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ABSTRACT
Optimizing user Quality of Experience (QoE) for live video stream-
ing remains a long-standing challenge. The Bitrate Control Al-
gorithm (BCA) plays a crucial role in shaping user QoE. Recent
advancements have seen RL-based algorithms overtake traditional
rule-based methods, promising enhanced QoE optimization. Never-
theless, our comprehensive study reveals a pressing issue: current
RL-based BCAs are limited to the fixed and formulaic reward func-
tions, rendering them ill-equipped to adapt to dynamic network en-
vironments and varied viewer preferences. In this work, we present
AraLive, an automatically adaptive reward learning method de-
signed for seamless integration with any existing learning-based
approach in live streaming contexts. To accomplish this goal, we
construct a dedicated user QoE assessment dataset for live stream-
ing and customize-design an adversarial model that skillfully aligns
human feedback with actual network scenarios. We have deployed
AraLive in not only the live streaming but also the classic VoD
systems, in comparison to a series of state-of-the-art BCAs. The
experimental results demonstrate that AraLive not only elevates
overall QoE but also exhibits remarkable adaptability to varied user
preferences.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Live Video Streaming; Adaptive Reward Learning; Human feedback;
QoE Optimization

1 INTRODUCTION
The rapid rise in live video streaming is transforming our lifestyle,
impacting everything from our social interactions to how we learn
and work remotely. This shift is propelled further by technologi-
cal advancements in areas like volumetric video [24, 25] and AI-
generated content (AIGC) [27] streaming, which are significantly
enhancing the global uptake of real-time video services. Recent
market reports have indicated that by January 2024, video stream-
ing constituted over 72% of all Internet traffic, and this trend is
expected to significantly accelerate in further [3].

Video Quality of Experience (QoE) stands as the paramount fac-
tor that reflects viewers’ perceptual feedback and overall viewing
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satisfaction. Presently, the QoE for real-time video streaming sig-
nificantly hinges on the effectiveness of bitrate control algorithms
(BCAs). These algorithms are designed to dynamically adjust the
video bitrate in response to the ever-changing network bandwidth,
aiming to maintain an optimal balance between video quality and
streaming smoothness. In recent years, there’s been a notable shift
from traditional rule-based BCAs like GCC and BBR, towards more
adaptive, learning-driven approaches, particularly those based on
reinforcement learning (RL). Examples include Pensieve [21], Loki
[31], R-FEC [18], Jade [14], etc. In essence, the central concept be-
hind RL-based BCAs is that the RL agent continuously monitors
the network conditions and video QoE, and subsequently deter-
mines an optimal bitrate for video streaming, with the objective of
maintaining or improving the user QoE. Moreover, this process is
significantly influenced by the reward function, which is a critical
component of the RL agent.

We have conducted extensive analysis for RL-based BCAs. Our
observations reveal that, both in testbed experiments and real-world
applications, the reward functions employed by RL-based agents
typically follow a formulaic principle. Specifically, they commonly
incorporate a variety of video- and network-related metrics, such
as video bitrate, frame rate, packet latency, and packet loss rate.
Furthermore, these metrics are characterized by diverse hyper-
parameters, leading to a predetermined fixed formula. In this work,
to demystify the performance of learning-based video streaming,
we have performed in-depth measurements (§ 2) over state-of-the-
art RL-based video streaming algorithms, such as Loki [31]. Our
investigation brings two key findings: (i) Formula-based rewards
do not consistently align with actual human feedback QoE. More-
over, the probability of mismatches is significantly higher than the
anticipation. For instance, a 720P video quality by actual users is
likely to be evaluated as either very poor quality (e.g., 270P video)
or excellent quality (e.g., 1080P video) by the formula. (ii) The rigid
formula-based rewards functions fail to accommodate diverse user
experiences, which will result in catastrophic QoE.

Inspired by our findings, we are motivated to explore a pivotal
question: Can we develop an automatic reward mechanism capable
of excelling adaptively across diverse network environments and
viewer preferences? To meet this challenge, we design AraLive, an
automatically adaptive reward learning mechanism. This solution
is designed to be compatible with all existing RL-based approaches
used in video streaming scenarios, while also outperforming tradi-
tional purely formula-based reward functions.

To meet the above objectives, AraLive introduces two innova-
tive designs. First, recognizing that existing datasets, such as SQoE
[9], which are commonly used for VoD streaming training, lack the
millisecond-level and fine-grained metrics needed to fully repre-
sent the dynamics in live streaming. To bridge this gap, we have
constructed a comprehensive user QoE assessment dataset specifi-
cally for live-streaming contexts. This dataset includes 4,000 video
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Figure 1: The workflow of live video streaming based on RL-
assisted bitrate control algorithms.

segments, serving both as a training resource for AraLive and as
a valuable asset for the video streaming community. Additionally,
we have formulated a dual-weighted reward alignment method
to assist AraLive’s effective training. Second, we introduce a new
adversarial architecture to enable automatic reward adaptation. It
features a generator to grasp the implicit relationship between net-
work dynamics and user preferences, subsequently auto-generating
the corresponding reward. A discriminator then evaluates these re-
wards, discerning whether they stem from the generator or human
feedback. Through iterative training, AraLive’s adversarial model
is capable of generating rewards that align with human perception
across varying network conditions.

We have validated AraLive’s performance in two typical stream-
ing scenarios: live video scenarios and VoD scenarios, benchmark-
ing it against a series of state-of-the-art BCAs. The experimen-
tal results show AraLive’s ability to maintain consistently high
QoE. For instance, AraLive enhances the video bitrate by 4.8% to
9.6%, cuts frame jitter by 11.2% to 11.6%, and reduces stall rates by
3.5% to 50.9%, which shows AraLive’s adaptability to different user
preferences and network conditions. Surprisingly, AraLive shows
even greater gains in the more challenging weak network sessions,
which highlights its potential to deploy in practice. Additionally,
we present in-depth showcases and perform ablation studies to
highlight the advantages of AraLive’s model design.

To the best of our knowledge, AraLive is the first work to ap-
ply adversarial methods for developing adaptive reward functions
aimed at enhancing video QoE for a wide range of individual users.
Furthermore, we summarize our key contributions as follows:

• We conduct in-depth analysis and measurements on current
learning-based BCAs, identifying their performance is constrained
by the reliance on fixed formula-based reward functions (§2).

• We introduce a novel method for aligning actual human feed-
back QoE with formula-based rewards and present a customized
adversarial model, aimed at enhancing AraLive’s capability to
adapt to actual human QoE (§3).

• We implement AraLive in practical video systems and conduct
comparative analyses against a range of baselines. The experi-
mental results demonstrate that AraLive is capable of achieving
superior adaptive QoE across various QoE metrics (§4).

2 BACKGROUND AND MOTIVATION
2.1 Learning-based live video streaming
Recent years, due to the elevated requirements for video quality
and the increasingly competitive nature of network bandwidth,
ensuring high-quality video QoE has become more complex and
demanding. Recent advancements have shown that learning-based
BCAs, such as Jade [14], R-FEC [18], Loki [31], OnRL [32], and
Pensieve [21], have made significant strides in optimizing QoE.
These algorithms utilize ML, particularly RL, to adjust its video
bitrate to adapt to dynamic network environments, so as to meet
the varying high demands of live video streaming (e.g., maximizing
video quality while minimizing the video latency).

In Figure 1, we illustrate the workflow of an end-to-end live
video transmission process using the RL-based BCA. In a live video
session, the sender’s camera will capture video images and encode
them into consecutive video frames in real time. These frames are
then packetized and transmitted to the receiver over real-world net-
work path. Due to fluctuations of network bandwidth, the sender’s
BCA will adjust its sending bitrate dynamically to control the
amount of data transmitted, thus avoiding network congestion.
In particular, the RL-based BCA monitors the instantaneous net-
work states and video QoE, then processes them through a neural
network model to determine the next video bitrate. Moreover, it
commonly employs a pre-defined reward function to guide the
decision-making process of the neural model. As we investigated,
the pre-defined reward functions are regulated by a series of hyper-
parameters. Take the most classic and popular reward function
(denoted as 𝑅) in Orca [4, 10] as an example, whose reward is rep-
resented as follows,

𝑅 = ( throughput − 𝜁 × loss
delay′

) · ( 𝑑min
thrmax

),

delay′ =

{
𝑑min, if 𝑑min ≤ delay ≤ 𝛽 × 𝑑min
delay, o.w.

,

(1)

where we can find that the 𝑅 mirrors the objective of maximizing
throughput while minimizing packet delay and loss rate. Specifi-
cally, it exhibits a strong correlation with certain hyper-parameters,
e.g. 𝜁 and 𝛽 , which are coefficients that heavily determine the rela-
tive impact of those related metrics.

2.2 Inefficiencies of formula-based rewards
To delve deeper into the limitations of formula-based rewards, we
aim to leverage actual human feedback QoE as the groundtruth.
To this end, we begin by compiling a QoE dataset with human
assessment in live video streaming scenarios. In this section, we will
first provide a detailed overview of the dataset collection process.
Wewill then present two new insights from comprehensive analysis:
(i) Formula-based rewards do not consistently align with user actual
human feedback; the probability of mismatches is significantly
higher than the anticipation. (ii) The rigid formula-based rewards
functions fail to accommodate diverse user experiences, which
results in catastrophic QoE.

Building a user assessment dataset with 4000 videos. To
accurately capture actual human feedback QoE in live steaming
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Figure 2: CDF of reward deviation
between formula-based reward and
human feedback QoE.

Figure 3: Formula-based reward heavily
depend on metrics like RTT, loss, which
do not align with human feedback QoE.

Figure 4: Showcase of the relationship be-
tween rewards and network metrics, and
their negative impacts on subsequent QoE.

scenarios, we build a unique user assessment dataset with fine-
grained QoE feedback. To achieve this, we first develop a live video
system by leveraging the widely used WebRTC framework [1] and
also employ a cluster of video segments to serve as the sending
video, ensuring comparability across different users and network
conditions. Moreover, we use the traffic control (tc) [2] tool to
emulate the end-to-end network bandwidth variation, with traces
collected from the commercial video system [33]. We also integrate
a plugin to record the rewards generated by the formula and add
corresponding timestamps.

During the video streaming process, we capture multiple videos
transmitted via WebRTC and document the start time of each video
session, accurate to the millisecond level. To garner human as-
sessment, we segment the videos and invite tens of volunteers to
rate each segment based on the rating ranges of [0, 5]. This proce-
dure yields a comprehensive dataset comprising over 4000 video
segments. Each segment is accompanied by ratings from multiple
individuals and metrics, such as packet loss, RTT (Round-trip-time),
video bitrate, etc. Finally, the dataset is composed of a cluster of
parameters, including <Video bitrate, RTT, loss, formula-based re-
ward, human feedback QoE>. To resolve the ambiguous boundaries
of formula-based rewards, we conduct updates to standardize the
range of formula-based rewards, ensuring comparability with hu-
man feedback QoE. In particular, as demonstrated in Eq. (2),

𝑅𝑓 =

{
(𝑅𝑓 − 𝛼)/(𝑅𝑓𝑚 − 𝛼) × 𝑅ℎ𝑚, if 𝑅𝑓 < 𝑅𝑓𝑚
𝑅𝑓 −𝑅𝑓𝑚

𝛽−𝑅𝑓𝑚
× (6 − 𝑅ℎ𝑚) + 𝑅ℎ𝑚, else

, (2)

where the formula rewards (shorted as 𝑅𝑓 ) are divided into two
intervals by using the median value of formula-based rewards
(shorted as 𝑅𝑓𝑚) as the boundary. Then, for each video segment,
if its 𝑅𝑓 falls within the range of [0, 𝑅𝑓𝑚], it is remapped to the
new range of [0, 𝑅ℎ𝑚], and the remaining values are mapped to
[𝑅ℎ𝑚, 6], where 𝑅ℎ𝑚 represents the median value of human ratings.
The parameters 𝛼, 𝛽 signify the extreme values of formula-based
rewards after outlier removal.

Insight 1: Existing formula-based reward functions do not
align with actual human feedback QoE. By analyzing the col-
lected QoE assessment dataset, we start by assigning the human
feedback QoE for each video segment as 𝑅ℎ , and its corresponding

formula-based reward as 𝑅𝑓 1. Next, we calculate the reward devi-
ation |𝑅ℎ − 𝑅𝑓 | between these values. We then depict the CDF in
Figure 2, from which we find that, in over 50% of cases, the reward
deviation exceeded 1.92 points. This indicates that a video segment
rated as 3 (i.e., the average level, which can represent 720P video
quality) by users is likely to be evaluated as either very poor quality
(e.g., 1, corresponding to 270P video) or excellent quality (e.g., 5,
equivalent to 1080P video) by the formula. This significant propor-
tion underlines a substantial misalignment between formula-based
rewards and subjective use perceptions. Furthermore, in more than
16% of cases, the difference in rewards exceeds 3. This indicates that
for the same video segment, a quality perceived as low by users
(i.e., 1 point) may often be deemed high quality (i.e., 4 point) by the
formula, and conversely. This further underscores the significant
disparity between formulaic results and human feedback QoE.

To investigate the reasons for the deviations between formula-
based rewards and human feedback QoE, we further examine key
network metrics (e.g., RTT, loss rate) that the reward functions
mostly focus on. Specifically, our analysis indicates that the formula-
based reward aligns with human feedback QoE when it is low.
However, the majority of deviations occur in scenarios where users
provide high ratings, but the formula assigns low scores. This pat-
tern suggests that while the formula can accurately reflect user
dissatisfaction, it fails to correspondingly recognize higher levels of
user satisfaction. Consequently, we illustrate instances where user
scores exceed 4 points in Figure 3. By observing the right region
of Figure 3, we notice that fluctuations in RTT and loss rate signif-
icantly influence the formula-based evaluations. However, minor
changes in RTT and loss rate do not impact user QoE as much,
which leads to considerable deviations in the assessed rewards.

Furthermore, we provide a showcase (Figure 4) to illustrate the
relationships between rewards and network metrics. Specifically, in
the first 3 seconds as shown in Figure 4, the formula-based rewards
remain lower than the user-perceived QoE due to the increasing
trend in network RTT, but the human feedback QoE does not suffer.
Subsequently, the RL agent decreases its bitrate in response to
the low formula-derived rewards, which results in a downturn in
human QoE due to diminished video quality (around 2 seconds

1The formula-based rewards are obtained from the RL-based BCA—Loki [31].
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Figure 5: QoE comparisons
over 6 users.

Figure 6: CDF comparisons of
relative reward deviation.

later). Although the RTT may gradually improve, the slow recovery
causes the bitrate to remain at a low level for about 4 to 6 seconds.
As a result, the QoE continues to be lower in subsequent streaming.
Hence, we infer that inaccuracies in formula-based rewards can
adversely affect the real QoE for a long-term period.

Insight 2: The rigid reward functions fail to accommodate
diverse user QoE. Due to the diverse viewing preferences and
requirements among different users, the level of satisfaction with
the same video segment can vary significantly. To verify this conjec-
ture, we conduct a study involving a set of approximately 200 video
segments, each scored by 6 randomly selected users. The results are
visualized through box plots representing the distribution of ratings
for each user. As depicted in Figure 5, we find that each user has
distinct scoring intervals, confirming the individual variations in
satisfaction levels. Specifically, we further examine the rating QoE
for a particular video segment (referred to as Segment A). As shown
in Figure 5: user-5 and user-3 express high satisfaction, rating Seg-
ment A close to or above the 75-th percentile. In contrast, user-2
and user-1 exhibit lower satisfaction, with ratings falling below
the 50-th and 25-th percentiles, respectively. This indicates that the
"One Size Fits All" approach of rigid reward functions is impractical
to adapt with difference user preferences.

For the aforementioned 4 users, i.e., user-1, user-2, user-3 and
user-5, we plot the CDF of relative reward deviations (shorted as
RRD), which is calculated as |𝑅ℎ − 𝑅𝑓 |/𝑅ℎ . As depicted in Figure
6, it reveals significant differences among users. Furthermore, a
lower RRD suggests that the formula-based rewards more accu-
rately approximate the human feedback QoE. In particular, for the
high-satisfaction users, e.g., user-3 and user-5, it exhibited lower
mean RRD of 0.293 and 0.315, respectively. Conversely, for the low-
satisfaction users, the RRD is 0.665 and 0.595 for user-1 and user-2,
respectively. This validates that when the formula-based rewards
more closely match the human feedback QoE (i.e., a lower aver-
age deviation), the user satisfaction tends to be higher. Conversely,
when they diverged, the satisfaction was lower. Hence, the formula-
based rewards that aligns closely with user preferences can lead to
a better QoE in terms of transmission outcomes. This reinforces the
notion that a more effective reward model has a significant impact
on enhancing user satisfaction.

3 DESIGN
In this section, we first describe the method for aligning actual
human feedback QoE with formula-based rewards (§3.1). Subse-
quently, we detail the adversarial model design of AraLive (§3.2).

3.1 Aligning the granularity of actual human
feedback QoE and formula-based rewards

The objective of AraLive is to train a model that can autonomously
generate adaptive rewards in alignment with actual user QoE. To
accomplish this, we plan to leverage the collected dataset (including
the formula-based reward and network state information) to train
the model. However, we have encountered an issue with the dataset:
there is a significant misalignment in the timestamp granularity
between human feedback on QoE and the formula-based rewards.
Specifically, the former is recorded at a granularity of 2 seconds,
while the latter is recorded based on RTCP-derived network state
at millisecond-level, typically ranging from 50ms to 200ms.

To solve this issue, the simplest alignment method is averaging
all the collected formula-based rewards during the period corre-
sponding to human feedback. However, we find that averaging the
formula-based rewards fails to accurately reflect the network state,
thereby hindering AraLive’s ability to generate adaptive rewards.
Let’s consider a formula-based reward sequence with timestamps
within a 1-second interval: {50ms: 5, 100ms: 5, 150ms: 5, 200ms: 5,
400ms: 25, 700ms: 20, 1000ms: 23}. Then, the average reward is 12.6.
However, the average reward of subsequence from 200ms∼100ms
is 22.7. The significant discrepancy between the two average values
shows that averaging results can dilute the fluctuation of network
state, failing to capture the panoramic variability of the network
conditions.

In order to provide a more accurate depiction of the network
state sequence we apply the duration of each interval as its weight
to calculate a weighted mean, and also align it with human feedback
QoE in terms of time granularity. The specific method is as follows:

𝑅𝑎 =

𝑛∑︁
𝑖=1

𝑡𝑖 − 𝑡𝑖−1
𝑇

× 𝑅𝑖 , (3)

where, 𝑅𝑎 represents the weighted average of the formula-based
rewards, 𝑡𝑖 represents the time when the i-th formula-based re-
ward is generated,𝑇 stands for the period corresponding to human
feedback and 𝑅𝑖 is the actual reward value in time 𝑖 .

Furthermore, during the collection of human feedback, we ob-
serve a memory-oriented behavior. For instance, after viewers have
been exposed to low-bitrate videos for some time, they tend to give
higher feedback when switching to videos of slightly higher bitrate.
Typically, a standard 720P video might receive a feedback score
of 3. However, if users switch from a 360P video to a 720P video,
the feedback score might increase to 4 or even higher. Conversely,
when switching from high-bitrate to low-bitrate videos, viewers of-
ten provide lower feedback. These findings indicate that the actual
user reward is influenced not only by the instantaneous playback
quality but also by the comparative difference to prior video quality.

Inspired by this, our target is to set an indicator to monitor play-
back quality over time, then define a range interval, with variations
beyond this interval signifying substantial changes in video quality.
To implement this, we initially use formula-based rewards from
the past 𝑛 periods to approximate the historical quality of playback.
Recognizing that the relevance of past data decreases over time, we
adjust the weight of these historical rewards to accurately reflect
their impact on the present, which is denoted as 𝑅𝑓 =

∑𝑛
𝑖=1

𝑅𝑖
2𝑛−𝑖+1 .
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We then adopt the standard deviation 𝜎 of the formula-based re-
wards from the past 𝑛 periods to establish the range interval. Next,
we introduce a Dual-weighted reward function that determines the
need for scaling by comparing the formula-based reward within the
current time 𝑅𝑎 against 𝑅𝑓 . This function is formulated as follows:

𝑅𝑑𝑢𝑎𝑙 =


𝛼 · 𝑅𝑎, 𝑅𝑎 > 𝑅𝑓 + 𝜎

𝑅𝑎, 𝑅𝑓 − 𝜎 ≤ 𝑅𝑎 ≤ 𝑅𝑓 + 𝜎

𝛽 · 𝑅𝑎, 𝑅𝑎 < 𝑅𝑓 − 𝜎

, (4)

when 𝑅𝑎 exceeds 𝑅𝑓 + 𝜎 , indicating a notable improvement in play-
back quality, and users tend to rate higher. In this case, we increase
𝑅𝑎 by a factor 𝛼 (default to 2). Conversely, when 𝑅𝑎 falls below
𝑅𝑓 − 𝜎 , indicating a sudden decline in playback quality. Users tend
to indicate lower scores, so we lower 𝑅𝑎 by 𝛽 (default as 0.5). For
values within [𝑅𝑓 − 𝜎 , 𝑅𝑓 + 𝜎], it suggests the playback quality
remains relatively unchanged. Finally, 𝑅𝑑𝑢𝑎𝑙 not only aligns with
human feedback in time granularity but also meets human habits.

Heterogeneity processing of different users. As validated
in §2.2, different users have distinct preferences when they rate
videos, alongside varying scales of scoring ranges. Therefore, we
need to first divide the scoring data of different people into the same
range. We posit that the modal value (i.e.,mode) of ratings provided
by a user effectively reflects their overall preferences. Specifically,
a rating above the mode suggests that a particular aspect of the
video surpasses that of typical content. Conversely, a rating below
the mode suggests a deficiency, such as a lag or a bitrate reduction.
Therefore, by using themode of each user’s ratings as a benchmark,
we standardize the ratings across different individuals to ensure
a uniform assessment framework. We initially align the mode of
different users’ ratings and then adjust the remaining ratings ac-
cording to their deviation from the mode, effectively normalizing
the scores across different users into a comparable range. It can be
formulated as follows,

𝑅ℎ =

{
Mode + (up−Mode) · 𝑅ℎ−Mode(𝑅𝐻 )

Max(𝑅𝐻 )−Mode(𝑅𝐻 ) , 𝑅ℎ ⩾ Mode(𝑅𝐻 )
Mode − (Mode−low) · Mode(𝑅𝐻 )−𝑅ℎ

Mode(𝑅𝐻 )−Min(𝑅𝐻 ) , 𝑅ℎ < Mode(𝑅𝐻 )
(5)

where up and low denote the upper and lower limits of the scoring
range. Mode represents the average mode of different users’ ratings.
𝑅ℎ denotes a single human feedback, while 𝑅𝐻 represents the feed-
back cluster by a user. Max(𝑅𝐻 ), Mode(𝑅𝐻 ), Min(𝑅𝐻 ) respectively
stand for the maximum, mode, and minimum values of a user’s
ratings.

3.2 Adaptive Reward learning design
Big picture of AraLive model. In this paper, we aim to devise
an automatic reward model that automatically aligns more closely
with human feedback QoE by fully leveraging the network state
information. The automatic reward model design is illustrated in
Figure 8. Specifically, we utilize the network state (i.e., video quality,
RTT, and loss rate) and formula-based rewards as inputs, employ-
ing actual human feedback as labels for supervised learning. This
approach enables the adaptive reward model to learn the implicit
relationship between network states and human preferences. Con-
sequently, the model is capable of generating rewards that align
with human QoE across varying network conditions.

Strawman solutions. Given the dataset’s network states are
continuous time series, our initial focus is on the RNN model [20].

Figure 7: AraLive’s model architecture.

By feeding sequences of network states into the model and using as-
sociated human feedback as labels for supervised learning, we hope
to uncover the implicit relationships among input metrics. However,
as will be validated in §4.3, we discovered that the RNN model can
maintain consistency with the general trends of human feedback.
However, it falls short of identifying minor changes in human feed-
back that result from slight fluctuations in the network state. We
also explored utilizing a classic CNN model as the backbone model
for AraLive’s automatic reward learning. However, as detailed in
§4.3, this approach appears prone to overfitting the specifics of
network state changes, leading to suboptimal performance.

AraLive: Achieving automatic reward adaption through
adversarial learning. For AraLive, we hope that it can recognize
both human feedback trends and fine-grained network fluctuations.
To achieve this goal, we employ the principle of adversarial learning
[11] to synergize the capabilities of the two models. Specifically,
we designate the RNN model as the generator and the CNN model
as the discriminator. During training, the generator aims to mimic
human feedback to create adaptive rewards that are indistinguish-
able from the discriminator; meanwhile, the discriminator evaluates
whether the results it receives are actual human feedback or gener-
ated by the generator. The RNN model’s advantage lies in its ability
to rapidly ascertain the approximate scope of human feedback based
on network states. Subsequently, it refines the minutiae of human
feedback fluctuations through feedback from the discriminator’s
evaluations. This adversarial process facilitates a dynamic learning
environment where both models enhance each other, leading to
more accurate emulation of human feedback in AraLive. Through
the iterative training process, the generator progressively refines
its outputs to closely approximate actual human feedback, thereby
minimizing the deviations in its generated results. Concurrently,
the discriminator enhances its ability to discern, compelling the
generator to learn and adapt to the finer details. Next, we give more
details about AraLive’s model design (Figure 7).

AraLive’s input and output. The input of the generator is net-
work state sequence including video bitrate, loss rate, RTT, formula-

based reward, denoted as 𝑆𝑡 = {
→
𝑏𝑡 ,

→
𝑙𝑡 ,

→
𝑟𝑡 , 𝑅𝑑𝑢𝑎𝑙 }. The model first out-

puts the probability distribution of rewards and selects the reward
with the highest probability as the final result, denoted as 𝑅𝑔 . The
discriminator inputs network state information 𝑆 and correspond-
ing human feedback or generator’s results, the human feedback
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Figure 8: AraLive’s automatic reward learning design.

corresponds to label 1, and the generator’s result corresponds to
label 0, outputs the credibility of this corresponding value as human
feedback. Moreover, the statistics of the collected dataset show that
60% of the intervals between two adjacent network state sequences
are around 200ms, 20% of the intervals are around 100ms, even 5% of
them are around 50ms. Uneven intervals may make it more difficult
for AraLive to capture the characteristics of network state. There-
fore, we want to handle these records, ensuring that network state
information is evenly distributed within 2s as well as maintaining
detailed fluctuation trends. We find that the minimum interval is
10ms, and the maximum interval is 0.2 s. So, as illustrated in Figure
9, we divide the 2-second period into 10 averaged segments, each
with 0.2 s intervals, and the averaged states within each segment
are regarded as the new network state.

AraLive’s model architecture. AraLive is built upon the prin-
ciples of adversarial learning. In particular, we employ two different
model architectures, each tailored to the specific functions Genera-
tor and Discriminator, ensuring that AraLive can effectively learn
and adapt to the complexities of video streaming optimization.

(i) Generator’s model architecture. The input 𝑆𝑡 = {
→
𝑏𝑡 ,

→
𝑙𝑡 ,

→
𝑟𝑡 , 𝑅𝑑𝑢𝑎𝑙 }

is initially transformed into a vector format to facilitate processing
by an RNN. Subsequently, this vector is fed into 10 cascaded time
steps. The output from each time step, after being activated by the
ReLU function, is concatenated and then passed into a 3-layer feed-
forward network. This network consists of layers with 256, 128, and
64 neurons, respectively. The ultimate output is a representation of
the probability that each score aligns with human feedback.

(ii) Discriminator’s model architecture. The discriminator first

inputs the three metrics,
→
𝑏𝑡 ,

→
𝑙𝑡 ,

→
𝑟𝑡 to three 1D convolutional layers,

separately. Each convolutional layer uses a convolution kernel of 3,
with a step size of 1, and an output channel of 3. Subsequently, the
outputs of different convolutional layers, 𝑅𝑑𝑢𝑎𝑙 , and reward value
(human feedback or generator’s results) are concatenated into a 1D
vector, which is then processed by a 3-layer feed-forward network.
The output represents the confidence level of the reward value.

Loss function of AraLive. To leverage the discriminator’s as-
sessments for guiding the generator, we employ the discriminator’s
evaluation of the generator’s outputs as a loss function. More specif-
ically, we employ the discriminator to provide a confidence level
for each potential reward value, thereby generating a probability
distribution of rewards. Following this, the difference between the
probability distributions generated by the generator and the dis-
criminator is calculated, which serves as the loss function for the

Figure 9: The average values of each 0.2s interval are regarded
as the new network state sequences.

generator and is defined as follows:

𝐿𝐺 =
∑︁
𝑥

𝐺 (𝑆) ·
����log

min(𝐺 (𝑆), 𝐷 (𝑥))
max(𝐺 (𝑆), 𝐷 (𝑥)

���� , (6)

𝐺 represents the generator, 𝑆 represents the input of the generator,
𝑥 is a reward value. 𝐷 represents the discriminator, which outputs
the confidence level of 𝑥 . When the probability distribution output
by generator is closer to discriminator, the loss value is smaller,
which indicates that the results generated by the generator are
closer to human feedback.

The input of discriminator can be divided into two parts: actual
human feedback and the result of generator. The discriminator
should be able to distinguish it. In particular, when the input is
human feedback, the output should be as close as possible to 1, and
when the input is generator’s result, the output should be as close
as possible to 0. Therefore, the loss function of the discriminator is
designed as follows:

𝐿𝐷 = 𝛼 · (𝑦 · log𝐷 (𝑥) + (1−𝑦) · log(1−𝐷 (𝑥))) +𝛽 ·
���� 𝑅ℎ − 𝑥

1 − 𝐷 (𝑥)

���� , (7)
where 𝑥 represents the reward value we need to determine the
confidence level, and 𝑦 represents the label corresponding to 𝑥 .
𝑅ℎ represents human feedback reward. The first item calculates
the difference between the output result and the label, and the
second item is to make the model output different results for human
feedback and the result of the generator, imposing penalties to
make the confidence in the result of generator closer to 0. 𝛼 and 𝛽

represent the ratios of the two items in the overall loss function.

4 EVALUATION
In this section, we first detail the experiment methodology, then
evaluate AraLive’s benefits mainly in the live video streaming
scenarios, comparing it against a series of state-of-the-art bench-
marks. Finally, we delve deeper into the key modules of AraLive to
understand how they automatically generate human-like rewards.
4.1 Experiment methodology
Baselines: (i) Loki [31], an RL-based bitrate adaptation algorithm,
innovatively combines learning-based and rule-based BCAs for op-
timizing live streaming performance. (ii) OnRL [32], a PPO-based
[22] BCA, operates on the principle of dynamically updating bi-
trates in an online manner, guided by the instantaneous state of
the network. In particular, we have substituted Loki’s and OnRL’s
formula-based reward functions as AraLive, and they are renamed
as Loki-AraLive and OnRL-AraLive. The live streaming system
is built upon WebRTC framework [1]. We also validate AraLive
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(a) Video bitrate (b) Frame rate (c) Frame jitter (d) Stall rate

Figure 10: Overall QoE comparisons in live video streaming scenarios.

(a) weak network (b) weak network (c) robust network (d) robust network

Figure 11: Network breakdown comparison in live video streaming scenarios.

in the traditional VoD scenarios, comparing it with Pensieve [21],
Fugu [28], and MPC [30]. The detailed comparisons are described
in the Supplementary Materials.

Dataset, scales and evaluation metrics: We utilize the col-
lected user assessment dataset described in §2.2 to evaluate AraLive’s
performance. Specifically, 80% of the dataset is allocated for training
AraLive’s model, while the remaining 20% is reserved for testing
and validation. For the live video streaming scenarios, we con-
duct over 100 sessions, with each session lasting over 20 minutes,
amounting to a total of over 45 hours of streaming. Moreover, our
evaluation primarily focuses on application layer metrics such as
video bitrate, frame rate, fame jitter, and stall rate.

4.2 Overall performance comparison
Figure 10 illustrates the QoE metrics between AraLive and its
benchmarks in live streaming scenarios, which reveals notable
improvements when AraLive is utilized as the reward function.
For example, when compared to OnRL, OnRL-AraLive achieves
a 4.8% increase in bitrate, 3.3% enhancement in frame rate, 11.6%
reduction in frame jitter, and 50.9% decrease in stall rate. Similarly,
Loki-AraLive shows a 9.6% boost in bitrate, 11.2% decrease in frame
jitter, and a 3.5% reduction in stall rate while maintaining a compara-
ble frame rate to Loki. Among these improvements, Loki-AraLive
stands out in nearly all metrics than OnRL-AraLive, which can
be attributed to OnRL-AraLive adopting a more conservative ap-
proach in its decision-making process, opting for a lower bitrate to
minimize stall rate. We’ve also assessed the overhead implications.
Specifically, compared to OnRL, OnRL-AraLive incurs a 0.4% in-
crease in memory usage. Similarly, compared to Loki, Loki-AraLive

has a 0.4% increase in memory consumption, which is considered
acceptable for typical neural network model deployment.

Network condition breakdown. We categorize live streaming
sessions into two groups based on their varying network condi-
tions: robust network for sessions with consistent, high throughput
(taking a fraction of 35%); and weak network for those experienc-
ing lower throughput and significant variability (taking a fraction
of 65%). The comparisons are shown in Figure 11. Our analysis
shows that AraLive significantly bolsters OnRL and Loki’s per-
formance, notably in lowering stall rates and frame jitter without
negatively impacting frame rate. This improvement is particularly
remarkable in weak network sessions, highlighting AraLive’s effec-
tiveness in optimizing QoE under challenging conditions. Specifically,
in weak network sessions, when compared to OnRL, OnRL-AraLive
achieves a 13.3% increase in frame rate, a 10.6% reduction in frame
jitter, a significant 41.3% decrease in stall rate, and a modest 3.6%
improvement in bitrate. Similarly, Loki-AraLive outperforms Loki
by increasing the bitrate by 22.9%, and reducing the stall rate and
frame jitter by 10.3% and 16.0%, respectively. This performance
enhancement is attributed to AraLive’s ability to more accurately
gauge the appropriateness of current bitrate decisions for the net-
work’s dynamic fluctuations, enabling OnRL and Loki to makemore
informed and effective adjustments. In robust network sessions,
AraLive also helps OnRL and Loki achieve a certain degree of QoE
improvements.

4.3 In-depth understanding AraLive
Performance of AraLive’s adaptive reward.We further evalu-
ate AraLive’s abilities to align with actual human feedback QoE.
Initially, we calculate the deviations of AraLive’s output 𝑅𝑔 and the
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Figure 12: The reward devi-
ation generated by AraLive
or formula-based function.

Figure 13: The reward de-
viation comparisons of dif-
ferent models.

formula-based reward 𝑅𝑓 as mentioned in § 2.1, in comparison to
actual user feedback QoE 𝑅𝑎 . As depicted in Figure 12, the ratings
𝑅𝑔 generated by AraLive closely mirror user feedback, whereas
the formula-derived 𝑅𝑓 exhibit a significant deviation. Specifically,
70.1% of the deviations from AraLive are within 0.5, and 97.3% are
within 1.5. In contrast, only 15.3% of formula-based reward errors
are within 0.5, and 61.2% fall within 1.5. Figure 14 showcases the vi-
sualization of AraLive compared to formula-based rewards, which
illustrates that AraLive consistently delivers high video quality.

Comparisons of different NN structures. Figure 13 shows the
performance of using RNN and CNN for human feedback adaption.
We can observe that both RNN and CNN models can better fit the
human feedback than the purely formula-based reward function
but still underperform than AraLive. For instance, 50% of the RNN
model’s results have an error exceeding 0.514, and for the CNN
model, 50% of results have an error greater than 0.532. In compari-
son, AraLive demonstrates a more refined accuracy, with 50% of its
results having an error of just 0.239. Moreover, at a 95% confidence
level, the error in AraLive’s results is reduced by 19.8% and 37.7%
compared to the RNN and CNN models, respectively.

5 RELATEDWORK
Video streaming transmission. Driven by the rising demand
for instant content delivery, video streaming has evolved from tra-
ditional on-demand (VoD) to encompass real-time and live video
streaming. Unlike VoD, live video streaming requires instant gen-
eration and transmission, necessitating agile processing to handle
millisecond–level lower latency [19, 34]. Traditionally, VoD services
commonly adopt the Adaptive Bitrate (ABR) algorithms to manage
the video bitrate [15]. Notable examples include Cubic [12], BBR
[5], MPC [30], Remy [26], Pensieve [21] and TCP-RL [17]. In recent
years, with the advancement of Internet instruction and stringent
low-latency streaming requirements, many studies have shifted
to the Real-Time Communication (RTC) protocol [23], employing
the widely adopted WebRTC framework [1] for streaming. The
state-of-the-art algorithms include GCC[6], Orca[4], OnRL [32],
Loki[31], R-FEC[18] etc. In this paper, we have validated AraLive’s
performance not only in classic VoD services but also in the latest
live streaming scenarios.

Learning-based bitrate control algorithms. The rapid ad-
vancement of machine learning (ML) [13, 16] has led to the domi-
nance of learning-based bitrate control algorithms in managing and
controlling video bitrates. Remy [26] was pioneering in integrating

Figure 14: AraLive consistently delivers high video quality
than the formula-based rewards.

ML, specifically a table-based Markov model, into ABR algorithms.
This initiated a wave of learning-based solutions for bitrate con-
trol in both VoD and live streaming contexts, including PCC [7],
PCC-Vivace [8], TCP-RL [17], Pensieve [21], Indigo [29], Fugu [28],
Orca [4], Onrl[32], Loki [31], etc. The core components of these
algorithms can be categorized into two main parts. The first is to
customize-design a specific neural network model, which utilizes
the history network state as its input to make bitrate decisions.
The second involves the configuration of the reward functions,
which directs the decision-making process of the neural network.
Typically, this function is a linear transformation of crucial net-
work or QoE metrics. For example, the objective of Orca’s reward
[4, 10] is designed to minimize loss and latency while maximizing
throughput based on a linear function. However, this approach
cannot adequately account for the nuanced aspects of transmis-
sion QoE and also cannot adapt well to user-specific preferences
(as validated in §2). The most latest work, Jade [14], is the first
attempt to use human QoE as the reward function in RL models.
Yet, AraLive distinguishes itself from Jade in two key aspects: (i)
Jade is specifically tailored for VoD scenarios using ABR algorithms,
making adjustments at the chunk level with second-level granular-
ity. In contrast, the adjustments in live streaming of AraLive need
millisecond-level. (ii) Jade primarily addresses QoE considerations
at the application layer, whereas AraLive extends its focus to en-
compass both the application and transport layers, necessitating
a unique model design for AraLive. More detailed comparisons
of AraLive with representative ABR algorithms are shown in the
Appendix materials.

6 CONCLUSION
In this paper, we have designed AraLive, an automatic reward learn-
ing solution that can adapt with diverse network environments
and meet diverse viewer preferences. Practical deployment and
massive evaluation on real video system demonstrate that AraLive
can significantly enhance the QoE in comparison with state-of-
the-art bitrate control algorithms. This advancement effectively
addresses common concerns regarding the reliability of learning-
based solutions, thus paving the way for their broader integration
into commercial real-time video streaming systems. We think that
the idea of AraLive signifies a significant step toward the wide-
spread adoption of learning-based algorithms in the multimedia
and networking community.
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