, we
focus on predictive performance and study knowledge tracing as a supervised sequential learning
task in which we aim to predict the correctness of the next response of a student, given the history of
her interactions with a learning system (cf. Gervet et al., 2020).

To achieve good predictive performance, existing approaches often rely on domain knowledge either
regarding representations of students’ interactions (Ghosh et al., 2020; Shen et al., 2022; Yin et al.,
2023) or regarding model architectures (Zhang et al., 2017; Nakagawa et al., 2019; Long et al., 2021;
Shen et al., 2021). So far, simpler models (Piech et al., 2015; Liu et al., 2023b) do not achieve
comparable results on benchmark tasks and consequentially, the state-of-the-art in knowledge tracing
prediction tasks consists of rather complex approaches. In addition, several recent approaches are
based on suboptimal design choices and flawed evaluation. Specifically, they introduce an interaction
representation that is inefficient, led to label leakage in the past, and introduces a distribution shift
between training and evaluation (cf. Ghosh et al., 2020; Liu et al., 2022; 2023b; Yin et al., 2023).

We propose knowledge tracing set transformers (KTSTs), a straightforward, yet principled and
performant model class for knowledge tracing prediction tasks, based on the standard transformer
architecture (Vaswani et al., 2017). To account for characteristics of knowledge tracing tasks, we
propose a simplified variant of learnable modification of attention matrices (cf. Press et al., 2021), as
well as principled interaction representations that do not rely on domain-knowledge. Compared to
flawed interaction representations in related work, our representations accurately reflect the learning
setting and satisfy permutation invariance (cf. Zaheer et al., 2017) with regard to sets of input features.
We explicitly discuss limitations of prior work in the problem setting (Section 3) and in contrast to
KTSTs (Section 4). Empirically, we evaluate our method on eight datasets and compare it against
22 baseline models (Section 5), establishing new state-of-the-art performance on knowledge tracing
benchmark tasks.
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2 RELATED WORK

Knowledge tracing as a problem setting was established by Anderson et al. (1990). Classical machine
learning approaches for knowledge tracing include probabilistic graphical models (e.g. Corbett &
Anderson, 1994; Kiser et al., 2017) and factor analysis-based approaches (e.g. Cen et al., 2006;
Pavlik et al., 2009; Vie & Kashima, 2019), where many contributions proposed models that explicitly
build upon domain knowledge regarding the educational learning setting (e.g. Pardos & Heffernan,
2011; Yudelson et al., 2013; Khajah et al., 2014).

Deep knowledge tracing, that is, the use of deep learning (LeCun et al., 2015; Schmidhuber, 2015) for
knowledge tracing, was introduced by Piech et al. (2015). Approaches can be differentiated by their
dominant modeling choices: Several methods leverage recurrent neural networks (RNNs, Hochreiter
& Schmidhuber, 1997) for the sequential prediction task (Piech et al., 2015; Yeung & Yeung, 2018;
Nagatani et al., 2019; Lee & Yeung, 2019; Sonkar et al., 2020; Long et al., 2021; Shen et al., 2021;
2022; Liu et al., 2023a); others include memory-augmented components (Santoro et al., 2016; Graves
et al., 2016) to explicitly represent students’ knowledge states (Zhang et al., 2017; Abdelrahman
& Wang, 2019) or utilize graph neural networks (GNNs Scarselli et al., 2009) to capture relations
between students and questions (Nakagawa et al., 2019; Yang et al., 2021).

Transformer based knowledge tracing approaches are characterized by building upon the transformer
architecture (Vaswani et al., 2017). As transformers are integral components of state-of-the-art models
for natural language processing (NLP, e.g. Brown et al., 2020) and for structured data in general
(e.g. Dosovitskiy et al., 2021), they constitute a promising modeling choice for deep knowledge
tracing. Knowledge tracing set transformers (KTSTs), as proposed in this paper, fall into this category.
Prior work investigated how changes regarding the architecture and flow of information (Pandey
& Karypis, 2019; Choi et al., 2020; Ghosh et al., 2020; Zhan et al., 2024), regarding positional
information in the attention mechanism (Ghosh et al., 2020; Im et al., 2023), and regarding the
interaction and knowledge component representation (Ghosh et al., 2020; Liu et al., 2023b; Yin
et al., 2023) influence the predictive performance. In contrast to KTSTs, most related work include
domain-inspired components that increase model complexity. Approaches that combine transformer
based knowledge tracing architectures with other deep learning paradigms, such as hypergraph
convolutions and RNNs (e.g. He et al., 2024), result in even more complex models. Self-supervised
approaches for transformer based knowledge tracing (e.g. Lee et al., 2022; Yin et al., 2023) are
orthogonal to our work.

We continue to discuss related work throughout the remainder of this paper: We address the short-
comings of the prevalent, yet flawed, expanded representation for interaction sequences (Section 3).
We point out domain-inspired components of previously proposed architectures in comparison to
the straightforward architecture of KTSTs (Section 4.1). We compare attention mechanisms from
related work in relation to the proposed learnable modification of attention matrices (Section 4.2). We
contrast domain-inspired interaction representations for knowledge tracing with KTSTs’ principled
set representations regarding complexity and permutation invariance (Section 4.3).

3 PROBLEM SETTING

We study knowledge tracing as a supervised sequential learning task, that is, we predict the correctness
of the next response by a student, given her learning history in form of a sequence of interactions
with a learning system, where an interaction comprises all available information at a given time step
(cf. Gervet et al., 2020). The prediction task can be formalized as follows. Consider a sequence of
interactions of a student with a learning system. At any time 1 < ¢ < T, the student attempts to solve
a question q; € Q and her binary response r € {0, 1} is observed, where r; = 1 indicates a correct
and r; = 0 indicates an incorrect answer. Every question q; is associated with one or more knowledge

components ¢ € C = {cn}f:‘1 given by c¢(q;) C C. In this context, knowledge components describe
information and skills that are required to solve specific tasks or questions as part of a domain model.
We summarize the sequence of interactions of a student by y1.7 with y; = (q¢, c(q¢) , ). At time
t, the machine learning task is to predict the next response ry; given the interactions yy.; and the
next question X;,1 = (q¢41, ¢ (qs41)).! Figure 1 visualizes the setting.

'We use y; and x; to denote complete interactions and questions, respectively. This allows us to provide a
more concise description of the transformer architecture in Section 4.
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Limitations in related work Well published recent 1 2 3 ¢ 1
knowledge tracing approaches (e.g. Ghosh et al., 2020; Liu
et al., 2022; 2023b) propose an interaction representation
that stresses the effect of individual knowledge compo-
nents on the learning task and that cannot properly handle
multiple knowledge components per question. We re- q | 107 || e8 45 | | 257 | | 081
fer to this representation as expanded representation (cf.
Liu et al., 2022). In the expanded representation, inter-

actions with multiple knowledge components per ques-  ° [ G D | A
tion are duplicated for every knowledge component, such Al 4 0
that interactions involve only a single question associated

with only a single knowledge component each. Suppose N\

an interaction y, is associated with multiple knowledge
components |c(q:)| > 2. Its expanded representation is
yt = (a,c(at); re),. .., (asc <Qt)|c(qt)| ,Tt), result-
ing in a new interaction sequence of length T >T. One
consequence is an increase in sequence length by a factor
depending on the average number of knowledge COMPO-  evious responses. Questions are rep-
nents per question. In prior work, mode~1s are trained 0 Lcapiaq by toy IDs, knowledge compo-
predict the next response r;, for I < ¢ < T', based on  pens are visualized as discrete shapes.
this expanded representation. Without proper masking

regarding the original learning task and interaction sequence, this introduces label leakage (e.g. in
Ghosh et al., 2020; Yin et al., 2023). For inference, label leakage has been fixed in Liu et al. (2022),
where the prediction for original response r; is computed by aggregating individual predictions
based on X, the expanded representation of question x;. Given this fix, however, the underlying
distribution at inference time differs from the training distribution, where the distribution shift results
in suboptimal predictions. This effect is pronounced when models improperly learn to rely on label
leakage during training. Empirically, we find that the performance of the expanded representation
is noticeably worse for datasets with knowledge-component-to-question ratio larger than two (Sec-
tion 5.1). We address the flaws of the expanded representation in our contribution, introduced in the
following section.

Figure 1: Knowledge tracing as super-
vised sequential learning task: predict-
ing the next response, given a history of
questions, knowledge components, and

4 KNOWLEDGE TRACING SET TRANSFORMERS

In this section, we propose sequential Knowledge Tracing Set Transformers (KTST). Our approach
is based on a standard transformer architecture (Vaswani et al., 2017) with adjustments for best
performance on knowledge tracing tasks. It features a simple, yet learnable variant of modification
of attention matrices for positional information (cf. Press et al., 2021) and operates on principled
representations of interactions that do not rely on domain-knowledge and which are permutation
invariant (cf. Zaheer et al., 2017) with respect to sets of knowledge components.

4.1 TRANSFORMER ARCHITECTURE FOR KNOWLEDGE TRACING

The deep learning architecture for KTSTs is based on the standard transformer architecture (Vaswani
et al., 2017) including an encoder and a decoder, multiple layers with multi-head self-attention
(MHSA) and cross-attention, residual connections (He et al., 2016), dropout (Srivastava et al.,
2014), layer normalization (Ba et al., 2016) and feed-forward neural networks. Instead of positional
encodings, we propose to use a learnable modification of attention matrices to inform the model about
positional information (see Section 4.2); other differences are pointed out in the following. Overall,
the architecture allows for efficient training with a single forward and backward pass per sequence.

For knowledge tracing prediction tasks (see Section 3), KTSTs operate on multiple discrete tokens
per interaction y;: a question qg, its associated knowledge components c (q;), and response r;.
We embed every token into a vector of size d. Embeddings associated with the same time step
are aggregated to form a joint interaction representation (respectively question representation, see
Section 4.3). For each interaction, KTSTs estimate the probability of a correct response at the next
time step, P(rsy1 = 1|X¢41,¥1.t), where the representation of the next question x;1 is used as
query token in the decoder, attending to the learning history y1.; as processed by the encoder. We
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Figure 2: Overview of the transformer architecture used in KTSTs, where we abstract from skip con-
nections, dropout, normalization and feed-forward layers. Differences from the standard transformer
architecture are highlighted with coloring.

mask encoder and decoder appropriately. In the encoder, we use a triangular causal mask with
the learning history shifted by one time step. Different from standard transformers, we use the
encoded y.; only as value in the cross-attention layer, such that questions x;; serve as both query
and key within the cross-attention. For knowledge tracing, this adjustment has been proposed by
Pandey & Karypis (2019); within our architecture it is empirically supported by an ablation study
(cf. Section 5.2). A binary classifier operating on the output of the decoder yields the probability
estimates. See Figure 2 for a visualization.

Comparison with domain-inspired architectures in related work The architecture proposed for
KTSTs is technically straightforward and does not rely on domain-specific components. This is in
contrast to many (transformer based) deep knowledge tracing architectures, which impose a strong
inductive bias with respect to the task at hand and are often motivated by concepts associated with
human learning. Examples of inductive biases in related work include: encoding students’ knowledge
states by means of RNN hidden states (Long et al., 2021), explicitly modeling a student’s knowledge
acquisition process with memory-augmented neural networks (Zhang et al., 2017; Abdelrahman
& Wang, 2019), enforcing a smoothness constraint on learnable knowledge parameters which are
assumed to represent knowledge components (Yin et al., 2023), explicitly including question difficulty
estimates that guide updates within the architecture (Shen et al., 2022), and explicitly modeling the
relationship between learners and questions via graph neural networks (Nakagawa et al., 2019; Yang
et al., 2021). Intuitively, these components increase model complexity. Although KTSTs require only
small changes to the standard transformer architecture, they outperform more complicated approaches
empirically (see Section 5), and are conceptually simpler.

4.2 LEARNABLE MODIFICATION OF ATTENTION MATRICES

In transformer architectures, positional information is usually conveyed either by including positional
embeddings or by modifying attention matrices (Dufter et al., 2022). For KTSTs, we propose a
multi-head attention mechanism with learnable exponential decay applied to attention weights at
previous time steps <t to account for the sequentiality of the learning task following Press et al.
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(2021). Exponential decay applied to attention weights reduces attention scores based on the relative
distance of key tokens to the query token. Similar attention functions have, for example, been
investigated for knowledge tracing tasks by Ghosh et al. (2020) and Im et al. (2023).

Let oy t—r € [0, 1] denote the attention weights calculated in a single head for query q; € R? and key
ki, € R? at time steps ¢ and ¢ — 7, respectively, with 0 < 7 < ¢ — 1. Assuming causal masking,
where attention weights for v, - are set to 0, the standard scaled dot product attention between two
tokens as introduced in Vaswani et al. (2017), results from the application of a softmax

standard __ €Xp (et,t—‘f')
Q-7 = N1 ,
Z-r—:o exp (et,t—i—)
to (in general unbounded) attention scores e; ;. Abstracting from in-projections, e; ;- is given by
T
_ qt kt—T

€ttt =
tt Va

In KTSTs’ attention mechanism, we subtract a positive value 76 > 0 from attention scores e; ;_ -,
resulting in

QKTST _ exp (et 4—r — 70) _ exp (et,t—r) - exp (—70)
M S b exp (ersr —70)  Y_pexp(ene—r) - exp (—7)

Here, 6 is a learnable parameter per attention head which we restrict to be positive via application
of the softplus function (Dugas et al., 2000; Glorot et al., 2011). We initialize effective values of
0 according to the geometric series as prescribed by Press et al. (2021) for ALiBi (attention with
linear biases, where linearity refers to attention scores). Hence, for models with four attention heads,

0 is initialized with 2%, 2%“ 2% and 2%, respectively, while models with eight heads give rise to the

initialization 51, 5, . .., 35.

The initialization introduces an inductive bias at the beginning of the training process, where inter-
actions with a higher relative distance are assigned a lower weight in the attention mechanism. In
general, KTSTs’ attention mechanism results in attention weights that are exponentially decayed.

For 6 = 0, we have aXI5T = qstandard whereas for large values of 6, we have af'ST ~ 1 and

JgA—7
afztST ~ 0. In absence of a positional encoding, this results in an attention function that interpolates

between attention on a set for # = 0 and soft sliding windows (which are possibly very narrow)
applied to interactions at time steps <t for large 6. Empirically, the proposed handling of positional
information within the attention mechanism performs best for KTSTs (see Section 5.2).

Modification of attention matrices in related work In KTSTs we employ learnable modification
of attention matrices for positional information as described above. We highlight how the mechanism
has an inductive bias that puts more weight on recent interactions. In related work, Im et al. (2023)
associate a decay in attention weights with students’ forgetting behavior, while Ghosh et al. (2020)
argue for a context aware modification of attention weights, that explicitly includes the similarity
of knowledge components (in contrast, we argue that the latter is already captured within standard
attention). The exponential decay in Im et al. (2023) is very related to our proposed approach (as
it also builds upon Press et al., 2021), but in this case the modification of attention weights is fixed
rather than learned. In contrast to the narrative by Ghosh et al. (2020), the more complex attention
mechanism used in their model is not strictly exponentially decaying, since the proposed bias factor
has a multiplicative rather than additive effect on attention scores ¢e; ;.. While the importance of
more recent interactions is also increased in this attention mechanism, the approach in general results
in set attention for interactions farther in the past, due to attention scores decaying towards zero rather
than minus infinity (as is the case in our approach).

4.3 SET REPRESENTATIONS OF INTERACTIONS

The elements of every interaction y; = (g, ¢ (q:) , r¢) are embedded separately and aggregated to
form joint representations that are used as inputs to the transformer architecture. We require the
aggregation function for interaction tuples y; (and question tuples x;) to be permutation invariant
(cf. Zaheer et al., 2017) to the ordering of knowledge components ¢ (q;) associated with question q;.
Permutation invariance is a desirable property of functions operating on sets, whose implementations
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induce an ordered representation of its input. Formally, consider a question q with k associated
knowledge components and let n = n(q) be their corresponding indices. Let 7 denote a permutation
of a k-tuple of integers 1 through k. For the aggregation function ¢ (x) to be permutation invariant
with respect to the ordering of knowledge components, it must hold that

(d, {cnysCnys - - -5 Cny }) = B(q, {Cnﬂ(lwcnﬂ(z)ﬂ <o By })

for any permutation 7r. This definition also applies to the ordering of knowledge components in ¢(y).

Consider the following three permutation invariant aggregation functions: Firstly, the mean operation
satisfies permutation invariance (cf. Zaheer et al., 2017). Secondly, a function that assigns an integer
to any unique set is also permutation invariant (for illustration, consider that the function orders the set
first and only then assigns an integer to the ordered tuple, in which case ordering yields permutation
invariance). Thirdly, unmasked multi-head self-attention with standard scaled dot-product attention
applied to a set of tokens without positional encoding yields permutation invariant representations per
token, as attention weights are indifferent to the ordering of tokens (this property is usually referred
to as permutation equivariance; for a formal proof compare for example Girgis et al., 2022).

Let e, € R? denote embedding vectors and let & denote element-wise addition. We propose three
interaction embeddings ey, that all adhere to permutation invariant aggregation. Question embeddings
ey are computed analogously, but without response embeddings e,.

Mean embeddings Firstly, we assign unique embedding vectors e to each knowledge component
in ¢(q) and compute their mean. Final interaction embeddings are the result of element-wise addition
with question eq and response embedding e;.:

eglea“ = eq ® mean({e.|c € c(q)}) @ e, M

Unique set embeddings Secondly, we assign a unique embedding vector €,nique({c|cec(q)}) tO
each unique set of knowledge components. The final interaction embedding is computed as above:

unique
elnd

=eq D Cunique({c|ccc(q)}) D er. 2

MHSA embeddings Thirdly, we pass a sequence containing a query token, the question embedding
eq and embedding vectors e, for knowledge components in c(q) through (possibly multiple layers)
of unmasked multi-head self-attention MHSA (-). The final interaction embedding equals the element-
wise addition of the transformed query token and the response embedding e,

ey = MHSA ({query} U {eq} U {e.|c € c(qQ)})query © €r 3

All three proposed embeddings are straightforward and do not require any domain-knowledge. Mean
embeddings (1) and unique set embeddings (2) have been used in prior studies on knowledge tracing
(e.g. Long et al., 2021; Gervet et al., 2020, respectively). They are straightforward to implement and
do not add significant computational cost. MHSA embeddings for knowledge tracing (3) are novel
and come with high modeling capacity, however they do add computational cost.

Mean embeddings allow the models to attribute student performance to individual knowledge compo-
nents, while interaction effects appear to be more difficult to learn. Unique set embeddings naturally
account for interactions. However, we argue that it becomes increasingly difficult to attribute re-
sponses to individual knowledge components, as the approach results in a (theoretically) exponential
increase in the number of embeddings, each of which has only a few occurrences. In principle,
MHSA embeddings involve the most general and powerful aggregation of knowledge components,
accounting for both individual and interaction effects. Empirically, we observe that for knowledge
tracing tasks with small knowledge-component-to-question ratios, simple aggregations like mean
embeddings and unique set embeddings of knowledge components seem to work equally well, while
MHSA embeddings are difficult to optimize and result in overfitting. We conjecture, that MHSA
embeddings perform best in more complicated settings with large data, as we see comparatively
better performance for larger datasets with many knowledge components, such as the Ednet dataset
(see Section 5.1). This conjecture is also supported by experiments on synthetic data, where we
experiment with varying knowledge-component-to-question ratios and dataset sizes (see Section 5.3).
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Expanded and domain-inspired interaction representations in related work The interaction
embeddings proposed for KTSTs build upon a principled set representation, use standard machine
learning paradigms for feature extraction and are domain-agnostic. This is in contrast with many
models proposed in related work. We highlight problems of the expanded representation of knowledge
tracing sequences prevalent in recent publications (e.g. Ghosh et al., 2020; Liu et al., 2023b; 2022) in
Section 3. Additionally, the expanded representation violates permutation invariance, as the order of
knowledge components influences both the transformation within the model as well as final probability
scores. The order of knowledge components is provided implicitly through causal masking or/and
explicitly in the custom attention mechanism (e.g. Ghosh et al., 2020) or via positional encodings (e.g.
Liu et al., 2023b). Furthermore, interaction representations proposed in related work are often domain
inspired and unnecessarily complex. Specifically, we consider all three interaction embeddings
proposed for KTSTs conceptually simpler than domain inspired Rasch embeddings used in Ghosh
et al. (2020) and other recent knowledge tracing models. Rasch embeddings prescribe, that questions
are represented as ex = . (e,Vv.), the addition of two knowledge component embeddings e, € R?
and v, € R?, where the latter is supposed to capture knowledge component specific variations and is
scaled by e, € R, a scalar embedding of questions that “controls how far this question deviates from
the [knowledge component] it covers” (Ghosh et al., 2020). Interactions are represented analogously
with knowledge-component-response embeddings and knowledge-component-response variation
vectors. Given these design choices, Rasch embeddings require the flawed expanded representation.
In the next section, we provide empirical evidence, that straightforward set representations are
sufficient to capture relevant domain information within knowledge tracing tasks.

5 EXPERIMENTS

In this section, we empirically evaluate the proposed knowledge tracing set transformers on a bench-
mark with standardized tasks, preprocessing, data splits, and fixed test sets for various educational
datasets (pykt, Liu et al., 2022). We thus provide evidence that KTSTs set a new state-of-the-art.
Furthermore, we verify our design choices within the transformer architecture (Section 4.1) as
well as the proposed learnable modification of attention matrices used in KTSTs (Section 4.2) in
an ablation study. We additionally experiment with synthetic data, generated according to classic
multidimensional item response theory (MIRT, Reckase, 2009), to demonstrate the advantages of
the proposed MHSA aggregation (Section 4.3) in large data knowledge tracing settings with high
knowledge-component-to-question-ratios.

5.1 STATE-OF-THE-ART BENCHMARK RESULTS

We evaluate KTSTs on the pykt benchmark (Liu et al., 2022). In accordance with standard practice
in knowledge tracing we report AUC and accuracy values. In summary, we experiment on eight
publicly available datasets: Ednet, Algebra2005 (AL2005), ASSISTments2009 (AS2009), NeurIPS34,
Bridge2006 (BD2006), Statics2011, ASSISTments2015 (AS2015), and POJ -2 and we compare against
the following baselines: DKT (Piech et al., 2015), DKVMN (Zhang et al., 2017), DKT+ (Yeung
& Yeung, 2018), DeepIRT (Yeung, 2019), DKT-F (Nagatani et al., 2019), GKT (Nakagawa et al.,
2019), KON (Lee & Yeung, 2019), SAKT (Pandey & Karypis, 2019), SKVMN (Abdelrahman &
Wang, 2019), AKT (Ghosh et al., 2020), qDKT (Sonkar et al., 2020), SAINT (Choi et al., 2020),
ATKT (Guo et al., 2021), HawkesKT (Wang et al., 2021), IEKT (Long et al., 2021), LPKT (Shen
et al., 2021), DIMKT (Shen et al., 2022), AT-DKT (Liu et al., 2023a), DTransformer (Yin et al.,
2023). FoLiBiKT (Im et al., 2023), QIKT (Chen et al., 2023), and simpleKT (Liu et al., 2023b). We
discuss notable baselines in related work in Section 2, in the problem setting in Section 3 as well as
in contrast to our contribution in Section 4.

Models are trained on sequences of at most 200 consecutive interactions each and tested on entire
interaction sequences of students in the test set.> All baseline results are reproduced by us with
model implementations and hyperparameters provided by Liu et al. (2022). During hyperparameter

*We refer to Liu et al. (2022) for a description of the data, licenses, and detailed experimental setup.

3We only consider a sliding window of interactions with at most 200 knowledge components as learning
history. For proper evaluation, we fixed a bug in the pykt evaluation framework (Liu et al., 2022) that is related
to the expanded representation, where the restriction to a sequence length of 200 was equally applied to either
questions for set based models and to knowledge components for models using the expanded representation.
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Table 1: Benchmark AUC results. Markers %, o and e indicate whether KTST (mean) is statistically
superior, equal or inferior to baselines, respectively, using a paired #-test at the 0.01 significance level.

Ednet

AL2005

AS2009

NIPS34

BD2006

DKT
DKVMN
DKT+
GKT
SAKT
SKVMN
AKT
SAINT
HawkesKT

DIMKT
DTransformer
FoLiBiKT
QIKT
simpleKT

0.6108 £ 0.0017
0.6158 £ 0.0020 *
0.6156 £ 0.0018 x*
0.6213 £ 0.0024 *
0.6074 £ 0.0013 *
0.6230 £ 0.0045 *
0.6705 £ 0.0024 *
0.6598 £ 0.0023
0.6815 £ 0.0041 *
0.7301 £ 0.0012 *
0.7340 £ 0.0007 x*
0.6748 £ 0.0030 *
0.6719 £ 0.0037 *
0.6721 £ 0.0018 *
0.7260 £ 0.0013
0.6593 £ 0.0041 x*

0.8137 £ 0.0018 =
0.8060 £ 0.0016 *
0.8142 +£ 0.0004 *
0.8085 £ 0.0018 x*
0.7887 £ 0.0042
0.7461 £ 0.0033 *
0.8298 £ 0.0017
0.7767 £ 0.0018
0.8207 £ 0.0021 *
0.8403 £ 0.0019 *
0.8239 +£ 0.0008 x*
0.8276 £ 0.0007 *
0.8189 +£ 0.0024
0.8307 £ 0.0005 *
0.8408 £ 0.0008
0.8246 £ 0.0012

0.7532 £ 0.0012 *
0.7461 £ 0.0010 *
0.7536 £ 0.0016 *
0.7422 £ 0.0028 x*
0.7245 +£ 0.0009 *
0.7326 £ 0.0016 *
0.7840 £ 0.0016 *
0.6918 £ 0.0036 x*
0.7224 £ 0.0006 *
0.7832 £ 0.0021 *
0.7811 £ 0.0019 *
0.7717 £ 0.0010 *
0.7718 £ 0.0021 *
0.7828 £ 0.0016 *
0.7877 £ 0.0019
0.7745 £ 0.0021 *

0.7682 +£ 0.0006 *
0.7675 £ 0.0004 *
0.7688 £ 0.0002 *
0.7650 £ 0.0071 *
0.7507 £ 0.0011 *
0.7502 £ 0.0012 *
0.8030 =+ 0.0003 *
0.7866 £ 0.0023 x*
0.7757 £ 0.0014 *
0.8039 +£ 0.0003 *
0.7940 £ 0.0012 *
0.8022 +£ 0.0009 *
0.7990 + 0.0006 *
0.8028 + 0.0005 *
0.8041 + 0.0008 =
0.8035 £ 0.0002 *

0.8011 = 0.0005 =
0.7980 £ 0.0014 *
0.8012 +£ 0.0006 *
0.8043 £ 0.0013 *
0.7732 £ 0.0010 *
0.7286 £ 0.0046 *
0.8204 + 0.0006 *
0.7762 £ 0.0025 =
0.8067 £ 0.0011 *
0.8116 £ 0.0013 *
0.8039 =+ 0.0004 x*
0.8166 £ 0.0007 *
0.8083 £ 0.0006 *
0.8203 £ 0.0015 *
0.8094 +£ 0.0008 *
0.8159 £ 0.0005 *

KTST (mean)
KTST (unique)
KTST (MHSA)

0.7394 + 0.0002
0.7355 £ 0.0008 *
0.7389 + 0.0009 o

0.8522 + 0.0004
0.8529 + 0.0009 o
0.8288 £ 0.0009 x*

0.7993 £ 0.0012
0.7989 £ 0.0014 o
0.7871 £ 0.0022

0.8071 £ 0.0000

0.8264 + 0.0004

Table 2: Benchmark accuracy results. Markers *, o and e indicate whether KTST (mean) is statistically
superior, equal or inferior to baselines, respectively, using a paired #-test at the 0.01 significance level.

Ednet

AL2005

AS2009

NIPS34

BD2006

DKT
DKVMN
DKT+
GKT
SAKT
SKVMN
AKT
SAINT
HawkesKT

DIMKT
DTransformer
FoLiBiKT
QIKT
simpleKT

0.6420 £ 0.0023
0.6446 £ 0.0030 *
0.6517 £ 0.0057 *
0.6639 =+ 0.0050 x*
0.6392 + 0.0039 *
0.6606 +£ 0.0090 x*
0.6645 £ 0.0035 *
0.6511 £ 0.0039 =
0.6905 +£ 0.0025 *
0.7106 £ 0.0018 x*
0.7128 £ 0.0004
0.6700 £ 0.0038 *
0.6656 £ 0.0032 x*
0.6666 £ 0.0028 x*
0.7077 £ 0.0014
0.6565 + 0.0029 x*

0.8094 £ 0.0010 =
0.8031 £ 0.0008 x*
0.8093 + 0.0004 x*
0.8086 =+ 0.0008 x*
0.7959 £ 0.0018 *
0.7821 £ 0.0032 *
0.8125 £ 0.0016 *
0.7789 £ 0.0030 *
0.8112 £ 0.0012 *
0.8228 +£ 0.0008 *
0.8129 + 0.0008
0.8106 £ 0.0004
0.8054 £ 0.0007 *
0.8127 £ 0.0012 *
0.8220 + 0.0007 *
0.8081 £ 0.0010 *

0.7241 £ 0.0012
0.7194 £ 0.0006 *
0.7241 £ 0.0013 *
0.7158 £ 0.0016 *
0.7071 £ 0.0016 *
0.7160 £ 0.0010 *
0.7383 £ 0.0020 *
0.6885 £ 0.0044
0.7045 £ 0.0008 *
0.7336 £ 0.0027 *
0.7356 £ 0.0011 =
0.7354 £ 0.0019 *
0.7284 £ 0.0007 *
0.7391 £ 0.0013 *
0.7382 +£ 0.0008
0.7319 £ 0.0019 *

0.7024 £ 0.0008 =
0.7020 £ 0.0004 *
0.7034 £ 0.0005 *
0.6956 £ 0.0103 *
0.6870 £ 0.0010 *
0.6874 £ 0.0010 *
0.7317 £ 0.0005 *
0.7172 £ 0.0025 *
0.7102 £ 0.0013 *
0.7327 £ 0.0001 *
0.7179 £ 0.0033 *
0.7309 £ 0.0005 *
0.7290 £ 0.0012 *
0.7319 £ 0.0005 *
0.7326 £ 0.0008 *
0.7327 £ 0.0003 *

0.8551 £ 0.0003 =
0.8545 £ 0.0003 *
0.8551 £ 0.0002 *
0.8553 £ 0.0003 *
0.8456 £ 0.0006 *
0.8408 £ 0.0005 *
0.8586 + 0.0005 *
0.8374 £ 0.0108 o
0.8559 £ 0.0005 *
0.8556 £ 0.0009 *
0.8538 £ 0.0002 *
0.8578 £ 0.0004 *
0.8556 £ 0.0006 *
0.8583 £ 0.0006 *
0.8537 £ 0.0005 *
0.8579 £ 0.0002 *

KTST (mean)
KTST (unique)
KTST (MHSA)

0.7154 £ 0.0011
0.7131 £ 0.0017 o
0.7152 £ 0.0011 o

0.8287 + 0.0005
0.8291 + 0.0008 o
0.8166 £ 0.0012

0.7490 £ 0.0013
0.7489 £ 0.0011 o
0.7415 £ 0.0014

0.7356 + 0.0003

0.8608 + 0.0005

optimization, a budget of 200 runs has been granted for each combination of baseline and data fold.
We refer to Liu et al. (2022) for more details on search spaces and tuning procedure. Hyperparameters
of KTST models are tuned according to a tree-structured Parzen estimator (Bergstra et al., 2011;
Akiba et al., 2019), with a budget of 100 runs for each data fold. Model selection is performed via a
5-fold cross validation using AUC as criterion. Details on the hyperparameter optimization can be
found in Appendix A.1.

Table 1 (AUC) and 2 (accuracy) show mean performance and standard deviations for KTSTs, for most
datasets and most baselines. We refer to complete results in Appendix A.3 which include experiments
regarding datasets Statics2011, AS2015, and POJ and baselines DeepIRT, DKT-F, KQN, qDKT,
ATKT, and AT-DKT. KTST (mean), KTST (unique) and KTST (MHSA) refer to KTST architectures
with mean embeddings, unique set embeddings, and MHSA embeddings, respectively. For datasets
with a knowledge-component-to-question ratio of 1.0, or approximately 1.0, we do not provide KTST
(unique) and KTST (MHSA) results as they are expected to match the results with mean embeddings.
KTST models achieve state-of-the-art AUC results on all datasets except Statics2011. For accuracy
the results are similar. Paired ¢-tests further show that almost all improvements over baselines are
significant at a significance level of 0.01.
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Table 3: Ablation study on AS2009. Markers * and o indicate whether learnable ALiBi (q=Kk) is
statistically superior or equal, respectively, using a paired -test at the 0.01 significance level.

Attention mechanism AUC ACC
Standard MHA + PE (q#k) 0.7744 + 0.0014 «  0.7307 £ 0.0015 x
AKT (qg=k) 0.7958 +0.0011 % 0.7464 £ 0.0009 x
ALiBi (qg#k) 0.7953 + 0.0018 *  0.7456 £+ 0.0021 o
ALiBi (g=k) 0.7978 +0.0010 «  0.7479 £ 0.0007 o

Learnable ALiBi (q#k)
Learnable ALiBi (q=k)
Learnable ALiBi (q=k) decoder-only

0.7976 £0.0013 o
0.7993 £+ 0.0012
0.7977 £ 0.0011 *

0.7476 £ 0.0012 o
0.7490 £+ 0.0013
0.7473 £ 0.0007 o

The principled and permutation invariant aggregation of knowledge components is one of the strengths
of KTSTs. Compared to baselines using the flawed expanded representation, we thus expect the
largest gains in performance for the datasets Ednet, AL2005 and AS2009 with an average knowledge-
component-per-question ratio of 2.30, 1.46, and 1.19, respectively. The results confirm our hypothesis
with differences being most pronounced on Ednet, where IEKT, LPKT, and QIKT are the only
baselines that are in the same ballpark as KTST results. Notably, all three models are also based
on set representations. KTST (mean) generally performs well. Unique set embeddings turn out to
be more suited for small component-to-question ratios, as they seem to incur a penalty for higher
knowledge-component-to-question ratios, whereas KTST (MHSA)’s performance is only competitive
on Ednet. We conjecture that KTST (MHSA)’s modeling capacity might be too high for simpler
knowledge tracing tasks. We support this conjecture in experiments on synthetic data in Section 5.3.

5.2 ABLATION OF ARCHITECTURE AND ATTENTION MECHANISM

Table 3 provides the results of an ablation study conducted on the AS2009 dataset, where we compare
KTST (mean) with four different types of attention mechanisms: Standard MHA + PE refers to
standard multi-head attention with positional embeddings, AKT refers to the attention mechanism
proposed in Ghosh et al. (2020), ALiBi refers to the attention mechanism proposed in Press et al.
(2021) for language models, and Learnable ALiBi refers to the learnable modification of attention
matrices that we propose to use in KTSTs. Additionally, entries ¢ = k and g # k refer to whether
the query is set to equal the key in the cross-attention. In KTSTs, we set ¢ = k following related
work (notably Pandey & Karypis, 2019). Decoder-only refers to an architecture without an encoder
(corresponding to the KTST architecture with number of encoding layers set to 0) as suggested
in Zhan et al. (2024). We report the mean and standard deviation of test results based on training
with 5-fold validation. As can be seen, Learnable ALiBi with query set equal to the key and an
encoder-decoder architecture performs best, confirmed by a paired #-tests at a significance level of
0.01. This supports our design choices for KTSTs and explains observed performance gains in the
benchmark setting to some extend.

5.3 CAPACITY OF PROPOSED SET REPRESENTATIONS

In this section, we report on synthetic data generated according to classic multidimensional item
response theory (Reckase, 2009), where we train on sequences with varying number of knowledge
components per questions. We thereby investigate the effect of proposed aggregation methods
for set representations of interactions within KTSTs. Specifically, we sample interactions from
a compensatory multidimensional 3PL model (Reckase, 2009). For question ¢ and learner j, the
probability of a correct response is given by

(]. 701')
P =1 iab’ia i) = Ci + )
(r la a)=c 14 exp (a:(ej — bl))

where c; denotes the probability of guessing a correct response for question i, b; € R* and 0; € RF
are vectors with latent difficulties and student skills per knowledge component, respectively. A
randomly sampled multi-hot vector a; € {0, l}k assigns knowledge components to questions, with k
knowledge components in total. We set ¢; = 0.25 for all questions and sample both b; and ; from
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Figure 3: Relative AUC performance of KTST models for synthetic MIRT data with different
embedding aggregations and varying numbers of knowledge components (KCs) per question. The
highest AUC is normalized to 1.00 for each experiment; error bars indicate 1-sigma standard error.

a multivariate normal distribution. If a student interacts with a knowledge component, we increase
her latent skill. Setting the number of questions to 1,000 and the total number of components to
10, we simulate 40 interactions per student and train KTST models on different sample sizes. For
each configuration we train 5 models and report test results on 1,000 interaction sequences. Figure 3
visualizes results of the experiment.

As expected, mean embeddings and unique set embeddings achieve the same results on a problem
with only one knowledge component per question, while mean embeddings outperform unique set
embeddings in settings with more than one knowledge component per question (the line for KTST
(mean) is hidden by the line for KTST (unique) in the upper left plot of Figure 3). We conjecture
that this relates to the (in theory) exponentially increasing number of unique combinations of set
elements. MHSA embeddings perform relatively poor in settings with little data and a low knowledge-
component-to-question-ratio, but show the best performance in more complicated settings with larger
sample size and more knowledge components per question. This is in line with our conjecture that
KTST models using MHSA embeddings have too much capacity for some of the simpler real world
benchmark datasets, which in turn would render optimization difficult.

6 CONCLUSION

In this paper, we proposed knowledge tracing set transformers (KTSTs), a straightforward, yet princi-
pled and performant model class for knowledge tracing prediction tasks. We proposed a simplified
variant of learnable modification of attention matrices, as well as principled set representations of
student interactions that are permutation invariant with respect to sets of knowledge components and
that do not rely on domain knowledge. As a result, KTSTs are conceptually simpler than previous
state-of-the-art approaches. We proposed three different interaction representations that come with
different properties. The simplest representation, based on mean embeddings, empirically performed
best. In contrast, the representation with the highest capacity, based on MHSA embeddings, showed
promising results for more involved settings with large sample sizes and multiple knowledge compo-
nents per question. Overall, KTSTs establish new state-of-the-art performance for knowledge tracing
prediction tasks.

A limitation of KTSTs is that the model class does not include an interpretable internal state that
reflects the current knowledge state of students (cf. Gervet et al., 2020). However, a qualitative
inspection of the implicit knowledge representation could be insightful, for example by using post-
hoc model-agnostic interpretations (e.g. Rodrigues et al., 2022). This could be a valuable avenue in
future work.

10
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A APPENDIX

A.1 REPRODUCIBILITY

For the submission to ICLR 2025, we provide a zip-File of the codebase for KTSTs, including an
implementation of proposed models as well as training and evaluation setup. The code includes
everything required to reproduce our experiments and results and comes with appropriate instructions.
In case of acceptance, we will extend this Section with more detailed information and instructions and
publish our code via a publicly available code repository. Hyperparameter sweeps for KTST models
requires roughly 1200 hours of GPU time. Training only the best hyperparameter configurations for
all of our experiments is considerably cheaper.

A.2 OPTIMIZATION DETAILS

Learnable ALiBi ALiBi (Press et al., 2021), the attention mechanism we build upon in KTSTs,
was originally introduced for improved extrapolation to longer sequence lengths in language models.
In experiments conducted by Press et al. (2021), a learnable ALiBi variant was not found to be helpful
for NLP tasks. In contrast, we find that learning decay parameters 6 (as introduced in Section 4.2)
comes with a statistically significant performance improvement for KTSTs (cf. Section 5.2). We
however noticed that optimization required a higher learning rate for  compared to other model
parameters. Details can be found in configuration files for the benchmark experiments and ablation.

Regularization of question embeddings Empirical results for KTSTs suggest, that strong reg-
ularization of question embeddings e is important for high performance on knowledge tracing
tasks. In practice, we propose to initialize all parameters in question embeddings to zero, by setting
eq = 0. In an ablation study, we have retrained the best model configurations of KTST (mean) for
the experiments on the benchmark datasets in Section 5.1 without this 0-init initialization. Results
are provided in Tables 4 and 5, where we observe a significant drop in performance on most datasets
(markers * and o indicate whether KTST (mean) is statistically superior or equal, respectively, using
a paired #-test at the 0.01 significance level). Overall, the ablation study thus supports our choice of
initialization. Question embedding initialization was previously identified as important for the more
complex Rasch embeddings (within AKT, by Ghosh et al., 2020, compare also our description of
Rasch embeddings in Section 4.3). Notably, we find that some recent publications do not properly
account for initialization within baseline models (cf. Lee et al., 2022; Im et al., 2023).

Table 4: AUC results for ablation of question embedding initialization within KTST (mean)

Ednet AL2005 AS2009 NIPS34 BD2006

KTST (w/o 0-init)  0.7251 £ 0.0032 +  0.8425 £ 0.0006 *  0.7762 £ 0.0010 *  0.8067 £ 0.0003 o  0.8142 =+ 0.0008 *
KTST 0.7394 + 0.0002 0.8522 £ 0.0004 0.7993 £ 0.0012 0.8071 £ 0.0000 0.8264 £ 0.0004

Table 5: Accuracy results for ablation of question embedding initialization within KTST (mean)

Ednet AL2005 AS2009 NIPS34 BD2006

KTST (w/o 0-init)  0.7092 £ 0.0013 %« 0.8239 4 0.0008 +  0.7346 £ 0.0012 +  0.7352 £ 0.0007 o 0.8572 % 0.0003 =
KTST 0.7154 +0.0011 0.8287 £ 0.0005 0.7490 + 0.0013 0.7356 4 0.0003 0.8608 + 0.0005

A.3 COMPLETE RESULTS FOR BENCHMARK EXPERIMENTS

In Tables 6 and 7 we provide complete results for benchmark experiments as described in Section 5.1.
Specifically, we add results for models DeepIRT (Yeung, 2019), DKT-F (Nagatani et al., 2019), KQN
(Lee & Yeung, 2019), gDKT (Sonkar et al., 2020), ATKT (Guo et al., 2021), and AT-DKT (Liu et al.,
2023a) as well as datasets Statics2011, ASSISTments2015 (AS2015), and POJ. All our claims hold.
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