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Abstract
Deep Neural Nets (DNNs) have become a per-
vasive tool for solving many emerging problems.
However, they tend to overfit to and memorize
the training set. Memorization is of keen interest
since it is closely related to several concepts such
as generalization, noisy learning, and privacy. To
study memorization, Feldman (2019) proposed a
formal score, however its computational require-
ments limit its practical use. Recent research has
shown empirical evidence linking input loss cur-
vature (measured by the trace of the loss Hessian
w.r.t inputs) and memorization. It was shown to be
∼ 3 orders of magnitude more efficient than calcu-
lating the memorization score. However, there is
a lack of theoretical understanding linking mem-
orization with input loss curvature. In this paper,
we not only investigate this connection but also
extend our analysis to establish theoretical links
between differential privacy, memorization, and
input loss curvature. First, we derive an upper
bound on memorization characterized by both dif-
ferential privacy and input loss curvature. Second,
we present a novel insight showing that input loss
curvature is upper-bounded by the differential pri-
vacy parameter. Our theoretical findings are fur-
ther validated using deep models on CIFAR and
ImageNet datasets, showing a strong correlation
between our theoretical predictions and results
observed in practice.

1. Introduction
Machine learning and deep learning approaches have be-
come state-of-the-art solutions in many learning tasks such
as computer vision, natural language processing, etc. How-
ever, Deep Neural Nets (DNNs) are prone to over-fitting
and memorization. An increasingly larger number of recent
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Figure 1. Our theoretical framework provides upper bounds in
Theorems 5.1, 5.3, and 5.4. These are visualized as links between
Differential Privacy, Memorization, and Input Loss Curvature.

literature has focused on understanding memorization in
DNNs (Zhang et al., 2017; Arpit et al., 2017; Carlini et al.,
2019; Feldman & Vondrak, 2019; Feldman & Zhang, 2020;
Feldman, 2019). This is crucial given the implications to
several connected areas such as generalization (Zhang et al.,
2021; Brown et al., 2021), noisy learning (Liu et al., 2020),
identifying mislabelled examples (Maini et al., 2022), iden-
tifying rare and hard examples (Carlini et al., 2019), privacy
(Feldman, 2019), risks from membership inference attacks
(Shokri et al., 2017; Carlini et al., 2022) and more.

To study memorization several metrics have been suggested.
Carlini et al. (2019) proposed a combination of five metrics
to analyze memorization. Alternatively, Jiang et al. (2020)
proposed using a computationally efficient proxy to C-score,
a metric closely related to the stability-based memoriza-
tion (Feldman, 2019). The stability-based memorization
score proposed by Feldman (2019) measures the change in
expected output probability when the sample under investi-
gation is removed from the training dataset. Additionally,
unlike other proposed metrics, Feldman (2019) provides a
strong theoretical framework for understanding memoriza-
tion. This theory was then tested in practice in a subsequent
paper (Feldman & Zhang, 2020). However, their method
involved training thousands of models and is thus computa-
tionally infeasible in most real applications.

In a recent paper, Garg et al. (2023) suggested a new proxy
using input loss curvature to measure the stability-based
memorization score proposed in Feldman (2019). To mea-
sure input loss curvature they suggested using the trace of
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(a) Low curvature examples from ImageNet. (b) High curvature examples from ImageNet.

Figure 2. Images from ImageNet ranked using input loss curvature. Input loss curvature was obtained using a single ResNet18 trained
on ImageNet. Ten lowest curvature samples (left) and ten highest curvature samples (right) from the training set are visualized for 5
classes (each row is a class) from ImageNet. Low curvature samples are ‘prototypical’ of their class, while high curvature samples are
rare, difficult, and more likely memorized instances.

the loss Hessian with respect to the input. Using this input
loss curvature measurement, they provided evidence on the
link between memorization and input loss curvature. They
obtained high cosine similarity between input loss curvature
and memorization scores from Feldman & Zhang (2020)
while being ∼ 3 orders of magnitude less compute-intensive.
To illustrate the savings we reproduced Garg et al. (2023)’s
results on ImageNet and visualized the ten lowest and high-
est curvature samples in Figure 2. These examples were
obtained using a single ResNet18 model trained on Ima-
geNet, compared to 1000’s of models trained by Feldman &
Zhang (2020) to compute memorization scores. From Fig-
ure 2, we see that low curvature samples are ‘prototypical’
of their class. While high curvature samples are drawn from
rare, hard, or outlier examples which are more likely to be
memorized.

Input loss curvature is thus, a promising proxy for stability-
based memorization score. However, there is a lack of
theoretical understanding of the link between memoriza-
tion, and input loss curvature. In this paper, we develop a
theoretical framework to understand this observation and
formally unveil the connections between memorization and
input loss curvature. Further, we explore the relationship be-
yond memorization and input loss curvature, our theoretical
contributions reveal the underlying link between differen-
tial privacy (Dwork et al., 2006), memorization (Feldman,
2019), and input loss curvature (Garg et al., 2023). We
present the links as three theorems. The first links memo-
rization and input loss curvature, and the second theorem
links input loss curvature and differential privacy. The third
theorem links differential privacy and memorization. These
links are visualized in Figure 1. Each of the three theoretical
links developed in this paper is corroborated by evidence
obtained on DNNs used for vision classification tasks (code
available at this github link).

In summary, the main contributions of this paper are given
below:

• We develop a theoretical framework for analyzing input

loss curvature and memorization in a general learning
setting and demonstrate its implications to DNNs.

• We show that memorization is upper bounded by (a)
input loss curvature and (b) relevant privacy parame-
ters. We also show that input loss curvature is also
upper bounded by privacy, completing the theoretical
links between memorization, privacy, and input loss
curvature.

• We verify the theoretical results with extensive exper-
iments on vision classification tasks using DNNs on
CIFAR100 and ImageNet datasets.

• We obtain a tighter bound on private learnability.
Namely, we establish that ϵ-differential privacy implies
L(1− e−ϵ) stability, thereby improving the previous
theoretical bound.

2. Preliminaries and Notation
Consider a supervised learning problem where the goal
is to learn a mapping from some input space X ⊂ Rd

to an output space Y ⊂ R. The learning is performed
using a randomized algorithm A on a training set S. A
randomized algorithm employs a degree of randomness as
a part of its logic. The training set S contains m elements.
Each element zi = (xi, yi) is drawn from an unknown
distribution D, where zi ∈ Z, xi ∈ X , yi ∈ Y and Z =
X × Y . Thus we define the training set S ∈ Zm as S =
{z1, · · · , zm}. We assume m ≥ 2. Another very relevant
concept is adjacent datasets. Adjacent datasets are obtained
when the ith element is removed. This is sometimes referred
to as a leave-one-out set defined as

S\i = {z1, · · · , zi−1, zi+1, · · · , zm}.

Related to adjacent (a.k.a neighboring) datasets is the dis-
tance between datasets. The distance between any two
datasets S, S′ denoted by ∥S − S′∥1 is a measure of how
many samples differ between S and S′. Note, ∥S∥1 denotes
the size of a dataset S.
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A randomized learning algorithm A when applied on a
dataset S results in a hypothesis denoted by hϕ

S = A(ϕ, S),
where ϕ ∼ Φ is the random variable associated with the ran-
domness of the algorithm A. A cost function c : Y × Y 7→
R+ is used to measure the performance of the hypothesis.
The cost of the hypothesis h at a sample zi is also referred
to as the loss ℓ at zi defined as

ℓ(h, zi) = c(h(xi), yi).

In most cases, we are interested in the loss of h over the data
distribution, which is referred to as population risk defined
as

R(h) = Ez∼D[ℓ(h, z)].

Since the data distribution D is unknown in general, it is
common to evaluate and study the empirical risk defined as

Remp(h, S) =
1

m

m∑
i=1

ℓ(h, zi), zi ∈ S.

In this paper, our characterization of curvature involves the
gradient and the Hessian of the loss with respect to the
input data, which is denoted using the ∇ and ∇2 operators
respectively. ∥a∥ denotes the ℓ2 norm of a.

3. Background
Differential Privacy was introduced by Dwork et al. (2006)
and here we briefly recall the definition. A randomized
algorithm A with domain Zm is ϵ-differentially private if
for all R ⊂ Range(A) and for all S, S′ ∈ Zm such that
||S − S′||1 ≤ 1

Pr
ϕ
[hϕ

S ∈ R] ≤ eϵ Pr
ϕ
[hϕ

S′ ∈ R], (1)

where the probability is taken over the randomness arising
from the algorithm A, ϕ ∼ Φ.

Memorization of the ith element zi = (xi, yi) of the
dataset S by an algorithm A was defined by Feldman (2019)
using the notion of stability as:

mem(A, S, i) = Pr
ϕ
[hϕ

S(xi) = yi]− Pr
ϕ
[hϕ

S\i(xi) = yi],

(2)

where the probability is taken over the randomness of algo-
rithm A.

Error Stability of a possibly randomized algorithm A for
some β > 0 is defined as Kearns & Ron (1997)

∀i ∈ {1, · · · ,m},
∣∣∣Eϕ,z[ℓ(h

ϕ
S , z)]− Eϕ,z[ℓ(h

ϕ
S\i , z)]

∣∣∣ ≤ β,

(3)

where z ∼ D and ϕ ∼ Φ.

Generalization. A randomized algorithm A is said to gen-
eralize with confidence δ and a rate γ′(m) if

Pr[|Remp(h, S)−R(h)| ≤ γ′(m)] ≥ δ. (4)

Uniform Model Bias. The hypothesis h resulting from
the application of algorithm A to learn the true conditional
h∗ = E[y|x] from a dataset S ∼ Dm has uniform bound on
model bias given by ∆ if

∀S ∼ Dm,
∣∣∣Eϕ[R(hϕ

S)−R(h∗)]
∣∣∣ ≤ ∆. (5)

ρ-Lipschitz Hessian. The Hessian of ℓ is Lipschitz con-
tinuous on Z if ∀z1, z2 ∈ Z , and ∀h ∈ Range(A) if there
exists some ρ > 0 such that

∥∇2
z1ℓ(h, z1)−∇2

z2ℓ(h, z2)∥ ≤ ρ∥z1 − z2∥. (6)

Input Loss Curvature. Using the notation of curvature
from Moosavi-Dezfooli et al. (2019); Garg et al. (2023),
input loss curvature is defined as the sum of the eigenval-
ues of the Hessian H of the loss with respect to input zi,
conveniently it can be written using the trace as

Curvϕ(zi, S) = tr(H) = tr(∇2
ziℓ(h

ϕ
S , zi)) (7)

υ-adjacency. A dataset S is said to contain υ-adjacent
(read as upsilon-adjacent) elements if it contains two ele-
ments zi, zj such that zj = zi + α for some α ∈ Bp(υ)
(read as υ-Ball). Note that this can be ensured through
construction. Consider a dataset S′ which has no zj s.t
zj = zi+α; zj , zi ∈ S′. Then we can construct S such that
S = {z | z ∈ S′} ∪ {zi + α} for some zi ∈ S′, α ∈ Bp(υ),
ensuring υ-adjacency holds.

4. Related Work
Input Loss Curvature is a measure of the sensitivity of the
model to a specific input. Loss curvature with respect to
weight parameters has received significant attention (Keskar
et al., 2017; Wu et al., 2020; Jiang* et al., 2020; Foret
et al., 2021; Kwon et al., 2021; Andriushchenko & Flam-
marion, 2022), recently regarding its role in characterizing
the sharpness of a learning objective and its connection to
generalization. However, input loss curvature has received
less focus. Input loss curvature has been studied in the con-
text of adversarial robustness (Fawzi et al., 2018; Moosavi-
Dezfooli et al., 2019), coresets (Garg & Roy, 2023) and
recently as a proxy for memorization (Garg et al., 2023).
Moosavi-Dezfooli et al. (2019) showed that adversarial train-
ing decreases the curvature of the loss surface with respect
to inputs. Further, they provided a theoretical link between
robustness and curvature and proposed using curvature reg-
ularization. Garg & Roy (2023) identified samples with
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low curvature as being more data-efficient and developed
a coreset identification and training algorithm based on in-
put loss curvature. In an interesting application of input
loss curvature, Garg et al. (2023) provided evidence linking
memorization and input loss curvature.

Memorization has garnered increasing research effort with
several recent works aiming to add to the understanding of
memorization and its implications (Zhang et al., 2017; Arpit
et al., 2017; Carlini et al., 2019; Feldman & Vondrak, 2019;
Feldman, 2019; Feldman & Zhang, 2020; Maini et al., 2022;
Garg et al., 2023; Lukasik et al., 2023). The motivation
for studying memorization stems from a variety of goals
ranging from deriving insights into generalization (Zhang
et al., 2017; Toneva et al., 2019; Brown et al., 2021; Zhang
et al., 2021), identifying mislabeled examples (Pleiss et al.,
2020; Maini et al., 2022), and identifying challenging or
rare sub-populations (Carlini et al., 2019), to understanding
privacy (Feldman, 2019) and robustness risks from mem-
orization (Shokri et al., 2017; Carlini et al., 2022). While
several metrics have been proposed to study memorization
(Carlini et al., 2019; Jiang et al., 2020), the stability-based
memorization score proposed by Feldman (2019) provides a
framework to understand memorization (Feldman & Zhang,
2020). However, since the score proposed by Feldman
(2019) is computationally expensive, Garg et al. (2023) pro-
posed using input loss curvature as a more compute-efficient
proxy. In this paper, we develop the theoretical framework
to understand the links between input loss curvature, memo-
rization, and differential privacy.

Influence Functions were applied to deep learning by Koh
& Liang (2017) and are closely related to memorization. In-
fluence functions aim to identify the impact of one training
point on the model predictions. Influence functions try to
answer the counterfactual: what would have happened if
a training point were absent, or if its values were changed
slightly? While recent approaches (Schioppa et al., 2022)
have applied influence functions to large deep models, in-
fluence functions have been criticized (Basu et al., 2021;
Bae et al., 2022; Schioppa et al., 2023) since the underlying
theory assumes strong convexity and positive definiteness
of the Hessian, conditions that are not met in the context
of DNNs. On the other hand, the theoretical framework we
present in this paper does not make any assumptions about
the convexity or the definiteness of the Hessian and is more
suitable for studying deep learning.

5. Linking Privacy, Memorization and Input
Loss Curvature

In this section, we discuss our theoretical contributions as
three links. First, we present Theorem 5.1 which links
memorization and curvature. Second, we present Theorem
5.3 which links privacy and curvature. Finally, we present

Theorem 5.4 which links memorization and privacy.

5.1. Memorization and Input Loss Curvature

The association between memorization and input loss curva-
ture may initially appear counterintuitive at first, but a closer
examination reveals a fundamental connection. Both met-
rics intrinsically capture the sensitivity of a model to input
perturbations. Here we provide a theoretical link between
memorization and input curvature in the form of Theorem
5.1. Theorem 5.1 is one of our core contributions.

Theorem 5.1 (Curvature Upper Bounds Memorization). Let
the assumptions of error stability 3, generalization 4, and
uniform model bias 5 hold and assume the υ-adjacency of
the dataset and that the loss is bounded such that 0 ≤ ℓ ≤ L.
Then with probability at least 1− δ it holds

|mem(A, S, i)| ≤
1

L
Eϕ[Curvϕ(zi, S

\i)] + c1 (8)

c1 =
ρ

6L
Eα[∥α∥3] +

mβ

L
+

(4m− 1)γ

L
+

2(m− 1)∆

L
(9)

Sketch of Proof. Using the result from Nesterov & Polyak
(2006) we obtain an upper bound on the loss at zj involving
the Hessian of the loss. By choosing α such that E[α] = 0
we get rid of the first-order terms. Then by taking expecta-
tion over the randomness of the algorithm and then perform-
ing algebraic manipulation we can show that the expected
difference in loss at zi for two different models is upper
bound by the result in Theorem 5.1. The final step is to
make the connection that for bounded loss, the difference
in loss at zi for two different models is a scaled version of
memorization. The full proof is provided in Appendix A.3.

Interpreting the Theory. Theorem 5.1 (Equation 8) in-
dicates a linear relationship between memorization and
input loss curvature. Observe that the upper bound is de-
pendent on the input loss curvature of a sample zi and the
offset factor c1. However, the offset factor c1 is data in-
dependent, i.e. c1 has no dependence on zi. The offset
factor c1 (Equation 9) consists of the following components.
The third moment of the perturbation random variable α,
which is a measure of the skewness of the distribution. By
choosing the distribution of α carefully, e.g. a centralized
Gaussian, this can be made zero. The second and third terms
of Equation 9 are properties of the training algorithm, i.e.
the algorithm’s stability β and ability to generalize γ. The
last term is dependent on model bias ∆. Thus c1 is roughly

c1 = Stability + Generalization + Model Bias

To answer the question, ‘How tight is the upper bound?’,
we use evaluation of curvature and memorization scores in
Section 6.3 and find that the linear relationship from Equa-
tion 8 does hold true. We briefly and qualitatively discuss
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the validity of our assumptions in practical settings. Re-
search (Hardt et al., 2016) has shown that using stochastic
gradient methods (such as stochastic gradient descent) to
train models attains small generalization error. Further, it
has been shown that stochastic gradient is uniformly sta-
ble (Hardt et al., 2016). Thus the assumptions of stability
(Equation 3) and generalization (Equation 4) are reason-
able. Model bias is a property of the model, and a uniform
bound across different datasets seems reasonable. And fi-
nally, the υ-adjacency can be ensured through construction.
In practice, this might not be needed because the size of
the ball Bp(υ) is unconstrained. Thus, two samples from
the same class that are ‘similar’ may be sufficient to satisfy
this requirement (note that this will result in a non-zero first
term of Equation 9). With the size of modern datasets, this
assumption is also reasonable.

Remark. Without assuming loss boundedness, we can state
Theorem 5.1 for cross-entropy replacing L with 1, if

∀h ∈ Range(A),∀k 0 < Pr[h(xk) = yk] < 1.

Note the boundary condition that probability cannot be ex-
actly 0 or 1. This is a reasonable assumption in a practical
setting. The proof is provided in Appendix A.4. The main
takeaway is that when the loss is bounded the expected
difference in loss is the same as the memorization score,
however when the loss is cross entropy the expected differ-
ence in loss upper bounds the memorization score.

5.2. Privacy and Input Loss Curvature

In this section, we present the second link between input
loss curvature and privacy. To make the connection between
input curvature and privacy we leverage stability. To estab-
lish the curvature-privacy link we first present Lemma 5.2
which links the stability constant and privacy. In doing so,
we further improve the bounds in Wang et al. (2016), from
L(eϵ − 1) to L(1− e−ϵ).

Lemma 5.2 (Privacy =⇒ Stability). Assume boundedness
of the loss, i.e., 0 ≤ ℓ ≤ L. Then, any ϵ-differential private
algorithm satisfies L(1− e−ϵ)-stability.

Sketch of Proof We start with the difference in the expected
loss of adjacent datasets. Next, we assume that models
resulting from training on S and S\i for some i have distri-
butions p and p′, respectively. We use the properties of the
expectation operator to expand the resultant terms. Next, by
upper bounding the expectation using loss boundedness and
performing some algebraic manipulations we arrive at the
result. The full proof is provided in Appendix A.5.

Here we present our second main contribution in the form
of Theorem 5.3 linking privacy and input loss curvature.

Theorem 5.3 (Privacy =⇒ Low Input Loss Curvature).
Let A be a randomized algorithm which is ϵ-differentially

private and the assumptions of error stability 3, general-
ization 4, and uniform model bias 5 hold. Further, assume
0 ≤ ℓ ≤ L. Then for two adjacent datasets S, S\i ∼ D
with a probability at least 1− δ we have

Ez,ϕ[Curvϕ(z, S)] ≤ L(m+ 1)(1− e−ϵ) + c2 (10)

c2 = (4m− 1)γ + 2(m− 1)∆ +
ρ

6
E[∥α∥3] (11)

Sketch of Proof Starting at Lemma A.4 we take the expecta-
tion over z, then we use the stability assumption. Rearrang-
ing the expressions and using Lemma 5.2 we arrive at the
result. The full proof is provided in Appendix A.7.

Interpreting Theorem 5.3. Focusing on Equation 10,
we see that a stronger privacy guarantee ensures reduced
average input loss curvature. To validate the tightness
of the bound we use evaluations of curvature and pri-
vacy in Section 6.4. Similar to Theorem 5.1, c2 can
be thought of as having two components, the generaliza-
tion term γ and the model bias term ∆. By choosing α
carefully (see previous discussion on Theorem 5.1) the
last term can be ignored. Thus c2 can be thought as
c2 = Generalization + Model Bias. The validity of our
assumptions in practical settings is reasonable as previously
discussed for Theorem 5.1.

5.3. Privacy and Memorization

The definition of stability-based memorization (Feldman,
2019) is very much related to privacy. Notably, Feld-
man (2019) explored this link, demonstrating that under
specific conditions, algorithms that do not memorize can-
not achieve optimal generalization performance. Feldman
(2019) showed that this memorization-generalization result
stems from the long-tailed nature of data. Our exploration
in determining how memorization and privacy are related,
is, however, different. In particular, we show that the mem-
orization score is upper bounded by 1− e−ϵ for any ϵ-DP
algorithm. While this result is relatively straightforward,
we state it for completeness as it is still a critical link in
understanding memorization.

Theorem 5.4 (Privacy =⇒ Less Memorization). Let A
be an ϵ-differentially private algorithm and zi be the ith

element of S ∈ Zm. Then, we have

∀i ∈ {1, · · · ,m}, mem(A, S, i) ≤ 1− e−ϵ. (12)

Sketch of Proof We start with the definition of ϵ-differential
privacy, with simple algebraic manipulation, and repetitively
using the definition of ϵ-differential privacy we arrive at the
result. Note that this result can also be readily extended
to (ϵ, δp)-differential privacy, i.e. Theorem 5.4 holds for
an (ϵ, δp)-differential private algorithm with a probability
1− δp. The full proof is provided in Appendix A.1.
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6. Experiments
6.1. Experimental Setup

Datasets. To evaluate our theory we consider the classifica-
tion task using standard vision datasets as the pre-computed
stability-based memorization scores from Feldman & Zhang
(2020) are available for CIFAR100 (Krizhevsky et al., 2009)
and ImageNet (Russakovsky et al., 2015) datasets.

Architectures. For some experiments we train ResNet18
(He et al., 2016) models from scratch, while for others we
use pre-trained Small Inception (Szegedy et al., 2015) and
ResNet50 models released by Feldman & Zhang (2020). De-
tails regarding the model used are specified at the beginning
of each experiment section.

Training. For experiments that use private models, we
use the Opacus library (Yousefpour et al., 2021) to train
ResNet18 models for 20 epochs till the privacy budget is
reached. We use DP-SGD (Abadi et al., 2016) with the
maximum gradient norm set to 1.0 and privacy parameter
δ = 1×10−5. The initial learning rate was set to 0.001. The
learning rate is decreased by 10 at epochs 12 and 16. When
training on CIFAR10 and CIFAR100 datasets the batch size
is set to 128. For both CIFAR10 and CIFAR100 datasets, we
used the following sequence of data augmentations for train-
ing: resize (32× 32), random crop, and random horizontal
flip, this is followed by normalization.

Testing. During testing no augmentations were used, i.e.
we used resize followed by normalization. When using pre-
trained models from Feldman & Zhang (2020) we validated
the accuracy of the models before performing experiments.
To improve reproducibility, we have provided the code at
this github link.

6.2. Estimating Input Loss Curvature

To corroborate the theoretical findings presented in the prior
section, an efficient methodology for computing input loss
curvature is needed as computing the full Hessian is com-
putationally intensive. For this we assume H is positive
semi-definite (see details in Appendix A.10). This lets us
compute the trace of H , using Hutchinson’s trace estimator
(Hutchinson, 1989; Garg et al., 2023) from which we have

tr(H) = Ev

[
vTHv

]
, (13)

where v ∈ Rd belongs to a Rademacher distribution. Using
the finite step approximation similar to Moosavi-Dezfooli
et al. (2019); Garg et al. (2023) and the symmetric nature of
the Hessian we have

tr(H) ≤ tr(H2) =
1

n

n∑
i=0

∥Hvi∥22

Hv ∝ ∂ (L(x+ hv)− L(x))

∂x

tr(H2) ∝ 1

n

n∑
i=0

∥∥∥∥∂ (L(x+ hv)− L(x))

∂x

∥∥∥∥2
2

Curv(x) ∝ 1

n

n∑
i=0

∥∥∥∥∂ (L(x+ hv)− L(x))

∂x

∥∥∥∥2
2

, (14)

where n is the number of Rademacher vectors to average.
For all our experiments we used h = 1× 10−3 and n = 10.
We found the results to be robust to changes in h; we varied
it from 1×10−1 to 1×10−3. We also varied n from 5, 10, 20
and found the results to be robust to changes in n .

6.3. Input Curvature and Memorization

In this section, we present results on CIFAR100 and Ima-
geNet datasets for the first link between memorization and
input loss curvature (Theorem 5.1).

Experiment. Here we aim to understand how memoriza-
tion changes with curvature. The experiment aims to plot
the memorization score vs. curvature score to validate our
theoretical results. We calculate curvature scores by aver-
aging over many seeds at the end of training. This mea-
surement is proportional to the expected curvature score, i.e.
Eϕ[Curvϕ(zi, S

\i)] in Theorem 5.1.

For this experiment, we used 1000 models trained on CI-
FAR100 and 100 models trained on ImageNet obtained from
Feldman & Zhang (2020)’s 0.7 subset ratio repository. We
calculated the curvature score for each sample in the training
set using Equation 14. We then compiled a dataset com-
prising each sample’s memorization score and curvature
score. Precomputed memorization scores were obtained
from Feldman & Zhang (2020)’s repository. We averaged
these scores across all models (1000 for CIFAR100 and
100 for ImageNet) to form an averaged dataset, which was
divided into 50 bins based on memorization score. For ex-
ample, bin 0 includes samples with memorization scores
from 0 to 0.02 and the corresponding curvature scores, bin 1
includes samples in the memorization score range of 0.02 to
0.04, and so on. The average memorization score and max-
imum curvature score (since curvature is an upper bound)
for each bin were used to create a scatter plot as shown in
Figures 3(a) and 3(b). For CIFAR100, the Small Inception
model was used, and for ImageNet, the ResNet50 model
was used, both sourced from Feldman & Zhang (2020).

Results. We provide the results for CIFAR100 and Ima-
geNet datasets in Figure 3(a) and 3(b) respectively. The
figures also visualize the best-fit (shown in red) based on
Theorem 5.1. From the results, we see a clear linear relation.
The results from the experiment show that the curvature
scores have a strong linear trend with respect to memoriza-
tion, in line with Theorem 5.1.

Accounting for Variables in Practice. Notably, the lin-
earity of the relation between memorization and curvature

6
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Figure 3. Plot of memorization score vs. input loss curvature at the end of training for CIFAR100 (average over 1000 Small Inception
models) and ImageNet (average over 100 ResNet50) datasets.

diminishes at the extreme ends of the data range. This phe-
nomenon is particularly pronounced in ImageNet results, as
shown in Figure 3(b). This is because the loss bound L (re-
fer to Equation 8) is not constant and the bound changes for
each sub-population. Here, we can treat each memorization
bin as a sub-population. Hence, when using cross entropy
loss we found a better fit, if the loss bound is assumed, and
the loss bound at convergence ismodeled. Accounting for
the change in loss bound with sub-population size we see a
much improved match. This is observed when comparing
the best-fit results in green (assuming sub-population loss
bound) vs red (no sub-population loss bound) in Figure 3.

To obtain an improved fit seen in Figure 3 we assumed the
loss bound reduces in the square root of the sub-population
size (Bousquet & Elisseeff, 2002). Since the theoretical cur-
vature score from Equation 7 is proportional to the computed
curvature score (Equation 14), we can rewrite Equation 8
from Theorm 5.1 using two parameters p1, c1 as

|mem(A, S, i)| ≤
p1

L
· Eϕ[Curvϕ(zi, S

\i)] + c1

Using L ∝ m−0.5
sub , where msub is the number of samples in

each sub-population we can model the relation as

|mem(A, S, i)| ≤ p1 ·
√
msub · Eϕ[Curvϕ(zi, S

\i)] + c1

s.t. p1, c1 > 0. (15)

Fitting parameters p1, c1 to the data results in the green
plot in Figures 3(a) and 3(b), where we see much improved
match between results and our theory. Thus, these results
strongly agree with and validate Theorem 5.1.

6.4. Privacy and Input Loss Curvature

In this section, we present the results on CIFAR10 and
CIFAR100 datasets to verify the link between privacy and
input loss curvature (Theorem 5.3).

Experiment. To study the relation between privacy and
curvature, we train private ResNet18 models on CIFAR10
and CIFAR100 using DP-SGD (Abadi et al., 2016) and
calculate the curvature scores. We aim to plot privacy budget
vs curvature score and validate Theorem 5.3. Specifically,
we train models with privacy budgets ϵ ranging from 5 to
100, in increments of 5. We train 10 seeds for every privacy
budget, and the curvature score is averaged over the 10 seeds
and all the dataset samples.

Accounting for Variables in Practice. For our experiments,
we use cross entropy trained private models, where the loss
is unbounded. However, Theorem 5.3 assumes bounded
loss. Thus, we obtain abound on the loss at convergence for
each privacy budget. We model the loss bound as a function
of privacy using L(ϵ) = a+ be−cϵ. The fit of this model is
shown in Figure 4. Using this loss bound model, Theorem
5.3 can be re-written as

Ez,ϕ[Curvϕ(z, S)] ≤ L(ϵ) · (m+ 1) · (1− e−ϵ) + c2

≤ (a+ be−cϵ) · (m+ 1) · (1− e−ϵ) + c2, (16)

where c2 is treated as a constant when trying to fit the data to
Equation 16. The data and the best fit model using Equation
16 are shown in Figure 5.

Results. The result of plotting the average convergence
loss and privacy budget is shown in Figure 4 along with
the best-fit model (in dashed blue line), demonstrating a
strong match. Next, Figure 5 shows the result of studying
the link between input loss curvature and privacy budget.
The scatter plot shows curvature vs privacy. We visualize
the data and the best fit (dashed line) using the model from
Equation 16. Again, we see a very strong match. All these
results strongly correlate with theory and validate Theorem
5.3.
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Figure 4. Plot of differential privacy vs loss bound for CIFAR100
trained with cross-entropy and the best fit curve (dashed).

Figure 5. Plot of privacy vs loss curvature for CIFAR10 and CI-
FAR100. The best-fit curve (dashed) is predicted by Theorem 5.3.

6.5. Memorization and Privacy

In this section, we present the results for the link between
memorization and privacy (Theorem 5.4).

Experiment. The goal of the study is to estimate the memo-
rization score of samples when the models have differential
privacy guarantees. Since Theorem 5.4 provides an upper
bound, we are interested in how privacy affects most mem-
orized examples. This enables us to reduce the compute
requirement, and we consider the top 500 most memorized
samples from CIFAR100 as reported in Feldman & Zhang
(2020) and study how these scores change as privacy guar-
antees are varied. For this experiment we first split the
CIFAR100 training set into two, set a contains all examples
that are not the top 500 most memorized examples, and set b
contains the top 500 most memorized examples as reported
by Feldman & Zhang (2020). From b we randomly sample
half the dataset called b0.5. We concatenate a and b0.5 to
get our training set. This is used to train a ResNet18 model
using DP-SGD (Abadi et al., 2016, Differentially Private

Figure 6. Plot of differential privacy vs memorization for CI-
FAR100 and the upper bound from the Theorem 5.4.

SGD). We repeat the process of random sub-sampling of b
and training for 40 seeds. By keeping track of what samples
of b were present in each training run we can estimate the
memorization score of the top 500 most memorized exam-
ples. This process is repeated 6 times for privacy budgets
ϵ = 1, 10, 20, 30, 40, 50 with δ = 1× 10−5 to train a total
of 240 private models (previously described in Section 6.1).

Results. The average memorization scores for the top 500
most memorized examples across various privacy budgets
(ϵ) are presented in Figure 6. As a reference, we also plot
the upper bound from Theorem 5.4 in the same plot. Note
that Figure 6 is a semi-log plot. The results align with
Theorem 5.4, showing an increase in memorization score
as the privacy budget increases (i.e. privacy budget ϵ ↑).
Further, the memorization scores are significantly lower than
the bound from Theorem 5.4 supporting Nasr et al. (2021)’s
observation that DP-SGD may be overly conservative.

7. Conclusion
This paper explores the theoretical link between memo-
rization, curvature, and privacy. Understanding this link
is critical since input curvature offers ∼ 3 orders of mag-
nitude compute efficiency when calculating memorization
scores. The theoretical analysis relies on three assumptions,
stability, generalization, and Lipshitzness, and thus can be
applied in non-convex settings such as DNNs. Our main
result shows that memorization is upper-bounded by the cur-
vature of the loss with respect to input and privacy. Further,
we presented two theorems that complete the links between
memorization, privacy, and input loss curvature. To test the
theory we use standard DNNs for image classification using
CIFAR100 and ImageNet datasets. Our results show a very
strong match between our theoretical findings andresults.
Results in this paper provide evidence for the link between
memorization, input loss curvature, and privacy strengthen-
ing the understanding of DNNs and their properties.
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A. Proofs
A.1. Proof of Theorem 5.4

Consider S, S\i from construction we have ||S − S\i|| = 1. Next let R ⊂ Range(A) such that R = {h | h(xi) = yi}.
Since A is ϵ-differentially private then it follows from the definition of differential privacy in Equation 1 that

Pr
ϕ
[hϕ

S ∈ R] ≤ eϵ Pr
ϕ
[hϕ

S\i ∈ R] (17)

Since R = {h | h(xi) = yi} we have

Pr
ϕ
[hϕ

S ∈ R] = Pr
ϕ
[hϕ

S(xi) = yi] (18)

Using Equations 17 and 18 we have

Pr
ϕ
[hϕ

S(xi) = yi] ≤ eϵ Pr
ϕ
[hϕ

S\i(xi) = yi] (19)

Pr
ϕ
[hϕ

S(xi) = yi] ≤ eϵ Pr
ϕ
[hϕ

S\i(xi) = yi]± Pr
ϕ
[hϕ

S\i(xi) = yi]

Pr
ϕ
[hϕ

S(xi) = yi]− Pr
ϕ
[hϕ

S\i(xi) = yi] ≤ eϵ Pr
ϕ
[hϕ

S\i(xi) = yi]− Pr
ϕ
[hϕ

S\i(xi) = yi]

Pr
ϕ
[hϕ

S(xi) = yi]− Pr
ϕ
[hϕ

S\i(xi) = yi] ≤ (eϵ − 1)Pr
ϕ
[hϕ

S\i(xi) = yi]

mem(A, S, i) ≤ (eϵ − 1)Pr
ϕ
[hϕ

S\i(xi) = yi]

Using Equation 19, we have the lower bound on Prϕ[h
ϕ
S\i(xi) = yi] as

Pr
ϕ
[hϕ

S\i(xi) = yi] ≥ e−ϵ Pr
ϕ
[hϕ

S(xi) = yi]

Thus we have

mem(A, S, i) ≤ (eϵ − 1)e−ϵ Pr
ϕ
[hϕ

S(xi) = yi]

mem(A, S, i) ≤ (1− e−ϵ) Pr
ϕ
[hϕ

S(xi) = yi]

Since supPrϕ[h
ϕ
S(xi) = yi] = 1 we have the result

mem(A, S, i) ≤ 1− e−ϵ ■

A.2. Proof of Lemma A.2

Lemma A.1. If the generalization assumption 4 holds then we know here exists γ such that with probability 1− δ

Eϕ[|Remp(h
ϕ
S\i , S)−R(hϕ

S\i)|] ≤ γ (20)

Eϕ[|Remp(h
ϕ
S , S)−R(hϕ

S)|] ≤ γ (21)

Eϕ[|Remp(h
ϕ
S , S

\i)−R(hϕ
S)|] ≤ γ (22)

Proof of Lemma A.1 From (Feldman & Vondrak, 2019) we know that with a confidence δ we have

Pr
S∼Dm

[
|Remp(h, S)−R(h)| ≥ c

(
β′ ln(m) ln(m/δ) +

√
ln(1/δ)
√
m

)]
≤ δ

Where β′ is the uniform stability bound. Thus with a confidence of at least 1− δ we can say:

|Remp(h, S)−R(h)| < c

(
β′ ln(m) ln(m/δ) +

√
ln(1/δ)
√
m

)
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Thus if we set

γ′(m) = c

(
β′ ln(m) ln(m/δ) +

√
ln(1/δ)
√
m

)
we have

|Remp(h, S)−R(h)| < γ′(m) (23)

Thus as a direct consequence of Equation 23 we can say

∀S, S\i ∼ Dm, Eϕ[|Remp(h
ϕ
S\i , S

\i)−R(hϕ
S\i)|] ≤ γ′(m− 1) (24)

∀S ∼ Dm, Eϕ[|Remp(h
ϕ
S , S)−R(hϕ

S)|] ≤ γ′(m) (25)

Eϕ[|Remp(h
ϕ
S\i , S)−R(hϕ

S\i)|] = Eϕ

[∣∣∣∣∣ 1mℓ
(
hϕ
S\i , zi

)∣∣∣∣∣
]
+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−R(hϕ
S\i)

∣∣∣∣∣
]

=
1

m
Eϕ

[∣∣∣ℓ(hϕ
S\i , zi

)∣∣∣]+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−
m− 1

m
R(hϕ

S\i)−
1

m
R(hϕ

S\i)

∣∣∣∣∣
]

≤
L

m
+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−
m− 1

m
R(hϕ

S\i)−
1

m
R(hϕ

S\i)

∣∣∣∣∣
]

≤
L

m
+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−
m− 1

m
R(hϕ

S\i)−
1

m
R(hϕ

S\i)±
1

m
R(h∗)

∣∣∣∣∣
]

≤
L

m
+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−
m− 1

m
R(hϕ

S\i)−
1

m
R(h∗)

∣∣∣∣∣
]
+∆

≤
L

m
+ Eϕ

[∣∣∣∣∣m− 1

m
Remp(h

ϕ
S\i , S

\i)−
m− 1

m
R(hϕ

S\i)−
1

m
R(h∗)

∣∣∣∣∣
]
+∆

≤
L

m
+

∣∣∣∣∣m− 1

m
γ′(m− 1)

∣∣∣∣∣+
∣∣∣∣∣ 1mR(h∗)

∣∣∣∣∣+∆

≤
L

m
+

∣∣∣∣∣m− 1

m
γ′(m− 1)

∣∣∣∣∣+ L

m
+∆

≤
2L

m
+

m− 1

m
γ′(m− 1) + ∆

Now consider

Remp(h
ϕ
S , S

\i)−R(hϕ
S) = Remp(h

ϕ
S , S

\i)−R(hϕ
S)

=
1

m− 1

m∑
j=1,j ̸=i

ℓ(hϕ
S , zj)−R(hϕ

S)

=
1

m− 1

m∑
j=1

ℓ(hϕ
S , zj)−

1

m− 1
ℓ(hϕ

S , zi)−R(hϕ
S)

≤
m

m− 1
Remp(h

ϕ
S , S)−R(hϕ

S)

≤ γ′(m) +
1

m− 1
Remp(h

ϕ
S , S)

≤ γ′(m) +
1

m− 1
L

|Remp(h
ϕ
S , S

\i)−R(hϕ
S)| ≤ γ′(m) +

L

m− 1
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Thus if we set γ(m) = max

{
2L

m
+

m− 1

m
γ′(m− 1) + ∆, γ′(m) +

L

m− 1

}
we get ∀S, S\i ∼ Dm

Eϕ[|Remp(h
ϕ
S\i , S)−R(hϕ

S\i)|] ≤ γ (26)

Eϕ[|Remp(h
ϕ
S , S)−R(hϕ

S)|] ≤ γ (27)

Eϕ[|Remp(h
ϕ
S , S

\i)−R(hϕ
S)|] ≤ γ (28)

Using error stability from assumption (see Equation 3) introduced by Kearns & Ron (1997) without loss of generality, we
can write

Eϕ,z∼D[ℓ(h
ϕ
S , z)]− Eϕ,z∼D[ℓ(h

ϕ
S\i , z)] ≤ β

Eϕ[R(hϕ
S)−R(hϕ

S\i)] ≤ β

Lemma A.2. If assumptions of error stability 3, generalization 4, and uniform model bias 5 hold, then for all i, j and two
adjacent datasets S, S\i ∼ D with a probability at least 1− δ it holds that∣∣∣Eϕ[ℓ(h

ϕ
S , zi)− ℓ(hϕ

S\i , zj)]
∣∣∣ ≤ mβ + (4m− 1)γ

+ 2(m− 1)∆. (29)

Lemma A.2 provides an upper bound on the expected loss difference between two adjacent datasets evaluated at any data
point in the training set.

Proof of Lemma A.2 Using Lemma A.1 we know here exists γ such that with probability 1− δ

Eϕ[|Remp(h
ϕ
S\i , S)−R(hϕ

S\i)|] ≤ γ

Eϕ[|Remp(h
ϕ
S , S)−R(hϕ

S)|] ≤ γ

Eϕ[|Remp(h
ϕ
S , S

\i)−R(hϕ
S)|] ≤ γ

Using Equations 20 and 21 we can upper bound the expected difference in empirical risk of adjacent datasets as

Eϕ[Remp(h
ϕ
S , S)−Remp(h

ϕ
S\i , S)] ≤ β + 2γ

Eϕ

[
1

m
ℓ(hϕ

S , zi) +
m− 1

m
Remp(h

ϕ
S , S

\i)−
1

m
ℓ(hϕ

S\i , zj)−
m− 1

m
Remp(h

ϕ
S\i , S

\i)

]
≤ β + 2γ

1

m
Eϕ[ℓ(h

ϕ
S , zi)]−

1

m
Eϕ[ℓ(h

ϕ
S\i , zj)] ≤ β + 2γ +

m− 1

m
Eϕ[Remp(h

ϕ
S\i , S

\i)−Remp(h
ϕ
S , S

\i)]

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤ mβ + 2mγ + (m− 1)Eϕ[Remp(h

ϕ
S\i , S

\i)−Remp(h
ϕ
S , S

\i)]

We obtain the upper and lower bound for empirical risk using Equations 20 and 22 to get

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤ mβ + 2mγ + (m− 1)Eϕ[R(hϕ

S\i) + γ −R(hϕ
S) + γ]

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + (m− 1)Eϕ[R(hϕ
S\i)−R(hϕ

S)]

We add an subtract the risk of h∗ = E[y|x] which is the true conditional of Dm

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + (m− 1)Eϕ[R(hϕ
S\i)−R(hϕ

S)±R(h∗)]

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + (m− 1)Eϕ[R(hϕ
S\i)−R(h∗)− (R(hϕ

S)−R(h∗))]

Using the uniform model bias bound from assumption 5 we have

Eϕ[R(hϕ
S\i)−R(h∗)] ≤ ∆

Eϕ[R(hϕ
S)−R(h∗)] ≥ −∆

14
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Hence we get

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + (m− 1) [∆− (−∆)]

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Since we can interchange ℓ(hϕ
S , zi) and ℓ(hϕ

S\i , zj) i.e. start with Ez∼D[ℓ(h
ϕ
S\i , z)]− Ez∼D[ℓ(h

ϕ
S , z)] we have the result∣∣∣Eϕ[ℓ(h

ϕ
S , zi)− ℓ(hϕ

S\i , zj)]
∣∣∣ ≤ mβ + (4m− 1)γ + 2(m− 1)∆ ■

Lemma A.3. If Lipschitz assumption 6 on the Hessian of ℓ holds from Nesterov & Polyak (2006) we have

|ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩| ≤
ρ

6
|z1 − z2|3 (30)

A.3. Proof of Theorem 5.1

From Lemma A.3 we have

−
ρ

6
|z1 − z2|3 ≤ ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ ≤

ρ

6
|z1 − z2|3

This gives us an upper bound on ℓ(h, z1)

ℓ(h, z1) ≤
ρ

6
|z1 − z2|3 + ℓ(h, z2) + ⟨∇ℓ(h, z2), z1 − z2⟩+ ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ (31)

Consider zj ∈ S such that zj = zi + α for some j ̸= i where α ∈ Bp(υ) such that E[α] = 0 and E[αTα] = 1.

Without loss of generality from Lemma A.2 we have:

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Using the upper bound from Equation 31, setting z1 = zj , z2 = zi we have

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zj)−
ρ

6
∥α∥3 − ⟨∇ℓ(hϕ

S\i , zi), α⟩ − ⟨∇2ℓ(hϕ
S\i , zi)α, α⟩] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zi)− ℓ(hϕ

S\i , zi)−
ρ

6
∥α∥3 − ⟨∇ℓ(hϕ

S\i , zi), α⟩ − αTHTα] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Where H = ∇2ℓ(hϕ
S\i , zi). Next, we take expectation over α we get

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)]−

ρ

6
Eα[∥α∥3]− Eϕ,α[α

THTα] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)]−

ρ

6
Eα[∥α∥3]− Eϕ,α[tr(H

T Eα[α
Tα])] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)] ≤

ρ

6
Eα[∥α∥3] + Eϕ[tr(H

T Eα[α
Tα])] +mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)] ≤

ρ

6
Eα[∥α∥3] + Eϕ[tr(H)] +mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)] ≤

ρ

6
Eα[∥α∥3] + Eϕ[tr(∇2ℓ(hϕ

S\i , zi))] +mβ + (4m− 1)γ + 2(m− 1)∆

If we have 0 ≤ ℓ ≤ L then:

1

L

[
Eϕ[ℓ(h

ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zi)]

]
= mem(A, S, i) (32)

Since we can exchange S and S\i Hence we have the result

|mem(A, S, i)| ≤
ρ

6L
Eα[∥α∥3] +

1

L
Eϕ[tr(∇2ℓ(hϕ

S\i , zi))] +
mβ

L
+

(4m− 1)γ

L
+

2(m− 1)∆

L
■
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A.4. Proof of Theorem 5.1 for Cross-Entropy

For classification with one-hot ground truth labels we have cross entropy we have.

ℓ(hϕ
S , zi) = − ln(Pr[hϕ

S(xi) = yi])

ℓ(hϕ
S , zi)− ℓ(hϕ

S\i , zj) = ln

(
Pr[hϕ

S\i(xj) = yj ]

Pr[hϕ
S(xi) = yi]

)

= ln

(
a

b

)

for θ > −1 we have,
θ

θ + 1
≤ ln(1 + θ)

a

b
− 1

a

b

≤ ln

(
a

b

)

a− b

a
≤ ln

(
a

b

)

a− b ≤
a− b

a
≤ ln

(
a

b

)
For 0 < a ≤ 1

Thus we have

Pr[hϕ
S\i(xj) = yj ]− Pr[hϕ

S(xi) = yi] ≤ ℓ(hϕ
S , zi)− ℓ(hϕ

S\i , zj)

Taking expectation over the randomness of A we have

Eϕ[Pr[h
ϕ
S\i(xj) = yj ]]− Eϕ[Pr[h

ϕ
S(xi) = yi]] ≤ Eϕ[ℓ(h

ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)]

mem(A, S, i) ≤ Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)] ■
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A.5. Proof of Lemma 5.2

Let h ∼ A(ϕ, S) have a pdf defined as p(h), and h′ ∼ A(ϕ, S\i) have a pdf defined as p′(h′)∣∣∣Eϕ,z[ℓ(h
ϕ
S , z)]− Eϕ,z[ℓ(h

ϕ
S\i , z)]

∣∣∣ = ∣∣∣Ez,ϕ[ℓ(h
ϕ
S , z)]− Ez,ϕ[ℓ(h

ϕ
S\i , z)]

∣∣∣
=
∣∣∣Ez,ϕ[ℓ(A(ϕ, S), z)]− Ez,ϕ[ℓ(A(ϕ, S\i), z)]

∣∣∣
= |Ez,h[ℓ(h, z)]− Ez,h′ [ℓ(h′, z)]|

=

∣∣∣∣∫
z

∫
h

ℓ(h, z)p(h)dh p(z)dz −
∫
z

∫
h′
ℓ(h′, z)p′(h′)dh′ p(z)dz

∣∣∣∣
=

∣∣∣∣∫
z

∫
h

ℓ(h, z)p(h)dh p(z)dz −
∫
z

∫
h

ℓ(h, z)p′(h)dh p(z)dz

∣∣∣∣
=

∣∣∣∣∫
z

∫
h

ℓ(h, z)(p(h)− p′(h))dh p(z)dz

∣∣∣∣
≤

∣∣∣∣∣
∫
z

sup
h

ℓ(h, z)

∫
h:p(h)≥p′(h)

(p(h)− p′(h))dh p(z)dz

∣∣∣∣∣
≤

∣∣∣∣∣suph,z
ℓ(h, z)

∫
z

p(z)dz

∫
h:p(h)≥p′(h)

(p(h)− p′(h))dh

∣∣∣∣∣
≤

∣∣∣∣∣L
∫
h:p(h)≥p′(h)

p(h)− p′(h)dh

∣∣∣∣∣
≤

∣∣∣∣∣L
∫
h:p(h)≥p′(h)

p(h)

(
1−

p′(h)

p(h)

)
dh

∣∣∣∣∣
≤

∣∣∣∣∣L
∫
h:p(h)≥p′(h)

p(h)
(
1− e−ϵ

)
dh

∣∣∣∣∣
≤

∣∣∣∣∣L(1− e−ϵ)

∫
h:p(h)≥p′(h)

p(h)dh

∣∣∣∣∣
≤
∣∣L(1− e−ϵ)

∣∣
≤ L(1− e−ϵ) ■

Lemma A.4. If the assumptions of error stability 3, generalization 4, and uniform model bias 5 hold, then for two adjacent
datasets S, S\i ∼ D and for any i, j ∈ {1, · · · ,m} with a probability at least 1− δ we have

Eϕ[tr(∇2ℓ(hϕ
S , zi))] ≤ mβ + (4m− 1)γ

+ 2(m− 1)∆ +
ρ

6
E[∥α∥3]

+ Eϕ[ℓ(h
ϕ
S , zj)]− Eϕ[ℓ(h

ϕ
S\i , zj)]. (33)

A.6. Proof of Lemma A.4

From Lemma A.3 we have

−
ρ

6
|z1 − z2|3 ≤ ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ ≤

ρ

6
|z1 − z2|3

This gives us a lower bound on ℓ(h, z1)

−
ρ

6
|z1 − z2|3 + ℓ(h, z2) + ⟨∇ℓ(h, z2), z1 − z2⟩+ ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ ≤ ℓ(h, z1) (34)
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Consider zj ∈ S such that zi = zj + α for some j ̸= i where α ∈ Bp(υ) such that E[α] = 0 and E[αTα] = 1. Using the
lower bound in Lemma A.2 with z1 = zi, z2 = zj we get

Eϕ[ℓ(h
ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤mβ + (4m− 1)γ

+ 2(m− 1)∆

−
ρ

6
∥α∥3 + Eϕ[ℓ(h

ϕ
S , zj)] + Eϕ[⟨∇ℓ(hϕ

S , zj), α⟩] + Eϕ[⟨∇2ℓ(hϕ
S , zi)α, α⟩]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤mβ + (4m− 1)γ

+ 2(m− 1)∆

Eϕ[ℓ(h
ϕ
S , zj)] + Eϕ[⟨∇ℓ(hϕ

S , zj), α⟩] + Eϕ[⟨∇2ℓ(hϕ
S , zi)α, α⟩]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤mβ + (4m− 1)γ

+ 2(m− 1)∆ +
ρ

6
∥α∥3

Taking Expectation over α we get

Eϕ[ℓ(h
ϕ
S , zj)] + Eα,ϕ[⟨∇ℓ(hϕ

S , zj), α⟩] + Eα,ϕ[⟨∇2ℓ(hϕ
S , zi)α, α⟩]− Eϕ[ℓ(h

ϕ
S\i , zj)] ≤ mβ + (4m− 1)γ

+ 2(m− 1)∆ +
ρ

6
∥α∥3

Note that we can change the order of expectation due to Fubini’s theorem

Eϕ[ℓ(h
ϕ
S , zj)] + Eϕ,α[⟨∇2ℓ(hϕ

S , zi)α, α⟩]− Eϕ[ℓ(h
ϕ
S\i , zj)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
∥α∥3

Eϕ[ℓ(h
ϕ
S , zj)] + Eϕ[tr(∇2ℓ(hϕ

S , zi))]− Eϕ[ℓ(h
ϕ
S\i , zj)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
∥α∥3

Eϕ[tr(∇2ℓ(hϕ
S , zi))] ≤ mβ + (4m− 1)γ + 2(m− 1)∆+

ρ

6
E[∥α∥3] + Eϕ[ℓ(h

ϕ
S , zj)]− Eϕ[ℓ(h

ϕ
S\i , zj)] ■

A.7. Proof of Theorem 5.3

We start with the results of Lemma A.4. Taking Expectation over z ∼ D we have

Ez,ϕ[tr(∇2ℓ(hϕ
S , z))] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3] + Ez,ϕ[ℓ(h

ϕ
S , zj)]− Ez,ϕ[ℓ(h

ϕ
S\i , zj)]

Ez,ϕ[tr(∇2ℓ(hϕ
S , z))] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3] + β

Ez,ϕ[tr(∇2ℓ(hϕ
S , z))] ≤ (m+ 1)β + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3]

Using Lemma 5.2

Ez,ϕ[tr(∇2ℓ(hϕ
S , z))] ≤ L(m+ 1)(1− e−ϵ) + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3] ■

A.8. Privacy vs Memorization via MIA

We have considered a differential privacy setting to understand the link between memorization and privacy. However,
another common approach to measure privacy is via membership inference attack (MIA), such as using Privacy Meter
(Murakonda & Shokri, 2020). Membership inference attacks aim to detect if a given sample was used in training a deep
neural network. While membership attacks can estimate privacy leakage, it is hard to estimate privacy guarantees. However,
for completeness, we used the LiRA (Carlini et al., 2022) a recent state-of-the-art MIA to perform a black-box shadow
model-based attack. LiRA trains shadow models, which are used to learn the logit-scaled probability distribution when
a sample is in the training set and when not in the training set. A likelihood ratio test is performed using the learned
distribution to detect whether a sample was in the train set. We detail the experiment below.
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Figure 7. LiRA MIA attack with 48 shadow models on CIFAR100.
Plot of accuracy of MIA attack vs memorization score of the
samples.

Figure 8. LiRA MIA attack with 48 shadow models on ImageNet.
Plot of accuracy of MIA attack vs memorization score of the
samples.

Figure 9. Plot of MIA accuracy, AUROC and trainset accuracy vs memorization score for CIFAR100 and ImageNet datasets.

Experiment Commonly with MIA the shadow models are trained either using a subset (Nasr et al., 2019) or a similar
set as the target training set. In our case, since we are interested in measuring privacy, we train the shadow models using
the random sub-sampled version of the entire target train set. We use a subset ratio of 0.5 and 0.7 for CIFAR100 and
ImageNet, respectively. A subset ratio of sr denotes that each shadow model was trained on a random subset whose length
was sr × full train set length.

We used 48 shadow models and tested 10 target (i.e. different from the 48) models trained on CIFAR100 and ImageNet to
detect which samples were in the train set. For CIFAR100 we used ResNet18 models, and for ImageNet we used ResNet50
models from Feldman & Zhang (2020)’s 0.7 subset ratio. Using the 10 target models we calculated the average MIA attack
success rate, AUROC, and the train set accuracy for various memorization score buckets. The grouping was similar to our
previous experiments, i.e. we grouped the memorization scores and the corresponding metrics into memorization bins for
visualization. This was used to plot the Figure 9. Please note an attack success rate and AUROC of 50% is random since
MIA is effectively a binary classifier (in trainset or not).

Takeaways: Results in Figure 9 show that more memorized samples are easier to detect using MIA attacks. This is in line
with our theoretical analysis (Theorem 5.4). This conclusion is slightly complicated for ImageNet because MIA performance
also depends on the accuracy of the samples in the trainset. If the accuracy on the trainset is high and memorization is low,
MIA is unsuccessful (see memorization score < 0.1 in Figure 8). If the memorization is high but the model is inaccurate
(see memorization score range 0.4 − 0.7) then due to lack of model learning MIA is unsuccessful but to a lesser extent.
However, if memorization is high and accuracy on the samples is high MIA is successful (see memorization score > 0.7).

A.9. Memorization vs Other Proxies

In this paper, we explore a specific memorization proxy, that of input loss curvature. We discuss the theory for this proxy
and how it relates to privacy and memorization. For completeness and to provide readers with sufficient context, we have
considered three proxies previously proposed in the literature, Model Confidence (Carlini et al., 2019), Adversarial Distance
(Stock & Cisse, 2018; Carlini et al., 2019) and Learning Time (Jiang et al., 2020). For better visualization, we plot (1 -
normalized learning time), this lets us plot all the three metrics in a single plot for easy comparison. Normalized learning
time is 1 if a sample is learnt at the last epoch, and 0 if it learns in the first epoch. We plot how each of these proxies trend
with memorization scores in Figures 12 and 13.

Takeaways: For CIFAR100 all the three proxies are mostly linear with respect to memorization score, except some non-
linearity at the extremes. However, this changes drastically for ImageNet, both Adversarial Distance and Model Confidence
are quite non-linear, while learning time is linear. However, as far as we are aware there is no theoretical guarantees for
these proxies.
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Figure 10. Comparing memorization score proxies for CIFAR100. Figure 11. Comparing memorization score proxies for ImageNet.

Figure 12. For CIFAR100 all the three proxies are mostly linear with respect to memorization score. However this changes drastically for
ImageNet, both Adversarial Distance and Model Confidence are quite non-linear, while learning time is linear. However, as far as we are
aware there is no theoretical guarantees for these proxies.

A.10. Result of Using tr(H)

Curvature as studied in prior works (Garg & Roy, 2023; Garg et al., 2023; Moosavi-Dezfooli et al., 2019) use sum of
absolute eigenvalues of H . Thus, we focus our study on the sum of absolute eigenvalues of H . However, the theoretical
results do not need H to be positive semi-definite (PSD). But, assuming PSD links prior works with the theoretical analysis
presented in this paper. This assumption is also quite reasonable when using CURE (Moosavi-Dezfooli et al., 2019) or
adversarial training as shown by Moosavi-Dezfooli et al. (2019).

Further, assuming PSD on H for empirical curvature computations implies tr(H) ≤ tr(H2) thus, we can write Curv ∝
tr(H2), this approximation is similar to Garg & Roy (2023); Garg et al. (2023); Moosavi-Dezfooli et al. (2019). However,
to bolster our results without needing PSD assumption we provide additional results for Curv ∝ tr(H) estimated using the
same technique i.e. E[vTHv] this is presented in Figures 14, 15 and 16. The results with tr(H) are almost identical to
those using tr(H2).

Figure 13. Plot of inverse learning time (1-LT) vs memorization
score for ImageNet.

Figure 14. Plot of memorization score vs. input loss curvature at
the end of training for ImageNet (average over 100 ResNet50).
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Figure 15. Plot of memorization score vs. input loss curvature
at the end of training for CIFAR100 (average over 1000 Small
Inception models).

Figure 16. Plot of privacy vs. loss curvature for CIFAR10 and
CIFAR100. The best-fit curve (dashed) is predicted by Theorem
5.3.
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