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ABSTRACT

In the vast majority of research, it is assumed images will be perspective or can be
rectified to a perspective projection. However, in many applications it is beneficial
to use non conventional cameras, such as fisheye cameras, that have a larger field
of view (FOV). The issue arises that these large FOV images can’t be rectified to
a perspective projection without significant cropping of the original image. To ad-
dress this issue we propose Rectify Convolutions (RectConv); a new approach for
adapting pre-trained convolutional networks to operate with new non-perspective
images, without any retraining. Replacing the convolutional layers of the network
with RectConv layers allows the network to see both rectified patches and the
entire FOV. We demonstrate RectConv adapting multiple pre-trained networks to
perform segmentation and detection on fisheye imagery from two publicly avail-
able datasets. Our method shows improved results over both direct application
of the network and naive pre-rectification of imagery. Our approach requires no
additional data or training, and we develop a software tool that transforms exist-
ing pre-trained networks to operate on new camera geometries. We believe this
work is a significant step toward adapting the vast resources available for perspec-
tive images to operate across a broad range of camera geometries. Code available
upon acceptance.

1 INTRODUCTION

Computer vision has seen massive advancement and adoption over the past few decades. This suc-
cess is built largely on the power of artificial neural networks and the widespread availability of both
the compute and datasets required to train them. These approaches generally require training data
representative of both the intended operating environment and the cameras used to measure that en-
vironment. Consequently, adapting to advances in imaging technology generally requires gathering
extensive new datasets reflective of new camera properties, even when the operating environment
remains unchanged.

In this paper we propose a training-free approach to domain adaptation that modifies pre-trained
neural networks to operate with previously unseen cameras. Under the assumption that the training
domain remains unchanged, we adapt the neural network to interpret that domain as seen through
different cameras.

We believe this approach could have applicability across a broad range of neural architectures and
camera technologies. For this paper we focus on convolutional neural networks (CNNs) trained on
conventional monocular imagery, and demonstrate adaptation to wide-field-of-view (FOV) fisheye-
lens imagery. We show why adaptation is required, why naive approaches like image rectification
fail, and that our approach delivers performance comparable to the source domain. We show this
working with multiple tasks, networks, and cameras. We anticipate generalisation to new imaging
geometries and neural architectures to be well within reach.

Our approach generalises one of the fundamental assumptions underlying convolutional neural net-
works: translational invariance. This is a product of the shared weights of the convolutional kernel
used across the image, and it greatly reduces the number of parameters to learn. Imagery captured
with conventional cameras mostly exhibits this translational invariance, and any distortion due to
lens non-ideality can generally be calibrated and rectified away so that it doesn’t impact perfor-
mance. However unconventional camera geometries including fisheye-lens cameras do not exhibit
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this sort of invariance, and so a part of a scene captured by a fisheye lens might look quite differ-
ent depending where it is in the image. This means that applying a CNN trained on conventional
imagery to a fisheye image yields poor performance.

This same observation applies across a breadth of imaging geometries for which translational in-
variance does not apply. A naive solution is to calibrate the camera and rectify its imagery, such that
translational invariance holds. This would have the benefits of allowing convolutional layers to work
well across the entire image, and across images captured by different camera geometries. However
rectification is not always feasible, as is evident with large-FOV cameras for which no mapping to a
rectified image is possible without cropping and losing parts of the original image (Courbon et al.,
2007) (see Figure 1). Another approach would be to split the input image into rectified patches and
query the network multiple times, this has a couple drawbacks. It incurs additional computation cost
as multiple projections and inferences need to be computed. Also specific design decisions need to
be made around the size location and amount of patches used (Su & Grauman, 2017).

Perspective Projection Cylindrical Projection

f(338) f(169) f(338) f(236)

Figure 1: Example of perspective and cylindrical camera projections applied to a wide field of view
fisheye image. Regions in red show areas that are excluded from the rectified projection. Decreasing
the focal length can reduce cropping but increases distortion.

To overcome these limitations we introduce Rectifying Convolution (RectConv), a modified convo-
lutional layer based on deformable convolutions (Dai et al., 2017). As depicted in Figure 2, Rect-
Conv flips the paradigm that images should be warped to match the kernel shape, instead warping
the kernel shape to match the local shape of the image. Replacing normal convolution layers with
RectConv layers allows pre-trained networks to operate on new imaging geometries with improved
performance. The only additional information required is a calibrated model of the camera, from
which the RectConv deformations are computed.

The main contributions for this work are: (1) We propose RectConv locally rectified convolution
layers and show that by performing a local layer-wise warping of the kernels within a CNN both the
local and global deformations can be described and accounted for. This structure allows networks to
natively deal with previously unseen camera geometries. (2) We develop a software tool that adapts
pre-trained convolutional networks to imagery from calibrated previously unseen cameras, allowing
application of networks to new domains without additional training or data. (3) We demonstrate
improved performance compared to naively applying pre-trained networks or performing rectifica-
tion. We show this improved performance for wide-FOV images on multiple networks architectures,
cameras and tasks.

We will make our code available for adapting pre-trained neural networks to new camera geome-
tries. We believe this work is an important step in adapting approaches from computer vision to a
broader range of existing and emerging camera technologies. While we focus on large-FOV cameras
and fully convolutional neural networks, we anticipate extension to other network architectures and
camera geometries is feasible.
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Conv RectConv

Figure 2: An example of what regular convolution and RectConv see for a fisheye image at a given
position in the image. Blue and green boxes indicate the kernel shapes for regular convolution and
RectConv, respectively.

2 RELATED WORK

Existing Approach for large-FOV cameras. Much research has gone into using large-FOV im-
ages, such as fisheye (Plaut et al., 2021; Rashed et al., 2021) and panorama (Yang et al., 2018; 2019).
These larger fields of views can be hugely beneficial for specific applications like autonomous driv-
ing (Ye et al., 2020). One common technique is to transform an existing perspective dataset to look
like a large-FOV image e.g. fisheye (Kim & Park, 2022), to aid in the training process. This allows
existing datasets of conventional perspective images to be used, but requires retraining per camera
geometry and does not entirely capture the target domain behaviour.

While there is a trend toward transformer-based architectures for many applications, CNN-based
methods remain state of the art for fisheye many applications (Deng et al., 2017; Sáez et al., 2018;
Ye et al., 2020). These approaches require extensive datasets and training for the specific type of
camera being used. This can be prohibitive, fails to benefit from the extensive existing pre-trained
networks and datasets, and limits generalisation to different cameras.

Adapting convolutions. There are multiple works that aim to adapt convolutional layers to better
suit a specific camera or purpose such as video (Huang et al., 2022). Jaderberg et al. (2015) were
among the first to adapt convolutions to learn spatial tranformations, with their Spatial Transform
Networks (STNs). STN address global transformations but fail to compensate for local deformation.
Follow-on work by Jeon & Kim (2017) proposed Active Convolutions and applied a learnt offset for
sampling locations, however this work only applied a single offset across the whole image, again
failing to address local deformation.

Deformable Convolutions (Dai et al., 2017; Zhu et al., 2019) are a more general version of active
convolutions which learn an offset field mapping position in the image to local deformation. This
makes it much more general at the cost of an increased number of learned parameters. Our work
builds directly upon deformable convolutions with one key difference: instead of using deformable
convolutions during training we employ camera calibration to derive a closed-form offset field to
match the geometry of the input imagery. Our goal is fundamentally different from the original
work in that we are aiming to adapt existing networks to new camera geometries, and not aiming to
improve performance on imagery already in the training data.

Spherical convolutions. The line of work which is most closely related to ours is spherical convolu-
tions (Su & Grauman, 2017) and the many follow on works (Coors et al., 2018; Esteves et al., 2018).
This work applies CNNs trained on perspective images to 360° images. While these approaches re-
quire additional training or fine tuning, our goal is to adapt to new cameras without retraining. Su
& Grauman (2019) introduces Kernel Transformer Networks with a similar goal to ours in that they
seek efficient adaptation of existing models from perspective imagery without retraining. Their ap-
proach is specific to 360° imagery and does not generalise well to other camera geometries. We
introduce a methdolology that can adapt networks to a broad range of imaging geometries, which
we demonstrate on fisheye images that are not well addressed by spherical models (Yogamani et al.,
2019).
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3 RECTIFY CONVOLUTIONS

3.1 RECTCONV LAYERS

To achieve the outlined goals we propose an adaptation of the convolutional layer which we call
RectConv. A RectConv layer does not have a fixed kernel shape, instead the shape matches the local
deformation at the point in the image that the kernel is being applied to. This local deformation
results in kernel “offsets’ which are calculated based on how the patch would be rectified. Figure 2
shows an example of the RectConv kernel shape and the corresponding view observed from that
kernel. This adaptation of the convolutional layer is based on deformable convolutions, which pro-
vide a general framework for warping kernel shapes for each pixel location in an image. To achieve
this, we require a way to calculate the local kernel offsets required for each pixel based on calibrated
camera parameters. The offsets also need to be adjusted for each different network layer, especially
for layers that modify size, such as pooling.

Camera Model. Our method requires an invertible camera model that projects image points into 3D
points of intersection with some reference surface in 3D space. A general form for such a model is
p = f3D(u, v), where p is a point in space in Cartesian coordinates (x, y, z) and u, v are coordinates
on the image plane. The function f3D is the camera projection from 2D to 3D. The inverse form
is also required, u, v = f2D(p), where f2D converts a point in 3D space to its corresponding 2D
image coordinates. Models of the required form are readily available for a broad range of cameras
including the fisheye-lens cameras used in this work.

Calculating Kernel Offsets. Here we derive the kernel offsets required at each image location. The
process is depicted graphically in Figure 3. The first step is to convert pixels to points of intersection
with a reference surface in 3D space,

pi = f3D(ui, vi), (1)

where i denotes the different positions in the kernel. E.g. for a 3 × 3 kernel size this would be
calculated nine times. The scale of the patch in 3D space is computed as

s =
wgrid + hgrid

2
, (2)

where wgrid, hgrid are the horizontal and vertical size of the original grid and are calculated as
pmax−pmin in their respective dimensions. s denotes the scale of the averaged width and height and
is required in scaling a regular resampling grid. A linear planar sampling k of scale s is calculated
to be tangential to the point pc at the centre of the original grid, from which new sample points can
be calculated as

p̂i = pc + ki. (3)

Here p̂i is the new point in space at position i in the kernel. With the new list of points in 3D space
that can be converted back to the image plane,

ûi, v̂i = f2D(p̂i), (4)

where ûi, v̂i are the rectified pixel location on the image that the convolution should sample. For use
within the deformable convolution framework these points are converted to offset as offseti = ûi−
ui, v̂i−vi. This offset value needs to be calculated for every position in the kernel and every position
in the image. To reduce computation time we compute offsets for a subset of image locations
and interpolate. As the cameras used had a continuous smooth projection, is effectively reduces
computation time without affecting performance.

Modifying Offsets. Different types of CNN layer impact output size and scaling in different ways,
and the kernel offset field needs to account for these variations in size. A layer with no padding
results in a truncated output that can be accommodated by cropping the offset field. A layer with
stride can be accommodated by down-sampling the offset field at the appropriate rate. Dilation
results in an effective increase in kernel size, so an offset of a larger kernel should be used then
sampled in the same way as the dilation process. Finally, convolutional layers after a dimensional
reduction, such as from a pooling layer or a previous convolution with stride, are accommodated
by scaling the offset field in both size and magnitude. As the input size is scaled the offset values
should be scaled by the same amount.
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Figure 3: For a given patch each pixel is converted to 3D space which is then sampled on a regular
planar grid. This grid in 3D space is converted back to image locations that represent the kernel
locations for that position.

Conversion from Conv to RectConv Layers. Conversion from a conventional CNN network to a
RectConv version can be carried out efficiently and elegantly. Given a pre-trained model and camera
parameters, a recursive search through the network modules identifies all the convolutional layers
and replaces them with a RectConv layer. Offsets for the RectConv are computed as in the previous
section, and weights and bias terms from the pretrained network are left unmodified. All convolution
layers with a kernel size greater than one are converted to a RectConv layer in this manner. Layers
with a kernel size of one require no modification and are left unchanged.

3.2 EFFECTS OF INTERPOLATION.

A consequence of employing non-integer offset fields in the deformable convolutions is that sam-
ples must be interpolated from the input imagery. Our implementation employs bilinear interpo-
lation (Dai et al., 2017). This process is information destroying and is present in every RectConv
layer. The slight error at each layer accumulates as it propagates through the network.
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Figure 4: A histogram of the outputs from a binary
classification task showing how a RectConv layers
result in a bias shift in the outputs.

Figure 4 illustrates the effect of interpolation on
the output of a network. This experiment shows
a histogram of a binary classification network’s
output before a final classification layer is ap-
plied. The network used for this demonstration
was a simple CNN, which has 4 convolutional
layers with kernel sizes of 7, 5, 5 and 3, with no
padding or stride. Then 4 additional 1× 1 con-
volutional layers. The network was trained on
a binary cats and dogs dataset. The figure com-
pares the convolutional form of the network ap-
plied to rectified perspective imagery, and the
RectConv version applied to a distorted version
of the same images. For an ideal conversion be-
tween convolutional and RectConv networks the outputs would be identical. However a shift in the
distribution is evident, and we hypothesize arises due to the compounded impact of interpolation in
the RectConv approach.

While these results show RectConv conversion is imperfect, it nevertheless demonstrates compet-
itive performance in adapting to new camera geometries without a need for retraining. We leave
further exploration and mitigation of the impact of interpolation as future work.

Model Architecture. While RectConv layers could theoretically be applied to any CNN, there is
some criteria that should be met. The chosen network shouldn’t have a fixed input size and aspect
ratio. As the target camera is not likely to be the same size as the trained data, the input images
would need to be modified to even be accepted by the network, these networks usually have fully
connected layers which require a fixed size input.
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Woodscape PIROPO

Figure 5: Example images from each data are shown. Both have wide-FOV images where full image
rectification is not possible

From this we chose to develop this approach using fully convolutional networks (Long et al., 2015;
Dai et al., 2016). These CNN architectures can be used for variety of different computer vision
tasks. These networks have do not have any fully connected layers and natively accept images
of different sizes. These networks decoders are generally simple using some form of upscaling.
As such deconvolutional layers is component that, at the time of writing, we haven’t explicitly
dealt with. That is not to say that they cannot also be adapted to a rectified alternative, similar to
convolutional layers, just that for our work it wasn’t required, so have been left as future work.

4 EXPERIMENTS

Tasks. We believe the proposed approach is general and applicable across many vision tasks.
There are however certain tasks which are better suited to RectConv conversion than others. Size-
conserving and pixel-wise labelling tasks such as segmentation and depth estimation are a strong fit,
and for this reason we chose segmentation to demonstrate the effectiveness of the approach.

More challenging tasks have outputs with different dimension to the input. An key example is object
detection for which the outputs are a list of bounding boxes with pixel locations. We chose this task
as a more challenging example for RectConv networks. An interesting side effect of conversion to
RectConv layers is that because the kernels only see rectified patches the bounding boxe extents
have been rectified locally around the object being bounded. This necessitates an additional step in
which the rectified box extents are projected back to the original input image.

Datasets. We demonstrated our approach on imagery from three different cameras drawn from two
separate datasets. Firstly, Woodscape (Yogamani et al., 2019) is a multi-task, multi-camera fisheye
dataset. Woodscape has four fisheye cameras deployed on a vehicle, with data collected throughout
a city environment. While Woodscape has multiple tasks, we focus on segmentation which has
ground truth labels for 9 classes. We demonstrated results using two cameras which capture the
diversity of imaging geometries present in the dataset.

The second dataset we use is PIROPO (del Blanco et al., 2021). This dataset tracks people moving
around a room from both a perspective and omnidirectional camera across multiple sequences. We
used only the omnidirctional camera and demonstrated for both segmentation and detection. The
ground truth data provided includes a single labelled point for each person.Typical images from
each dataset are seen in Figures 5.

Models. We demonstrated our approach adapting to four different pre-trained segmentation models
constructed from two different backbones, ResNet50 and ResNet101 (He et al., 2016), and three
separate architectures, FCN (Long et al., 2015), DeepLabV3 and DeepLabV3+ (Chen et al., 2017).
We used an FCOS ResNet50 (Tian et al., 2019) for object detection. These are representative of
standard models for segmentation and detection, while also having readily available pre-trained
weights.

Pre-trained Networks. Each test required a pre-trained convolutional network to be converted to
the RectConv version. Depending on the dataset used and the corresponding required labels, we
used networks pre-trained either on Cityscape (Cordts et al., 2016) or Pascal VOC Everingham
et al. (2010), which contain only imagery captured using conventional cameras. For the Woodscape
dataset all pre-trained models were trained on the Cityscape dataset. Segmentation was evaluated
using only the classes present in both Cityscape and Woodscape. In the case of DeeplabV3+ we
use a publicly available network pre-trained on Cityscape. For the PIROPO dataset all pre-trained
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Table 1: Comparison of segmentation results for different pre-trained models applied to fisheye
imagery from the Woodscape dataset, with and without rectifying convolutions. Bold denotes the
best result. Showing the mean intersection over union (MIOU) and the pixel accuracy

Camera Method FCN(Resnet50) FCN(Resnet101) DeeplabV3(Resnet50) DeeplabV3+(Resnet101)

Pixel Acc MIOU Pixel Acc MIOU Pixel Acc MIOU Pixel Acc MIOU

Camera 1
Conv 83.16 24.90 82.60 24.90 73.64 22.68 81.03 22.76

Conv(Rectified) 82.05 27.01 85.27 28.13 72.64 19.38 86.45 29.02
RectConv(Ours) 86.83 29.50 88.17 30.02 80.6 26.19 88.72 29.84

Camera 2
Conv 84.64 24.09 84.97 24.53 73.12 20.74 79.77 21.31

Conv(Rectified) 83.56 24.88 85.14 25.62 77.81 21.28 86.21 26.37
RectConv(Ours) 87.04 26.76 87.87 27.38 77.89 22.71 86.55 25.70

RectConvConv RectifingGround Truth

Figure 6: Comparison of segmentation using a FCN-Resnet101 pre-trained on Cityscape. The un-
modified pre-trained network shows poor performance, pre-rectification shows poor performance
and suffers from dead zones that could not be included in the rectification, and the proposed Rect-
Conv shows the strongest performance while also covering the entire image.

models were trained on Pascal VOC, we used the pre-trained models supplied by pytorch which are
readily available. For this test only the person class was used and the other available classes were
ignored.

4.1 RESULTS

To provide evidence for the generality of the proposed approach, we evaluate performance across a
range of models, cameras, datasets and tasks.

Segmentation. We evaluated Segmentation performance across both datasets. Table 1 and Figure 6
show quantitative and qualitative results for the Woodscape dataset. We compare our method to the
naive approach of applying the pre-trained network directly to the distorted image, as well as pre-
rectifying the input images before inference. When rectifying we use a cylindrical projection as this
projection maintains a larger field of view compared to other projection. Our method outperforms the
alternatives with stronger qualitative results that cover the entire FOV, as well as stronger quantitative
results in all metrics except one. Importantly, our approach requires no additional training, only a
one-time closed-form conversion of the convolutional layers to their RectConv alternatives.
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Figure 7: Detection and segmentation results for people on the PIROPO dataset (del Blanco et al.,
2021) using pre-trained segmentation (FCN-Resnet101) and object detection (FCOS-Resnet50) net-
works. Converting to RectConv layers has improved the segmentation and object detection results in
both removing false detection while also improving true detections. In the case of object detection
we can see that the RectConv method bounding boxes have errors.

Table 2: Comparison of segmentation and detection using different pre-trained models on fisheye
imagery from the PIROPO dataset.

Method
Segmentation Network Ojebect Detection Network

FCN(Resnet101) DeeplabV3(Resnet101) FCOS(ResNet50)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Conv 69.09 32.90 44.57 64.10 28.86 39.80 84.64 63.64 72.65
RectConv (ours) 76.91 48.05 59.15 81.00 44.30 57.28 86.67 65.66 74.71

Figure 6 clearly illustrates the differences between approaches and how they compare to the ground
truth. For the pre-rectification method the results are distorted back to the original image geom-
etry, making the cropped dead zone clearly visible in the centre of each segmentation mask. The
additional errors from using a distorted input are also clearly visible for the convolution method,
especially looking at the road prediction.

Segmentation results for PIROPO are shown in Table 2 and Figure 7. As there was no ground truth
segmentation masks for this dataset the quantitative results are shown as an accuracy of correct
detection of people within the image. These results show that not only does converting layers to
RectConv increase true detection, it also reduces spurious detection. From the qualitative results we
can see that the actual segmentation masks are also cleaner compared to the naive approach.

Object Detection.

Object detection results for PIROPO are shown in Table 2 and Figure 7. RectConv outperforms the
conventional approach in all measures, with clear advantages in both segmentation and detection.
The extent of the quantitative benefit is not as strong in detection as it is in segmentation. Conversion
of bounding boxes in the RectConv network into image space is imperfect and is a topic for future
research. Typical errors from the bounding box conversion are seen in Figure 7. Another issue
impacting performance is that the RectConv version of the FCOS network is prone to double detec-
tion, which we attribute to the kernel interpolation process resulting in spreading of detection peaks.
We anticipate addressing these issues in future work, noting that overall detection and segmentation
performance are both nevertheless improved by the RectConv approach.
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Table 3: Comparison of inference times using the rectifing convolutions

Model Inference Time (s) Change (%)
Conv RectConv

FCN Resnet50 0.30 0.46 53.13
FCN Resnet101 0.41 0.66 60.23
DeeplabV3 Resnet50 0.32 0.55 71.01
DeeplabV3+ Resnet101 0.25 0.38 52.83

Table 4: Effect of different networks parts converted of RectifyConv layers

RectConv
Backbone

RectConv
Classification

Head
Pixel Acc MIOU

✗ ✗ 82.60 24.90
✓ ✗ 88.14 30.01
✗ ✓ 82.63 24.92
✓ ✓ 88.17 30.02

Inference Time The conversion of a network to use RectConv layers incurs additional inference-
time computational cost due to the additional step of deforming the kernels. Table 3 shows the
average inference time for the four nextworks we evaluated operating on a single image, running on
an NVIDIA RTX3060, and the percentage increase in time. Across the four different models there
was an average of 60% increase in time.

4.2 ABLATION STUDY

Table 4 shows the results of an ablation study on how converting different parts of the network to
RectConv layers affects overall performance. This study was performed on the Woodscape dataset,
using the FCN ResNet101 segmentation network. We can see that while converting both backbone
and classification heads yields performance improvements, most of the performance gain comes
from converting the backbone. As the backbone is the part that is extracting geometric features it
makes sense that it is the part that benefits most from RectConv. This lends credit to this method
being about to be adapted for other networks and tasks as these backbones are fairly universal.

5 CONCLUSIONS

We introduced RectConv, a training-free method for adapting pre-trained networks to imagery cap-
tured with previously unseen cameras. We achieved this by generalising the translational invariance
assumption underlying convolutional neural networks, introducing a spatially-varying deformation
that allows existing networks to effectively operate over imagery captured from a broad range of
imaging geometries.

We demonstrated our approach adapting segmentation and detection networks pre-trained on con-
ventional imagery to operate on fisheye imagery from three cameras drawn from two publicly avail-
able datasets. RectConv outperforms direct application of pre-trained networks and naive rectifica-
tion, and unlike rectification RectConv maintains a full field of view.

We believe this work is a significant step toward generalising neural network models to operate
across a broad range of cameras without the need for additional datasets or retraining. In future we
aim to demonstrate RectConv on additional tasks such as depth and pose estimation, with additional
camera geometries, and with a broader range of network architectures. There is scope to expand the
network conversion process to handle additional layer types like deconvolution, and as discussed in
the Results section to improve performance around bounding box conversion and multiple detec-
tions.
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