
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIXED-TIMESTEP SPIKING NEURAL NETWORKS
WITH TEMPORAL ALIGNMENT FOR ULTRA-LOW LA-
TENCY CONVERSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) are intrinsically energy-efficient. However,
most existing models enforce a uniform time-step across all layers, which lim-
its flexibility and degrades performance under low-latency inference. To address
this limitation, we propose Mixed-Timestep Spiking Neural Networks (MT-SNNs),
a paradigm in which each layer operates with an optimally selected time-step,
thereby enabling the joint optimization of accuracy and latency. Within MT-SNNs,
we develop a quantization-aware conversion framework that maps a pre-trained
ANN to a mixed-timestep SNN. Specifically, we first establish an equivalence
principle between activation bit-width and time-steps: the SNN time-step T can
be theoretically approximated by the activation quantization level 2n in the source
ANN. Based on this theory, different activation bit-widths of ANNs can be layer-
wisely mapped to the corresponding time-steps of SNNs. Then, we jointly opti-
mize the quantization levels and firing thresholds to obtain an optimal parameter
combination, where the overall T is minimized. As a result, a optimized accuracy-
latency trade-off is achieved. Finally, we identify a temporal dimension mismatch
issue in MT-SNNs and propose a temporal alignment scheme to address this issue,
ensuring proper propagation of activations across layers. Extensive experiments
on CIFAR-10, ImageNet-1k, CIFAR10-DVS and DVS-Gesture demonstrate the
effectiveness of our approach. On ImageNet-1K, our MT-SNNs achieve 73.63%
top-1 accuracy with only 4.88 time-steps, advancing the state of the art.

1 INTRODUCTION

Spiking Neural Networks (SNNs), regarded as the third generation of neural networks, are inspired
by the way biological neurons transmit information via discrete spike trains (Maass, 1997; Izhike-
vich, 2003; Ghosh-Dastidar & Adeli, 2009). SNNs leverage event-driven computation and temporal
dynamics, offering biological plausibility and higher energy efficiency.

Despite these advantages, training SNNs remains challenging due to the non-differentiable nature of
spike functions. To address this, surrogate-gradient techniques approximate the gradients of spike
activations, enabling enabling the directly training of SNNs with competitive accuracy (Lee et al.,
2016; Neftci et al., 2019; Wu et al., 2018b; Lee et al., 2020; Fang et al., 2021; Deng et al., 2022;
Fang et al., 2024; Huang et al., 2024). Another widely used approach is ANN-SNN conversion,
which circumvents training difficulties by mapping ANN activations to SNN firing rates under rate
coding (Cao et al., 2015; Diehl et al., 2015; Rueckauer et al., 2016; Sengupta et al., 2019; Li et al.,
2021; Bu et al., 2023; Hao et al., 2023a; Wu et al., 2024; Wang et al., 2025). While effective, the
conversion method typically requires long simulation time-steps to achieve high accuracy, resulting
in increased inference latency and computational overhead.

Both directly training and conversion methods usually adopt a uniform time-step configuration,
where all layers operate with the same number of time-steps (Fang et al., 2021; 2024; Huang et al.,
2024; Li et al., 2021; Hao et al., 2023a). This paradigm limits the flexibility and leads to suboptimal
trade-offs between accuracy and efficiency. Specifically, both training and inference complexity
scale as O(NT ), where N is the number of layers and T is the number of time-steps. Reducing T
without sacrificing accuracy is crucial for practical deployment.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To overcome this limitation, we inspired from mixed-precision quantization for ANNs, which shows
that different layers exhibit varying sensitivity to quantization noise (Liu et al., 2018; Wu et al.,
2018a; Dong et al., 2019; Yao et al., 2021; Elthakeb et al., 2020; Habi et al., 2020). We hypothesize
that an analogous principle holds for SNNs: different layers may have different sensitivities to time-
step reduction. Allocating more time-steps to sensitive layers and fewer to more robust layers can
better balance accuracy and latency.

Based on this insight, we propose Mixed-Timestep Spiking Neural Networks (MT-SNNs), a novel
paradigm in which each layer operates with an optimal number of time-step. Unlike existing dy-
namic time-step methods that use early exit strategies to determine inference time-steps based on
input samples’ entropy (Li et al., 2023a), our MT-SNNs use statically mapped time-steps and avoids
additional runtime decision overhead, making it suitable for deployment.

In this work, we present a quantization-aware conversion framework that constructs MT-SNNs from
pre-trained ANNs. We identify optimal parameter combinations that minimize the total number of
timesteps while preserving accuracy. To bridge the temporal mismatch between layers, we further
propose a temporal alignment mechanism that ensures consistent spike propagation, while compen-
sating for residual errors introduced during conversion. Our main contributions are as follows:

• We establish a theoretical equivalence between activation bit-width and time-steps, show-
ing that time-steps T of SNN can be approximated by the activation quantization level 2n
in a pre-trained ANN.

• We jointly optimize quantization levels and firing thresholds to obtain an optimal parameter
combination that minimizes overall time-steps T while maintaining high accuracy.

• We identify the temporal mismatch issue in mixed-timestep SNNs and introduce a average
temporal alignment strategy to ensure consistent spike propagation across layers, while
compensating for residual conversion errors.

• Extensive experiments on CIFAR-10, ImageNet-1K, CIFAR10-DVS, and DVS-Gesture
demonstrate the advantages of our method. Notably, our MT-SNNs based on ResNet-34
achieve 73.63% top-1 accuracy, setting a state-of-the-art for low-latency SNN conversion.

2 RELATED WORK

Uniform Time-Steps. The construction of large-scale deep SNNs predominantly follows two
paradigms: (i) directly training with surrogate-gradient methods and (ii) ANN-to-SNN con-
version from a pre-trained ANN. Specifically, surrogate-gradient approaches mitigate the non-
differentiability of the spike function during directly training (Neftci et al., 2019; Fang et al., 2021;
Yao et al., 2022; Huang et al., 2024), making it feasible to train deep SNNs. However, because
SNN activation tensors intrinsically have a temporal dimension, treating temporal dimension as a
learnable parameter can disrupt standard backpropagation and invalidate surrogate-gradient prop-
agation. Consequently, existing surrogate-gradient methods typically adopt a uniform time-step
setting, where all layers share the same time-step. In contrast, ANN-to-SNN conversion maps SNN
firing rates to ANN activations (Cao et al., 2015; Rueckauer et al., 2016; Han & Roy, 2020; Li et al.,
2021; Bu et al., 2023; Oh & Lee, 2024; Hao et al., 2023a; Wang et al., 2025), where the number
of time-steps determines the resolution of the firing rate. This paradigm does not inherently require
a uniform time-step across layers. However, prior ANN-to-SNN conversion methods have largely
overlooked this flexibility and, similar to directly training, enforce a uniform time-step across all
layers, leaving considerable optimization potential unexplored.

Dynamic Time-Steps. Inspired by early-exit mechanisms in dynamic ANN networks Almahairi
et al. (2016); Chen et al. (2020), Li et al. (2023a) built a decision agent that uses time-varying SNN
output confidence to determine inference termination. Li et al. (2023b); Li et al. adjusted time-steps
via input sample entropy with confidence thresholds to enable early exit for simple inputs, but this
introduces additional runtime decision overhead. Du et al. (2025) proposed mixed-timestep training,
where networks are split into stages with random time-steps. To address temporal mismatch between
layers, they adopt resampling mechanisms, which can cause feature loss or artificial amplification.
In this work, we construct MT-SNNs via an ANN-SNN conversion pipeline, which bypasses the
difficulties of directly training SNNs with learnable temporal parameters, offering a practical route
to fill the gap in mixed-timestep SNNs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

3.1 NEURON MODEL

In SNNs, the soft-reset Integrate-and-Fire (IF) neuron is a commonly used model (Cao et al., 2015;
Han et al., 2020; Han & Roy, 2020), where the membrane potential is updated rather than reset
to a fixed value. The membrane potential of neurons in layer l before spiking at time-step t is
determined by integrating the post-spiking potential from the previous time-step t− 1 and the input
current received at time t:

U l
t = V l

t−1 + ql
t (1)

where U l
t is the membrane potential of layer l before spiking, and V l

t−1 represents the membrane
potential of neurons in layer l after spiking at time t − 1. The input current ql

t is defined as ql
t =

W lsl−1
t θl−1, where W l ∈ RN l×N l−1

denotes the synaptic weight matrix between layer l − 1 and
layer l, and N l−1 is the number of neurons in the preceding layer l − 1. When the U l

t of a neuron
exceeds the threshold θl, the neuron fires a spike and update the membrane potential:

V l
t = U l

t − θl · slt (2)

where θl is the firing threshold, and slt represents the spike of layer l at time t. The spike slt is
determined by the indicator function 1[·] (defined as 1[x ≥ 0] = 1 and 1[x < 0] = 0) as follows:

slt = 1[U l
t ≥ θl] (3)

Motivation A key insight for SNNs is that different layers exhibit varying sensitivities to the num-
ber of time-steps. Layers that are more sensitive should be allocated more time-steps to mitigate
accuracy degradation, whereas less sensitive layers can use fewer time-steps to reduce memory and
computational overhead. However, most prior work enforces a uniform time-step across layers. Al-
though increasing the number of time-steps can improve inference accuracy, it also incurs latency
to O(NT ), where N is the number of layers and T is the number of time-steps, thereby limiting
flexibility and performance in low-latency scenarios. Consequently, to minimize inference latency
while preserving accuracy, an effective strategy is to assign layer-wise time-steps.

Conv IFt=1

Layer

T

l l+1 Layerl l+2

Tem
poral A

lignm
ent

Tem
poral A

lignm
ent

N
,C

,H
,W

Tl

Repeat to

X

=

N
,C

,H
,W

Tl+1

Tl

(a) Vanilla SNN

Conv IF

Conv IF Conv IF

Conv IF Conv IF

Conv IF Conv IF

l+1

t=2

…

t=Tl

Conv

Conv

Conv

t=1

…

t=Tl

IF

IF

IF

IF

Conv

Conv

T

(b) Mixed-Timestep SNN

Conv

Conv

Conv

Conv

IF

IF

IF

IF

Tem
poral A

lignm
ent

IF

IF

IF

IF

Figure 1: This figure illustrates the differences between two types of networks: a) Vanilla SNN,
where all layers use a uniform time-steps; and b) Mixed-Timestep SNN (MT-SNNs), where time-
steps vary across layers.

4 METHOD

This section outlines a quantization-aware conversion framework that maps pre-trained ANNs to
MT-SNNs. First, a principled relationship between ANN activation bit-width and the number of
SNN time-steps is established. Next, it is shown that jointly optimizing quantization levels and
firing thresholds yields an optimal accuracy–latency trade-off by minimizing the time-steps. Finally,
to resolve inherent temporal dimension mismatch issue under mixed-timestep inference, a temporal
alignment mechanism is proposed to ensure consistent inter-layer activation propagation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 EQUIVALENCE RELATIONSHIP BETWEEN ANN AND SNN

Theorem 1. To achieve lossless conversion between a pre-trained ANN and an SNN (i.e., al = ϕl),
under the premise of eliminating residual membrane potential errors, the time-step T l of the SNN
and the activation quantization level 2n

l

of the ANN should satisfy the relationship:
TSNN ≈ 2nANN (4)

proof. For ANN, the activation quantization operation Q(al;ηl) maps al ∈ Rd to discrete values,
where al is the activation of the l-th layer adn d represents the number of neuron. Here, ηl =
[nl, sl, γl]T is the set of trainable parameters for the l-th layer (Uhlich et al., 2019), where nl ∈ N
is the quantization bit-width, sl ∈ R is the quantization step size, γl ∈ R is the clipping threshold,
and the three parameters in ηl satisfy the inherent constraint sl = γl

2nl . Therefore, the activation
quantization formula for ANNs is as follows:

al =
γl

2nl · clip

(
Q

(
W lal−1 · 2

nl

γl

)
; 0, 2n

l

)
(5)

Here, the clip(·) operation restricts the activation values to the range [0, 2n
l

], while Q (·) denotes
rounding quantization, which maps al ∈ Rd to integer quantization levels and W l denotes the
weights between the (l − 1)-th layer and the l-th layer.

To establish the corresponding expression for SNNs and further derive the equivalence relationship
with ANNs, we first start from the membrane potential dynamics of SNNs. Substitute equation 1
into equation 2 to obtain the recursive form V l

t = V l
t−1 + ql

t − θl · slt and summing this recursive
equation over T l time-steps yields:

V l
T l = V l

0 +

T l∑
t=1

ql
t − θl ·N l (6)

where V l
0 ∈ Rd is the initial membrane potential of the l-th layer, V l

T l ∈ Rd is the residual mem-

brane potential and N l =
∑T l

t=1 s
l
t ∈ {0, 1, . . . , T l}d denotes the spike count of the l-th layer over

T l time-steps. Define the scaled spike rate as ϕl = θl

T l ·
∑T l

t=1 s
l
t, combined with the input current

of SNNs ql
t = W lsl−1

t θl−1 rearrange equation 6 and divide both sides by T l. This leads to the
expression for the scaled spike firing rate of the l-th layer in the SNN:

ϕl = W lϕl−1 +
V l
0 − V l

T l

T l
(7)

To align the form of ϕl with the ANN activation al (equation 5), substitute N l = T l

θl ϕ
l into equa-

tion 6 and rearrange to solve for N l. Considering the integer nature of spike counts (N l ∈ Nd) and
the range constraint of firing counts (0 ≤ N l

i ≤ T l for the i-th neuron), the spike firing count N l

can be rewritten as:

N l = clip
(
Q
(
W lϕl−1 · T l

θl
+ δl

)
; 0, T l

)
(8)

where δl =
V l

0−V l

T l

θl denotes the residual membrane potential error term. Substitute equation 8 back
into the definition of ϕl = θl

T l ·N l, yielding the final expression for the scaled spike firing rate of
the l-th layer in the SNN:

ϕl =
θl

T l
· clip

(
Q
(
W lϕl−1 · T l

θl
+ δl

)
; 0, T l

)
(9)

The goal of ANN-SNN conversion is to ensure that the scaled spike firing rate of the SNN is con-
sistent with the activation of the ANN. By comparing equation 5 and equation 9 both consist of a
scaling factor × clipped quantization term structure. To achieve ϕl = al, the following parameter
matching conditions must be satisfied: θl = γl, T l = 2n

l

, and δl = 0. It should be noted that
residual errors arising from δl ̸= 0 are inevitable. Existing studies have proposed multiple strategies
to mitigate such errors, such as weight scaling (Sengupta et al., 2019; Li et al., 2021) and threshold
balancing (Diehl et al., 2015). We propose the average temporal alignment method in Section 4.3,
which enables V l

0 = V l
T l , thereby ensuring δl = 0 with the proof provided in A.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 OPTIMAL PARAMETER COMBINATION

In the proposed conversion framework, the Straight-Through Estimator (STE) (Bengio et al., 2013)
is adopted to approximate the gradient of the quantization operation. This approximation enables
end-to-end training of the quantization parameter set ηl for the conversion task from pre-trained
ANNs to MT-SNNs. End-to-end training allows the model to learn optimal per-layer quantization
configurations while preserving the accuracy of the pre-trained ANNs. Notably, the learned ANN
quantization configurations can be directly mapped to the time-steps of SNNs by the equivalence
relationship established in Theorem 1. In this section, we analyze gradient flow optimization char-

1 3 5 7 9 11131517
Layers

6
0
6

12
18
24
30
36

B
it 

W
id

th
 / 

Ti
m

e 
St

ep

(a) Combination 1 [n,s]

Time Step [n,s] Bit Width [n,s]

1 3 5 7 9 11131517
Layers

6
0
6

12
18
24
30
36

(b) Combination 2 [n,γ]

Time Step [n,γ] Bit Width [n,γ]

1 3 5 7 9 11131517
Layers

6
0
6

12
18
24
30
36

(c) Combination 3 [s,γ]

Time Step [s,γ] Bit Width [s,γ]

1 3 5 7 9 11131517
Layers

6
0
6

12
18
24
30
36

(d) Combination 4 [t,γ]

Time Step [t,γ] Bit Width [t,γ]

Figure 2: The quantization bit-width in ResNet-18 for ANNs and the corresponding time-step for
SNNs on the CIFAR-100 dataset.

acteristics of different parameter combinations from the optimization landscape perspective, demon-
strating the superiority of the optimal combination [tl, γl]T in inference latency. For the quantization
operation Q(al;ηl), the parameter set ηl satisfies the inherent constraint sl = γl

2nl , which implies
that once any two parameters are determined, the third is uniquely fixed. The feasible four parameter
combinations include: [nl, sl]T , [nl, γl]T , [sl, γl]T , and [tl, γl]T (where tl = 2n

l

treats the quanti-
zation level). To jointly optimize accuracy and latency, a multi-objective loss function is designed
as follows:

J (η) = L
(
Q
(
al;ηl

))
+ λ

∑
l

tl (10)

Where, L denotes the cross-entropy classification loss, λ > 0 is the regularization coefficient that
balances the trade-off between classification loss and latency constraints, and tl represents the equiv-
alent time-step of the l-th layer under four different parameter combinations. Let gl = ∂L

∂al denote
the gradient of the classification loss with respect to the l-th layer activation al. The gradient cal-
culation results for the four parameter combinations are presented below. For ease of derivation,
a mask function I(·) is introduced, which operates element-wise on input vectors and outputs a
0-1 mask matrix of the same dimension. This function is used to handle the clip(·) operation in
quantization and simplify gradient expressions. Specifically, the clip(x; 0, C) (where C denotes the
upper bound of clipping) operation can be rewritten as a linear combination via the mask function:
clip(x; 0, C) = x · I(0 ≤ x ≤ C) + C · I(x > C), which unifies gradient expressions across
different parameter combinations.

Combination 1 [nl, sl]T : For bit-width nl and step size sl, the gradients of total loss J are:
∂J
∂nl

= 2n
l

ln(2)
[
gl · sl · I(ẑl > 2n

l

) + λ
]

(11)

∂J
∂sl

= gl ·
[
(ẑl − zl

sl
)⊙ I(ẑl ≤ 2n

l

) + 2n
l

· I(ẑl > 2n
l

)

]
(12)

where ẑl = Q(z
l

sl
), ⊙ is element-wise multiplication, and the equivalent time-step is tl = 2n

l

.

Combination 2 [nl, γl]T : For bit-width nl and clipping threshold γl, the gradients of loss J are:
∂J
∂nl

= ln(2)
[
gl ·Gl

n + λ · 2n
l
]

(13)

∂J
∂γl

= gl ·
[
(slûl − zl

γl
)⊙ I(ûl ≤ 2n

l

) + I(ûl > 2n
l

)

]
(14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ûl = Q(zl · 2
nl

γl ), Gl
n = (zl − slûl) ⊙ I(ûl ≤ 2n

l

) + γlI(ûl > 2n
l

), and the equivalent

inference time-step of the l-th layer in the SNN is tl = 2n
l

.

Combination 3 [sl, γl]T : For step size sl and clipping threshold γl, the gradient expressions are:

∂J
∂sl

= gl · (ẑl − zl

sl
)⊙ I(ẑl ≤ γl

sl
)− λ

γl

(sl)2
(15)

∂J
∂γl

= gl · I(ẑl >
γl

sl
) +

λ

sl
(16)

where the equivalent inference time-step of the l-th layer in the target SNN is tl = γl

sl
.

Combination 4 [tl, γl]T : For time-step tl and clipping threshold γl, the gradients of loss J are:

∂J
∂tl

= gl ·Gl
t + λ (17)

∂J
∂γl

= gl ·
[
(
v̂l

tl
− zl

γl
)⊙ I(v̂l ≤ tl) + I(v̂l > tl)

]
(18)

where v̂l = Q(zl · tl

γl ), Gl
t = (z

l

tl
− γlv̂l

(tl)2
) ⊙ I(v̂l ≤ tl) + γl

tl
I(v̂l > tl) and tl is the quantization

level, which directly corresponds to the inference time-step of the l-th layer in the target SNN.

n
0

2
4

s1
2

1
2

(a) [n, s]

n
0

2
4

5
10

2.5

5.0

(b) [n, ]

s1
2

5
10

0.5

1.0

(c) [s, ]

t
0

20
5

10
0
2
4

(d) [t, ]

Figure 3: Loss surfaces of four different parame-
ter combinations

From the above gradient expressions, significant
differences in numerical stability among four pa-
rameter combinations can be observed. Com-
binations 1 and 2 include the exponential term
2n

l

, which may lead to gradient explosion when
the bit-width nl is large. In particular, the factor
2n

l

ln(2) in equation 11 and equation 13 is prone
to causing numerical instability during the train-
ing of deep networks. Combination 3 avoids
exponential and logarithmic operations, result-
ing in relatively concise gradient expressions.
However, the regularization term γl

(sl)2
in equa-

tion 15 remains problematic: when the quanti-
zation step size sl is extremely small, this term
can become excessively large, potentially caus-
ing numerical fluctuations. Combination 4 ex-
hibits optimal numerical stability, with the reg-
ularization term in the time-step gradient being a constant λ, completely avoiding exponential,
logarithmic, and high-order fractional terms, making its gradient expression the most stable. As
visualized in Figure 3 Combinations 4 yields the smoothest landscape, stable gradients, and fastest
convergence.

4.3 TEMPORAL ALIGNMENT

In MT-SNNs, different layers operate at distinct temporal resolutions, leading to potential temporal
mismatch between consecutive layers. Suppose the output activation of the l-th layer is Sl with a
shape of Sl ∈ RB×T l×Cl×Hl×W l

, where B is the batch size, T l is the time-step of the l-th layer,
Cl is the number of channels, and H l and W l denote the height and width of the feature map in the
l-th layer, respectively. Let T l+1 represent the time-steps required for the (l + 1)-th layer. Since
T l ̸= T l+1 in most cases, the output spike tensor Sl needs temporal alignment to match T l+1. We
define temporal alignment as the operation described below:

Definition. Temporal alignment refers to the operation that enforces consistency in the temporal
dimension between layers with different time-steps.

Ŝl+1 = f(Sl, T l+1) (19)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Where, Ŝl+1 is the expected input of the (l + 1)-th layer, and f(·) denotes the temporal alignment
function, which adjusts Sl temporal dimension from T l to T l+1. As illustrated in Figure 1, temporal
alignment is applied to Sl before input to the (l + 1)-th layer when T l ̸= T l+1.

To address this, we propose the average temporal alignment method, which consists two steps.
First, we average Sl over the temporal dimension T l to obtain a time-step-independent feature
tensor S̄l ∈ RB×Cl×Hl×W l

, where Sl[t] is the activation at t time-step. Second, we replicate
S̄l along the temporal dimension to match the required length T l+1, yielding the aligned tensor
Ŝl+1 ∈ RT l+1×B×Cl×Hl×W l

. This process is formally defined as:

S̄l =
1

T l

T l∑
t=1

Sl[t], Ŝl+1 = S̄l ⊗ 1T l+1,1 (20)

where 1T l+1,1 is a ones tensor of length T l+1, and it is used to replicate S̄l across all time-steps.

5 EXPERIMENTS

This section first compares MT-SNNs against state-of-the-art conversion and dynamic time-step
methods, demonstrating an optimal accuracy–latency trade-off. Next, ablations over four parame-
ter combinations identify the combination four as optimal. Subsequently, ablation studies on the
temporal alignment module highlight the average temporal alignment strategy as the most effec-
tive strategy. Finally, a computational overhead analysis of the average temporal alignment module
shows that the temporal alignment maintains low overhead.

5.1 COMPARISON WITH PREVIOUS WORKS.

We evaluate the proposed method against state-of-the-art conversion approaches on ImageNet-1K
dataset. We primarily focus on SNN accuracy and average inference time-steps T̄ =

∑L
l=1 T l

L ,
aiming to demonstrate that our method can substantially reduce inference latency while maintaining
high accuracy.

Table 1: Comparison between our method and previous works on ImageNet-1k dataset.

Method VGG-16 ResNet-34
ANN T Accuracy(%) ANN T Accuracy(%)

Calibration(Li et al., 2021) 75.36 16, 32 43.99, 62.14 75.66 16, 32 34.91, 61.43
SlipReLU(Jiang et al., 2023) 71.99 16, 32 51.54, 67.48 75.08 16, 32 43.76, 66.61

QCFS(Bu et al., 2023) 74.29 16,32 50.97, 68.47 74.32 16, 32 59.35, 69.37
SRP*(Hao et al., 2023b) 74.29 4, 8 66.47, 68.37 74.32 4, 8 66.71, 67.62
FTBC(Wu et al., 2024) 75.36 8, 16 64.20, 71.19 75.66 8, 16 38.55, 60.68

AdaFire(Wang et al., 2025) 75.36 8, 16 73.53, 74.25 75.66 8, 16 72.96, 73.85
ours (MT-SNNs) 73.61 4.93 73.12 74.01 4.88 73.63

Note: SRP* requires τ time-steps to be executed before actual inference, so the actual inference time should
be T + τ . In the original paper, τ = 14 for VGG-16 and τ = 8 for ResNet-34.

Results on ImageNet-1K. As shown in Table 1, for the two architectures VGG-16 and ResNet-34,
the proposed method (MT-SNNs) achieves accuracies of 73.12% and 73.63% with only 4.93 and
4.88 time-steps, respectively. Compared with AdaFire, which achieves accuracies of 73.53% and
74.25% with 8 and 16 time-steps on VGG-16, and 72.96% and 73.85% with the same time-steps
on ResNet-34, respectively, our MT-SNNs maintains nearly lossless accuracy while reducing the
number of time-steps by 50%.

For VGG-16, compared with the SRP method, which achieves an accuracy of 66.47% with 4 time-
steps, our MT-SNNs outperforms SRP by 6.87% with 4.93 time-steps. For ResNet-34, SRP achieves
an accuracy of 66.71% with 4 time-steps, and our MT-SNNs outperforms SRP by 6.92% with 4.88
time-steps. Additionally, SRP requires τ time-steps to be executed before actual inference; thus, the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

actual inference time should be T + τ . According to the original paper of SRP, τ is set to 14 for
VGG-16 and 8 for ResNet-34. As shown in Appendix Tables 5 and 6, the experimental results on
the CIFAR-10 and DVS datasets also outperform those of previous works.

Table 2: Comparison our method and previous dynamic
time-step works on ImageNet-1k with ResNet-34.

Method Type T SNN
SEENN-I (Li et al., 2023b) Dir.Train. 2.28, 3.38 63.65, 64.66
SEENN-I (Li et al., 2023b) Conv. 23.47, 29.53 70.18, 71.84

MTT (Du et al., 2025) Dir.Train. 4, 6 67.54, 68.34
AdaFire (Wang et al., 2025) Conv. 8, 16 72.96, 73.85

ours (MT-SNNs) Conv. 4.88 73.63

Comparison with Dynamic Timestep
Methods. To validate the effectiveness
of our conversion framework in dy-
namic temporal modeling, we compare
the proposed MT-SNNs against state-
of-the-art dynamic time-step SNNs
on ImageNet-1K with ResNet-34, as
shown in Table 2. “Dir. Train.”
denotes directly training approaches,
and “Conv.” refers to conversion-based
methods. Compared to directly training
methods such as SEENN-I and MTT,
our MT-SNNs achieves a superior accuracy-latency trade-off. While SEENN-I and MTT only attain
64.66% (with 3.38 time-steps) and 68.34% (with 6 time-steps), respectively, our MT-SNNs reaches
73.63% with merely 4.88 time-steps. Among conversion-based methods, our MT-SNNs also stands
out: SEENN-I achieves 71.84% but requires 29.53 time-steps, while AdaFire reaches 73.85% with
16 time-steps. In contrast, our MT-SNNs delivers comparable accuracy with significantly lower
latency, which demonstrates its efficiency and scalability.

5.2 ABLATION STUDY ON TEMPORAL ALIGNMENT

We proposed the average temporal alignment in Section 4.3. Beyond average, other tempo-
ral alignment schemes exist, such as naive upsampling or downsampling adopted in prior dy-
namic time-step work (Du et al., 2025), where resampling is performed after feature group-
ing. The key challenge of such resampling lies in segmenting the temporal without introducing
feature distortion; however, resampling inevitably incurs feature loss or artificial amplification.

Table 3: Temporal Alignment Ablation Study.

Method CIFAR-10 / CIFAR-100
ResNet-18 (%)ResNet-20 (%)VGG-16 (%)

Up + Avg 95.31 / 75.50 89.52 / 64.86 94.45 / 75.70
Up + Down 94.16 / 71.21 87.67 / 55.24 91.23 / 60.65
Avg + Down 94.16 / 75.93 89.20 / 62.91 91.23 / 74.06
Avg + Avg 95.71 / 77.82 91.08 / 65.39 94.98 / 75.89

To verify the advantage of aver-
age temporal alignment, we con-
ducted ablation studies over four
alignment strategies. Table 3 reports
the results for (Up+Avg, Up+Down,
Avg+Down, Avg+Avg) on CIFAR-
10 and CIFAR-100 with ResNet-18,
ResNet-20, and VGG-16. Here, Avg
denotes average-based alignment, Up
denotes upsampling, and Down de-
notes downsampling. Key findings
are as follows:

(1) Dominance of Avg+Avg strategy: Consistent with the theoretical analysis in A.1, Avg+Avg
achieves the highest accuracy across all backbones and datasets, outperforming other strategies by
1.40%–3.75% on CIFAR-10 and 1.48%–15.24% on CIFAR-100, with the largest gain 15.24% ob-
served on CIFAR-100 with VGG-16. (2) Superiority of average operations: Strategies involving
average (Avg+Avg, Up+Avg, Avg+Down) outperform Up+Down, indicating that average-based
alignment better preserves temporal consistency and reduces residual errors compared with discrete
resampling. (3) Generalizability across backbones: The relative advantage of Avg+Avg over other
strategies is consistent across ResNet-18, ResNet-20, and VGG-16, demonstrating the generaliza-
tion. Overall, the Avg+Avg alignment scheme offers consistent optimal performance, demonstrating
strong generalization across models and datasets.

5.3 ABLATION EXPERIMENTS ON FOUR PARAMETER COMBINATIONS

We conduct ablation experiments with ResNet-18 on CIFAR-10, CIFAR-100, and ImageNet-200
to evaluate model accuracy, the average quantization bit-width, and the corresponding time-steps
under four parameter combinations. As shown in Figure 4, the purple bar chart denotes the average

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

[n,s] [n, ] [s, ] [t, ]0

5

10

15

20

25

B
it 

W
id

th
 / 

Ti
m

e 
St

ep

4.67
2.12

4.55

1.47

24.88

4.76

21.13

2.59
9.6×

1.8×
8.2×

(a) CIFAR-10 ResNet-18

[n,s] [n, ] [s, ] [t, ]0
5

10
15
20
25
30
35

B
it 

W
id

th
 / 

Ti
m

e 
St

ep

4.78
2.76

4.50
1.88

33.53

7.76

19.26

3.53

9.5× 2.2×
5.5×

(b) CIFAR-100 ResNet-18

[n,s] [n, ] [s, ] [t, ]0

10

20

30

40

50

60

B
it 

W
id

th
 / 

Ti
m

e 
St

ep

5.79 4.51 5.51
2.42

60.40

17.70

36.80

6.00

10.1×

2.9×
6.1×

(c) ImageNet-200 ResNet-18

93.0

94.5

96.0

97.5

99.0

A
cc

ur
ac

y 
(%

)

95.80%

96.02%

96.41%

96.42%

95.83%

95.86%

95.71%

95.89%

64.0

68.0

72.0

76.0

80.0

84.0

88.0

A
cc

ur
ac

y 
(%

)

76.12%

76.43%

77.05%

78.38%

76.84%

77.70%

77.28%

78.00%

48.0
52.0
56.0
60.0
64.0
68.0
72.0
76.0

A
cc

ur
ac

y 
(%

)

63.24%

64.77%

63.46%

64.11%

62.06%

63.13%

63.65%

64.26%

Bit Width Time Step SNN Accuracy ANN Accuracy [t, ] Baselines

Figure 4: The average bit-width, time-steps, ANN and SNN accuracy under different quantization
parameter combination

bit-width n̄ =
∑L

n=1 nl

L , and the blue bar chart represents the time-step T̄ =
∑L

l=1 T l

L . Combina-
tion 4 [t, γ] achieves the lowest average time-step. On CIFAR-10, it reduces inference latency by
9.6×, 1.8×, and 8.2× over Combination 1, Combination 2, and Combination 3, respectively,
while achieving 95.71% Top-1 accuracy. On CIFAR-100, it yields 9.5×, 2.2×, and 5.5× latency
reductions over the three combinations and attains the highest conversion accuracy of 77.28%. On
ImageNet-200, it achieves 10.1×, 2.9×, and 6.1× latency reductions, with a Top-1 accuracy of
63.65%.

5.4 COMPUTATIONAL OVERHEAD OF TEMPORAL ALIGNMENT

To evaluate the overhead of the average temporal alignment operation, we conduct experiments on
the ImageNet-1K validation with ResNet-34 and VGG-16. Experiments are run on 4× NVIDIA
RTX 4090 GPUs (24 GB each) with a fixed global inference batch size of 64. We report the total
wall-clock inference time (Inf. Time), the time spent on temporal alignment (Align. Time), and its
proportion of total inference time. Results are summarized in Table 4.

Table 4: Inference Overhead on ImageNet-1K dataset.

Architecture Model Top-1 Acc. (%) Avg. T Inf. Time (s) Align. Time (s) Speedup(↑)

ResNet-34 Vanilla-SNN 69.47 32 1893.38 - 1×
MT-SNNs 73.63 4.88 344.44 15.39 (4.47%) 5.49×

VGG-16 Vanilla-SNN 68.56 32 4,465.28 - 1×
MT-SNNs 73.12 4.93 704.31 37.75 (5.36%) 6.34×

For ResNet-34, the total inference time of MT-SNNs is 344.44 s, whereas the Vanilla-SNNs (with
uniform timesteps) require 1893.38 s, yielding a 5.49× speedup. The temporal-alignment operation
takes 15.39 s, accounting for only 4.47% of the total inference time. For VGG-16, the total infer-
ence time of MT-SNNs is 704.31 s, compared to 4465.28 s for the Vanilla-SNNs, achieving a 6.34×
speedup. The alignment time is 37.75 s, corresponding to a 5.36% overhead. These results indi-
cate that average temporal alignment mechanism introduces a low computational overhead while
improving inference speed.

6 CONCLUSION

In this work, we propose Mixed-Timestep Spiking Neural Networks (MT-SNNs). To bypass the dif-
ficulties of directly training MT-SNNs, we introduce a quantization-aware conversion framework
that bridges quantized ANNs and SNNs with mixed timesteps. We first theoretically establish
the equivalence between activation quantization levels of ANN and times-teps of SNN, and then
demonstrate that jointly optimizing the quantization level and the firing threshold yields optimal
low-latency inference while preserving accuracy. We further identify the temporal mismatch is-
sue in MT-SNNs and propose an average temporal alignment mechanism to address it. Extensive
experiments demonstrate the advantages of our MT-SNNs, filling the gap in mixed-timestep SNNs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle, and Aaron
Courville. Dynamic capacity networks. In International conference on machine learning, pp.
2549–2558. PMLR, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: tricks of the trade: second
edition, pp. 421–436. Springer, 2012.

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 11–20, 2022.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113:54–66, 2015.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030–11039, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks (IJCNN), pp. 1–8. ieee, 2015.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 293–302, 2019.

Kangrui Du, Yuhang Wu, Shikuang Deng, and Shi Gu. Temporal flexibility in spiking neural net-
works: Towards generalization across time steps and deployment friendliness. arXiv preprint
arXiv:2503.17394, 2025.

Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir Yazdanbakhsh, and
Hadi Esmaeilzadeh. Releq: A reinforcement learning approach for automatic deep quantization
of neural networks. IEEE micro, 40(5):37–45, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36, 2024.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International journal of
neural systems, 19(04):295–308, 2009.

Hai Victor Habi, Roy H Jennings, and Arnon Netzer. Hmq: Hardware friendly mixed precision
quantization block for cnns. In Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pp. 448–463. Springer, 2020.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European conference on computer vision, pp. 388–404. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558–13567, 2020.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11–21, 2023a.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
anns and snns by calibrating offset spikes. arXiv preprint arXiv:2302.10685, 2023b.

Zecheng Hao, Xinyu Shi, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Lm-ht snn: Enhancing the
performance of snn to ann counterpart through learnable multi-hierarchical threshold model. Ad-
vances in Neural Information Processing Systems, 37:101905–101927, 2024.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.
arXiv preprint arXiv:2402.04663, 2024.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569–1572, 2003.

Chunming Jiang and Yilei Zhang. Klif: An optimized spiking neuron unit for tuning surrogate
gradient slope and membrane potential. arXiv preprint arXiv:2302.09238, 2023.

Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: towards optimal mapping from activation values to firing rates.
In International Conference on Machine Learning, pp. 14945–14974. PMLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in neuroscience, 14:497482, 2020.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

Chen Li, Edward G Jones, and Steve Furber. Unleashing the potential of spiking neural networks
with dynamic confidence. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 13350–13360, 2023a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jindong Li, Guobin Shen, Dongcheng Zhao, Qian Zhang, and Yi Zeng. Firefly v2: Advancing hard-
ware support for high-performance spiking neural network with a spatiotemporal fpga accelerator.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

Yuhang Li, Abhishek Moitra, Tamar Geller, and Priyadarshini Panda. Input-aware dynamic timestep
spiking neural networks for efficient in-memory computing. in 2023 60th acm. In IEEE Design
Automation Conference, pp. 1–6.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International conference on machine
learning, pp. 6316–6325. PMLR, 2021.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal
spiking early exit neural networks. Advances in Neural Information Processing Systems, 36:
63327–63342, 2023b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Chetana Nagendra, Mary Jane Irwin, and Robert Michael Owens. Area-time-power tradeoffs in
parallel adders. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Pro-
cessing, 43(10):689–702, 1996.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Hyunseok Oh and Youngki Lee. Sign gradient descent-based neuronal dynamics: Ann-to-snn con-
version beyond relu network. In International Conference on Machine Learning, pp. 38562–
38598. PMLR, 2024.

Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accu-
rate deep spiking neural networks with backward residual connections, stochastic softmax, and
hybridization. Frontiers in Neuroscience, 14:653, 2020.

Bharat Kumar Potipireddi and Abhijit Asati. Automated hdl generation of two’s complement dadda
multiplier with parallel prefix adders. Int J Adv Res Electr Electron Instrum Eng, 2, 2013.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and
tools for the conversion of analog to spiking convolutional neural networks. arXiv preprint
arXiv:1612.04052, 2016.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen
Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision dnns: All you need is a good
parametrization. arXiv preprint arXiv:1905.11452, 2019.

Ziqing Wang, Yuetong Fang, Jiahang Cao, Hongwei Ren, and Renjing Xu. Adaptive calibration: A
unified conversion framework of spiking neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 1583–1591, 2025.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
precision quantization of convnets via differentiable neural architecture search. arXiv preprint
arXiv:1812.00090, 2018a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaofeng Wu, Velibor Bojkovic, Bin Gu, Kun Suo, and Kai Zou. Ftbc: Forward temporal bias
correction for optimizing ann-snn conversion. In European Conference on Computer Vision, pp.
155–173. Springer, 2024.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018b.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
jing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
In International Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

A APPENDICES

A.1 AVERAGE TEMPORAL ALIGNMENT ELIMINATES RESIDUAL ERRORS

In Section 4.1, we established the equivalence relationship between ANNs and SNNs. However,
when θl = γl and T l = 2n

l

, equation 5 and equation 9 are not completely equivalent due to the

presence of δl =
V l

0−V l

T l

θl , resulting in residual membrane potential error. Below, we prove that
average temporal alignment is the optimal method among temporal alignment approaches, as it
eliminates the residual error δl = 0 by ensuring V l

0 = V l
T l .

When the SNN adopts average temporal alignment, the input current ql
t of the l-th layer at each

time-step is derived from equation 20, as shown follows:

ql
t =

θl−1

T l
·W l

T l−1∑
t

sl−1
t (21)

Summing the input current over the total time-steps T l of the l-th layer gives:
∑T l

t=1 q
l
t = T l · ql

t =

θl−1 ·W l
∑T l−1

t=1 sl−1
t . Under the ANN-SNN equivalence premise ϕl−1 = al−1, the spike count

of the (l − 1)-th layer N l−1 =
∑T l−1

t=1 sl−1
t is equal to the ANN’s quantization level M l−1 (i.e.,

N l−1 = M l−1). Substituting this into the above equation yields
∑T l

t=1 q
l
t = θl−1 ·W l ·M l−1.

For ANN-SNN conversion, the parameter matching conditions θl−1 = γl−1 and T l = 2n
l

hold, and
the ANN’s activation satisfies al−1 = γl−1

2nl−1 ·M l−1 (from equation 5). Combining these, the total

input current of the l-th layer can be rewritten as
∑T l

t=1 q
l
t = T l ·W l · al−1 = T l · al = θl ·M l

where al = W l · al−1 is the activation of the l-th layer in the ANN, and M l is its corresponding
quantization level matrix.

Rearranging equation 6 to solve for the spike count N l gives N l =
V l

0+
∑Tl

t=1 ql
t−V l

T l

θl . Since the
membrane potential is soft-reset to [0, θl) after each spike, so the residual membrane potential at the
final time-step satisfies0 ≤ V l

T l < θl. Substituting this constraint into the equation for N l yields the

range of N l ∈ (
V l

0+
∑Tl

t=1 ql
t−θl

θl ,
V l

0+
∑Tl

t=1 ql
t

θl ]. Since N l ∈ Zd is an integer, it follows that N l =⌊
V l

0+Ql
tot

θl

⌋
. Substituting

∑T l

t=1 q
l
t = θl ·M l into the above equation gives N l =

⌊
V l

0+θl·M l

θl

⌋
.

In practical SNN inference, we follow the initial membrane potential setting from Bu et al. (Bu
et al., 2022; 2023), where V l

0 = 0.5θl. Given that M l ∈ Zd, the equation can be simplified to
N l =

⌊
0.5θl+θl·M l

θl

⌋
=
⌊
M l + 0.5

⌋
= M l

Substituting
∑T l

t=1 q
l
t = θl ·M l and N l = M l back into Equation equation 6 confirms that the

residual membrane potential error is eliminated:V l
T l−V l

0 =
∑T l

t=1 q
l
t−θl ·N l = θl ·M l−θl ·M l =

0. Thus, V l
0 = V l

T l , which implies δl = 0 and satisfies the equivalence condition of Theorem 4.1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 EXPERIMENTAL PARAMETER SETTINGS

For training VGG-16, ResNet-18, and ResNet-20 on CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009): the training batch size is set to 300, and the number of training epochs is 300. The Stochastic
Gradient Descent (SGD) optimizer (Bottou, 2012) is adopted, with an initial learning rate of 0.01
for VGG-16 and ResNet-18, and 0.05 for ResNet-20. The regularization coefficient λ is set to 1e-6,
and a cosine annealing scheduler (Loshchilov & Hutter, 2016) is used; additional configurations
include a weight decay of 5 × 10−4 and 5 warm-up epochs. For data preprocessing, standard aug-
mentation techniques are applied, including random cropping, Cutout (DeVries & Taylor, 2017),
and AutoAugment (Cubuk et al., 2019).

For training ResNet-34 and VGG-16 on ImageNet-1K (Deng et al., 2009): the training batch size is
64, the test batch size is 100, and the number of training epochs is 120. The SGD optimizer (Bottou,
2012) is used, paired with a cosine annealing scheduler (Loshchilov & Hutter, 2016), 5 warm-up
epochs, and a weight decay of 1e-4. Mixed-precision training is implemented on 4 NVIDIA RTX
4090 GPUs, and augmentation techniques include Cutout and AutoAugment(Cubuk et al., 2019).

For dynamic vision sensor (DVS) datasets CIFAR10-DVS and DVS-Gesture: CIFAR10-DVS uses
a training batch size of 32 and a test batch size of 10, while DVS-Gesture uses a test batch size of
18. Shared parameters across both datasets are as follows: 300 training epochs, the SGD optimizer
with a learning rate of 0.1, a cosine annealing scheduler, 5 warm-up epochs, a weight decay of 5e-4,
and mixed-precision training. During training, each sample in the datasets is converted to 2 frames,
with data augmentation applied from (Hao et al., 2024).

Analysis of Results on CIFAR-10 Dataset Table 5 shows that on CIFAR-10, our method achieves
SNN accuracies of 94.98%, 95.71%, and 91.08% on VGG-16, ResNet-18, and ResNet-20, respec-
tively, with only 2.20, 2.59, 3.63 time-steps. Compared to QCFS and SlipReLU (4–8 time-steps), it
achieves over 50% temporal compression while matching or slightly exceeding top baselines (e.g.,
SRP at 95.60%). SRP requires τ = 4 pre-inference time-steps, so its actual inference time is T + τ .
Additionally, versus high-accuracy methods like SGDND (16–32 time-steps), our method maintains
comparable accuracy (0.5% gap) with 85% shorter temporal sequences.

Table 5: Comparison between our method and previous works on CIFAR-10 dataset.

Architecture Methods ANN(%) T SNN(%)

VGG-16

QCFS(Bu et al., 2023) 95.52 4, 8 93.96, 94.95
SRP*(Hao et al., 2023a) 95.52 4, 8 95.32, 95.52

SlipReLU(Jiang et al., 2023) 93.02 4, 8 91.08, 92.26
SGDND(Oh & Lee, 2024) 95.96 16, 32 81.06, 95.53

ours (MT-SNNs) 94.98 2.20 94.98

ResNet-18

QCFS(Bu et al., 2023) 96.04 2, 4 91.75, 93.83
SRP*(Hao et al., 2023a) 95.64 4, 8 95.25, 95.60

SlipReLU(Jiang et al., 2023) 94.61 2, 4 93.97, 94.59
SGDND(Oh & Lee, 2024) 96.82 16, 32 80.74, 96.29

ours (MT-SNNs) 95.89 2.59 95.71

ResNet-20

QCFS(Bu et al., 2023) 91.77 4, 8 83.75, 89.55
SRP*(Hao et al., 2023a) 91.77 4, 8 90.51, 90.51

SlipReLU(Jiang et al., 2023) 92.96 8, 16 86.66, 92.13
SGDND(Oh & Lee, 2024) 96.82 16, 32 80.74, 96.29

ours (MT-SNNs) 91.41 3.63 91.08

A.3 TEMPORAL CHANNEL RESHAPING FOR DYNAMIC DATA

Neuromorphic datasets include an extra temporal dimension T , preventing direct ANN pre-training.
We propose two schemes to address this: TB (merges T with batch dimension B) and TC (integrates
T into channel dimension C), enabling ANN pre-training on such datasets.

We compared training time and memory overhead of TC, TB, and SNNs using ResNet-18 on DVS-
Gesture (batch size 16, single Nvidia 3090ti, 10-epoch average). Figure 5 show TC has slightly

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison between our method and previous works on neuromorphic datasets.

Datasets Methods Models T Acc.(%)

DVS-Gesture

PLIF(Fang et al., 2021) PLIF Net 20 97.57
KLIF(Jiang & Zhang, 2023) Modified PLIF Net 12 94.10

CLIF(Huang et al., 2024) Spiking-Vgg11 20 97.92
ours (MT-SNNs) ResNet-18 4.06 94.10

CIFAR10-DVS

PLIF(Fang et al., 2021) PLIF Net 20 74.80
KLIF(Jiang & Zhang, 2023) Modified PLIF Net 15 70.90

CLIF(Huang et al., 2024) Spiking-Vgg11 16 79.00
ours (MT-SNNs) ResNet-18 2.0 84.40

increased training time with more time-steps but stable memory usage. At 15 time-steps, SNNs take

Time-Steps SNN/TC TB/TC
1T 0.7× 1.0×
3T 2.2× 2.5×
5T 3.8× 3.9×
15T 12.4× 9.3×
20T 12.5× 8.3×

1T 2T 3T 4T 5T 10T 15T 20T0

10

20

30

40

50

Tr
ai

ni
ng

 T
im

e 
(s

)

(a) Training Time vs. Delay

Time-Steps SNN/TC TB/TC
1T 1.15× 1.00×
3T 2.09× 1.62×
5T 2.87× 2.29×
15T 7.29× 5.22×
20T 8.26× 6.73×

1T 2T 3T 4T 5T 10T 15T 20T0

5

10

15

20

25

M
em

or
y 

C
os

t (
G

B
)

(b) Memory Cost vs. Ratio

5

10
D

el
ay

2

4

6

8

R
at

io

ANN (TC) ANN (TB) SNN ANN (TC) ANN (TB) SNN

Figure 5: Speedup and memory cost of using the TC scheme compared to the TB scheme and
directly training of SNNs

9× longer than TC, while TC is 9.3× more efficient—nearly an order of magnitude better in speed
and memory than SNN training, validating the ANN-SNN conversion paradigm. Using TC to test
MT-SNNs on neuromorphic data (Table 6), we achieved 94.10% accuracy with 4.06 time-steps on
DVS-Gesture and 84.40% with 2.0 time-steps on CIFAR1-DVS.

B COMPARATIVE ANALYSIS OF ERROR GRADIENTS FOR FOUR
PARAMETERIZATIONS

Under the Straight-Through Estimator (STE), different parameterizations induce distinct gradient
behaviors, leading to varied optimization dynamics. To highlight the superiority of Combination
4, we analyze the loss landscape using gradient field visualization, following the methodology in
Uhlich et al. (2019).

We sample 104 points fromN (0, 1) and define the mean squared error loss L = E[(x−Q(x;η))2].
Gradients are backpropagated via STE and optimized using SGD across a 50 × 50 grid spanning
typical parameter ranges. As shown in Figure 3

Combination 1 (a) [n, s]: The surface exhibits sharp gradients for large n, where n controls the
upper bound and s the step size. Their interaction introduces numerous local minima, causing
unstable trajectories and slow convergence. Additionally, gradients tend to increase n, leading to
exponential time-step growth t = 2n, as seen in Figure 4.

Combination 2 (b) [n, γ]: Both parameters jointly affect the upper bound, resulting in highly irreg-
ular gradients. Optimization often prioritizes bit-width alignment before adjusting γ, increasing the
risk of gradient explosion.

Combination 3 (c) [s, γ]: Without discrete components, the surface is smoother. However, gradi-
ents w.r.t. γ vanish in non-truncated regions, causing trajectories to slide along the s axis. As s→ 0
and γ increases, the time-step t = γ/s diverges, leading to high latency even under regularization.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Conversion Framework for MT-SNNs

Input: Pre-trained ANN {W l, 2n
l

, γl}Ll=1, training data D, epochs E, learning rate α, penalty λ
Output: Mixed-Timestep SNN {W l, T l, θl}Ll=1

1: Phase A: Training of η
2: for l← 1 to L do
3: Replace ReLU by Q(·; tl, γl)
4: Initialise tl ← 2ninit , γl ← γinit
5: end for
6: for e← 1 to E do
7: for each mini-batch (x,y) ∼ D do
8: a0 ← x
9: for l← 1 to L do

10: zl ←W lal−1

11: v̂l ← Q
(
zl tl/γl

)
12: al ← γl v̂l/tl

13: end for
14: L ← CE

(
aL,y

)
+ λ

∑
l t

l

15: Compute∇tlL,∇γlL (STE)
16: for l← 1 to L do
17: tl ← tl − α

(
∇tlL+ λ

)
18: γl ← γl − α∇γlL
19: end for
20: end for
21: end for
22: Fix T l ← tl, θl ← γl // model ready for SNN inference
23: Phase B: MT-SNNs Forward Inference (Average Time Alignment)
24: for l← 1 to L do
25: ql

t ←W l S l−1
t θl−1

26: if l > 1 and T l−1 ̸= T l then
27: q̄ l−1 ← 1

T l−1

∑T l−1

t=1 q l−1
t

28: q l−1
1:T l ← REPEAT

(
q̄ l−1, T l

)
29: end if
30: for t← 1 to T l do
31: U l

t ← V l + ql
t

32: Sl
t ← I

[
U l

t ≥ θl
]

33: V l ← U l
t − θlSl

t // soft-reset
34: end for
35: end for

Combination 4 (d) [t, γ]: This configuration yields the smoothest landscape, stable gradients, and
fastest convergence. It avoids the instability of discrete parameters while enabling direct control
over latency via t, making it the most effective formulation.

C ENERGY EFFICIENCY ANALYSIS.

In ANN, the output activations are obtained by performing a multiplication and accumulation op-
eration between the input activations and the weights. This operation is referred to as multiply-
accumulate operation (MACs). For example, xl = W l · xl−1, where xl−1 is the output activation
from the previous layer, and W l is the weight matrix of the current layer. The elements of xl−1 and
W l are typically multi-bit fixed-point or floating-point values. In SNN, the activations are repre-
sented by binary spikes, meaning the activation values are either 0 or 1. As a result, the MACs in
SNN can be simplified to an accumulation operation (ACs) over the weights . For example, given
an activation xl−1 = [0, 1, 0, 1]T and weights W l = [w1, w2, w3, w4], the output is computed as
xl = W l · xl−1 = w2 + w4. Addition operations typically consume less energy than multiplication

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

operations in hardware. This is because multiplication involves more complex computational logic
and requires more hardware resources (e.g., multipliers), while addition only requires simple adder
units. The specific energy consumption comparison is shown in Table 7.

To compare the energy efficiency of SNN and quantized ANN, we conducted experiments using
VGG-16 and ResNet-34 on ImageNet-1k. We assume that the weights are all 8-bit fixed-point
quantized (this assumption does not affect the final comparison, as both SNN and ANN use the
same weights). The energy consumption of multiplication and addition operations for both fixed-
point and floating-point (32-bit and 8-bit) is provided in (Horowitz, 2014). Using this data, we can
calculate the energy required for MACs. For example, for 8-bit fixed-point quantized activations
and weights, the energy consumption of a multiply-accumulate operation is 0.23 pJ.

Table 7: Comparison of Energy Efficiency Be-
tween ANN and SNN

Model Energy (mJ) EANN / ESNN
ANN SNN

CIFAR-10

VGG-16 0.0233 0.0041 5.68×
ResNet-18 0.0411 0.0073 5.63×
ResNet-20 0.0034 0.0011 3.09×

CIFAR-100

VGG-16 0.0242 0.0049 4.94×
ResNet-18 0.0438 0.0089 4.92×
ResNet-20 0.0038 0.0016 2.38×

Table 8: Energy Table for 45nm CMOS Process

Operation Energy (pJ)

8b ADD (INT) 0.03
32b ADD (INT) 0.1
8b MULT (INT) 0.2
32b MULT (INT) 3.1

8b MAC (INT) 0.23
16b ADD (FP) 0.4
32b ADD (FP) 0.9

16b MULT (FP) 1.1
32b MULT (FP) 3.7

1b-8b MULT (INT)* 0.025
2b-8b MULT (INT)* 0.05
3b-8b MULT (INT)* 0.075

* Data derived from Nagendra et al. (1996)
and Potipireddi & Asati (2013)

However, because the activations of ANN in our work MT-SNNs are mixed-precision quantized, the
bit width of activations varies across different layers, which results in multiply-accumulate opera-
tions (MACs) with different bit-width activations and weights, such as INT2 activations and INT8
weights, for which energy consumption values are not provided in (Horowitz, 2014). To address
this, we refer to the approach in (Nagendra et al., 1996), which states that the power consumption of
an adder is linearly related to bitwidth, while the power consumption of a multiplier is quadratic with
respect to bitwidth (Potipireddi & Asati, 2013). This allows us to compute the energy of multiply-
accumulate operations for different bitwidths. For instance, a 2-bit fixed-point multiplication (INT2)
consumes 1/16 of the energy of an 8-bit fixed-point multiplication (INT8). Since SNN use binary
spikes for activations, only accumulation operations (ACs) are required. Therefore, we can directly
utilize the data from (Horowitz, 2014) without needing additional energy data from (Nagendra et al.,
1996; Potipireddi & Asati, 2013).

We follow the energy calculation method from (Panda et al., 2020), with N input channels, M
output channels, weight kernel size k × k, and output size O × O, the total FLOPS for ANN and
SNN are as described in the equations below.

FLOPSANN = O2 ×N × k2 ×M, FLOPSSNN = O2 ×N × k2 ×M × fr (22)

Where fr represents the total number of firing rate per layer, fr ≪ 1 in SNNs. For energy calcula-
tion, MAC (for ANN) and AC (Addition operation, for SNN) as below:

EANN = El
MAC ×

N∑
l=1

FLOPSANN , ESNN = EAC × Tl ×
N∑
l=1

FLOPSSNN (23)

Where El
MAC represents the energy per MAC operation in l-th layer, theEl

MAC vary across layers
due to the different quantization bit-widths of activations in each layer, EAC represents the energy
consumed by addition operations, which is 0.03 pJ for INT8 quantized weights, and the EAC value
is the same across all layers. Tl denotes the time-step of the l-th layer in the SNN, and the time-steps
may vary across different layers.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D TEMPORAL SCALABILITY ANALYSIS

To evaluate the proposed MT-SNNs’s temporal scalability, we investigate how its accuracy evolves
with increasing timesteps, focusing on two goals: (1) verifying whether performance improves or
degrades across a broader temporal scale, and (2) confirming the optimality of its time-step configu-
ration. Experiments use ResNet-18, ResNet-20, VGG-16 on CIFAR-10/CIFAR-100. We incremen-
tally double each layer’s timesteps (via scaling) and monitor accuracy changes. As shown in Figure
6, MT-SNNs accuracy rises gradually with more timesteps—even outperforming baseline quantized
ANNs at moderate scaling. Beyond four times the original timesteps, accuracy saturates with no
further gains. This confirms effective temporal scalability within a reasonable range and validates
the initial time-step design’s optimality.

T 2T 3T 4T 5T 6T
Multiples of Avg Timestep

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

CIFAR-10 ResNet-18
CIFAR-10 ResNet-20
CIFAR-10 VGG-16
CIFAR-100 ResNet-18
CIFAR-100 ResNet-20
CIFAR-100 VGG-16

Figure 6: Temporal Scalability Analysis.

Layer 1

Layer 2

Layer 3

Figure 7: Pipeline Analysis.

Algorithm 2 Neuron and Temporal Loops
Input: Input spikes Ispikes; Weights W ; Dimen-
sions Co,M,Ho,Wo, N, T, S,Kh,Kw, Ci, V
Output: VNext and Ospikes after processing

1: for o← 0 to Co/M do
2: for h← 0 to Ho do
3: for w ← 0 to Wo/N do
4: for t← 0 to T/S do
5: for kh ← 0 to Kh do
6: for kw ← 0 to Kw do
7: for i← 0 to Ci/V do
8: Psum += W × Ispikes
9: end for

10: end for
11: end for
12: VNext, Ospikes ← Node(Psum, VPre)
13: end for
14: end for
15: end for
16: end for

E HARDWARE DEPLOYMENT EFFICIENCY ANALYSIS

Mainstream SNN hardware implementations fall into two categories: ANN accelerator variants
and Non-Von Neumann distributed multi-core architectures (e.g., TrueNorth Akopyan et al. (2015),
Loihi Davies et al. (2018)).

ANN accelerator variants achieve asynchronous computation primarily by routing non-zero inputs to
processing element (PE) arrays for spike-based matrix calculations. They compute only a subset of
the neural network at a time Li et al. (2024), iterating to cover the full network; Algorithm 2 details
this data flow, with each layer using a unified time-step T . For MT-SNNs, layers have distinct
timesteps, and average temporal alignment only averages each layer’s output along the temporal
dimension—this preserves the original data flow, enabling MT-SNNs deployment on such hardware.

In contrast, multi-core neuromorphic hardware distributes neurons of all layers across separate
cores: upon receiving spike events, neurons immediately perform spike-based computations for
asynchronous execution, and the network runs in a pipeline (Figure 7): at T1, Layer 1 processes
Sample 1; at T2, Layer 2 processes Layer 1’s output (Sample 1) while Layer 1 processes Sample
2. MT-SNNs require temporal alignment to handle layer-specific timesteps—Layer 2 must wait for
Layer 1 to complete Tl1 timesteps before starting. Though MT-SNNs run on this hardware, pipeline
stalling may occur, introducing delays and hindering optimal performance.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F GRADIENT DERIVATION FOR FOUR PARAMETER COMBINATIONS

For the regularized mixed time-step optimization problem, the goal is to minimize the cost function
J (ηl), which combines a quantization loss term and a time-step regularization term, formulated as:

min
ηl
J (ηl) = L

(
Q
(
al;ηl

))
+ λ

L∑
l=1

tl (24)

where L(·) is the loss for quantized output al (from quantizer Q(·) with parameters ηl), λ is the
regularization coefficient, and tl is the l-th time-step.

To optimize ηl, the gradient of J with respect to ηl decomposing loss and regularization contribu-
tions is:

∂J
∂ηl

=
∂L
∂al
· ∂a

l

∂ηl
+ λ

∂tl

∂ηl
(25)

Here, ∂L
∂al is the loss to al, while ∂al

∂ηl and ∂tl

∂ηl describe how al and tl vary with ηl.

The basic quantization formula maps input zl to al via scaling (by γl, nl) and clipping , given by:

al =
γl

2nl · clip

(
Q

(
zl · 2

nl

γl

)
; 0, 2n

l

)
(26)

where clip(·; 0, 2nl

) restricts values to [0, 2n
l

], and γl

2nl scales back to the original domain.

A binary mask function I(C) handles conditional operations in later derivations, defined as:

I(C) =

{
1 if condition C is true
0 otherwise

(27)

The equivalent time-step tl varies by parameter combination, with the piecewise definition:

tl =


2n

l

Combinations 1, 2
γl

sl
Combination 3

tl Combination 4
(28)

F.1 COMBINATION 1

The optimization parameter vector is ηl = [nl, sl]T , and the quantization step satisfies γl = sl · 2nl

(linking γl to adjustable parameters). Substitute the constraint into the basic formula:

al = sl · clip
(
Q
(
zl

sl

)
; 0, 2n

l

)
(29)

To decompose the clipping operation, define ẑl = Q(zl/sl) and use the binary mask I(C) (intro-
duced earlier). This rewrites the clipped term as a weighted sum of valid/overflow values, giving:

al = sl ·
[
ẑl · I(ẑl ≤ 2n

l

) + 2n
l

· I(ẑl > 2n
l

)
]

(30)

Derive ∂al/∂nl, since ẑl is independent of nl, only 2n
l

contributes, using ∂2n
l

/∂nl = 2n
l

ln(2):

∂al

∂nl
= sl · ∂

∂nl

[
2n

l

· I(ẑl > 2n
l

)
]
= sl · 2n

l

ln(2) · I(ẑl > 2n
l

) (31)

Compute ∂al/∂sl via product rule (for sl · ẑl) and accounting for ẑl’s dependence on sl:

∂al

∂sl
= ẑl · I(ẑl ≤ 2n

l

) + 2n
l

· I(ẑl > 2n
l

) + sl · ∂ẑ
l

∂sl
· I(ẑl ≤ 2n

l

) (32)

Under Straight-Through Estimator (STE) assumption (∂Q(·)/∂sl ≈ 1), ∂ẑl/∂sl = −zl/(sl)2.
Substitute and simplify with element-wise multiplication (⊙):

∂al

∂sl
= (ẑl − zl

sl
)⊙ I(ẑl ≤ 2n

l

) + 2n
l

· I(ẑl > 2n
l

) (33)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For the regularization term, tl = 2n
l

. Its derivatives are:

∂tl

∂nl
= 2n

l

ln(2) (34)

∂tl

∂sl
= 0 (35)

Substitute ∂al/∂nl and ∂tl/∂nl into the total loss gradient, factoring out 2n
l

ln(2):

∂J
∂nl

=
∂L
∂al
· sl · 2n

l

ln(2) · I(ẑl > 2n
l

) + λ · 2n
l

ln(2)

=

[
∂L
∂al
· sl ⊙ I(ẑl > 2n

l

) + λ

]
· 2n

l

ln(2) (36)

Finally, substitute ∂al/∂sl (and ∂tl/∂sl = 0) into the total loss gradient to get ∂J /∂sl:
∂J
∂sl

=
∂L
∂al
·
[
(ẑl − zl

sl
)⊙ I(ẑl ≤ 2n

l

) + 2n
l

· I(ẑl > 2n
l

)

]
(37)

F.2 COMBINATION 2

The optimization parameter vector is ηl = [nl, γl]T , with the scaling factor sl constrained by sl =

γl/2n
l

. To simplify the original quantization formula, we define an intermediate quantized variable
ûl = Q(zl · 2nl

/γl), which captures the quantized result of zl scaled by 2n
l

/γl. Substituting ûl

and using the binary mask function I(C) to decompose the clipping operation:

al =
γl

2nl ·
[
ûl · I(ûl ≤ 2n

l

) + 2n
l

· I(ûl > 2n
l

)
]

(38)

Next, we compute the partial derivative of al with respect to nl. Since al is a product of two
terms (γl/2n

l

and the clipped sum), we apply the product rule for differentiation. The derivative
expression before simplification is:

∂al

∂nl
=

∂

∂nl

[
γl

2nl

]
· [ûl · I(ûl ≤ 2n

l

) + 2n
l

· I(ûl > 2n
l

)]

+
γl

2nl ·
∂

∂nl
[ûl · I(ûl ≤ 2n

l

) + 2n
l

· I(ûl > 2n
l

)] (39)

where, ∂
∂nl [

γl

2nl ] = −γl ln(2)

2nl , ∂ûl

∂nl = zl·2n
l
ln(2)

γl , ∂
∂nl [2

nl

] = 2n
l

ln(2). Substituting the three key
derivatives and simplifying, we obtain the final form of ∂al/∂nl:

∂al

∂nl
= (zl − sl · ûl) ln(2)⊙ I(ûl ≤ 2n

l

) + γl ln(2) · I(ûl > 2n
l

) (40)

We then derive the partial derivative of al with respect to γl. Under the STE assumption, the
derivative of ûl with respect to γl is ∂ûl/∂γl = −zl · 2nl

/(γl)2. The derivative expression is:

∂al

∂γl
=

1

2nl · [ûl · I(ûl ≤ 2n
l

) + 2n
l

· I(ûl > 2n
l

)] +
γl

2nl ·
∂ûl

∂γl
· I(ûl ≤ 2n

l

)

Substituting ∂ûl/∂γl and simplifying, the derivative simplifies to:

∂al

∂γl
= (sl · ûl − zl

γl
)⊙ I(ûl ≤ 2n

l

) + I(ûl > 2n
l

) (41)

For the regularization term, recall from prior sections that tl = 2n
l

for this combination. Thus, tl
depends only on nl, leading to the following derivatives:

∂tl

∂nl
= 2n

l

ln(2) (42)

∂tl

∂γl
= 0 (43)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using the total loss function gradient formula , we substitute ∂al/∂nl and ∂tl/∂nl to compute the
gradient of J with respect to nl:

∂J
∂nl

=
∂L
∂al
· (zl − sl · ûl) ln(2)⊙ I(ûl ≤ 2n

l

) +

[
∂L
∂al
· γl ⊙ I(ûl > 2n

l

) + λ

]
ln(2) (44)

Finally, substituting ∂al/∂γl and ∂tl/∂γl = 0 into the total loss gradient formula gives the gradient
of J with respect to γl:

∂J
∂γl

=
∂L
∂al
·
[
(sl · ûl − zl

γl
)⊙ I(ûl ≤ 2n

l

) + I(ûl > 2n
l

)

]
(45)

F.3 COMBINATION 3

The optimization parameter vector is defined as ηl = [sl, γl]T , with the bit-width-related term
constrained by 2n

l

= γl/sl . To simplify the basic quantization formula, we first substitute this con-
straint into the expression for al. We also retain the intermediate quantized variable ẑl = Q(zl/sl)
to represent the quantized result of zl scaled by 1/sl. Using the binary mask function I(C) to
handle clipping, the substituted quantization formula becomes:

al = sl ·
[
ẑl · I(ẑl ≤ γl

sl
) +

γl

sl
· I(ẑl >

γl

sl
)

]
(46)

Next, we compute the partial derivative of al with respect to sl. Due to the product structure of al

and the dependence of the clipped threshold (γl/sl) on sl, the derivative requires applying the prod-
uct rule and accounting for the threshold’s variation. The derivative expression (before substituting
key terms) includes three contributions: the direct derivative of sl, the derivative of ẑl with respect
to sl, and the derivative of the threshold γl/sl with respect to sl:

∂al

∂sl
= ẑl · I(ẑl ≤ γl

sl
) +

γl

sl
· I(ẑl >

γl

sl
)

+ sl · ∂ẑ
l

∂sl
· I(ẑl ≤ γl

sl
)

+ sl · ∂

∂sl
[
γl

sl
] · I(ẑl >

γl

sl
) (47)

Two key derivative results are used here ∂ẑl

∂sl
= − zl

(sl)2
, ∂
∂sl

[γ
l

sl
] = − γl

(sl)2
derived under the Straight-

Through Estimator, STE, assumption). Substituting these two derivatives into the expression and
simplifying (noting that the second and fourth terms cancel out) yields the final form of ∂al/∂sl:

∂al

∂sl
= ẑl · I(ẑl ≤ γl

sl
) +

γl

sl
· I(ẑl >

γl

sl
)

− zl

sl
· I(ẑl ≤ γl

sl
)− γl

sl
· I(ẑl >

γl

sl
)

= (ẑl − zl

sl
)⊙ I(ẑl ≤ γl

sl
) (48)

We then derive the partial derivative of al with respect to γl. Only the clipping threshold term
(γl/sl) depends on γl, so the derivative simplifies to the product of sl (from the outer scaling) and
the derivative of γl/sl with respect to γl, activated by the mask for overflow values. This results in:

∂al

∂γl
= sl · ∂

∂γl
[
γl

sl
] · I(ẑl >

γl

sl
) = I(ẑl >

γl

sl
) (49)

For the regularization term, recall that tl = γl/sl for Combination 3. Thus, tl depends on both sl

and γl, leading to the following derivatives:

∂tl

∂sl
= − γl

(sl)2
(50)

∂tl

∂γl
=

1

sl
(51)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Using the total loss function gradient formula, we substitute ∂al/∂sl and ∂tl/∂sl to compute the
gradient of J with respect to sl:

∂J
∂sl

=
∂L
∂al
· (ẑl − zl

sl
)⊙ I(ẑl ≤ γl

sl
)− λ

γl

(sl)2
(52)

Finally, substituting ∂al/∂γl and ∂tl/∂γl into the total loss gradient formula gives the gradient of
J with respect to γl:

∂J
∂γl

=
∂L
∂al
· I(ẑl >

γl

sl
) +

λ

sl
(53)

F.4 COMBINATION 4

The optimization parameter vector is ηl = [tl, γl]T , with the scaling factor constrained by sl =
γl/tl. To simplify the basic quantization formula, we first substitute this constraint and define an
intermediate quantized variable v̂l = Q(zl · tl/γl), the variable represents the quantized result of
zl scaled by tl/γl. Using the binary mask function I(C) to decompose the clipping operation, the
substituted quantization formula becomes:

al =
γl

tl
·
[
v̂l · I(v̂l ≤ tl) + tl · I(v̂l > tl)

]
(54)

Next, we compute the partial derivative of al with respect to tl. Since al is a product of γl/tl and the
clipped sum, we apply the product rule. Three key derivative results are used here, ∂

∂tl
[γ

l

tl
] = − γl

(tl)2
,

∂v̂l

∂tl
= zl

γl , ∂
∂tl

[tl] = 1. The derivative expression before simplification is:

∂al

∂tl
=

∂

∂tl
[
γl

tl
] · [v̂l · I(v̂l ≤ tl) + tl · I(v̂l > tl)]

+
γl

tl
· ∂

∂tl
[v̂l · I(v̂l ≤ tl) + tl · I(v̂l > tl)] (55)

Substituting the three key derivatives and simplifying yields the final form of ∂al/∂tl:

∂al

∂tl
= − γl

(tl)2
· v̂l · I(v̂l ≤ tl) +

zl

tl
· I(v̂l ≤ tl)

+
γl

tl
· I(v̂l > tl)

= (
zl

tl
− γlv̂l

(tl)2
)⊙ I(v̂l ≤ tl) +

γl

tl
· I(v̂l > tl) (56)

We then derive the partial derivative of al with respect to γl, again applying the product rule. Under
the STE assumption, the derivative of v̂l with respect to γl is ∂v̂l/∂γl = −zl · tl/(γl)2. The initial
derivative expression is:

∂al

∂γl
=

1

tl
· [v̂l · I(v̂l ≤ tl) + tl · I(v̂l > tl)] +

γl

tl
· ∂v̂

l

∂γl
· I(v̂l ≤ tl) (57)

Substituting ∂v̂l/∂γl and simplifying (using sl = γl/tl implicitly for term grouping) gives:

∂al

∂γl
= (

v̂l

tl
− zl

γl
)⊙ I(v̂l ≤ tl) + I(v̂l > tl) (58)

For regularization term, ∂tl

∂tl
= 1, ∂tl

∂γl = 0. Using the total loss function gradient formula, we
substitute ∂al/∂tl and ∂tl/∂tl = 1 to compute the gradient of J with respect to tl:

∂J
∂tl

=
∂L
∂al
·
[
(
zl

tl
− γlv̂l

(tl)2
)⊙ I(v̂l ≤ tl) +

γl

tl
· I(v̂l > tl)

]
+ λ (59)

Finally, substituting ∂al/∂γl and ∂tl/∂γl = 0 into the total loss gradient formula yields the gradient
of J with respect to γl:

∂J
∂γl

=
∂L
∂al
·
[
(
v̂l

tl
− zl

γl
)⊙ I(v̂l ≤ tl) + I(v̂l > tl)

]
(60)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used to assist in checking grammatical and spelling errors, polishing the language ex-
pression logic of papers, aiding in the derivation of Formula F, and supporting the creation of paper
figures.

23


	Introduction
	Related Work
	Preliminaries
	Neuron Model

	Method
	Equivalence Relationship Between ANN and SNN
	Optimal Parameter Combination
	Temporal Alignment

	Experiments
	Comparison with Previous Works.
	Ablation Study on Temporal Alignment
	Ablation Experiments on Four Parameter Combinations
	Computational Overhead of Temporal Alignment

	Conclusion
	Appendices
	Average Temporal Alignment Eliminates Residual Errors
	Experimental Parameter Settings 
	Temporal Channel Reshaping for Dynamic Data

	Comparative Analysis of Error Gradients for Four Parameterizations
	Energy Efficiency Analysis.
	Temporal Scalability Analysis
	Hardware Deployment Efficiency Analysis
	Gradient Derivation for Four Parameter Combinations
	Combination 1
	Combination 2
	Combination 3
	Combination 4

	The Use of Large Language Models (LLMs)

